
Overview of the ORBIT Radio Grid Testbed for Evaluation of
Next-Generation Wireless Network Protocols

D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu and M. Singh
WINLAB, Rutgers University, 73 Brett Rd, Piscataway, NJ 08854, USA

Email: {ray, seskar, max, sachin, kishore, harisk, rjs, hliu, singh}@winlab.rutgers.edu

Abstract—This paper presents an overview of the ORBIT (Open
Access Research Testbed for Next-Generation Wireless Networks)
radio grid testbed1, that is currently being developed for scalable
and reproducible evaluation of next-generation wireless network
protocols. The ORBIT testbed consists of an indoor radio grid
emulator for controlled experimentation and an outdoor field
trial network for end-user evaluations in real-world settings. The
radio grid system architecture is described in further detail
including an identification of key hardware and software
components. Software design considerations are discussed for
the open-access radio node, and for the system-level controller
that handles management and control. The process of specifying
and running experiments on the ORBIT testbed is explained
using simple examples. Experimental scripts and sample results
are also provided.

Keywords: Wireless network testbed, radio grid, network emulation

I. INTRODUCTION
It is recognized that powerful technology and market trends

towards portable computing and communication devices imply
an increasingly important role for wireless access in the next-
generation Internet. At the same time, new sensor and
pervasive computing applications may be expected to drive
large-scale deployments of embedded computing devices
interconnected via new types of short-range wireless networks.
Although there is a great deal of research activity on future
wireless/sensor networks and applications, it is observed that
much of this work relies on a formal separation between the
radio and networking layers due to the absence of easily
available tools for modeling, emulation or rapid prototyping of
a complete wireless network. As a result, research on wireless
network protocols and applications tends to be conducted
predominantly using simulations with simplified radio system
models that do not capture real physical layer effects.

A recent technical report [1] states “Since it is difficult to
conduct experiments with real mobile computers and wireless
networks, nearly all published MANET articles are buttressed
with simulation results, and the simulations are based on
common simplifying assumptions”. Most of the simplifying
assumptions made in the simulations, compounded by limited
real-world physical layer modeling capabilities of existing
simulators often affect the quality of the results [2] and also
their reproducibility. Thus, there is an increasing need in the
research community to be able to perform controlled
experimental investigations of protocols and evaluations of
system design using real-world wireless devices.

1 Research supported by NSF ORBIT Testbed Project, NSF
NRT Grant #ANI0335244

In the recent NSF-sponsored Network Testbeds Workshop
Report [3], it was concluded that “open wireless multi-user
experimental facility (MXF) testbed” for wireless networking
would be increasingly important to the research community in
view of the limitations of available simulation methodologies
and the growing importance of “cross-layer” protocol research.
The speed of innovation and productivity of researchers in the
wireless networking field can be significantly improved with
the development of a flexible, open-access wireless network
testbed that is available to experimental researchers across the
networking community. Such testbeds can also help accelerate
consensus on adoption of standards via reproducible
experimentation and access to open-source protocols. These
considerations motivated the ORBIT testbed project which
aims to provide a flexible, open-access multi-user experimental
facility to support research on next-generation wireless
networks.

The remaining sections are organized as follows: Section II
explains the design requirements for a wireless testbed and the
system architecture of ORBIT based on these requirements. We
describe the various hardware and software components in
Section III. Finally, we explain the life-cycle of an experiment
on ORBIT in Section IV and present some initial experimental
results using the ORBIT infrastructure in Section V.

II. ORBIT TESTBED DESIGN METHODOLOGY AND SYSTEM
ARCHITECTURE

The development of a general-purpose open-access wireless
multi-user experimental facility poses significant technical
challenges that do not arise in wired network testbeds such as
Emulab [4] or ABone [5]. In particular, it is far more difficult
to set up a reproducible wireless networking experiment due to
random time variations in mobile user location and associated
wireless channel models. In addition, wireless systems tend to
exhibit complex interactions between the physical, medium
access control and network layers, so that strict layering
approaches often used to simplify wired network prototypes
cannot be applied here. Some of the basic characteristics of
radio channels that need to be incorporated into a viable
wireless network testbed are as follows

− Radio channel properties depend on specific wireless node
locations and surroundings.

− Physical layer bit-rates and error-rates are time-varying.
− Shared medium layer-2 protocols on the radio link have a

strong impact on network performance.

− There are complex interactions between different layers of
the wireless protocol stack and currently their mutual
interaction cannot be studied easily.

− User’s exhibit random mobility and location also plays a
role.

A flexible wireless network testbed must be able to support
experimental research on a broad range of wireless networking
issues and application concepts with various network
topologies and network layer protocol options. For the testbed
to be useful, it should be scalable and cover a sufficiently broad
range of wireless network research problems that might be
anticipated over the next 5-10 years.

Some examples of systems or protocol designs that help to
understand the overall design space under consideration are:

− Large-scale wireless networks based on 802.11a/b/g radio
access along with new protocols for discovery, routing,
security etc.

− Mobile ad hoc networks (MANET), typically based on
802.11x WLAN radios, extended to support multi-hop ad
hoc routing protocols such as AODV [6] and DSR [7].

− Wireless sensor networks and pervasive computing
applications involving embedded radio devices to create a
“smart” environment.

− Mobile applications such as location-based services, VoIP
over MANET etc.

The system architecture of the ORBIT testbed is based on
the general requirements discussed above. The key design
goals adopted for this testbed are summarized as follows:

− scalability, in terms of the total number of wireless nodes
(~100’s).

− reproducibility of experiments which can be repeated with
similar environments to get similar results.

− open-access flexibility giving the experimenter a high-level
of control over protocols and software used on the radio
nodes.

− extensive measurements capability at radio PHY, MAC
and network levels, with the ability to correlate data across
layers in both time and space.

− remote access testbed capable of unmanned operation and
the ability to robustly deal with software and hardware
failures.

As shown in Fig. 1, the ORBIT testbed uses a two-tier
architecture with a lab emulator/field trial network architecture
to deal with the important issue of reproducibility in
experimentation, while at the same time supporting the ability
to evaluate protocol and application performance in real-world
settings. In particular, the laboratory-based wireless network
emulator is constructed using an innovative approach
involving a large 2-dimensional array of static 802.11x radio
nodes, which can be dynamically interconnected into specified
topologies for wireless network experiments with
reproducibility for quantitative evaluation of various new
protocols, or application and system concepts. Once the basic
protocol or application concepts have been validated on the
lab emulator platform, users can migrate their software to a
wireless field trial network that will provide a reconfigurable
mix of cellular (3G) and 802.11x wireless access in a real-
world setting (spanning a region about 5 km wide and 2 km
long, including university campuses, suburbs and downtown
areas). The first phase of this project involves setting up the
indoor radio grid emulator, which will be the focus of the
remainder of this paper.

The radio grid emulator (as shown in Fig. 2) currently
consists of 64 wireless nodes having 802.11a/b/g wireless cards
laid out in a 8x8 grid with ~1m spacing between nodes. Each
node is connected via multiple high-speed Ethernet links for
transfer of applications, control and management information.
The system will be extended to 20x20 radio nodes in the next
phase of work. Users can have full access to the radio nodes
used in their experiments, download and run their own OS
image and software packages, control and reboot the nodes, as
well as access node console and console logs.

Research
User of
Testbed

Global Internet

Lab Emulation “Radio Grid” Field Trial Network

ns-2+ scripts &
code downloads

Static
radio
node

High
Speed

Net

Firewall

Mobility
Server

Emulator
Mapping

“Open” API
Access Point

(802.11b)

End-user devices

3G
access
link

“Open”
API

3G BTS

Mobile node
(robotic control)Radio link

emulation

Ad
hoc
link

Wired
routers

Dual-mode
Radio device

Mobility
Server

Figure 1 High-level View of Proposed 2-Tier System Architecture for ORBIT

Figure 2 Orbit System Architecture

For example, experimenters can install their own network
layer protocols or new application software to construct a
specific networking or application scenario for study.

Power and interference levels corresponding to the selected
radio system scenario are emulated through a “mapping”
algorithm. Experimental data collection tools are also provided
to support research evaluation, including network traffic and
performance as well as radio link quality and spectrum usage
aspects.

III. ORBIT TESTBED: HARDWARE AND SOFTWARE
COMPONENTS

The ORBIT testbed includes the following major hardware
and software components.

A. Hardware Components
1) ORBIT radio nodes: The radio nodes, as shown in Fig.

3, constitute the grid and serve as the primary platform for user
experiments.

Figure 3 ORBIT: Radio Node

The radio node is a custom wireless node which consists of:
− 1-GHz VIA C3 processor with 512 MB of RAM and a

20 GB local hard disk
− two wireless mini-PCI 802.11a/b/g interfaces
− two 100BaseT Ethernet ports for experimental data and

control respectively

− integrated chassis manager, that is used to remotely
monitor the status of each radio node’s hardware. The
nodes can be reset, powered on/off remotely by the CM
through a third Ethernet interface

2) Instrumentation subsystem intended to provide
capabilities for measurement of radio signal levels and to create
various types of artificial RF interference (white noise, colored
noise, microwave oven like noise etc.) inside the grid. The
intereference generator is based on RF Vector Signal Generator
while the spectrum measurements are done using Vector Signal
Analyzers.

3) Independent WLAN monitor system which provides a

MAC/network layer view of the radio grid’s components using
a number of WLAN “observers” spread across the system.

4) Support servers which includes the front-end servers for

web services and backend servers for experimentation and data
storage. The database servers support multi-terabyte storage
capacity.

B. Software Components
Software packages and libraries have been developed to

support both application/protocol evaluations. These include
common libraries for traffic generation, measurement
collection etc. and also provide easy hooks to enable "expert"
users to develop their own applications, protocol stacks, MAC
layer modifications and/or other experiments on the testbed. To
give an idea of the flexibility that the software needs to
provide, consider the following sample experiment scenarios,

− Simple users may only want to define a network topology
using standard MAC, network and transport layer
protocols as well as a standard traffic generator. The user
may be interested in measuring standard supported
statistics such as throughput, average delay, packet loss
etc. These tools are provided as default libraries.

− More advanced users may want to run cross-layer
experiments, which will need support from the kernel so as
to allow access to the data and control plane of all layers of
the standard protocol stack. For such users, full node
access can be provided along with a framework for
measurement collection so that they can easily define new
statistics, choose measurement points and collect
measurements based on samples or time intervals.

A layered approach and modular design, with open APIs,

hides the unnecessary details of experiment operation and
complexity from users. In addition to the testbed software
packages and libraries, it is expected that re-usable components
and packages will also be developed by the user community. In
order to support user experiments, the ORBIT testbed has a
software framework as shown in Fig.4 consisting of
management/control software as well as user level application
software for the radio nodes.

Management
plane switch

Data
plane
switch

Application
servers (user
applications,
delay nodes,
mobility
controllers)

Internet VPN Gateway /
Firewall

Back end
Servers

Front-end
Servers

Gigabit backbone VPN Gateway
 to Wide-Area
Testbed

Spectrum
Measurement

Interference
Sources

Figure 4 Software Architecture of ORBIT Testbed

1) Management/Control Software
The following testbed and experiment management

software components have been developed.

a) Node Handler: The purpose of the Node Handler is to
disseminate experiment scripts using multicast to the Node
Agents residing on the individual nodes, in order to orchestrate
the experiment. The Node Handler is Tcl-based and processes
the experiment script, keeps track of the experiment steps and
events, and sends them to the involved Node Agents at the
appropriate time. The Node Agent reports back the state of
experiment command execution to the Node Handler

b) Collection Server (CS): The purpose of the collection
server is to collect the reported measurements during the
experiment. The nodes collect the statistics and send them to
the collection server over a multicast channel after encoding
them into XDR [8] format. This multicast channel is unique per
experiment. The collection server provides a type-safe
mechanism to collect experimental results reliably and store
them for post-processing.

c) Disk-Loading Server: The purpose of the disk-
loading server is to enable quick re-imaging of hard disks on
the nodes as per the requirements of the user. This service
works over a reliable multicast session using Frisbee [9] and is
highly scalable. It allows for different groups of nodes to have
different OS images between experiments.

2) Software for Radio Nodes
The following software components and libraries have been

developed based on Linux kernel 2.6.4 as target platform to
support the experiment and to provide libraries and interfaces
for the user application development.

a) Node Agent: This is the component equivalent to
NodeHandler that resides on the ORBIT nodes and listens to
commands from the ORBIT Node Handler. It can run and stop
the applications, dynamically pass the parameters to the
applications, and report the experiment state to the controller.

b) ORBIT Measurement Library (OML): OML defines
the data structures and functions for sending/receiving and
encoding/decoding measurement data that is exchanged in
XDR format. Testbed users have the option to choose the filters
to be applied to each measured metric. OML is used at the
radio nodes (clients) and collection server. This software has
been developed to reduce the burden of statistic collection on
application developers.

c) Libmac
Libmac is a custom user-space C library that allows the

applications to inject and capture MAC layer frames. It also
allows manipulation of wireless parameters such as TxPower,
channel settings and recording RSSI, noise on an aggregate and
a per-packet basis. The primary purpose of libmac is to provide
a bridge between device drivers and the applications such that
application developers can easily use a standard interface to
communicate with wireless device drivers instead of worrying
about their underlying mechanism.

IV. LIFECYCLE OF AN EXPERIMENT
A typical ORBIT experiment involves experiment

definition, node assignment, node configuration, loading of
software packages, configuration of dynamic parameters and
data collection. As shown in Fig. 5, the following steps are
typically involved in an experiment.

Figure 5 Life Cycle of an Experiment

− The experiment details are translated into a script that
identifies the nodes to be assigned for the experiment,
configures the wired and wireless interfaces according
to the requirements of the experiment, fetches the
appropriate application, libraries required to run the
experiment and specifies (optional) statistic collection
points and intervals

− This information is disseminated by the NodeHandler
software to the corresponding NodeAgent residing on
each node.

− The NodeAgent executes the script, performs the
experiment which may involve statistics collection
done by the OML library.

− A separate run-time and post-experiment database
allows users to quickly view results during experiment
run-time as well archive them for future retrievals and
offline analysis.

ORBIT User
Interface

 Orbit Nodes
Chassis Manager

NodeAgent

Orbit Measurement
Library

Collection Service

Collection
Server

berkeley
DB

Experiment Management
Service

Experiment
Server

Disk Loading
Server

Experiment Ctrler
(Node Handler)

SQLCollections
Manager

Chassis Manager
Controller

OML Server

USER / CONTROLLER

OBSERVER SERVICES

GRID

DB

Node
Handler

Node
Agent
(per
node)

OML Client (per node)

END U
R
L Fetch

results
Run time
statistic
collection

Off-line
Storage of
results Display

Script

START

V. SAMPLE EXPERIMENTAL RESULTS
To illustrate the life-cycle of an experiment, we explain a

few sample experiments that follow the flowchart described in
Fig. 5, with a script to define the nodes involved, configure
interfaces, download necessary traffic generator and libraries
needed to run the experiment, configure the statistics collection
parameters and the database, and then handle the dynamic
aspects such as changes in offered load, channels etc.

A. Experiment 1: To study the effect of 802.11b interference
on the performance of a link under test (LUT)

1) Experiment details
The experiment consists of 8 nodes, with a sender sending

UDP packets to a receiver (that forms the LUT) and six other
interfering nodes that simply broadcast 802.11 packets on the
same channel as the sender-receiver pair. Both the sender and
all interferers transmit UDP packets of different packet sizes at
1 mW. All the nodes are configured to be on Channel 1 initially
and then LUT is then moved away one channel at a time, until
it operates on an orthogonal channel (Channel 6) w.r.t the
interferers. The goal is to observe the effect on the packet loss
of the obstructed link as it is moved to an orthogonal channel.

2) Experiment script
The above experiment contains a static configuration

involving selection of nodes, initial configuration of interfaces
such as channel settings, transmit power levels, IP addresses
etc as well as fetching the appropriate application and libraries
from the server to run the experiment. Fig. 6 demonstrates how
this static configuration is translated into a Tcl script.

Figure 6 Sample script: Static configuration

Once the static part completes, the experiment is started and
the dynamic parameter changes are handled as shown in Figure
7. Note that by using statements beginning with whenAll, it can
be ensured that the pre-conditions necessary to execute the
current instruction have been met. At the end of the
experiment, the temporary database is cleaned; the results are
time-stamped and stored on a separate database for easy access
and future retrievals.

Figure 7 Sample script: Dynamic configuration

3) Experimental Results
As shown in Fig. 8, as the channel separation between

communicating pair and other interferers increases, the packet
loss of the communicating pair reduces.

Figure 8 Packet loss for different channel separations and
payload lengths

When the channel separation is 1 or 2, packet loss is higher
due to lack of proper carrier sensing between the sender and the
interferers. It is interesting to note that the packet loss for all
packet sizes increases slightly when the channel separation is 4
(i.e the sender-receiver link is on Channel 5). This is attributed

#Identify the nodes involved in the experiment using IP
addresses, group them and reboot them.
expectNode node1-1 192.168.161.11 "sender" "exp1" "reboot"
expectNode node1-4 192.168.161.14 "receiver" "exp1" "reboot"
expectNode node3-1 192.168.161.31 "interferer" "exp1" "reboot“
…
#Set wireless interface in ad-hoc mode on all nodes (indicated
by /*/* wildcards) w0 : wireless interface (eth2/wlan0).
configure /*/* /net/w0/mode ad-hoc
…
#Set the transmit power to 1 mW on all nodes of sender group .
configure /sender/* /net/w0/xmitPower 1

#When all nodes are configured, fetch application from server.
whenAll /*/*/system/status are "UP" do {
 install /*/* http://external1.orbit -lab.org/repository/exp1.tar
}

#Start collection server to enable statistics collection.
on /*/*/proc/status:RUNNING do {
 set url http://external1.orbit-lab.org/repository/oml_exp1.xml
 set s [::http::geturl "http://idb1.orbit-

lab.org:5000/startCollectionServer?config_file=$url&app_nam
e=exp1"]

}
#Start sender application on all the nodes of sender group.
run /sender/* sender_app /opt/orbit/bin/sender_app -c

oml_client_pnp.xml -n node_name -t sender -i devw0 -p
readparams

configure /sender/* /proc/genny/transport use_sock …

runExperiment $channel $packetSize $sleep $duration

Dynamically changes channels from 1 to 6 and packet sizes
from 256 to 1280 bytes during the experiment.
proc runExperiment {channel packetSize rate duration} {
 if { $packetSize > 1280 && $channel > 6 } {
 setStatus /experiment/state "DONE.OK"
 return
 } else {
 if { $channel > 6 } {
 set channel 1
 incr packetSize 256
 configure /sender/* /proc/sender_ap/payload_length

$packetSize}
 }
 after $duration [runExperiment [incr channel] $packetSize $rate

duration]
 }
}

to the fact that Channel 5 happens to be adjacent to an
infrastructure AP (on channel 6).

B. Experiment 2: Effect of varying transmit power of sender
on the performance in the presence of interferers
As a follow up to the previous experiment, we demonstrate

the effect of changing the transmit power of the sender-receiver
link while keeping the interferers’ at 1mW on the packet loss
for 1024-byte UDP packets at an offered load of 4 Mbps. As
before, we have one sender-receiver pair (LUT) and 6
interferers. The channel separation between the LUT and
interferers is progressively increased.

We observe that as the channel separation between the LUT
and the interferers increases, the packet loss drops for all
transmit power levels. Interestingly, we note that for channel
separations of 1-4, the performance of the LUT is progressively
better as the transmit power of the sender increases from 1mW
to 100 mW. This indicates that interference on adjacent
channels may be combated by adjusting transmit power levels
of desired transmission.

Figure 9 Effect of increasing Tx power of obstructed link

in the presence of interferers

C. Multi-hop experiment with dual interface Forwarding
node (FN)
The goal of this experiment is to measure the improvement

in network performance in terms of throughput and packet loss
for a multi-hop network with and without using a dual interface
forwarding node. In Scenario 1 as shown in Fig. 9, we set up a
chain topology of three nodes, with node 1 as source, node 3 as
sink and node 2 as forwarding node. Node 2 is configured to
forward the packets 1024 byte UDP packets received from
node 1 to node 3 using a single interface. All the nodes operate
at 11 Mbps, on the same channel and in ad-hoc mode.

Figure 10 Multi-hop experiment with forwarding node

In Scenario 2, we configure node 2 to use two interfaces on
orthogonal channels. The system throughput and packet loss
for increasing offered loads are recorded. As seen in Fig. 10,
the performance with a FN operating on orthogonal channels is

much better than a single interface FN in terms of throughput
and packet loss.

Figure 11 Performance of a multihop topology with a
forwarding node (FN)

With the above different flavors of experiments as
examples, we hope to validate and demonstrate the usability,
flexibility, and user-friendliness that the ORBIT testbed
provides for experimentation, data collection and analysis.
Such a testbed can truly promote fair comparisons between
results, and provide a useful platform to perform controlled
experimental investigations of protocols.

VI. CONCLUSIONS
In this paper, we presented the design of a novel radio grid
emulator testbed that is intended to facilitate a broad range of
experimental research on next-generation protocols and
applications. We have also explained a typical experimental
lifecycle and provided sample experiments as proof-of-
concept validation of the testbed design. Early end-user
experiments on the ORBIT radio grid are expected to begin in
the near future, and should lead to further validation and
refinement of the testbed’s design.

REFERENCES

[1] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yongu
Yuan and Chip Elliott, “Experimental Evaluation of Wireless
Simulation Assumptions, Dartmouth Technical Repor, TR2004-
507, ftp://ftp.cs.dartmouth.edu/TR/TR2004-507.pdf.

[2] K. Pawlikowski, H.-D.J Jeong, and J.-S.R. Lee., “On credibility
of simulation studies of telecommunication networks”, IEEE
Communications Magazine, 40(1):132–139, January 2002.

[3] NSF Workshop on Network Research Testbeds,, Chicago, Il,
Oct 2002, http://www net.cs.umass.edu/testbed_workshop/

[4] Emulab Homepage, http://www.emulab.net.
[5] Active Networks Backbone (ABone), http://www.isi.edu/abone.
[6] C.E. Perkins and E. M. Royer, “Ad-hoc On-Demand Distance

Vector Routing”, Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, New Orleans, LA,
February 1999, pp. 90-100.

[7] D. Johnson and D. Maltz, “Dynamic source routing in ad-hoc
wireless networks”, Mobile Computing (edited by T. Imielinski
and H. Korth), Kluwer, ch. 5, pp. 153-181.

[8] XDR: External Data Representation Standard, RFC 1832,
www.faqs.org/rfcs/rfc1832.html

[9] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert Ricci and Chad
Barb, “Fast Scalable Disk Imaging with Frisbee”, In Proc. of the
2003 USENIX Annual Technical Conference, June 2003.

