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Abstract— Wireless virtualization aims to support concurrent 
experiments on shared wireless network resources. This research is 
based on efforts to enhance the control structure of the wireless test 
bed ‘ORBIT’ through different forms of virtualization.  The focus 
of this paper is virtualization in frequency or frequency division 
Multiplexing (FDM), and more specifically using multiple wireless 
interfaces per node and splitting the wireless medium by assigning 
a different channel frequency to each interface. A wireless node is 
then virtualized through User Mode Linux (UML), with each sliver 
or experiment using a different interface. Extensive experimental 
results are presented that analyze the effectiveness of this method of 
virtualization in terms of different types of traffic. We examine 
cross-coupling effects of coexisting virtualized experiments. This 
research provides practical guidance for the use of this type of 
virtualization for simultaneous wireless experiments. 
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I.  INTRODUCTION 
Virtualization of wireless networks is recognized to be a 

difficult problem due to the fact that radios interact with their 
neighbors at various layers of the protocol stack, making strict 
isolation of virtual networks (“or slices”) quite challenging [1]. 
The goal of virtualization is to support concurrent experiments, 
both long-running services as well as short-term experiments 
on shared wireless network. In a wireless network, the radio 
resources that can be shared and hence virtualized are in time, 
space, and frequency.  Efforts have been going on to modify 
the ORBIT [3] control structure to accommodate different 
forms of virtualization including VMAC, SDMA, FDMA and 
TDMA [4]. Among the different possible wireless 
virtualization techniques, this work is focused on allowing a 
node to run more than one experiment simultaneously using 
different frequencies i.e. essentially Frequency Division 
Multiplexing (FDM). Each node in the ORBIT test bed has two 
physical wireless cards. Therefore, virtualization is achieved by 
running a maximum of two User Mode Linux (UML) 
Operating systems [2] on each node and providing each 
operating system exclusive access to a radio card.  

Experimental results are provided to compare the 
performance of a virtualized radio node with the non 
virtualized one for experiments using TCP and UDP.  Bounds 
on performance metrics of throughput, delay and jitter are 

determined and provide insights as to how virtualization will 
affect wireless experiments. 

Cross-coupling effects between two virtualized experiments 
are examined by looking at transient behavior associated with 
sudden changes in traffic on one of the virtual networks. 
Finally, the uncertainty in performance measurements for a few 
typical usage scenarios is investigated, leading to guidelines for 
the use of virtualized radio nodes for simultaneous ORBIT 
experiments. 

The main contribution of this paper is to (1) quantify the 
impact of using User Mode Linux (UML) [5], as a part of 
wireless experiments on the ORBIT test bed, (2) identify the 
crucial parameters that are affected by its use and (3) provide 
practical guidance for using this type of virtualization. 

The rest of the paper is organized as follows. Section 2 
outlines related work to wireless network virtualization. 
Section 3 gives an overview of wireless network virtualization. 
Section 4 presents the concept and operation of UML and 
virtual networking. Section 5 describes the experimental 
organization and setup, and presents the performance 
evaluation results. Section 6 provides a proof-of-concept 
experiment that validates the virtualization analysis of Section 
5.  

II. PREVIOUS WORK 
Virtualization techniques  are intended to share a set of 

computing and communication resources (CPU’s, routers, 
links, networks) amongst multiple users with the appearance of 
dedicated, non-interfering allocation of resources. Virtual 
machine (VM) techniques have been explored in earlier efforts 
in wired networks. Among the techniques that virtualize the 
resources of a single node, VMware [7] and Connectix [8] 
virtualizes the physical hardware of a node and supports a 
limited number of concurrent instances of Operating Systems 
(OS) due to the large amount of memory consumed by each OS 
image. Xen [16] and Denali [17] adopt higher-level 
virtualization techniques by exporting a subset of the 
processor’s instruction set and some specialized virtual devices, 
which requires porting existing OSs to run on top of these 
VMs. Another approach is adopted by Planetlab [6], Ensim [9] 
and UML [2], which virtualizes at the level of system calls and 
provide reduced isolation of the resources of a node in favor of 
supporting a large number of users per node.  



In this research we adopt the UML OS virtualization for the 
ORBIT testbed and couple it with the FDM method of 
virtualization. UML is a relatively lightweight virtual OS 
compared to other virtual OSs, such as Xen, and it also 
provided better support for the wireless interfaces on the 
ORBIT nodes. Koh et al [10] studied the packet-processing 
overheads in a UML through a methodical analysis of packet 
processing in the TCP/IP stack with the aim of applying a few 
optimization techniques to TCP/UDP packet processing. 
However, their analysis was executed over wired networks and 
did not study any form of wireless virtualization (e.g., FDM). 

III. WIRELESS NETWORK VIRTUALIZATION 
To form a virtualized network, available network resources 

are split into multiple logical resources. A slice is a collection 
of such orthogonal resources that forms a wireless network on 
top of the underlying resources [4]. Many such orthogonal 
slices can coexist and may be allotted to different experiments 
at the same time, thus allowing multiple simultaneous 
experiments.  

Wireless network virtualization needs to address two key issues 
[4]: 

 
1. Isolation of wireless resources of experiments coexisting at 

the same time to ensure minimal interference among the 
experiments 

2. Monitoring resource utilization to ensure that an 
experiment does not encroach upon the resources of 
another experiment  

 

 
Figure 1.  FDM Based Virtualization 

 
Virtualization in a wireless medium can be applied in a number 
of ways, such as Space Division Multiplexing (SDM), 
Frequency Division Multiplexing (FDM), Time Division 
Multiple Access (TDMA), Code Division Multiple Access 
(CDMA) and various combinations of the aforementioned 
schemes [6]. This paper investigates the FDM approach to 
wireless network virtualization. A schematic of two 
simultaneous wireless experiments using the FDM approach is 
shown in Figure 1. These two experiments, i.e., two slices, 
utilize the same wireless infrastructure to execute different 
experiments forming different topologies.  This type of 

virtualization assumes the existence of more than one radio per 
node.   

IV. OVERVIEW OF UML 
The UML operating system runs as a regular user level 

process or guest process on an OS [5]. The OS that 
accommodates UML is referred to as the host OS. The UML 
architecture [1] is shown in Figure 2. The UML memory, 
network devices, and their configurations can be easily 
specified through command line options. Resources such as 
CPU and memory are allocated according sharing and 
scheduling policy of the host OS. 

The support for I/O devices, such as network devices, is 
provided through corresponding virtual devices. In this work, 
we set up networking within UML by creating a virtual 
interface in the guest OS and linking it to a TUN/TAP interface 
in the host OS. 

 

Figure 2.  UML System Architecture 

The path of a packet from UML to the network can be 
divided into five layers (see Figure 3). 

 

Figure 3.  UML Packet Processing Layers 

UML executes the same steps in packet processing as in a 
typical OS, including routing decisions, header filling, network 
queue processing, and packet forwarding. It then sends packets 
to the virtual network device, which passes them to the host 
kernel.  Processing control is then transferred from the UML to 
the host kernel. The host kernel forwards the packets to an 
appropriate physical network device, which in our experiments 
is a wireless device. Finally, the device transmits the packets to 
the network. 

UML being a user level process supports the existence of 
multiple virtual machines on a single piece of hardware, 
offering excellent security and safety without affecting the 
configuration of the host’s environment or its stability.It is 
simple to install and having a UML up and running involves 
downloading a UML kernel and a file system, and running a 
shell command. UML also allows all of the Linux tools and 
techniques to be applied to any problem in UML itself. 



However, using UML as a part of UDP/TCP experiments is 
the additional processing overheads it incurs. All of the OS 
functions are implemented through system calls to the host 
kernel. In terms of support for multiple experiments, it should 
be noted that a drawback of the current UML implementation 
in the case of wireless networks is that it only offers a virtual 
Ethernet interface and not a virtual WLAN wireless interface. 
Thus, the wireless parameters can only be configured through 
user access to the host OS. This limitation provides limited 
flexibility and does not allow multiple experimenters to share a 
machine and configure the wireless interfaces from within 
UML. In this case, virtualization modifications would need to 
be made to provide that functionality while retaining the 
isolation between experiments.  

V. EXPERIMENT SET UP AND RESULTS 
We use the ORBIT test bed to evaluate our UML based 

wireless network virtualization. The frontline of the ORBIT 
test bed is 400 nodes designed as custom made personal 
computer platforms, each equipped with two wireless 
802.11a/b/g interfaces. In addition, each node has four Ethernet 
interfaces and a serial port with the purpose of remote access, 
supervision, and control. The nodes are placed in the two-
dimensional rectangular grid separated by 1-meter distance. 
Details of the test bed hardware purpose, structure, and 
functionality are presented in [1].  

We bring up two instances of UML on each ORBIT node. 
Since each node is equipped with two physical wireless cards, 
we configure each UML to have exclusive access to one card. 
Thus, ORBIT nodes can support a maximum of two concurrent 
experiments. A schematic of a virtualized node is presented in 
Figure 4.  

 

Figure 4.  Schematic of Virtualized ORBIT Node 

In order to characterize and test the performance of a 
virtualized network, we run a set of experiments on the native 
non-virtualized network, i.e., using the host OS. We then repeat 
the same experiments on the virtualized network.  We analyze 
the performance deviations introduced by the use of virtual 
machines for the case of UDP, TCP, and RTP transport 
protocols. We also carry a transient analysis of a virtual 
environment and look at the impact of coupling dynamically 
wireless experiments. 

The metrics we compare are throughput, delay, and jitter. 
These metrics represent the most popular metrics and are 
typically used in the characterization of wireless networks. 
Based on the results, guidelines are presented in terms how 
virtualization will impact a wireless experiment. The results 
presented are specific to ORBIT nodes. Since the operation of 
UML is mostly CPU dependant, we expect variations in results 

with the use of different hardware configurations. However, the 
specific trends of the recorded measurements would be similar.  
The verification of these similarities is left as future work. 

The basic experiment set up is shown in Figure 5.  The 
experiments in this work have been designed using TCP, UDP, 
and RTP transport protocols.  We run a single UDP/TCP/RTP 
traffic flow on two native ORBIT nodes and then repeat the 
same experiment on a virtualized wireless network with 2 
traffic flows, i.e. in effect running two experiments at the same 
time. Note that both scenarios use two ORBIT nodes and each 
traffic flow uses a dedicated pair of radio transceivers. The 
virtualized scenario uses two different orthogonal frequencies. 
These experiments are designed with varying traffic loads, 
channel rate and payload sizes.   
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Figure 5.  Experiment Set Up for Virtual Network Performance Analysis 

A. Performance Analysis with UDP 
The values of the experimental parameters for the case of 

UDP are shown in Table I. The experiments have been 
designed by varying one of the parameters while keeping 
others constant.  

TABLE I.  UDP EXERIMENT PARAMETERS 

Parameter Value 
Channel Rate 36 Mbps  (802.11a) 
Frequency 5.18 (Exp. 1), 5.32 (Exp. 2) 
Packet Size 1470 Bytes 
Input Traffic 50 Mbps 
Protocol UDP 

 
1) Throughput vs. Offered Load (UDP): We measure 

throughput for varying input traffic on the wireless link. The 
throughput comparison for virtualized and non virtualized 
network is shown in Fig. 6. The throughput reported is the 
average of the two experiments running on the virtualized 
network. For offered loads of up to 50Mbps, i.e., when the 
network is saturated, the drop in throughput for virtualized 
network is less than 0.25 Mbps. Notice that the link saturates 
when the offered load is approximately 30 Mbps. The variance 
of the throughput when the system saturates increases by 
approximately 10 times for the virtualized scenario as shown in 
Figure 7. This increase is due to the overhead of buffering the 
packets by one UML while another UML is using the CPU. 
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Figure 6.  Throughput vs. Offered Load (UDP) 
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Figure 7.  Throughput Variance vs. Offered Load (UDP) 

Thus, from the perspective of an experimenter, 
virtualization has trifling effects on long duration average UDP 
throughput experiments. On the contrary, experiments that 
measure instantaneous throughput could give erroneous results 
on the virtualized platform as there is a considerable increase in 
variance of throughput close to saturation (i.e., at 30 Mbps).   

2) Throughput vs. Payload Size (UDP): To analyze the 
impact of payload size on the behavior of virtual network, we 
run a constant UDP traffic load of 50 Mbps in experiment #1 
and #2 in Figure 5 but with varying packet sizes. Throughput 
as a function of packet size, (64,128, 256, 512, 768, 1024, and 
1470 bytes) for virtual and non-virtual wireless network, is 
shown in Figure 8. As expected, shorter packet lengths provide 
lower throughput because as the packet size decreases the 
lower layer processing overhead increases and the percentage 
of the IP headers size over the payload increases. In the case of 
UML, the throughput decreases more rapidly with decreasing 
packet sizes because of the additional processing required at 
the UML level.  
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Figure 8.  Throughput vs. Payload Size (UDP) 

To investigate the impact of payload size further, we plot 
the number of packets per second that a UML is able to 
transmit for a particular packet size in Figure 9. Irrespective of 
the packet size, the actual number of packets per second that 
are sent out through each UML, while both virtualized 
experiments are running simultaneously, is less than ~ 30,000 
for small packets. The same number for experiments without 
virtualization was measured to be ~ 80,000. Thus, we observe 
that a virtual experiment based on 2 slivers is able to support 
less than half the number of packets compared to a non-
virtualized experiment. Note that larger packet sizes saturate 
the link and thus the total number of packets decreases. 
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Figure 9.  Packets per Second vs. Packet Size 

Virtualization poses a strong limitation on experiments that 
require smaller packet sizes and higher bit rates. As a 
guideline to a user we can say that only long term average 
UDP experiments with a frequency of less than ~30000 
packets per second can be supported by a virtualized platform.  
If the packets are small the results would need to be adjusted 
to reflect the non-virtualized condition. However, in the case 
of large packet sizes, the results would have negligible 
deviations from the non virtualized platform. 



3) Delay and Jitter vs. Offered Load (UDP): UDP Packet 
transmission delay and jitter for the virtualized and non-
virtualed network are plotted in Figures 10 and 11 
respectively. Delay for both cases increases with the offered 
loads and it becomes almost constant once saturation is 
attained, as at saturation the maximum processing capacity of 
the system is reached. Delay for the virtualization scenario 
exceeds the non-virtualized one by a factor of approximately 2 
at saturation. The increase is due to processing overheads in 
the UML and in the TUN/TAP virtual devices. Extra copies of 
the packets are made when the UML writes the packet to the 
virtual device and vice versa. 
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Figure 10.  Packet Transmission Delay vs. Offered Load (UDP) 

Jitter for the two cases increases as the offered loads 
increase on the experiments, but the difference between the 
two remains almost constant at approximately 0.18 
milliseconds. When two UML instances or two experiments 
are running on the same machine, the packets are buffered for 
a random amount of time (while the UML is context switched) 
before they are sent out over the wireless network; thus, 
resulting in increase of packet reception jitters. Based on these 
deviations we conclude that a virtualized platform should be 
carefully used for delay and jitter constrained/measuring 
experiments.  The delay and jitter results as obtained from an 
experiment performed on the virtualized network might be 
higher due to the UML layer and thus would not accurately 
reflect wireless channel conditions.  A user performing such 
experiments should be aware of the overhead delay and 
additional jitters and should accordingly adjust the results 
based on the constant difference so as to reflect their correct 
measures.  

B. Performance Analysis with the Transmission Control 
Protocol (TCP)  

1) TCP Bandwidth vs. Channel Rate: The TCP bandwidth 
for virtualized wireless network is compared to native wireless 
network for various channel rates and shown in Figure 12. We 
observe a slight drop in the throughput for virtual network, but 
the drop remains less that 0.3 % for all channel rates.   
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Figure 11.  Jitter vs. Offered Load (UDP) 

Channel Rate 36 Mbps, Packet Size 1470 
Bytes

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50
Offerd Load (Mbps)

Ji
tte

r (
m

se
c)

No Virtualization
With Virtualization

 
Figure 12.  TCP Bandwidth Analysis 

2) TCP Delay Analysis: To analyze the delays introduced 
by the UML for TCP we perform a large file transfer (1 GB) 
experiment using TCP as the transmission protocol. This delay 
is different from the delay of UDP as it is delay for the 
delivery of an entire file and not the packet delay. We believe 
that this scenario reflects more accurately the typical usage of 
TCP and might provide more useful measurement data as 
compared to investigating packet delay. The experiment set up 
is the same as shown in Figure 5. We repeat the experiment 
for different channel rates and compare the time taken to 
complete the file transfer for virtualized and non-virtualized 
network, which is shown in Figure 13. We observe that there 
is an increase of approximately 5 seconds in the time taken for 
file transfer in case of virtualization for all the channel rates 
which can be taken as very lowcompared to total time of 
transfer.  For example, for the worst case scenario with a 
channel rate of 54 Mbps the delay is approximately 2%). This 
slight increase is due to the delay overheards introduced by the 
additional UML layers. 

 From the point of view of an experimenter, introducing 
UML in TCP experiments would have insignificant effect on 
experiment results.  
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Figure 13.  File Transfer Delay vs Channel Rate 

C. Performance analysis with Real Time Protocol (RTP) 
The objective of this experiment is to analyze the 

performance of virtualized networks for time-constrained 
protocols (e.g., RTP in this case). We stream videos coded with 
different bit rates and compare the video bit rates and jitter on 
the virtualized network to that of a non-virtualized network as 
observed by the client of an experiment. The experiment set up 
is the same as in Figure 5. The experimental parameters are 
provided in Table II. Video server and clients are set up with a 
Video LAN Client (VLC) and we use the RTP protocol to 
stream the videos.   

TABLE II.  TRANSIENT EXERIMENT PARAMETERS 

Parameter Value 
Channel Rate 6 Mbps 
Frequency 5.18 (Exp. 1), 5.32 (Exp. 2) 
Video Bit Rate Variable (0.3 to 5 Mbps) 
Protocol RTP 

 
In Figure 14 the bar plot compares the bit rates while the 

line graph plots the jitter. The video bit rates obtained are 
similar for both the cases whereas there is an increase in jitter 
by a factor of approximately 10 times higher for the virtualized 
network compared to the non-virtualized. Relating these results 
to UDP, jitter with UDP had increased by a factor of ~4, which 
is lower than when using RTP. RTP is different from the 
transport protocols, like UDP and TCP. It is essentially 
application level framing that uses the underlying transport 
protocol (mainly UDP) to transmit its frames. This additional 
layer processing in UML results in the considerable increase in 
jitter. With the sizeable jitter increases, running real time 
applications successfully on a virtualized platform using UML 
depends on the sensitivity and constraints of the specific 
experiment in terms of jitter and delay. It is to be kept in mind 
that these results are true only for single hop experiments. With 
multi hop real time experiments, the jitter will be higher and it 
might increase beyond acceptable limits. 
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Figure 14.  Jitter and Bit Rate vs. Video bit Rates 

D. Transient and Cross-coupling Analysis 
In this section we analyze the cross coupling effects 

between two virtual machines (UML’s). The purpose of this 
study is to investigate how a sudden change in traffic on one 
UML experiment affects the performance of existing UML 
processes that are running concurrently on the same node and 
are part of another experiment. This experiment aims to 
emulate a real time experimental scenario during virtualization 
of network resources, whereby two users would randomly start 
their experiments at different time instances unaware of the 
activity on the other experiment. The set up for these 
experiments is as shown in Figure 15.  

 

Figure 15.  Experiment Set Up for Cross-coupling Analysis  

We start a UDP traffic flow between virtual sender and 
receiver #1 (Experiment One / Slice one) shown in Figure 15 
and after some time delay we start another UDP traffic flow 
between virtual sender and receiver #2 (Experiment Two / 
Slice 2). We analyze the effect of experiment #2 on the 
throughput of already running experiment #1 for various 
experimental parameters. 

The experimental parameters to calculate the coupling 
coefficient are shown in Table III. Fig. 16 shows the coupling 
effect between the two virtual machines with time. Experiment 
#1 runs constantly at an offered load of 20 Mbps. The traffic 
from experiment #2 however goes off and on periodically with 
varying loads. It can be seen that as soon as experiment #2 
starts, the throughput on experiment #1 drops to zero for an 
instant and then again settles down around its original value. 
Thus, if a user is already running an experiment on a set of 



nodes and another experiment kicks in randomly using the 
same physical node, it would unfavorably affect the 
instantaneous results for that user. Experiments focusing on 
long term average results might not be affected as much 
though. 

 

TABLE III.  TRANSIENT EXERIMENT PARAMETERS 

Parameter Value 
Channel Rate 36 Mbps 
Frequency 5.18 (Exp. 1), 5.32 (Exp. 2) 
Packet Size 1470 Bytes 
Input Traffic Experiment # 1 10 Mbps 
Input Traffic Experiment # 2 5- 40 Mbps 
Protocol UDP 
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Figure 16.  Cross-Coupling Analysis 

 

In order to better characterize the coupling effect, we define 
a constant called coupling coefficient that is given in (1) as 

                                            (1) 

   
Where C = coupling coefficient 
R = Average throughput obtained at Virtual Receiver 1 when 
it is the only experiment running 
R' = Average throughput obtained at Virtual Receiver 1 after 
experiment two has also started running. 

 

Fig. 17 plots the coupling coefficient, C as a function of 
offered load on experiment #1.  The coefficient increases with 
the offered load on the experiment #1 and does not depend 
upon the traffic load on the experiment #2 as both loads on 
experiment 2 give approximately the same values for the 
coupling coefficient. Therefore, the higher the traffic 
experiment #1 is carrying; the more it gets affected regardless 
of the burst load on experiment #2. It can be inferred that this 
transient behavior is more CPU driven as it is less dependent 
on the load on experiment #2. Hence, using the virtualized 
platform, a user should be aware that errors might be 
introduced unknowingly by a concurrent experiment. These 
errors might be fatal for instantaneous throughput 

measurements and on the other hand could be harmless for 
long term averaging experiments.  
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Figure 17.  Coupling Coefficient plot . 

VI. DISCUSSION 
Based on the experimental results we observe that 

virtualization poses a strong limitation on UDP experiments 
that require small packet sizes and higher bit rates. The 
throughput with average UDP experiments that use small 
packets would need to be adjusted to reflect a non-virtualized 
environment. Furthermore, the number of packets per second 
that can be supported in a virtualized environment is a factor of 
the total number supported by a non-virtualized node and that 
is dependent on the number of virtual machines per node. In 
this research, ~30000 packets per second were supported with 
two virtual machines as compared to ~80000 packets for a non-
virtualized machine.  However, for larger packets (e.g., 1470 
bytes) throughput results are insignificantly impacted.  In terms 
of the UDP and RTP jitter and delay, we conclude that a 
virtualized platform should be used carefully for delay and 
jitter constrained experiments. A user performing such 
experiments should be aware of the overhead and accordingly 
adjust the results. For RTP, there can be sizeable jitter increases 
and therefore running real time applications successfully on a 
virtualized platform using UML depends on the sensitivity and 
constraints of the specific experiment. For TCP experiments, 
virtualization has insignificant effects on the experiment 
results. Finally, our coupling analysis has shown that 
instantaneous errors can be introduced in coexisting 
experiments and this can be fatal for experiments focusing on 
instantaneous throughput measurements.  

VII. CONCLUSION 
In this work we have provided experimental results to 

compare the performance of a virtualized radio node with the 
non virtualized one for basic point-to-point experiments using 
TCP and UDP. We have tried to determine bounds on 
performance metrics of throughput, delay, and jitter and have 
examined cross-coupling effects between two virtualized 
experiments. We also looked at transient behavior associated 
with sudden changes in traffic on one of the virtual networks, 



leading to guidelines for the use of virtualized radio nodes for 
simultaneous ORBIT experiments.  

Current UML implementation offers a virtual Ethernet 
interface and not a virtual WLAN wireless interface. Thus, the 
wireless parameters can only be configured on the host 
machine. Therefore, there is need for a virtual WLAN 
interface. The results presented in this work are specific to 
ORBIT nodes.  

As future work we plan to investigate the impact of using 
more UMLs and different hardware. Also, virtualization has 
been experimented using only UML. Virtualization platforms, 
such as VMWare, XEN etc., can be used in place of UML and 
their effect on the wireless networks can be investigated.  
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