
Evaluation of UML Based Wireless Network
Virtualization

S. Singhal1, G. Hadjichristofi1 2, I. Seskar1, and D. Raychaudhri1
1WINLAB, Rutgers University, USA

2University of Cyprus, Cyprus
{shruti, gh, seskar, ray}@winlab.rutgers.edu

Abstract— Wireless virtualization aims to support concurrent
experiments on shared wireless network resources. This research is
based on efforts to enhance the control structure of the wireless test
bed ‘ORBIT’ through different forms of virtualization. The focus
of this paper is virtualization in frequency or frequency division
Multiplexing (FDM), and more specifically using multiple wireless
interfaces per node and splitting the wireless medium by assigning
a different channel frequency to each interface. A wireless node is
then virtualized through User Mode Linux (UML), with each sliver
or experiment using a different interface. Extensive experimental
results are presented that analyze the effectiveness of this method of
virtualization in terms of different types of traffic. We examine
cross-coupling effects of coexisting virtualized experiments. This
research provides practical guidance for the use of this type of
virtualization for simultaneous wireless experiments.

Keywords- UML, virtualization, wireless, frequency

I. INTRODUCTION
Virtualization of wireless networks is recognized to be a

difficult problem due to the fact that radios interact with their
neighbors at various layers of the protocol stack, making strict
isolation of virtual networks (“or slices”) quite challenging [1].
The goal of virtualization is to support concurrent experiments,
both long-running services as well as short-term experiments
on shared wireless network. In a wireless network, the radio
resources that can be shared and hence virtualized are in time,
space, and frequency. Efforts have been going on to modify
the ORBIT [3] control structure to accommodate different
forms of virtualization including VMAC, SDMA, FDMA and
TDMA [4]. Among the different possible wireless
virtualization techniques, this work is focused on allowing a
node to run more than one experiment simultaneously using
different frequencies i.e. essentially Frequency Division
Multiplexing (FDM). Each node in the ORBIT test bed has two
physical wireless cards. Therefore, virtualization is achieved by
running a maximum of two User Mode Linux (UML)
Operating systems [2] on each node and providing each
operating system exclusive access to a radio card.

Experimental results are provided to compare the
performance of a virtualized radio node with the non
virtualized one for experiments using TCP and UDP. Bounds
on performance metrics of throughput, delay and jitter are

determined and provide insights as to how virtualization will
affect wireless experiments.

Cross-coupling effects between two virtualized experiments
are examined by looking at transient behavior associated with
sudden changes in traffic on one of the virtual networks.
Finally, the uncertainty in performance measurements for a few
typical usage scenarios is investigated, leading to guidelines for
the use of virtualized radio nodes for simultaneous ORBIT
experiments.

The main contribution of this paper is to (1) quantify the
impact of using User Mode Linux (UML) [5], as a part of
wireless experiments on the ORBIT test bed, (2) identify the
crucial parameters that are affected by its use and (3) provide
practical guidance for using this type of virtualization.

The rest of the paper is organized as follows. Section 2
outlines related work to wireless network virtualization.
Section 3 gives an overview of wireless network virtualization.
Section 4 presents the concept and operation of UML and
virtual networking. Section 5 describes the experimental
organization and setup, and presents the performance
evaluation results. Section 6 provides a proof-of-concept
experiment that validates the virtualization analysis of Section
5.

II. PREVIOUS WORK
Virtualization techniques are intended to share a set of

computing and communication resources (CPU’s, routers,
links, networks) amongst multiple users with the appearance of
dedicated, non-interfering allocation of resources. Virtual
machine (VM) techniques have been explored in earlier efforts
in wired networks. Among the techniques that virtualize the
resources of a single node, VMware [7] and Connectix [8]
virtualizes the physical hardware of a node and supports a
limited number of concurrent instances of Operating Systems
(OS) due to the large amount of memory consumed by each OS
image. Xen [16] and Denali [17] adopt higher-level
virtualization techniques by exporting a subset of the
processor’s instruction set and some specialized virtual devices,
which requires porting existing OSs to run on top of these
VMs. Another approach is adopted by Planetlab [6], Ensim [9]
and UML [2], which virtualizes at the level of system calls and
provide reduced isolation of the resources of a node in favor of
supporting a large number of users per node.

In this research we adopt the UML OS virtualization for the
ORBIT testbed and couple it with the FDM method of
virtualization. UML is a relatively lightweight virtual OS
compared to other virtual OSs, such as Xen, and it also
provided better support for the wireless interfaces on the
ORBIT nodes. Koh et al [10] studied the packet-processing
overheads in a UML through a methodical analysis of packet
processing in the TCP/IP stack with the aim of applying a few
optimization techniques to TCP/UDP packet processing.
However, their analysis was executed over wired networks and
did not study any form of wireless virtualization (e.g., FDM).

III. WIRELESS NETWORK VIRTUALIZATION
To form a virtualized network, available network resources

are split into multiple logical resources. A slice is a collection
of such orthogonal resources that forms a wireless network on
top of the underlying resources [4]. Many such orthogonal
slices can coexist and may be allotted to different experiments
at the same time, thus allowing multiple simultaneous
experiments.

Wireless network virtualization needs to address two key issues
[4]:

1. Isolation of wireless resources of experiments coexisting at

the same time to ensure minimal interference among the
experiments

2. Monitoring resource utilization to ensure that an
experiment does not encroach upon the resources of
another experiment

Figure 1. FDM Based Virtualization

Virtualization in a wireless medium can be applied in a number
of ways, such as Space Division Multiplexing (SDM),
Frequency Division Multiplexing (FDM), Time Division
Multiple Access (TDMA), Code Division Multiple Access
(CDMA) and various combinations of the aforementioned
schemes [6]. This paper investigates the FDM approach to
wireless network virtualization. A schematic of two
simultaneous wireless experiments using the FDM approach is
shown in Figure 1. These two experiments, i.e., two slices,
utilize the same wireless infrastructure to execute different
experiments forming different topologies. This type of

virtualization assumes the existence of more than one radio per
node.

IV. OVERVIEW OF UML
The UML operating system runs as a regular user level

process or guest process on an OS [5]. The OS that
accommodates UML is referred to as the host OS. The UML
architecture [1] is shown in Figure 2. The UML memory,
network devices, and their configurations can be easily
specified through command line options. Resources such as
CPU and memory are allocated according sharing and
scheduling policy of the host OS.

The support for I/O devices, such as network devices, is
provided through corresponding virtual devices. In this work,
we set up networking within UML by creating a virtual
interface in the guest OS and linking it to a TUN/TAP interface
in the host OS.

Figure 2. UML System Architecture

The path of a packet from UML to the network can be
divided into five layers (see Figure 3).

Figure 3. UML Packet Processing Layers

UML executes the same steps in packet processing as in a
typical OS, including routing decisions, header filling, network
queue processing, and packet forwarding. It then sends packets
to the virtual network device, which passes them to the host
kernel. Processing control is then transferred from the UML to
the host kernel. The host kernel forwards the packets to an
appropriate physical network device, which in our experiments
is a wireless device. Finally, the device transmits the packets to
the network.

UML being a user level process supports the existence of
multiple virtual machines on a single piece of hardware,
offering excellent security and safety without affecting the
configuration of the host’s environment or its stability.It is
simple to install and having a UML up and running involves
downloading a UML kernel and a file system, and running a
shell command. UML also allows all of the Linux tools and
techniques to be applied to any problem in UML itself.

However, using UML as a part of UDP/TCP experiments is
the additional processing overheads it incurs. All of the OS
functions are implemented through system calls to the host
kernel. In terms of support for multiple experiments, it should
be noted that a drawback of the current UML implementation
in the case of wireless networks is that it only offers a virtual
Ethernet interface and not a virtual WLAN wireless interface.
Thus, the wireless parameters can only be configured through
user access to the host OS. This limitation provides limited
flexibility and does not allow multiple experimenters to share a
machine and configure the wireless interfaces from within
UML. In this case, virtualization modifications would need to
be made to provide that functionality while retaining the
isolation between experiments.

V. EXPERIMENT SET UP AND RESULTS
We use the ORBIT test bed to evaluate our UML based

wireless network virtualization. The frontline of the ORBIT
test bed is 400 nodes designed as custom made personal
computer platforms, each equipped with two wireless
802.11a/b/g interfaces. In addition, each node has four Ethernet
interfaces and a serial port with the purpose of remote access,
supervision, and control. The nodes are placed in the two-
dimensional rectangular grid separated by 1-meter distance.
Details of the test bed hardware purpose, structure, and
functionality are presented in [1].

We bring up two instances of UML on each ORBIT node.
Since each node is equipped with two physical wireless cards,
we configure each UML to have exclusive access to one card.
Thus, ORBIT nodes can support a maximum of two concurrent
experiments. A schematic of a virtualized node is presented in
Figure 4.

Figure 4. Schematic of Virtualized ORBIT Node

In order to characterize and test the performance of a
virtualized network, we run a set of experiments on the native
non-virtualized network, i.e., using the host OS. We then repeat
the same experiments on the virtualized network. We analyze
the performance deviations introduced by the use of virtual
machines for the case of UDP, TCP, and RTP transport
protocols. We also carry a transient analysis of a virtual
environment and look at the impact of coupling dynamically
wireless experiments.

The metrics we compare are throughput, delay, and jitter.
These metrics represent the most popular metrics and are
typically used in the characterization of wireless networks.
Based on the results, guidelines are presented in terms how
virtualization will impact a wireless experiment. The results
presented are specific to ORBIT nodes. Since the operation of
UML is mostly CPU dependant, we expect variations in results

with the use of different hardware configurations. However, the
specific trends of the recorded measurements would be similar.
The verification of these similarities is left as future work.

The basic experiment set up is shown in Figure 5. The
experiments in this work have been designed using TCP, UDP,
and RTP transport protocols. We run a single UDP/TCP/RTP
traffic flow on two native ORBIT nodes and then repeat the
same experiment on a virtualized wireless network with 2
traffic flows, i.e. in effect running two experiments at the same
time. Note that both scenarios use two ORBIT nodes and each
traffic flow uses a dedicated pair of radio transceivers. The
virtualized scenario uses two different orthogonal frequencies.
These experiments are designed with varying traffic loads,
channel rate and payload sizes.

Point to point
No Virtualization

Experiment One

Sender Receiver

Virtual
Sender 1

Virtual
Sender 2

Virtual
Receiver 1

Virtual
Receiver 2

Experiment One

Experiment Two

f1

f2

Figure 5. Experiment Set Up for Virtual Network Performance Analysis

A. Performance Analysis with UDP
The values of the experimental parameters for the case of

UDP are shown in Table I. The experiments have been
designed by varying one of the parameters while keeping
others constant.

TABLE I. UDP EXERIMENT PARAMETERS

Parameter Value
Channel Rate 36 Mbps (802.11a)
Frequency 5.18 (Exp. 1), 5.32 (Exp. 2)
Packet Size 1470 Bytes
Input Traffic 50 Mbps
Protocol UDP

1) Throughput vs. Offered Load (UDP): We measure

throughput for varying input traffic on the wireless link. The
throughput comparison for virtualized and non virtualized
network is shown in Fig. 6. The throughput reported is the
average of the two experiments running on the virtualized
network. For offered loads of up to 50Mbps, i.e., when the
network is saturated, the drop in throughput for virtualized
network is less than 0.25 Mbps. Notice that the link saturates
when the offered load is approximately 30 Mbps. The variance
of the throughput when the system saturates increases by
approximately 10 times for the virtualized scenario as shown in
Figure 7. This increase is due to the overhead of buffering the
packets by one UML while another UML is using the CPU.

Channel Rate 36 Mbps, Packet Size 1470
Bytes

0

5

10

15

20

25

30

35

5 10 15 20 30 40 50
Offerd Load (Mbps)

Th
ro

up
gh

pu
t (

M
bp

s)

No Virtualization
With Virtualization

z

Figure 6. Throughput vs. Offered Load (UDP)

Channel Rate 36 Mbps, Packet Size 1470 Bytes

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50
Offered Load (Mbps)

Ti
m

e
Va

ria
nc

e
in

 T
hr

ou
gh

pu
t

(M
bp

s)

No Virtualization
Virtualization

Figure 7. Throughput Variance vs. Offered Load (UDP)

Thus, from the perspective of an experimenter,
virtualization has trifling effects on long duration average UDP
throughput experiments. On the contrary, experiments that
measure instantaneous throughput could give erroneous results
on the virtualized platform as there is a considerable increase in
variance of throughput close to saturation (i.e., at 30 Mbps).

2) Throughput vs. Payload Size (UDP): To analyze the
impact of payload size on the behavior of virtual network, we
run a constant UDP traffic load of 50 Mbps in experiment #1
and #2 in Figure 5 but with varying packet sizes. Throughput
as a function of packet size, (64,128, 256, 512, 768, 1024, and
1470 bytes) for virtual and non-virtual wireless network, is
shown in Figure 8. As expected, shorter packet lengths provide
lower throughput because as the packet size decreases the
lower layer processing overhead increases and the percentage
of the IP headers size over the payload increases. In the case of
UML, the throughput decreases more rapidly with decreasing
packet sizes because of the additional processing required at
the UML level.

 Channel Rate 36 Mbps, Input Traff ic 50
Mbps

0

5

10

15

20

25

30

35

64 128 256 512 768 1024 1470

Packet Size(Bytes)

Th
ro

ug
hp

ut
 (M

bp
s)

No Virtualization
With Virtualization

Figure 8. Throughput vs. Payload Size (UDP)

To investigate the impact of payload size further, we plot
the number of packets per second that a UML is able to
transmit for a particular packet size in Figure 9. Irrespective of
the packet size, the actual number of packets per second that
are sent out through each UML, while both virtualized
experiments are running simultaneously, is less than ~ 30,000
for small packets. The same number for experiments without
virtualization was measured to be ~ 80,000. Thus, we observe
that a virtual experiment based on 2 slivers is able to support
less than half the number of packets compared to a non-
virtualized experiment. Note that larger packet sizes saturate
the link and thus the total number of packets decreases.

Channel Rate 36 Mbps, Offered Load 50 Mbps

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

64 128 256 512 768 1024 1470
Packet Size (Bytes)

N
um

be
r o

f P
ac

ke
ts

/S
ec

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

bp
s)

Packets/sec (Virtualization)
Throughput (Virtualization)

Figure 9. Packets per Second vs. Packet Size

Virtualization poses a strong limitation on experiments that
require smaller packet sizes and higher bit rates. As a
guideline to a user we can say that only long term average
UDP experiments with a frequency of less than ~30000
packets per second can be supported by a virtualized platform.
If the packets are small the results would need to be adjusted
to reflect the non-virtualized condition. However, in the case
of large packet sizes, the results would have negligible
deviations from the non virtualized platform.

3) Delay and Jitter vs. Offered Load (UDP): UDP Packet
transmission delay and jitter for the virtualized and non-
virtualed network are plotted in Figures 10 and 11
respectively. Delay for both cases increases with the offered
loads and it becomes almost constant once saturation is
attained, as at saturation the maximum processing capacity of
the system is reached. Delay for the virtualization scenario
exceeds the non-virtualized one by a factor of approximately 2
at saturation. The increase is due to processing overheads in
the UML and in the TUN/TAP virtual devices. Extra copies of
the packets are made when the UML writes the packet to the
virtual device and vice versa.

Channel Rate 36 Mbps, Packet Size 1470
Bytes

0

0.005

0.01

0.015

0.02

0.025

10 20 30 40 50
Offerd Load (Mbps)

D
el

ay
 (s

ec
on

ds
)

No Virtualization
With Virtualization

Figure 10. Packet Transmission Delay vs. Offered Load (UDP)

Jitter for the two cases increases as the offered loads
increase on the experiments, but the difference between the
two remains almost constant at approximately 0.18
milliseconds. When two UML instances or two experiments
are running on the same machine, the packets are buffered for
a random amount of time (while the UML is context switched)
before they are sent out over the wireless network; thus,
resulting in increase of packet reception jitters. Based on these
deviations we conclude that a virtualized platform should be
carefully used for delay and jitter constrained/measuring
experiments. The delay and jitter results as obtained from an
experiment performed on the virtualized network might be
higher due to the UML layer and thus would not accurately
reflect wireless channel conditions. A user performing such
experiments should be aware of the overhead delay and
additional jitters and should accordingly adjust the results
based on the constant difference so as to reflect their correct
measures.

B. Performance Analysis with the Transmission Control
Protocol (TCP)

1) TCP Bandwidth vs. Channel Rate: The TCP bandwidth
for virtualized wireless network is compared to native wireless
network for various channel rates and shown in Figure 12. We
observe a slight drop in the throughput for virtual network, but
the drop remains less that 0.3 % for all channel rates.

Packet Size 1470 Bytes

0

5

10

15

20

25

30

35

6 9 12 18 24 36 48 54
Channel Rate (Mbps)

TC
P

Ba
nd

w
id

th
 (M

bp
s)

No Virtualization
With Virtualization

Figure 11. Jitter vs. Offered Load (UDP)

Channel Rate 36 Mbps, Packet Size 1470
Bytes

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50
Offerd Load (Mbps)

Ji
tte

r (
m

se
c)

No Virtualization
With Virtualization

Figure 12. TCP Bandwidth Analysis

2) TCP Delay Analysis: To analyze the delays introduced
by the UML for TCP we perform a large file transfer (1 GB)
experiment using TCP as the transmission protocol. This delay
is different from the delay of UDP as it is delay for the
delivery of an entire file and not the packet delay. We believe
that this scenario reflects more accurately the typical usage of
TCP and might provide more useful measurement data as
compared to investigating packet delay. The experiment set up
is the same as shown in Figure 5. We repeat the experiment
for different channel rates and compare the time taken to
complete the file transfer for virtualized and non-virtualized
network, which is shown in Figure 13. We observe that there
is an increase of approximately 5 seconds in the time taken for
file transfer in case of virtualization for all the channel rates
which can be taken as very lowcompared to total time of
transfer. For example, for the worst case scenario with a
channel rate of 54 Mbps the delay is approximately 2%). This
slight increase is due to the delay overheards introduced by the
additional UML layers.

 From the point of view of an experimenter, introducing
UML in TCP experiments would have insignificant effect on
experiment results.

File Size - 1GB, Protocol TCP

0

200
400

600
800

1000

1200
1400

1600
1800

2000

6 12 24 36 54
Channel Rate (Mbps)

Ti
m

e
(S

ec
on

ds
)

With Virtualization
No Virtualization

Figure 13. File Transfer Delay vs Channel Rate

C. Performance analysis with Real Time Protocol (RTP)
The objective of this experiment is to analyze the

performance of virtualized networks for time-constrained
protocols (e.g., RTP in this case). We stream videos coded with
different bit rates and compare the video bit rates and jitter on
the virtualized network to that of a non-virtualized network as
observed by the client of an experiment. The experiment set up
is the same as in Figure 5. The experimental parameters are
provided in Table II. Video server and clients are set up with a
Video LAN Client (VLC) and we use the RTP protocol to
stream the videos.

TABLE II. TRANSIENT EXERIMENT PARAMETERS

Parameter Value
Channel Rate 6 Mbps
Frequency 5.18 (Exp. 1), 5.32 (Exp. 2)
Video Bit Rate Variable (0.3 to 5 Mbps)
Protocol RTP

In Figure 14 the bar plot compares the bit rates while the

line graph plots the jitter. The video bit rates obtained are
similar for both the cases whereas there is an increase in jitter
by a factor of approximately 10 times higher for the virtualized
network compared to the non-virtualized. Relating these results
to UDP, jitter with UDP had increased by a factor of ~4, which
is lower than when using RTP. RTP is different from the
transport protocols, like UDP and TCP. It is essentially
application level framing that uses the underlying transport
protocol (mainly UDP) to transmit its frames. This additional
layer processing in UML results in the considerable increase in
jitter. With the sizeable jitter increases, running real time
applications successfully on a virtualized platform using UML
depends on the sensitivity and constraints of the specific
experiment in terms of jitter and delay. It is to be kept in mind
that these results are true only for single hop experiments. With
multi hop real time experiments, the jitter will be higher and it
might increase beyond acceptable limits.

0

1

2

3

4

5

6

7

8

0.3 1 3 4 5
Video Bit Rate (Mbps)

Vi
de

o
R

at
e

at
 C

lie
nt

 (M
bp

s)

0

1

2

3

4

5

6

Ji
tte

r (
m

se
c)

Bit Rate (No Virtualization)
Bit Rate (With Virtualization)
Jitter (No Virtualization)
Jitter (With Virtualization)

Figure 14. Jitter and Bit Rate vs. Video bit Rates

D. Transient and Cross-coupling Analysis
In this section we analyze the cross coupling effects

between two virtual machines (UML’s). The purpose of this
study is to investigate how a sudden change in traffic on one
UML experiment affects the performance of existing UML
processes that are running concurrently on the same node and
are part of another experiment. This experiment aims to
emulate a real time experimental scenario during virtualization
of network resources, whereby two users would randomly start
their experiments at different time instances unaware of the
activity on the other experiment. The set up for these
experiments is as shown in Figure 15.

Figure 15. Experiment Set Up for Cross-coupling Analysis

We start a UDP traffic flow between virtual sender and
receiver #1 (Experiment One / Slice one) shown in Figure 15
and after some time delay we start another UDP traffic flow
between virtual sender and receiver #2 (Experiment Two /
Slice 2). We analyze the effect of experiment #2 on the
throughput of already running experiment #1 for various
experimental parameters.

The experimental parameters to calculate the coupling
coefficient are shown in Table III. Fig. 16 shows the coupling
effect between the two virtual machines with time. Experiment
#1 runs constantly at an offered load of 20 Mbps. The traffic
from experiment #2 however goes off and on periodically with
varying loads. It can be seen that as soon as experiment #2
starts, the throughput on experiment #1 drops to zero for an
instant and then again settles down around its original value.
Thus, if a user is already running an experiment on a set of

nodes and another experiment kicks in randomly using the
same physical node, it would unfavorably affect the
instantaneous results for that user. Experiments focusing on
long term average results might not be affected as much
though.

TABLE III. TRANSIENT EXERIMENT PARAMETERS

Parameter Value
Channel Rate 36 Mbps
Frequency 5.18 (Exp. 1), 5.32 (Exp. 2)
Packet Size 1470 Bytes
Input Traffic Experiment # 1 10 Mbps
Input Traffic Experiment # 2 5- 40 Mbps
Protocol UDP

Packet Size 1470 Bytes, Channel Rate 36
Mbps

0

5

10

15

20

25

30

35

1 51 101 151 201 251 301 351
Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Experiment One
Experiment Tw o

Figure 16. Cross-Coupling Analysis

In order to better characterize the coupling effect, we define
a constant called coupling coefficient that is given in (1) as

 (1)

Where C = coupling coefficient
R = Average throughput obtained at Virtual Receiver 1 when
it is the only experiment running
R' = Average throughput obtained at Virtual Receiver 1 after
experiment two has also started running.

Fig. 17 plots the coupling coefficient, C as a function of
offered load on experiment #1. The coefficient increases with
the offered load on the experiment #1 and does not depend
upon the traffic load on the experiment #2 as both loads on
experiment 2 give approximately the same values for the
coupling coefficient. Therefore, the higher the traffic
experiment #1 is carrying; the more it gets affected regardless
of the burst load on experiment #2. It can be inferred that this
transient behavior is more CPU driven as it is less dependent
on the load on experiment #2. Hence, using the virtualized
platform, a user should be aware that errors might be
introduced unknowingly by a concurrent experiment. These
errors might be fatal for instantaneous throughput

measurements and on the other hand could be harmless for
long term averaging experiments.

Packet Size 1470 Bytes, Channel Rate 36
Mbps

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

5 10 15 20 25 30 40
Offered Load on Experiment One

C
ou

pl
in

g
C

oe
ffi

ci
en

t

Experiment 2 Load - 10 Mbps
Experiment 2 - Load 25 Mbps

Figure 17. Coupling Coefficient plot .

VI. DISCUSSION
Based on the experimental results we observe that

virtualization poses a strong limitation on UDP experiments
that require small packet sizes and higher bit rates. The
throughput with average UDP experiments that use small
packets would need to be adjusted to reflect a non-virtualized
environment. Furthermore, the number of packets per second
that can be supported in a virtualized environment is a factor of
the total number supported by a non-virtualized node and that
is dependent on the number of virtual machines per node. In
this research, ~30000 packets per second were supported with
two virtual machines as compared to ~80000 packets for a non-
virtualized machine. However, for larger packets (e.g., 1470
bytes) throughput results are insignificantly impacted. In terms
of the UDP and RTP jitter and delay, we conclude that a
virtualized platform should be used carefully for delay and
jitter constrained experiments. A user performing such
experiments should be aware of the overhead and accordingly
adjust the results. For RTP, there can be sizeable jitter increases
and therefore running real time applications successfully on a
virtualized platform using UML depends on the sensitivity and
constraints of the specific experiment. For TCP experiments,
virtualization has insignificant effects on the experiment
results. Finally, our coupling analysis has shown that
instantaneous errors can be introduced in coexisting
experiments and this can be fatal for experiments focusing on
instantaneous throughput measurements.

VII. CONCLUSION
In this work we have provided experimental results to

compare the performance of a virtualized radio node with the
non virtualized one for basic point-to-point experiments using
TCP and UDP. We have tried to determine bounds on
performance metrics of throughput, delay, and jitter and have
examined cross-coupling effects between two virtualized
experiments. We also looked at transient behavior associated
with sudden changes in traffic on one of the virtual networks,

leading to guidelines for the use of virtualized radio nodes for
simultaneous ORBIT experiments.

Current UML implementation offers a virtual Ethernet
interface and not a virtual WLAN wireless interface. Thus, the
wireless parameters can only be configured on the host
machine. Therefore, there is need for a virtual WLAN
interface. The results presented in this work are specific to
ORBIT nodes.

As future work we plan to investigate the impact of using
more UMLs and different hardware. Also, virtualization has
been experimented using only UML. Virtualization platforms,
such as VMWare, XEN etc., can be used in place of UML and
their effect on the wireless networks can be investigated.

REFERENCES
[1] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H.

Kremo, R. Siracusa, H. Liu, and M. Singh, Overview of the ORBIT
radio grid testbed for evaluation of next-generation wireless network
protocols," IEEE Wireless Communications and Networking
Conference, March 2005. [Online]. Available: http://www.orbit-
lab.org/download/publications/Orbit Overview.pdf

[2] Us nsf - national science foundation." [Online]. Available:
http://www.nsf.gov/

[3] Group-GENI, \Technical document on wireless virtualization,"
September 2006. [Online]. Available: www.geni.net/GDD/GDD-06-
17.pdf

[4] J. Dike, A user-mode port of the linux kernel," 5th Annual Linux
Showcase and Conference, Oakland, California, 2001.

[5] User mode linux kernel." [Online]. Available: http://user-mode-
linux.sourceforge.net/

[6] A. Bevier, M. Bowman, B. Chun, D. Culler, S. Karlin, L. Peterson, T.
Roscoe, T. Spalink, and M. Wawroniak, Operating system support for
planetary-scale network services," In proceedings of the NSDI., San
Francisco, California, 2004. [Online]. Available:
http://www.cs.princeton.edu/ acb/nsdi04/paper.pdf

[7] S. Devine, E. Bugnion and M. Rosenblum, “Virtualization system
including a virtual machine monitor for a computer with a segmented
architecture”, US Patent, 6397242, Oct. 1998.

[8] Connectix, Product Overview: Connectix Virtual Server, 2003.
http://www.connectix.com/products/vs.html.20)

[9] Ensim Corp. Ensim Virtual Private Server.
http://www.ensim.com/products/materials/datasheet_vps_051003.pdf,
2000.

[10] Y. Koh, C. Pu, S. Bhatia, and C. Consel, Efficient packet processing in
user-level operating systems: A study of uml," Proceedings of the 31st
IEEE Conference on Local Computer Networks LCN , 2006.

[11] Vmware: Virtual infrastructure software." [Online]. Available:
www.vmware.com

[12] A. Whitaker, M. Shaw, , and S. Gribble, \Scale and performance in the
denali isolation kernel," In Proc. of the OSDI., Boston, MA, December
2002 2003.

[13] S. Banerji, Time based virtualization of an 802.11-based wireless
facility." Available: www.geni.net/docs/banerji.pdf

[14] Videolan vlc media player." [Online]. Available:
http://www.videolan.org/

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A.War¯eld, and R. Neugebauer, \Xen and the art of virtualization," In
Proc. of the ACM SOSP., October 2003.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, "Xen and the Art of
Virtualization," SOSP, 2003.

[17] A. Whitaker, M. Shaw and S. D. Gribble, “Scale and Performance in the
Denali Isolation Kernel”, Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, pages 195–209, Boston,
MA, December 2002.

