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Abstract— As a platform for synergistic theory-experiment
exploration in the field of wireless networking, wireless testbeds
have been used to facilitate a broad range of research. From the
perspective of system-level wireless emulation, average link SNR
is the dominant factor in the performance of a wireless link.
Thus, this work seeks to develop a systematic link SNR mapping
method that replicates real-world link SNRs on an indoor testbed.
The challenge is to optimize the nodes’ spatial configuration
and transmission powers to overcome the inherent propagation
differences, as expressed in terms of pathloss exponents and
environmental shadowing, between the real world and a given
testbed. To avoid the technical difficulty of “forward mapping”
from the real world to the testbed, we have developed a reverse
mapping method to turn a testbed configuration with given
link SNRs into a corresponding real-world configuration. By
inducing the dB link gain differences between the testbed and
the real world distance-dependent path loss to have a Gaussian
distribution, a close approximation to real-world log-normal
shadow fading is achieved. We present results for a variety of
indoor and outdoor real-world scenarios.

I. INTRODUCTION

Motivated by the goal to advance technology innovation
in the wireless networking field, the Open Access Research
Testbed for Next-Generation Wireless Networks (ORBIT)
project [?, ?] has built a large-scale wireless network testbed
which will facilitate a broad range of experimental research
on novel protocols and application concepts. A component of
the ORBIT system is a large two-dimensional indoor array of
802.11x radio nodes (400 nodes), which are uniformly spaced
on a 20 × 20 meter grid. The selection of a subset of grid
nodes yields a configuration that aims to emulate a wireless
network in the real world.

A fundamental issue common to all testbed emulations is
the replication of communication links of specified quality.
We recognize that the indoor testbed does not capture all
radio channel effects. For example, the radio channels on
the testbed are unlikely to have significant multipath. For
physical layer testing of a radio receiver design, the absence
of multipath would be problematic; however, for a wireless
network testbed, the difference is less significant. On the
other hand, the importance of average received power or
average SNR (scaling the average received power by the
noise power) has been reflected in both theoretical analysis
and practical measurements. Recent research [3–6] indicates
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that the average received power is a fundamental quantity
for system-level emulations as well as statistical modeling
of radio channels, whose large-scale spatial distribution is
approximately log-normal and can be largely characterized by
the path loss exponent and the standard deviation of shadow
fading.

In practice, OFDM is widely employed in IEEE 802.11a/g
wireless networks. In [7], the symbol-error rate (SER) of
OFDM systems is analyzed in realistic scenarios impaired by
both transmitter nonlinearity and frequency selective fading.
It is shown that for a given level of transmitter nonlinearity,
the SER is a function of the average SNR parameterized by
the Q factor, which measures the power ratio of the signals
received over the LOS path versus those signal received over
the scattering paths. It can be observed from [7, Figs. 3 and
5] that the parallel SER curves have similar shape under four
representative fading scenarios (hilly terrain, bad urban, typical
urban and rural area), and the different Q values result in
a translation of SER curves over the axis of average SNR.
For example, in a hilly environment with Q factor 3 dB, the
average link SNR γ is roughly equivalent to an average link
SNR of (γ − ε) dB (5 ≤ ε ≤ 8) in an indoor scenario.

In [8, 9], the error performance of coded OFDM is eval-
uated over the frequency selective and time selective fading
channels. Both analyses indicate that frequency-selectivity and
time-selectivity lead to a fading margin in the average SNR,
but the SER curves family maintain a similar shape over the
SNR range of interest. To summarize, we claim that from
the system-level perspective, the equivalence of the testbed
and the real world can be established by the equivalence of
average link SNRs. In a wide variety of settings, an average
link SNR in a particular environment is comparable to the
average link SNR in some other environment, offset by a fixed
dB difference.

In this paper, we focus on the link SNR mapping methodol-
ogy for static mesh networks. Specifically, our goal is to create
a testbed network configuration whose link SNRs simulate
the distance-dependent path gain as well as the shadowing
that exist in the real world. Due to the difference in the
path loss exponents, an exact “forward mapping” from the
real world to the testbed cannot always be guaranteed. For
example, consider the forward mapping from the real world
to the testbed for 3 users. As shown in Fig. 1(a), we denote
the 3 users in the real world by A, B and C, whose pairwise



distances are rAB = 2 m, rAC = 3 m and rBC = 4 m,
respectively. Assume the path loss exponent in the real world
is α = 4, but reduces to α = 2 on the testbed. To achieve
the same distance-based attenuation on the testbed, the length
of the three segments will be extended to rA1B = r 2

AB ,
rA2C = r 2

AC and rBC = r 2
BC , respectively, as shown in

Fig. 1(b). However, rA1B < |rBC − rA2C |, implying rA1B ,
rA2C and rBC do not satisfy the triangle inequality and cannot
form the side lengths of a triangle. Hence there doesn’t exist
an exact mapping on the testbed for users A, B and C.
To generalize, we claim that the testbed cannot replicate the
distance-based link gain matrix of real world mesh networks
with arbitrary configurations.

Even if there exists a testbed configuration whose link
gain matrix closely approximates that of a particular real-
world network, we have to conduct a difficult combinatorial
search for such a configuration. Moreover, if we try to match
the arbitrary target values in the real world by the discrete
quantities of limited size on the testbed, we have little control
over the statistical properties of mapping differences. This
motivates us to perform “reverse mapping” by which we turn
a testbed configuration with specified link SNRs into a real-
world configuration, and induce the distance-based link gain
differences between the two scenarios to achieve a shadow-
fading-like distribution (Gaussian in dB) that is consistent with
real-world observations. The resulting “real world configura-
tion” is in fact a fictional world of our own creation; however,
it answers the question “What does a given testbed experiment
represent in the real world?”

We demonstrate the method by reverse mapping the Orbit
grid configurations to real-world scenarios. Moreover, the
method is applicable to most typical indoor testbeds dedicated
to system-level emulations. The rest of this paper is organized
as follows: Section II introduces the fundamentals of link
SNR mapping; Section III develops the mapping methodology;
Section IV presents a set of results for different scenarios; and
Section V concludes this paper.

II. FUNDAMENTALS OF LINK SNR MAPPING

A. Path loss Modeling
In a wireless network, the propagation environment can

vary from a simple line-of-sight (LOS) path to one that
is characterized by various obstructions and scatterings. To
model the path loss between two terminals, say A and B,
which are separated by distance rAB and deployed in an
environment characterized by a path loss exponent α and a
reference distance r0 [3, 4, 10], we introduce an environment-
dependent constant K0 and define sAB as a random shadow
fading. The path gain is then given by

gAB = K0

(
rAB

r0

)−α

sAB . (1)

The path gain, as used here, is the ratio of the locally averaged
received power to the transmit power. We define the path loss
to be the negative of the dB path gain, i.e.,

GAB = −10 log(gAB). (2)

It is worth noting that the factor (rAB/r0)
−α represents the

deterministic contribution of distance-based attenuation, while
sAB , whose distribution is widely accepted as log-normal,
captures the randomness of environments. Generally, a prop-
agation environment can be characterized by K0, the pathloss
exponent α and the standard deviation σ of 10 log (sAB). Typi-
cally, when both indoor and outdoor scenarios are considered,
α ranges from 2 to 4, and σ ranges from 4 dB to 10 dB.
Refined empirical path loss models introduced in [3, 4] treat
both α and σ as random variables from location to location,
to capture the distinctions among various environments.

B. Outline of the SNR Mapping Method

We assume the path gains in the real world are characterized
by (1), with numerical values specified for K0, r0, α and σ.
The link SNR at real-world node j due to a transmission from
another node i is

γij =
pigij

η̄j
, (3)

where pi is the transmit power from node i, η̄j is the receiver
noise power at node j, and gij is the path gain from node i to
node j, as given by (1). Note that when node i is transmitting
to node j in the presence of a set of interfering transmitters
I , the signal to interference plus noise ratio (SINR) on link
(i, j) is given by

SINRij(I) =
pigij∑

k∈I pkgkj + η̄j
=

γij∑
k∈I γkj + 1

. (4)

The implication of (4) is that matching the real-world and
grid SNRs, γij = γij for all links (i, j), implies that we also
match the real-world and grid SINRs for any set of interfering
transmissions.

Thus the main objective is to establish a set of nodes on the
laboratory grid for which the link SNRs are identical to those
for a real-world network scenario that we wish to emulate. If
there are N nodes in the real-world network we wish to study
using the grid, then Γ is an N × N matrix, with elements
Γij = 10 log(γij), representing the received signal-to-noise
ratio in dB at node j due to a transmission from node i. For
clarity, we will use (·) to denote quantities in the real world;
thus, we seek a mapping such that Γij = Γij for all i 6= j.

The first step in the reverse mapping procedure is to specify
a node scenario on the grid, defined by the number of nodes
N and the set of node placements. The placement should be
chosen so that the configuration has the qualitative features of
the one desired in the real world, e.g., two clusters of nodes,
or a random uniform distribution of nodes. Corresponding to
the node scenario on the grid is an N × N gain matrix, g,
where gij = gji for all links (i, j). For convenience only, we
will assume in our computations that the inter-node path gains
follow the free-space path loss (FSPL) formula

gij =
(

4πrij

λ

)−2

, (5)

where λ is the radio wavelength, in the same units as the
distance, rij , between nodes i and j. Comparing (5) to (1),



we see that the FSPL formula corresponds to the case K0 = 1,
r0 = λ/(4π), α = 2 and σ = 0 (no shadow fading).

The second step is to find a scenario (N -node placement)
in the real world for which the distance-dependent part of gij

is roughly the same as gij . To make this notion precise, we
define

ĝij = K0

(
rij

r0

)−α

(6)

as the distance dependent component of the real-world link
gain gij . By “roughly the same”, we mean that

−10 log(ĝij) = −10 log(gij)−∆ij , (7)

i.e., the distance-related real-world path loss on link (i, j)
differs from the path loss on the grid by a dB offset ∆ij . The
central goal of our mapping is to shape the node placements
so that the elements of the difference matrix, ∆, have the
same first-order statistics as the assumed shadow fading. That
is, each offset ∆ij (note that ∆ij = ∆ji) has a Gaussian
distribution with mean 0 and standard deviation σ. Then, by
adding ∆ij to −10 log(ĝij), we achieve

−10 log(gij) = −10 log(ĝij) + ∆ij = −10 log(gij) (8)

for all links (i, j). Thus the real-world link gains gij are both
consistent with the statistical model of (1) and exactly equal
to the grid link gains gij . The procedure for achieving this
result is given in the next section.

The third step is to observe the spatial layout of real-world
nodes resulting from the above gain mapping, to see if it
conforms to the desired kind of spatial distribution. In general
it will not, primarily because the inter-node spacings will be
too small. The remedy is to stretch all distances by a common
factor, τ , so that the real-world node placement has the desired
spatial extent. Using the model of (1), it is easy to show that
this will increase every real-world inter-node path loss by a
common amount 10α log(τ) dB.

The fourth step is to assign transmit power values, P i in
dBm, for each real-world nodes i and to assign a receiver
noise power, N = 10 log ηi in dBm, assumed to be the same
for all nodes. Expressing (3) in dB, the SNR at node j for the
transmission from node i will be

Γij = P i −Gij −N , (9)

where Gij = −10 log(gij), as given in (2). Note that the
transmit powers and the noise power are dictated by the real-
world scenario one wishes to study. That is, these quantities
are specified in the problem statement and are not a result of
the gain mapping.

The fifth and final step is to choose the transmit powers Pi

on the grid so that Γij = Γij for all (i, j). From (9), we see
that this requires a mere scaling, namely,

Pi = P i − 10α log(τ) +N −N . (10)

If the grid capability is such that only a finite number of power
levels can be used, the powers for the real-world scenario will
be similarly constrained. This is a limitation imposed by the

grid equipment, not the mapping method. In what follows, we
focus on the first two steps of the mapping method, as the
implementation of the last three steps is straightforward.

C. Link SNR Mapping Difference

To preserve the fidelity of real-world link SNRs, a direct but
naive approach is to minimize the norm of Γ−Γ. However, an
insightful reader will notice that the above formulation in (3)-
(7) ignores the contribution of shadow fading, while a realistic
replication of real-world link SNRs should reflect the statistical
properties of shadow fading. Therefore, our goal is to induce a
log-normal distribution for {∆ij}, which is consistent with the
statistics of the shadow fading as observed in the real world.
Another concern the readers may have is the geographical
dimension of the real world that can be captured by a testbed
of limited size, since the mismatch of the two scenarios will
potentially produce a bias for {∆ij}. In fact, the sample mean
for the ensemble of link SNR mapping differences is

µ̃1 =
2

N(N − 1)

N∑

i=1

N∑

j=i+1

∆ij . (11)

Noting the SNR differences can be adjusted by reconfiguring
the placements and the transmission powers of nodes sepa-
rately, we can always scale the transmission power appropri-
ately to compensate for the potential bias of ∆ij . Therefore
it is unnecessary to constrain the network size and we will
assume µ̃1 = 0 in the following.

III. LINK SNR MAPPING METHODOLOGY

Without loss of generality, we assume that the testbed
link gains gij are given by free-space propagation. It is
worth noting that this assumption is made for the numerical
evaluation of our method, and is not a necessary condition for
the proposed mapping methodology. Realistic deviations from
this simplified assumption, as measured on an actual testbed,
can be incorporated into the mapping algorithm.

A. Mapping Feasibility from Testbed to Real World

To begin with, we will prove the fact that for three nodes ar-
bitrarily chosen from the testbed, there exists an exact mapping
in the real world based on the equivalence of distance-based
attenuation (σ = 0). To generalize, for a mesh network with
N > 3 nodes, we can always partition it appropriately into
three clusters and the cluster centroids will serve as the centers
for the subsequent contraction mapping (Subsection III-B). By
careful design of the reverse mapping procedure, we can insure
the mapping differences achieve a log-normal distribution that
is consistent with the real-world shadow fading effects. Since
we are seeking the equivalence of link SNR between the
two scenarios, a particular testbed configuration can simulate
multiple real-world topologies sharing the common link SNR
matrix.

Assume u, v and w stand for the pairwise distances of three
nodes on the testbed and β is the ratio of pathloss exponents
between the testbed and the real world. Lemma 1 establishes
that when 0 < β < 1, uβ , vβ and wβ satisfy the triangle



inequalities. On the basis of Lemma 1, Lemma 2 proves the
existence of an exact mapping for any three nodes chosen from
the testbed. Proofs appear in Appendix .

Lemma 1: For all u, v, w > 0 such that |u − v| ≤ w ≤
u + v and 0 < β < 1, |uβ − vβ | < wβ < uβ + vβ .

Lemma 2: If the ratio α/α of pathloss exponents be-
tween the testbed and the real world is less than 1, then any
three nodes arbitrarily chosen from the testbed can be mapped
exactly, by distance-based path losses, to the real world based
on the equivalence of link SNRs.

Based on the mapping feasibility for three nodes, we will
introduce a reverse mapping procedure for mesh networks, that
can be split into two phases. Without loss of generality, we
assume all testbed users transmit with power P dBm and all
real-world users transmit with power P dBm.

B. Clustering and Contraction Mapping

For our first solution phase, we partition a given testbed con-
figuration into L mutually exclusive clusters and then employ
contraction mapping to obtain an initial real-world configura-
tion. To obtain such a partition, we treat the coordinates of
the N users as N objects in the real two-dimension space,
<2. Then we employ the K-means clustering algorithm [12]
to partition the N × 2 data matrix into L mutually exclusive
clusters and locate the centroid of each cluster. Assume cluster
l has Nl users, and the n-th user of cluster l is indexed
by kl,n. Let Ωl = {kl,n}Nl

n=1 represent the set of indices
belonging to cluster l, then Ω1 ∪ Ω2 · · · ∪ ΩL = {1, 2, · · ·N}
and Ωi∩Ωj = ∅ for i 6= j. Based on a given distance measure
(Euclidean distance, for example), the K-means clustering
algorithm employs an iterative method for partitioning. As a
result, the objects within each cluster are as close to each
other as possible, but are as far from objects in other clusters
as possible. Each cluster in the partition is characterized by its
centroid and its member objects. The centroid of each cluster
is defined as the point to which the sum of distances from
all member objects is minimized. For the 2-D data based on
the Euclidean distance, the cluster centroid is the geometric
centroid, whose coordinates are the arithmetic average of those
of the cluster members. Fig. 2 illustrates the application of
the K-means clustering algorithm to a mesh network with 60
nodes, which is partitioned into three distinctive clusters based
on the Euclidean distance.

Consider the case of L = 3 and let vectors XQ1 , XQ2 and
XQ3 represent the testbed coordinates of the cluster centroids
obtained from K-means clustering. In line with Lemma 2, we
can map the cluster centroids from the testbed to their real-
world locations {XQ1 ,XQ2 ,XQ3} such that gQ1Q2 = gQ1Q2

,
gQ1Q3 = gQ1Q3

and gQ2Q3 = gQ2Q3
. A simple way to obtain

a good initial configuration is through contraction mapping
with respect to the cluster centroid, which can be described
as follows. Let Xkl,n

denotes the testbed coordinates of user
kl,n, i.e. the n-th user in cluster l. By contracting its distance
to the cluster centroid and preserving its angles to the other
users within the same cluster, we obtain its initial mapping in

the real world and the coordinates are given by

X
0

kl,n
= XQl

+ τ |Xkl,n
−XQl

|β , 1 ≤ l ≤ L, 1 ≤ n ≤ Nl

(12)

C. Constrained Optimization of Real-world Configurations

Starting from the initial configuration {X0

kl,n
}, our goal is to

fine-tune the nodes’ real-world positions so that the mapping
differences {∆ij} have the shadow fading like distribution
consistent with the realistic environments. It is worth noting
that {∆ij} is a function of Yj = {Xjn

}N
n=1, which fully

characterize the real-world configuration of N receivers.
We learn from [11, 14] that the random variables derived

from a particular distribution can be characterized by the high-
order central moments. On the other hand, we know from (5)-
(9) that the sample central moments for ∆i j depend on the
topography of the network users only. In particular, we note
that kurtosis is a statistical measure for the outlier-proneness
of a distribution, while skewness measures its asymmetry.
Furthermore, a distinctive property of the Gaussian distribution
is that both its skewness and its (excess) kurtosis are equal
to 0, regardless of the mean and the variance [14]. Since
the link SNRs are transformed by the log operation into the
dB form, the desired log-normal distribution reduces to the
Gaussian distribution for {∆ij}. Therefore, we can formulate
the mapping algorithm as a constrained optimization problem.
To begin with, we introduce the following definitions for the
l-th (l = 2, 3, 4) sample central moment for {∆ij} assuming
they have zero mean:

µ̃l

(
Yj

)
=

2
N(N − 1)

N∑

i=1

N∑

j=i+1

(∆ij)
l
. (13)

Then, the excess sample kurtosis can be given by

κ(Yj) =
µ̃4

(
Yj

)
[
µ̃2(Yj)

]2 − 3, (14)

and the sample skewness is

ξ(Yj) =
µ̃3

(
Yj

)

[µ̃2

(
Yj

)
]
3
2

. (15)

The objective function is set as the linear combination of the
squared excess kurtosis and the squared skewness of the link
gain differences, i.e.

J
(
Yj

)
=

[
κ

(
Yj

)]2
+

[
ξ
(
Yj

)]2
. (16)

Obviously, J
(
Yj

) ≥ 0, and the equality is achieved if
the underlying distribution for {∆ij

(
Yj

)} is asymptotically
Gaussian [14]. Therefore, given the standard deviation of
the desired shadow fading, say σd, the optimal real-world
configuration is

X
∗

= arg min
Yj

J
(
Yj

)
, (17)

such that
µ̃2

(
Yj

) ≤ σd . (18)



Finally, we note that J(Yj) is a non-convex function of Yj .
Thus obtaining the global optimal solution X

∗
is generally

difficult. Even if advanced optimization techniques [13] are
employed, it is probable that only a local optimal solution
is reached. Moreover, as noted in [16] and the references
therein, the quality of the solution to the nonlinear constrained
optimization problem is sensitive to the initialization, and the
optimum often lie close to the boundary governed by the
constraints. Nevertheless, since the mapping can be conducted
off-line, we can always randomize the initial configuration
by a perturbation vector such that the qualified local optimal
solutions, which pass the normality test and approximate the
upper bound σd closely, can be identified and catalogued. We
will show in Section IV that the above procedures work quite
well.

D. Selection of Good Mappings by Hypothesis Test for Nor-
mality

From the discussion above, we know that for a given
grid configuration, the optimization algorithm may turn out
multiple local optimal solutions as the candidate real-world
mappings, depending on the starting point of the optimization
search. To evaluate the goodness of these candidates, we need
to test the departure of the corresponding mapping differences
from normality (Gaussian). Hypothesis tests for normality are
based on different characteristics of the normal distribution,
to name a few, the high order statistics such as skewness and
kurtosis, cumulative distribution function and characteristic
function. Due to the particular form of (16), we will consider
the class of tests dedicated to the skewness and the kurtosis,
such as those presented [14, 15].

IV. EXPERIMENTAL RESULTS

A. Mesh Networks with a Collection of Clusters

This experiment studies the performance of the proposed
reverse mapping method for mesh networks with a collection
of clusters. Fig. 3 corresponds to an indoor scenario with
three clusters, in which the standard deviation of the mapping
differences is upper bounded by 5 dB and the K-means
clustering algorithm partitions the nodes into L = 3 clusters
for the initial testbed configuration. Fig. 4 corresponds to an
outdoor scenario with two clusters, in which the constraint for
standard deviation is upper bounded by 8 dB and L = 2 is
used for the initial testbed configuration. The straight-lines in
Figures 3(c) and 4(c) represent the benchmark CDF of the
standard Gaussian distribution. To select the qualified good
mappings, we invoke the Jarque-Bera normality test [13] and
set the significance level to 5%. As can be observed from
these figures, the sample kurtosis κ and the sample skewness
ξ are negligibly small, and the empirical CDF approximates
the straight line closely over the interval [0.05, 0.95]. This
implies the distribution of the mapping differences is a good
approximation to the desired Gaussian distribution (log-normal
shadowing).

B. Mesh Networks with Uniformly Distributed Nodes

This experiment investigates the performance of the reverse
mapping for a mesh network with 50 uniformly distributed
nodes. Fig. 5 shows an indoor case where the standard
deviation of the mapping difference is upper bounded by
5 dB. Fig. 6 shows an outdoor case where the standard
deviation of the mapping difference is upper bounded by 8 dB.
Similar to the prior experiments, the straight-lines of 6(c) and
7(c) represent the CDF benchmark of the standard Gaussian
distribution. Similarly, the constrained optimization algorithm
can induce the distribution of link SNR mapping differences
to resemble that of the real-world shadow fading.

V. CONCLUSION

For the static mesh networks, we have proposed a novel
mapping method for the link SNR, which can be formulated
as a two-phase constrained optimization problem. For as many
as 50 nodes, we have observed that the proposed methodology
works very well for typical network topologies such as a
collection of clusters or a mesh. For both indoor and outdoor
scenarios, we can induce a Gaussian distribution for the
differences of distance-based attenuation, which renders a
good approximation to the shadow fading effects in the real
world.

APPENDIX

Proof: Lemma 1 Let f(x) = (1 + x)β − xβ − 1. We have
f(0) = 0 and f ′(x) < 0 for all x > 0. Since f(x) is
continuous, we have that for all x > 0, f(x) < 0. Substituting
u/v for x into f(x) < 0 yields

(u + v)β < uβ + vβ . (19)

By assumption, we have w ≤ u + v, therefore

wβ ≤ (u + v)β < uβ + vβ . (20)

On the other hand, by assumption we also have |u− v| < w.
Suppose u ≥ v without loss of generality, then u ≤ v + w.
Similar to (11), we have

uβ ≤ vβ + wβ . (21)

Combining (11) and (19) yields

|uβ − vβ | ≤ wβ ≤ uβ + vβ . (22)

¤
Proof: Lemma 2 Suppose Qi, i = 1, 2, 3, denotes the
index of a node arbitrarily chosen from the testbed, whose
coordinates are given by vector XQi

. Let α and α denote
the pathloss exponents of the testbed and the real world,
respectively, and assume the transmission power are P dB
and P dB, respectively. Making the substitutions u = |XQ1 −
XQ3 |, v = |XQ2 −XQ3 | and w = |XQ1 −XQ2 |, and noting
|u− v| ≤ w ≤ (u + v), we learn immediately from Lemma 1
that there exists a triangle, say 4Q1Q2Q3 , whose side lengths
are proportional to uβ , vβ and wβ . Assuming β ∈ (0, 1)



and C ′ > 0 are two arbitrary constants, and denoting the
coordinates of the vertex Qi in the real world by {XQi

}, then

|XQi
−XQj

| = τ |XQi
−XQj

|β , (23)

where i, j ∈ {1, 2, 3} and i 6= j. Let βQiQj
and βQiQj

denote the SNRs for link {XQi
,XQj

} and link {XQi
,XQj

},
respectively. Take β = α/α, we then have gQ1Q2 = gQ1Q2

,
gQ1Q3 = gQ1Q3

and gQ2Q3 = gQ2Q3
. ¤
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Fig. 1. Illustration of infeasibility of forward mapping from the real world
to the indoor testbed for 3 users : (a) nodes A, B and C arbitrarily chosen
from the real world (b) the mapping of A onto the testbed is not consistent
due to the violation of triangle inequality
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Fig. 2. Partitioning a mesh network with 60 nodes into 3 mutually exclusive
clusters by K-means clustering algorithm : (a) A mesh network with 60 nodes
(b) Cluster 1 (c) Cluster 2 (d) Cluster 3
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Fig. 3. Reverse mapping results of an indoor mesh network with three
clusters : (a) A grid configuration with 3 clusters and a total of 30 nodes (b)
A real world configuration with 3 clusters obtained by reverse mapping (c)
CDF of distance-based dB path loss differences between the real world and
the testbed
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Fig. 4. Reverse mapping results of an outdoor mesh network with two
clusters: (a) A grid configuration with 2 clusters and a total of 30 nodes (b)
A real world configuration with 2 clusters obtained by reverse mapping (c)
CDF of distance-based dB path loss differences between the real world and
the testbed
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Fig. 5. Reverse mapping results for an indoor flat mesh network with 50
users: (a) A grid configuration with 50 nodes (b) A real world configuration
obtained by reverse mapping (c) CDF of distance-based dB path loss
differences between the real world and the testbed
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Fig. 6. Reverse mapping results for an outdoor flat mesh network with 50
users: (a) A grid configuration with 50 nodes (b) A real world configuration
obtained by reverse mapping (c) CDF of distance-based dB path loss
differences between the real world and the testbed


