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ABSTRACT

Wireless testbed virtualization aims to provide a stable, reproducible, environment that is

capable of simultaneously supporting multiple radio experiments in the same RF environment.

Our study provides a brief overview of current effort in the direction of virtualization, and

aspects affecting the feasibility of such setups. Our preliminary studies involve comparison of

current virtualization schemes and their suitability for wireless testbed virtualization.
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1.1 Introduction

Virtualization of wireless network resources allows provision of capabilities for handling multiple

concurrent experiments (”slices”) on the same set of radio devices. Strict virtualization of

wireless network elements is fundamentally a difficult problem because of the fact that radios

interfere with other radios in their immediate vicinity via interactions at RF spectrum, physical

(PHY) and medium-access control (MAC) layers. These interactions make it more difficult to

create orthogonal time slices on radio channels than on wired network links. Virtualization of

testbed resources in ORBIT [2] is motivated by two factors:

• GENI Integration: GENI [3] proof-of-concept work started in 2006-07 required the capa-

bility of integrating virtualized PlanetLab and VINI networks with ORBIT [10]. GENI

also requires integration of control and management across wired and wireless networks,

providing researchers with a single programming interface and experimental methodol-

ogy. An integrated prototype is extremely valuable in building a practical understanding

of integration issues of wired and wireless networks.

• Testbed Utilization: ORBIT [2] is a two-tier laboratory emulator/field trial network

testbed which typically uses a time shared experimentation model. Each experimenter

can reserve the grid for approximately two hours and has complete control of the grid.

Heavy use of the testbed dictates a need to increase experiment temporal throughput by

sharing grid resources where possible. Wireless virtualization aims to support concurrent

experiments on shared wireless network resources.

Eventual goals of this project are:

1. Identification of a node virtualization scheme based on existing solutions that best fit

testbed virtualization.

2. Design and implementation of a mechanism that allows flexible sharing of radio resources.

3. Design and implementation of a job scheduler that selects, maps and monitors compatible

wireless experiments.

Through this study we aim to achieve the first step in the process by determining criteria, and

performing comparison of schemes to select an approach suitable for wireless testbed virtual-

ization.

Section 1.2 will give a brief overview of virtualization techniques and current testbed archi-

tectures using these techniques. Sections 1.3 and 1.5 provide a qualitative and quantitative
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comparison of some virtualization schemes we considered for our setup. Finally, Section 1.6

provides a few conclusions and talks about future directions.

Terminology: From here on, the host operating system will refer to the virtualization envi-

ronment and the guest will refer to the instance of the virtualized OS.

1.2 Related

Virtualization techniques are used to share testbed (system) resources. Testbeds like EMU-

LAB [14] and Planetlab [8] provide environments for large scale systems emulation. Planetlab

infrastructure consists of a planetary scale service running across a set of distributed nodes.

An experimenter can reserve a slice across multiple machines and run experiments across all

of the nodes over a period of time. These experiments can be either short term or long term.

The needs of our architecture are significantly different from the Planetlab usage model. Our

wireless emulation facility requires that the users be able to achieve a deterministic performance

from the network rather than a best effort link. Our setup should also allow the user to make

restricted privileged calls. E.g. Changing the control parameters of an interface (like power

or transmission rate) at run time without allowing multiple users to conflict with each other.

Experiences on setup of a large scale wired distributed virtualization schemes are also discussed

in [6]. The ModelNet [1] emulator achieves similar large scale flexibility by sacrificing on flexi-

bility by abstractions. Diecast [4] achieves flexible sharing of resources in emulation by slowing

down time, thereby providing the illusion that each virtualized instance has access to complete

machine resources.

Specific to wireless virtualization we observe two studies. One of them [9] compares the

performance of virtualizing the channel in space versus in time while the other [11] focusses

on virtualization in frequency with the use of UML. Through our study we will validate and

compare performance of UML with that of OpenVZ and attempt to quantify difference in

performance with the two schemes.

1.3 Qualitative Comparison

A virtualized system generally has a slightly degraded performance as compared to a non-

virtualized one due to sharing of resources. However, when we are considering testbed virtual-

ization we would want these effects to be minimal to achieve reproducible results. The goal of

this section is to present a brief comparison of some standard virtualization architecture and

their suitability to our application.
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Feature FullV irtualization ParaV irtualization OSV irtualization

Intrusiveness Least Intermediate Most
Hypervisor Y es Y es No

SystemCallPerformance Degrades intermediate Best
Kernel Individual Individual Shared

Figure 1.1: A comparison of techniques for system virtualization. It is important to note
here that full virtualization refers to systems running without native virtualization support.
Intrusiveness refers to the level of changes that need to be made to the guest operating system.
System call performance refers to the efficiency with which privileged calls are executed with
each of the architectures.

Production scale virtualization systems can be broadly classified as shown in Figure 1.Full

virtualization [13] refers to direct hardware emulation which uses a hypervisor to trap and

execute privileged calls on the fly1. One of the main advantages of full virtualization is it is

least intrusive and allows running of unmodified operating systems. Paravirtualization [7] is

similar to full virtualization and uses a hypervisor to trap and execute system calls. However,

para-virtualization requires changes to the guest operating system which allow the virtual ma-

chine monitor to work along with the hypervisor in reducing penalties associated with system

calls. The most intrusive form of virtualization is operating system based where the virtualized

systems run as processes in the operating system. The host operating system is modified to

provide secure isolation of the guest operating systems also referred to as virtual machines (VM)

or virtual private servers (VPS). Since our design relies on controlling most of the frame-work

with a limited variety of guest operating systems we are considering two prominent schemes for

OS virtualization:

• OpenVZ [12]

• User Mode Linux (UML) [5]

A follow up of this study will include performance comparison with Xen.

Some of the desired features of the virtualization scheme for suitable working with our

proposed testbed architecture are:

1. Controlling disk quotas

2. Enabling control of CPU utilization per sliver for ensuring experiment repeatability.

3. Some control over other system features such as memory, TCP sockets, and IP packets.

1Native virtualization refers to the systems where the processor has support for virtualization and allows
multiple unmodified operating systems to run together. Full virtualization does not refer to these systems.
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Frequency F2
Frequency F1VPS 1 VPS 1

VPS 2 VPS 2Node#1 Node#2
Node#1 Node#2

No Virtualization FDM  Virtualization

Figure 1.2: Experiment setup for OpenVZ evaluation

4. Flexible mapping of standard Linux distributions.

5. Ease of wireless driver integration with provision for flexible on the fly reconfiguration.

Each of these systems provide hooks for flexible design and a lot of the decision depends on the

empirical performance of these systems.

Terminology: Throughout the rest of this document guest will refer to the virtualized operating

system and the host will refer to the system running the virtualized instances.

1.4 Experimental setup and Methodology

This section provides a brief overview of the ORBIT testbed where the experiments were con-

ducted, introduction to OpenVZ and finally the experiment setup used for evaluation.

Parameter V alue

Channel 36
Tansmit Rate 36Mbps
Offered Load Time Varying

Experiment Duration 3 Minutes
Averaging Duration Per Second

Operation Mode 802.11a
Chipset Atheros
Driver MadWiFi 0.9.3

Figure 1.3: Experimental Parameters Used With ORBIT Nodes. The Madwifi drivers are
compiled with transmitter diversity disabled.
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(a) Average UDP throughput comparison.
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(b) Variance in UDP bandwidth.

Figure 1.4: UDP throughput and variance in throughput as measured with different schemes.
Performance is measured as a function of offered load per flow with a fixed packet size of
1024bytes. Variance in UDP bandwidth is measured over per second observed throughput at
the receiver.

1.4.1 Testbed Summary

ORBIT is a two-tier laboratory emulator/field trial network testbed designed to achieve repro-

ducibility of experimentation, while also supporting evaluation of protocols and applications in

real-world settings. The setup consists of a large two dimensional grid of 400 802.11 radio nodes

with reproducible wireless channel models. Every node is a small form factor PC with 1GHz

Via C3 CPU, 512 MB RAM, 20 GB hard disk and three ethernet ports, one of which is used

for node configuration and control. Majority of the ORBIT nodes are fitted with Atheros 5212

based IEEE 802.11 a/b/g cards while remaining have Intel cards. We used Atheros cards for

our experimentation.

1.4.2 OpenVZ Overview

OpenVZ allows loading of multiple standard distributions through the template mechanism.

Each instance of the guest operating system is referred to as a virtual private server (VPS).

Other features such as disk quotas, memory, and cpu units can be controlled through the

resource control functionality built in to the OpenVZ system. Two types of network devices

are supported. A virtual ethernet device (vethX) is an ethernet like device that can be used

inside a VPS. The veth device can be assigned an IP address and can be bridged with ethX. A

venet device is a point to point link between the container and the host system and works at

the IP-layer. A venet device is created automatically and can be assigned IP addresses using

the vzctl commands. For convenience and ease of use we employ the venet interfaces.
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(a) Difference in UDP throughput with varying
packet sizes.
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(b) FTP performance with 1GB file transfer.

Figure 1.5: Measurement of UDP throughput with varying packet sizes and file transfer time
with FTP. For the UDP throughput measurement, channel rate is constant at 36Mbps and
packet size is varied. For the FTP experiment, packet size is constant at 1024 and channel rate
is varied.

1.4.3 Setup

Figure 1.2 shows the experiment setup used for determining the performance of the system.

Each machine runs two VPSs. Each of the VPSs are mapped to two independent wireless

interfaces operating on orthogonal channels. venet0 devices from each VPSs are configured

to map to corresponding hardware devices on the host. In the non- virtualized case, we run a

single wireless link between two nodes. With the virtualized case we wish to test the degradation

in performance by running two identical links between the same nodes on orthogonal wireless

channels. For sake of evaluation we compare some of our results from OpenVZ with those

obtained by running UML. Generic experiment parameters are as shown in the Figure 1.3.

1.5 Quantitative Evaluation

We start the evaluation by measuring the overheads in throughput and delay, followed by

measurement of isolation achievable between slices.

1.5.1 Overhead Evaluation

Overhead evaluation involves measurement of system performance with virtualization as com-

pared to that without virtualization. To measure performance with virtualization we use the

OpenVZ (and UML for throughput comparison) as a part of the FDM virtualization setup.

The goal of the first experiment is to compare the saturation UDP bandwidth achievable

with both the setups as shown in Figure 1.2. Results obtained from these experiments are
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Figure 1.6: Delay as measured for different experiment scenarios. Minimum and average round
trip time measurements are based on ping while interframe space measurements are based on
difference in time stamps between packets arriving at the receiver.

as shown in Figure 1.4(a). The figure plots the observed UDP bandwidth for different link

offered loads. Throughput obtained in the virtualized case are averaged over the two links. It

can be observed that both below and above channel saturation there is no distinct difference

in throughput with either OpenVZ or UML as compared to the case with no virtualization.

This tends to indicate that both systems perform efficiently (with least overhead) under tested

conditions.

Since the results shown in the previous experiments were averaged over a period of 180 sec-

onds, we wished to evaluate the variance in throughput with each of the schemes. Figure 1.4(b)

plots the per second variance in throughput with OpenVZ, UML and no virtualization for dif-

ferent offered loads. It can be observed that below saturation, the variance is low for all the

schemes. However, close to and above saturation, it can be observed that the variance with

UML increases. Superior performance of OpenVZ may be associated with tighter scheduling

and better isolation.

To test the performance with varying packet sizes we evaluated the net throughput observed

with the three schemes for a constant offered load and transmission rate. Figure 1.5(a) shows

the performance with varying packet sizes at a constant offered load of 40Mbps and constant

channel rate of 36Mbps. The results show that for the maximum packet size of 1470 bytes, the

performance with the virtualized cases of OpenVZ and UML are comparable to that without

virtualization. However, for all sizes of 1024bytes and below, we see that UML has a significantly

higher packet processing overhead which leads to a degraded performance. Degradation in

performance with UML may be attributed to the lack of support for virtualization in the host

kernel leading to higher overheads.
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To measure the FTP performance of the system we setup a file transfer of 1GB. Results

presented in Figure 1.5(b) measure the the time taken for the file transfer with varying channel

rates. We observe that for all the considered channel rates there is very little performance

difference with the two virtualization schemes.

1.5.2 Overhead Evaluation - Delay

Delay measurements are made with the same setup as that used for the throughput experiments.

These are typically important for experiments that measure performance of real time systems

or data. Delay measurements were setup with two goals:

• Distribution of delay across slices.

• Distribution of delay overhead with packet sizes.

To measure the distribution of delay across slices we run ICMP traffic (ping) across both

slices. All measured delay values are round trip times (RTT). Figure 1.6(a) measures the

delay performance with varying inter-packet durations. Inter-packet transmission times, is the

time duration between two consecutive packets as seen at the sender. For each sending rate,

readings are averaged over an interval of 300 secs. Delay values are plotted for the case with

no virtualization, average delay across both the slices, and delay across individual slices. The

results show that in all cases, virtualization adds a very small average overhead (of the order

of 0.05msec) in terms of absolute delay. The RTT delays for slices increase slightly with lesser

sending rates due to slight decrease in CPU time spent on network tasks. Despite the overhead

being negligible, we notice that the performance across both slices is always comparable. Thus

we see that OpenVZ adds little or no overhead to the delay measurements and it is safe for

making temporal measurements across slices.

Theoretically we would expect delays to increase with packet sizes, due to higher processing

delays. The goal of these measurements is to verify if using OpenVZ results in significantly

different performance across different packet sizes. Delay measures the difference in absolute

time between when a frame is transmitted and the time when it is received. However, we measure

interframe arrival times since one-way delay measurements require explicit synchronization2.

Let us assume that the delay for two consecutive frames i and j is given as Di and Dj . Each

Dk is evaluated as the difference in the time stamp at the receiver (Rk) from the sender Sk.

2Synchronization across machines is possible to a granularity of a few msecs using the network timing protocol
daemon. However, achieving higher granularity is difficult using standard tools. Delay measurements can easily
replace the inter-frame arrival measurements if this issue is fixed.
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Figure 1.7: Experiments for measuring the cross coupling and interference between experiments.
First plot shows a performance with time, while the second plot displays results averaged over
180secs.

We can evaluate the difference in delay of two consecutive frames i and j, given by Dj −Di as:

(Rj − Sj)− (Ri − Si) = (Rj −Ri)− (Sj − Si) (1.1)

Hence the difference in inter-frame arrival times given by Rdiff = Rj −Ri is evaluated as:

Rdiff = (Dj −Di) + (Sj − Si) = Ddiff + δ (1.2)

where Ddiff represents difference in delay of consecutive frames and δ denotes difference in

time stamps of consecutive frames at the sender. As long as the frames are sent at a constant

rate over a single link, with static channel conditions, δ appears as a constant value. Thus we

can use difference in inter-frame arrival times as an approximation for difference in delays of

consecutive frames.

Measurements in Figure 1.6(b) are based on the average difference in receiver time stamps

for ten thousand consecutive frames. The results show that increase in packet sizes results in

increasing inter-frame delays, thus indicating increasing packet delays. Increasing the packet

sizes results in little or no difference between the measurements with virtualization and without.

This confirms the notion that OpenVZ adds little overhead in delay measurements, and the

overhead is limited across all packet sizes.

1.5.3 Slice Isolation

An important requirement of a virtualized testbed is that if the results are repeatable in the

non-virtualized case, they should be repeatable in the virtualized environment. With such a

requirement, experiment repeatability in the virtualized case is going to be directly proportional
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to the isolation between experiments. Since OpenVZ has clearly outperformed UML in the

previous experiments we will determine the performance isolation provided by OpenVZ in this

section. We will first evaluate the transient response of the system followed by measurement of

experiment cross coupling across slices.

In our experiment for measuring transient response in throughout of one experiment in

response to the change in throughput of the other, we maintained the offered load for the ex-

periment running on slice 1 at a constant value of 20Mbps. Figure 1.7(a) shows the performance

of that experiment when the offered load of the experiment on slice 2 is varied as a function of

time. The offered load of experiment 2 is varied as 5M, 50M, 500M, and 1000M. We can see

that there is little or no correlation in the throughput of the experiment running on slice 1 in

response to the experiment running on slice 2. Hence OpenVZ provides excellent isolation in

terms of the observed transient response of the experiments.

We define experiment cross coupling as the difference in throughput with virtualization as

a percentage of the throughput without virtualization. To measure cross coupling we maintain

the offered load of experiment in slice 1 at constant values of 30Mbps initially followed by 5Mbps

for the second experiment. In the mean time we vary the offered load of the experiment on

slice 2, as 5M, 10M, 100M, 1G, 10G. Results of the experiments shown in Figure 1.7(b) show

that there is negligible cross coupling, and the results of the experiments in slice 1 are never

affected. It is important to note that these results are achieved without tweaking features of

OpenVZ that allow setting of custom cpu usage per slice.

1.6 Conclusion and Future work

Preliminary investigations of the setup with OpenVZ reveal a superior performance as compared

to that with UML. Betterment in results may be attributed to a tighter virtualizing mechanism

and a more effective approach for network setup. Future work involves:

1. A comparison involving a para-virtualization scheme like Xen.

2. Integration of selected mechanism in an automated virtualization framework.
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