ORBIT Measurements Framework and Library (OML): Motivations, Design,
| mplementation, and Features

Manpreet Singh, Maximilian Ott, Ivan Seskar, Pandurang Kamat
WINLAB, Rutgers University, 73 Brett Road, Piscataway, NJ 08854
{singh, max, Seskar, pkamat} @winlab.rutgers.edu

Abstract

In this paper we present ORBIT measurement
framework and library (OML), which is a distributed
software framework enabling real-time collection of
data in a large distributed environment. The success of
a multi-user distributed testbed facility depends largely
on the ease of use, remote access as well ason the ease
of collecting useful measurements from experimental
runs. OML provides a flexible and dynamic way in
which data is collected and made available for real-
time access to the experimenters. Application
programmers can use simple interfaces provided to
transfer measurements and other performance data to
a central repository. This paper focuses on the
motivation, requirements, design, implementation and
real world usage of OML that is desighed to provide a
scalable, controllable and easy to use mechanism for
experimenters to collect useful results from the
experiments conducted on the ORBIT testbed [1] .

1. Introduction

One of key challenges faced by an experimenter
using a distributed large-scale testbed is howottect
Traditionally, the
measurement data are locally written into log féesl
are collected at the end of the experiment. A large
collection of nodes and huge amount of measuremen
data generated during the experiment pertaining to
node, network and application performance, resulés
formats.
Additionally many of the experiment parameters,hsuc
as input parameters, may not be captured at al

experiment data efficiently.

number of logging files in various

Another problem with logging files is that they uig

some form of data serialization to a text file dvatk
multiple
applications difficult. Also, the current data eaition
mechanisms create excessive overhead, especially i
the maintenance of experiment results for futuee us

for analysis making analysis across

It is important to have a scalable, easy to use,
distributed and controllable framework to collecida
organize experiment data, and analyze the results i
real-time. A significant advantage of real-time alat
collection is that it allows for interactive expments in
which users can react to the dynamics of the
experiment immediately, saving valuable resourdes.
can reduce the burden of measurement collection on
the experimenters so that they can focus on prbtoco
and application development without worrying about
the complexity and details to collect, transportd an
store the experiment data.

We propose OML, which is a measurement data
collection and organization framework that addresse
the above challenges. It enables the experimenter t
define the measurement points and parametersgctolle
and pre-process measurements, and organize the
collected data into a single database with the
experiment’s context, avoiding logging files in ioars
formats. The OML framework is based on a
client/server architecture and uses IP multicastHe
client to report the collected data to the servereal-
time. It defines the data structures and functifs
sending/receiving, encoding/decoding and storing
experiment data. With user-friendly and generic $\PI
it can be easily integrated into user applicatidvsers
can define what measurements are to be collectéd an
stored. The clients at the experiment nodes collect

1measurements and send them to the collection server

over a multicast channel after encoding them inBIRX
[2] format. OML supports multiple multicast chammel
and instances dhe collection server per experiment to
enhance the network scalability and provide rélitgbi

Iof data collection by load balancing and redundancy

An SQL database is used for persistent storage of
experiment data that also allows access using atdnd
data analysis tools like Matlab [6]. Note that aligh
OML is written initially with a focus on the ORBIT

rgestbed [1], it can be used in various wired aneless

networking testbeds and distributed systems foa dat wants to change the collection behavior. There Ishou

collection. be a simple way to control and change this behawior
The rest of this paper is organized as follows. real-time.

Section 2 discusses the requirements for datactiolie + Accountability

posed by distributed large-scale network testbeds a Framework should provide a way to correlate

the key challenges in building such a collection gpplication measurements and related data, in(génge

framework. In Section 3, the OML architecture and timestamp) and context (e.g. sequence numbers, name
implementation details are described with refereiace of the machine running the application and other

the requirements and features. It also discusses th hardware/software characteristics).
APlIs provided to interface with application codedan o+ Collocation of information
the methods to control the collection behavior.ti®ec Traditionally, in a large distributed environmeail, the

4 presents the performance of our implementation asinformation related to the experiment is not azéeat
well as the experience gained through OML usage ong central point, making it difficult to correlateemts in
the ORBIT testbed [1]. Finally Section 5 conclutles g experiment with its configuration options antest

paper. variable parameters associated with the execution
environment. The collection framework should previd

2. Requirements posed by a distributed a central point where experimenters can look fdada

framework. related to the distributed environment in which

experiments are run.

The initial goal of OML is to provide a mechanism < Scalability
for large-scale testbed users the ability to tremgfeir The framework should not introduce network traffic
measurements into a database on a remote machindarge enough to have a detrimental effect on thalee
Traditionally, if the application is running on amber application/control performance. It should makeesur
of nodes, after the experiment concludes, users tmv that the processing load caused by the collection
log-in into all the machines and manually copy the framework on the machines running the applicat®on i
measurement files and system logs to a remote machi minimal.
for further analysis. This is a time consuming and « Flexibleand Generic Solution

repetitive process, which delays the executionhef t The collection framework should be generic enough
next set of experiments waiting for the resouraes t that it can be used to collect not only application
become available. It may also result in missingsfil measurement’s data; but also any other data likesy

Further, if the experimenter wishes to change the and network statistics, application parameter astulid
collection behavior, he/she needs to recompileraad |ogging etc.

deploy the application, which itself is an errooipe
and time consuming process. Hence a framework,3 oML Architecture and | mplementation.
which simplifies the data collection process, ssalih
the size of the distributed system and allows dyoam
control over the measurement collection process,
required in such a distributed networking environtme
The motivation behind OML is to hide the
complexity of data collection from the experimester
so that they can focus on application developmadt a
logic. Principle requirements of a data collection
framework in a distributed environment include

) OML aims at reducing the burden of measurements
'Scollection on application developers. It define® th
framework, data structures and functions for
transporting and storing experiment data. Datar§lt
form another sub-component of this library thabwal
testbed users to compress/reduce the measurenyents b
applying various averaging, linear and non-linear
) algorithms. From an operational perspective OML is
¢ User friendly: based on a client server paradigm, where cliewtshar
Provide simple and user friendly APIs for the nodes running application code that dispatch the
application developer to collect and transport the measurements; and the server is a machine that

experiment data. This includes handling any thregdi receives, decodes and stores this data in the SQL
issues related to data collection, data-type sadety gatabase.

minimal configuration and instantiation complexay Figure 1 shows the high level architecture of IOM
the part of the application developer. with client side and server side components
+ Controllability and Management communicating through IP multicast. If the

It is time-consuming and complex to re-write, environment consists of a large number of nodes
recompile and re-deploy the application each time o generating massive amounts of measurement traffic,

multiple multicast channels can be used in conjanct measurements data into XDR format and sending it to
with virtual lans (vlans) to distribute the netwddad. the OML server over a multicast channel. Each
Multiple collection servers may subscribe to thenea encoded packet corresponds to a measurement point
multicast address to provide runtime redundanapéo and contains its name thus helping the serverduotify
collection mechanism. Thus using multicast in OML the measurement point the packet belongs to. This
serves to improve both scalability and reliabitifythe module provides a memory and network efficient way
collection framework. of transferring experiment data.

User application

OML interface to user application

3.2. Server side components.

3.21. Berkeley database queue (bdb queue).
SleepyCat's Berkeley database [3], which is an
embedded database that supports key based fassacce
persistent queues, is used to store the receivedkma
The logic behind such a design is the fact that XDR
decoding and SQL insert process is much slower than
the data receiving process. Using a queue significa
improves the scalability of OML by providing a beiff

oML tanenort e to avoid packet loss when dealing with experiments
g e % SRR that generate bursty data. Since bdb queues agleasse

a pluggable component, OML transport layer can feed

OML data filter, id = xx

OML data filter , id =yy

pluggable filters

Berkeley Queues

Experiment node | Collection server into multiple bdb queues to accommodate data load
XDR Encoded data over multicast channel. dynamica”y'
Figure 1. OML component architecture 3.2.2. XDR Decoder. Decoder reads out of the bdb
gueue and decodes the XDR packet according to the
3.1. Client side components server configuration file. Both, the client and dever

configuration files are generated from the same

3.1.1. APl interface. This interface provides user application and experiment definition files; thissares
applications with the ability to transport collestidata that decoding is done in a type safe manner.
through the OML framework. It also provides a type

safe way of transferring data over the network and 3.2.3. SQL Module. This module is responsible for
handling the threading issues if any. storing the decoded values in the SQL server fat po

experiment analysis and data persistency. Sinch eac
312 OML data filters. These are pluggable OML packet contains the name of the measurement

components that provide a standard way of reducingPoint, which in turn is mapped to a unique database
the amount of collectable data to be stored fotherr table; it is used to identify the correct table vehéhe
analysis. More the amount of data we capture, theem Mmeasurement values are to be stored. OML currently
we have to transport and store; hence exhaustiag th Uses MySQL server [4], but any SQL compliant
disk and network resources. On the other handyifiy ~ database is supported. Popular data analysis liels
too aggressively might "throw away" details whiahnt Matlab and Microsoft Excel can directly import data
out to be crucial in understanding certain phenanen from an SQL database, hence significantly enhancing
resulting in re-run of the experiment with diffeten the usability of OML.
filter settings.

Filters can be configured and used without re- 3.3. OML configuration and setup
writing the application code and hence provide a
flexible and efficient way to change the data atiiten 331 Code generation for OML client API. Client
behavior. OML supports time triggered filtering,eve AP| provides clean interfaces for the application
filters are fired after certain amount of time; and developers making it easy for the users to integrat
sample triggered filtering in which case filtere dired ~ measurement collection capabilities into their
based on the number of data values collected. applications. Application developers also don’tday
3.1.30ML XDR Encoding and transport layer. This worry about the threading issues as they are hdrmjle
module is responsible for encoding the filtered the OML.

An application developer can define the
measurement points and parameters for his/her
application through a web interface. As shown in
Figure 2, the definition is saved into an XML-based
configuration file. Based on the definition, theusze
code for the measurement client is automatically

generated by an XSLT based code generator. At the

client side, this automatically generated code a@iost
application specific methods that handle type saita
collection, which can be compiled and linked witie t
application.

<measurement-points>
<measurement-point id="groupl">
<metric id="rssi" type="float"/>
<metric id="noise" type="float'/>
</measurement-point
<measurement-point id="group2“>
<metric id="lost_packets" type="float"/>
</measurement-point
<measurement-points>

(Z Code Generation

>

int oml_groupl (float rssi,
float noise

) {3

[

int oml_group? (float lost_packet

) {3

Compile Application

(z code against Client APls
-~

| OML Ready Application|

Figure 2. Generating client APIs

Figure 2 shows application definition containing
radio parameters (rssi, noise and throughput)aheser
wants to collect. The XML definition file shows two
measurement pointsgroupl” & “ group2” defined by
the application programmer. Based on the definition
the source code is automatically generated wittAtPle
functionsoml_group1 (...) andoml_group2 (...).

The application then calls the measurement point

APIs to transport the measurements data to the

collection server. OML handles the threading issues
involved with the data filtering, encoding and
transmission. Following the example of application
definition shown in Figure 2, the OML API calls fro
the application are shown in Figure 3.

if(r_data->send_option ==1){
buffer->rssi =recv_packet_params.rssi;
buffer->noise = recv_packet_params.noise;

oml_groupl(buffer ->rssi, buffer ->noise);
} else {
syslog (LOG_ERR, "Unknown receive optior!\n

}

lost_packets = (int) (pck_id.seqnum - old - 1);
oml_group2(lost_packets);

Figure 3. Calling OML API from application
code

332 OML data filter configuration. Filter
configuration is done as a part of experiment dldim.
As shown by a snippet of sample experiment definiti
in figure 4, a filter &xample filter” is chosen to be
applied on measured rssi values, and fired using a
“time trigger”. The experiment definition file also
defines atrigger property for the measurement point.
The value element of this property determines when all
the filters included in the measurement point get
triggered. Theefid attribute of filter element gives the
name of the filter, and the properties specify any
required filter parameters that are need for its
operation.

<measurement-point refid="group2" type="time_teged">
<properties>
< property name="trigger'>
< value units="sec">5</value>
</property>
</properties>
<metric name="lost_packets">
<filter refid="example_filter">
<properties>
<property name="paraml" value="10.5"/>
</properties>
< [filter>
</metric>
</measurement-point

Figure 4. Filter configuration using experiment
definition

An experimenter can either use one of the default

filters or write a custom filter using the APIs pided

by OML and integrate it with the framework. A base
filter classOMLFilter is provided as part of OML. A
custom filter class must be derived from this balass
and the functionget filtered values overridden. In
addition to this, the filter definition, conformirtg the
OML filter schema, should be provided in XML
format. This definition should list the input andtput

parameters of the filter along with their data type and sent to the XDR encoding layer, which evenjuall
Sample code for a simple filter is shown in figbre multicasts the encoded values to the collectiomeser

, , , As seen in Figure 6, metrics can be filtered using
class example_filter: public OMLFilter{ . . L . .
" i various filter types, by associating with different
int filter_parami; d
measurement points.
example_filter (Hashtable filter_params) . . .
{ } 3.3.4 Database configuration. At the collection server
side, the application definition is used to create
vector <void *> get filtered_values (database schema for the experiment. OML uses XSLT
vector <void*> measurement_valdes to convert the application definition to a database
int value _data_type schema file.
) As shown in Figure 7, a database table is adeate
_{ } corresponding to each measurement point; and the
¥ table names are derived from tke attribute of the
Figure 5. Data filter AP group element, i.e. the names of the measurement

points. Each table has sequence number, timestachp a

It requires, as input, the measurement values thatthe OML client's name/id as mandatory fields; in
need to be processed and the data type of theslue addition to the columns which correspond to tte
1, 2 for integer, float, long respectively) andures a attribute of each “metric” element. Once the tedtbe
void pointer to the results. Filters are appliedpetric user defines the experiment, the application cégimi
in a measurement point. Filter parameters are gassejs used in conjunction with the experiment defonitito
using a hash table in the filter constructor. Thidger create OML client and server configuration files.
parameters are derived from the experiment dedimiti
as shown in Figure 4.

<measurement -points>
<measurement -point id="group 1">

3.3.3 Client Side Operation. As and when a set of <metric id="rssi" type="float"/>
measurement values are available, the applicattis c <metric id="noise" type="float"/>
OML client API functions such asml_groupl and </measurement -point>

“ </measurements -points>
oml_group2 to pass these values to “measurement

points”. %

. . \L
< User Appllcat|on .) mysql> describe groupl:
noise rssi lost_packets B Foommm +o--—- +-- S +
| Field | Type | Mull | Eey | Default |
Hmmmm e e L L PP e e L L +
N) | node_id | wvarchar (32) | ¥E3 | | HULL |
Measurement point N Measurement point | sequence na | intill) | TES | | HULL |
(group1) (group2) | tlmn.astamp | timestampi(ld) | YES | | NULL |
S le triggered Time triggered | rssi | float eS| | oL l
EhMEIE Uy 99 | noise | £loat | TES | | NULL |
(100 samples) (5 seconds) I S I I e "
noise rssi lost_packets Figure 7. Database schema generation

C Filter) C_Fi'mf) C Filter) 4. Deployment and evaluation experience
sample_mean min_max example_filter

This section talks about the real-world OML usage
in ORBIT [1], which is a distributed wireless testh
The ease of collecting and analyzing data, read-tim

experiment control and performance analysis is
discussed.

(OML XDR encoding and transport layer)

Figure 6. Client side measurement data flow .
4.1. Example experimental setup
A “measurement point” accumulates all the incoming
values until the trigger condition (time or sample A traffic generator application was written to ¢fe
based) is met, in which case the “measurement’point rssj (received signal strength) for each packet, in
fires all the filters associated with all the medri The addition to the offered load values for the sendans
results are then combined into one outbound messagenhroughput values for the receivers. OML interfaces

used to input the information about the measurement All the information pertaining to a particular
points leading to the generation of an application experiment is stored in the database along with the
definition file. This file served as an input tetXSLT experimental results. The application definitioratth
based code generator to automatically generate thelefines what is being measured, the experiment
client API, which in turn was integrated with the definition that defines how it is being measurdu t
application code. The application definition fileasv ~ experiment results and the OML performance metrics
also used to generate the database schema. are all available to the user at a single pointisTh
In the second step, the user defined the expatiivy allows quicker analysis and correlation of experitne
choosing the data filters for each measurementtpoin results; as well as quick and easy repeatabilityhef
defined in the application definition. This expeeint same experiment. It also enables dynamic
definition was used in conjunction with the appiica controllability of experiment by providing near fea
definition to generate configuration files for tbkent time access to the data.
nodes and the OML server. Both, the application and
the experiment definition were stored in the dasaba

MySQL ODBC 3.51 Driver - DSN Configuration, ¥ersion 3. 5[

This dialog helps you in configuing the ODBC Data Source Mame, that pou can uze to

with the experiment results. DSH Infamtion EDEE A R

Four runs of the same experiment were done by Data Saurca Name:
simply changing the filter parameters to gradually Dessiiption
increase the amount of OML data generated by the wsat comection Pamsmet \
experiment nodes running the application. Each time || Hest/SeerNamefor Py [zdb.obitizb.org h 5
the filter parameters were changed, only the erpert Database Hame: [repectanil 2004030113055 My
definition was modified, hence avoiding the re- Heer bt
compilation and redeployment of the applicationeod Fassuord |

x|

on the experiment nodes.

‘What columng of data do you want to include in your query?

. . . Awvailable tables and columns: Columns in your query:
4.2. Real-time data availability and control. = gl . node._id N
$EQUENCE_NG p | 1281 j
i i i limestamp
The experimenter wrote a simple Perl script, shown - <
. . ackel_size
in Figure 8, to keep track of the number of packegs, > R c P
one of the measurement data metrics reported by the |5 roit' "5 Bl frogtianey
application using OML. User kept increasing theadat | i s 2i a 2
rate till the number of packets lost went beyond a |z wi23 2 S T
threshold of 150, when the user stopped the |§ i 2 a e
experiment. This shows the controllability which is [33 5 o e
achievable by real-time data collection using OML | s 2 — i
framework. [fnos - .
#!/usr/bin/perl %EEE
use Mysql; %nnc
gdbh = Mysgl->connect($hostname, $database, $user, $password); ;:S :EE K] E
$sql_query="select lost_packets from group 2 where node_id="node3-4' order by | 21 |noc g E
sequence_no desc limit 1"; | 22 |noc 3 H]
23 o S = -
for(;;) { %EEE E E
sleep(1); | 26 |noc < =
$sth = $dbh->query($sql_query); |27 [noc 2 B
while(@record = $sth->FetchRow) { | 23 noc E
print "$record[0]\n"; o0 [==
if ($record[0] == 150) { EmT P
quitExperiment (); | 52 |noc
} else { gi :g;z-a 94 - :
increaseDataRate (10); 4 4 » b\ Sheet1 fShestz £ sheeta J shests / (0| | i |
}
) } Figure 9. Import data from MySQL into Excel
Figure 8. Real-time data analysis and Storing experimental and OML performance results

application control in the SQL database allows the use of standar¢sisal
tools like Matlab and Excel. Importing data inteske
4.3. Collocation of Information and Ease of 00IS s an easy and user friendly process.
: Figure 9 shows the ease with which experimental
Data Analysis results can be imported and plotted in Microsoftdix

AU UL

First the data source is selected and then trasfiel be framework on larger, distributed and diverse
viewed and analyzed are imported in the Excel sheet environments to further study its performance and
enhance its usability.
4.4. OML performance measurements.
6. Conclusion
OML uses itself to collect the measurements data
pertaining to its own performance. The OML server This paper presents a generic, scalable and fexibl
collects various statistics like the number of @ask framework for the collection of application genechbf
received; packets dropped, XDR decoding errors, SQLdata in a distributed environment. This framework
errors and the bdb queue size, and store thisatiatg reduces the burden of data collection on applioatio

with the experiment data. developers by providing simple APIs for transpoit o
o ‘ ‘ ‘ ‘ d_ata_ in a reliable manner. Usability of the f_ramdwis
ol W | | significantly e_nhanced by use of technologies #iL,
B Max Queue Size CPU: 6.5 hence allowing the use of standard tools for data

120} Hem 20 analysis. Use of multicasting and Berkeley database

enables a reliable and flexible framework; and es

] network and computational scalability. The resstew

] the benefits, usability and the performance of the
. framework.

1 The OML framework has been successfully
i deployed as part of the ORBIT testbed and has lmeen
extensicve use over the last few months. Besides
measuring experimental data, OML is being used for
data collection from a third-party wireless network
monitoring tool. The ORBIT [1] hardware monitoring
system also uses OML to collect and report various
health parameters associated with the testbed nodes

110

100+

90

80

0r

CPU: 3.5%
Mem: 100MB

g

&

30

CPU: 2%

L 079
0 CPU: 0.7% Mem: 70MB

Mem: 25MB

R _N = =

500 1000 2000 4000
Received Packets Per Second

7. References
Figure 10. OML performance analyses

. [1] I. S. D. Raychaudhuri, M. Ott, S. Ganu, K.
Figure 10 shows the performance of the OML Ramachandran, H. Kremo, R. Siracusa, H. Liu, M.gBjn

server, which was running on a dual Xeon Processorgyerview of the ORBIT Radio Grid Testbed for Evation
with 1 GB of memory and a gigabit network card. of Next-Generation Wireless Network Protocols,” mitted
Performance analysis is done as a function ofto the IEEE Wireless Communications and Networking
measurements traffic load. These results reprabent Conference, New Orleans.

average packet rate, for four different data filter

configurations, from eight client nodes reporting [2] "RFC 1014 - XDR: External Data Representation
measurements using OML. As we can see the averagetandard,” http://www.fags.org/rfcs/rfc1014.html

gueue size remains small, even though the maximum
gueue size can be quite large due to bursty
measurements traffic. No OML packet loss, XDR

decoding errors and SQL errors were found. [4] MySQL product website, http://www.mysgl.com

[3] Sleepycat software Berkeley DB product website,
http://sleepycat.com/products/db.shtml

5. Futurework [5] Matthew L. Massie, Brent N. Chun, David E. @ull

“The Ganglia Distributed Monitoring System: Design

The current version of OML does not allow 'mplementation, and Experience”

changing filter configurations during the executioh
the experiment. In future versions, we plan to supp
this feature as well as extend the library of diters
to provide more functionality for the same. Extensi
with built-in measurements, like Ganglia [5], aleoan
the future roadmap. We are hopeful of deploying thi

[6] Matlab product website, http://www.mathworksito

