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Abstract 

 
In this paper we present ORBIT measurement 

framework and library (OML), which is a distributed 
software framework enabling real-time collection of 
data in a large distributed environment. The success of 
a multi-user distributed testbed facility depends largely 
on the ease of use, remote access as well as on the ease 
of collecting useful measurements from experimental 
runs. OML provides a flexible and dynamic way in 
which data is collected and made available for real-
time access to the experimenters. Application 
programmers can use simple interfaces provided to 
transfer measurements and other performance data to 
a central repository. This paper focuses on the 
motivation, requirements, design, implementation and 
real world usage of OML that is designed to provide a 
scalable, controllable and easy to use mechanism for 
experimenters to collect useful results from the 
experiments conducted on the ORBIT testbed [1]. 
 

1. Introduction 
 

One of key challenges faced by an experimenter 
using a distributed large-scale testbed is how to collect 
experiment data efficiently. Traditionally, the 
measurement data are locally written into log files and 
are collected at the end of the experiment. A large 
collection of nodes and huge amount of measurement 
data generated during the experiment pertaining to 
node, network and application performance, results in a 
number of logging files in various formats. 
Additionally many of the experiment parameters, such 
as input parameters, may not be captured at all. 
Another problem with logging files is that they require 
some form of data serialization to a text file and back 
for analysis making analysis across multiple 
applications difficult. Also, the current data collection 
mechanisms create excessive overhead, especially in 
the maintenance of experiment results for future use.   

   It is important to have a scalable, easy to use, 
distributed and controllable framework to collect and 
organize experiment data, and analyze the results in 
real-time. A significant advantage of real-time data 
collection is that it allows for interactive experiments in 
which users can react to the dynamics of the 
experiment immediately, saving valuable resources. It 
can reduce the burden of measurement collection on 
the experimenters so that they can focus on protocol 
and application development without worrying about 
the complexity and details to collect, transport and 
store the experiment data. 

We propose OML, which is a measurement data 
collection and organization framework that addresses 
the above challenges. It enables the experimenter to 
define the measurement points and parameters, collect 
and pre-process measurements, and organize the 
collected data into a single database with the 
experiment’s context, avoiding logging files in various 
formats. The OML framework is based on a 
client/server architecture and uses IP multicast for the 
client to report the collected data to the server in real-
time. It defines the data structures and functions for 
sending/receiving, encoding/decoding and storing 
experiment data. With user-friendly and generic APIs, 
it can be easily integrated into user applications. Users 
can define what measurements are to be collected and 
stored. The clients at the experiment nodes collect 
measurements and send them to the collection server 
over a multicast channel after encoding them into XDR 
[2] format. OML supports multiple multicast channels 
and instances of the collection server per experiment to 
enhance the network scalability and provide reliability 
of data collection by load balancing and redundancy. 
An SQL database is used for persistent storage of 
experiment data that also allows access using standard 
data analysis tools like Matlab [6]. Note that although 
OML is written initially with a focus on the ORBIT 
testbed [1], it can be used in various wired and wireless 



networking testbeds and distributed systems for data 
collection. 

The rest of this paper is organized as follows. 
Section 2 discusses the requirements for data collection 
posed by distributed large-scale network testbeds and 
the key challenges in building such a collection 
framework. In Section 3, the OML architecture and 
implementation details are described with reference to 
the requirements and features. It also discusses the 
APIs provided to interface with application code and 
the methods to control the collection behavior. Section 
4 presents the performance of our implementation as 
well as the experience gained through OML usage on 
the ORBIT testbed [1]. Finally Section 5 concludes the 
paper. 
 

2. Requirements posed by a distributed 
framework. 
 

The initial goal of OML is to provide a mechanism 
for large-scale testbed users the ability to transfer their 
measurements into a database on a remote machine. 
Traditionally, if the application is running on a number 
of nodes, after the experiment concludes, users have to 
log-in into all the machines and manually copy the 
measurement files and system logs to a remote machine 
for further analysis. This is a time consuming and 
repetitive process, which delays the execution of the 
next set of experiments waiting for the resources to 
become available. It may also result in missing files. 

Further, if the experimenter wishes to change the 
collection behavior, he/she needs to recompile and re-
deploy the application, which itself is an error-prone 
and time consuming process. Hence a framework, 
which simplifies the data collection process, scales with 
the size of the distributed system and allows dynamic 
control over the measurement collection process, is 
required in such a distributed networking environment. 

The motivation behind OML is to hide the 
complexity of data collection from the experimenters 
so that they can focus on application development and 
logic. Principle requirements of a data collection 
framework in a distributed environment include 
• User friendly: 
Provide simple and user friendly APIs for the 
application developer to collect and transport the 
experiment data. This includes handling any threading 
issues related to data collection, data-type safety and 
minimal configuration and instantiation complexity on 
the part of the application developer. 
• Controllability and Management 
It is time-consuming and complex to re-write,   
recompile and re-deploy the application each time one 

wants to change the collection behavior. There should 
be a simple way to control and change this behavior in 
real-time. 
• Accountability 
Framework should provide a way to correlate 
application measurements and related data, in time (e.g. 
timestamp) and context (e.g. sequence numbers, name 
of the machine running the application and other 
hardware/software characteristics). 
• Collocation of  information 
Traditionally, in a large distributed environment, all the 
information related to the experiment is not available at 
a central point, making it difficult to correlate events in 
an experiment with its configuration options and other 
variable parameters associated with the execution 
environment. The collection framework should provide 
a central point where experimenters can look for data 
related to the distributed environment in which 
experiments are run. 
• Scalability 
The framework should not introduce network traffic 
large enough to have a detrimental effect on the regular 
application/control performance. It should make sure 
that the processing load caused by the collection 
framework on the machines running the application is 
minimal. 
• Flexible and Generic Solution 
The collection framework should be generic enough 
that it can be used to collect not only application 
measurement’s data; but also any other data like system 
and network statistics, application parameter and debug 
logging etc. 

 

3. OML Architecture and Implementation. 
 

OML aims at reducing the burden of measurements 
collection on application developers. It defines the 
framework, data structures and functions for 
transporting and storing experiment data. Data filters 
form another sub-component of this library that allows 
testbed users to compress/reduce the measurements by 
applying various averaging, linear and non-linear 
algorithms. From an operational perspective OML is 
based on a client server paradigm, where clients are the 
nodes running application code that dispatch the 
measurements; and the server is a machine that 
receives, decodes and stores this data in the SQL 
database. 
   Figure 1 shows the high level architecture of OML, 
with client side and server side components 
communicating through IP multicast. If the 
environment consists of a large number of nodes 
generating massive amounts of measurement traffic, 



multiple multicast channels can be used in conjunction 
with virtual lans (vlans) to distribute the network load. 
Multiple collection servers may subscribe to the same 
multicast address to provide runtime redundancy to the 
collection mechanism. Thus using multicast in OML 
serves to improve both scalability and reliability of the 
collection framework. 
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Figure 1. OML component architecture 
 
3.1. Client side components 

 
3.1.1. API interface. This interface provides user 
applications with the ability to transport collection data 
through the OML framework. It also provides a type 
safe way of transferring data over the network and 
handling the threading issues if any. 
 
3.1.2 OML data filters. These are pluggable 
components that provide a standard way of reducing 
the amount of collectable data to be stored for further 
analysis. More the amount of data we capture, the more 
we have to transport and store; hence exhausting the 
disk and network resources. On the other hand, filtering 
too aggressively might "throw away" details which turn 
out to be crucial in understanding certain phenomena, 
resulting in re-run of the experiment with different 
filter settings. 

   Filters can be configured and used without re-
writing the application code and hence provide a 
flexible and efficient way to change the data collection 
behavior. OML supports time triggered filtering, where 
filters are fired after certain amount of time; and 
sample triggered filtering in which case filters are fired 
based on the number of data values collected.  
3.1.3 OML XDR Encoding and transport layer. This 
module is responsible for encoding the filtered 

measurements data into XDR format and sending it to 
the OML server over a multicast channel. Each 
encoded packet corresponds to a measurement point 
and contains its name thus helping the server to identify 
the measurement point the packet belongs to. This 
module provides a memory and network efficient way 
of transferring experiment data. 
 
3.2. Server side components. 
 
3.2.1. Berkeley database queue (bdb queue). 
SleepyCat’s Berkeley database [3], which is an 
embedded database that supports key based fast access 
persistent queues, is used to store the received packets. 
The logic behind such a design is the fact that XDR 
decoding and SQL insert process is much slower than 
the data receiving process. Using a queue significantly 
improves the scalability of OML by providing a buffer 
to avoid packet loss when dealing with experiments 
that generate bursty data. Since bdb queues are used as 
a pluggable component, OML transport layer can feed 
into multiple bdb queues to accommodate data load 
dynamically. 
 
3.2.2. XDR Decoder. Decoder reads out of the bdb 
queue and decodes the XDR packet according to the 
server configuration file. Both, the client and the server 
configuration files are generated from the same 
application and experiment definition files; this ensures 
that decoding is done in a type safe manner. 
 
3.2.3. SQL Module. This module is responsible for 
storing the decoded values in the SQL server for post 
experiment analysis and data persistency. Since each 
OML packet contains the name of the measurement 
point, which in turn is mapped to a unique database 
table; it is used to identify the correct table where the 
measurement values are to be stored. OML currently 
uses MySQL server [4], but any SQL compliant 
database is supported. Popular data analysis tools like 
Matlab and Microsoft Excel can directly import data 
from an SQL database, hence significantly enhancing 
the usability of OML. 
 
3.3. OML configuration and setup 
 
3.3.1 Code generation for OML client API. Client 
API provides clean interfaces for the application 
developers making it easy for the users to integrate 
measurement collection capabilities into their 
applications. Application developers also don’t have to 
worry about the threading issues as they are handled by 
the OML. 



An application developer can define the 
measurement points and parameters for his/her 
application through a web interface. As shown in 
Figure 2, the definition is saved into an XML-based 
configuration file. Based on the definition, the source 
code for the measurement client is automatically 
generated by an XSLT based code generator. At the 
client side, this automatically generated code contains 
application specific methods that handle type safe data 
collection, which can be compiled and linked with the 
application. 

<measurement-points>
   <measurement-point id="group1">
      <metric id="rssi" type=“float"/>
      <metric id=“noise" type=“float"/>
   </measurement-point>
   <measurement-point id="group2“>
      <metric id=“lost_packets" type="float"/>
   </measurement-point>
<measurement-points>

int oml_group1 (float rssi,
             float noise

) {…}

int oml_group2 (float lost_packets
) {…}

Code Generation

Compile Application
code against Client APIs

OML Ready Application
 

Figure 2. Generating client APIs 

Figure 2 shows application definition containing 
radio parameters (rssi, noise and throughput) that a user 
wants to collect. The XML definition file shows two 
measurement points, “group1” & “ group2” defined by 
the application programmer. Based on the definition, 
the source code is automatically generated with the API 
functions oml_group1 (...) and oml_group2 (...).  

The application then calls the measurement point 
APIs to transport the measurements data to the 
collection server. OML handles the threading issues 
involved with the data filtering, encoding and 
transmission. Following the example of application 
definition shown in Figure 2, the OML API calls from 
the application are shown in Figure 3. 

if(r_data->send_option == 1) {
buffer->rssi = recv_packet_params.rssi ;
buffer->noise = recv_packet_params.noise;

oml_group1(buffer->rssi, buffer->noise);
} else {
      syslog(LOG_ERR, "Unknown receive option!!! \n");
}

lost_packets = (int) (pck_id.seqnum - old - 1);
oml_group2(lost_packets);

 
Figure 3. Calling OML API from application 

code 
  

3.3.2 OML data filter configuration. Filter 
configuration is done as a part of experiment definition. 
As shown by a snippet of sample experiment definition 
in figure 4, a filter “example_filter” is chosen to be 
applied on measured rssi values, and fired using a 
“time trigger”. The experiment definition file also 
defines a trigger property for the measurement point. 
The value element of this property determines when all 
the filters included in the measurement point get 
triggered. The refid attribute of filter element gives the 
name of the filter, and the properties specify any 
required filter parameters that are need for its 
operation. 

 <measurement-point refid="group2" type="time_triggered">
      <properties>
         < property name="trigger">
            < value units="sec">5</value>
         < /property>
     < /properties>
     <metric name="lost_packets">
        < filter refid="example_filter">

<properties>
   <property name="param1" value="10.5"/>
</properties>

        < /filter>
     < /metric>
 </measurement-point>

 
Figure 4. Filter configuration using experiment 

definition 

An experimenter can either use one of the default 
filters or write a custom filter using the APIs provided 
by OML and integrate it with the framework. A base 
filter class OMLFilter is provided as part of OML. A 
custom filter class must be derived from this base class 
and the function get_filtered_values overridden. In 
addition to this, the filter definition, conforming to the 
OML filter schema, should be provided in XML 
format. This definition should list the input and output 



parameters of the filter along with their data types. 
Sample code for a simple filter is shown in figure 5. 

class example_filter: public OMLFilter {
   int filter_param1;

   example_filter (Hashtable filter_params)
  { … }

   vector <void *> get_filtered_values (
                vector <void *> measurement_values
                int value _data_type                

                            )
  { … }
};

 
Figure 5. Data filter API 

It requires, as input, the measurement values that 
need to be processed and the data type of the values (0, 
1, 2 for integer, float, long respectively) and returns a 
void pointer to the results. Filters are applied per metric 
in a measurement point. Filter parameters are passed 
using a hash table in the filter constructor. These filter 
parameters are derived from the experiment definition, 
as shown in Figure 4. 
3.3.3 Client Side Operation. As and when a set of 
measurement values are available, the application calls 
OML client API functions such as oml_group1 and 
oml_group2 to pass these values to “measurement 
points”.  
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Figure 6. Client side measurement data flow 

A “measurement point” accumulates all the incoming 
values until the trigger condition (time or sample 
based) is met, in which case the “measurement point” 
fires all the filters associated with all the metrics. The 
results are then combined into one outbound message 

and sent to the XDR encoding layer, which eventually 
multicasts the encoded values to the collection server. 
As seen in Figure 6, metrics can be filtered using 
various filter types, by associating with different 
measurement points. 
 
3.3.4 Database configuration. At the collection server 
side, the application definition is used to create 
database schema for the experiment. OML uses XSLT 
to convert the application definition to a database 
schema file. 
   As shown in Figure 7, a database table is created 
corresponding to each measurement point; and the 
table names are derived from the id attribute of the  
group element, i.e. the names of the measurement 
points. Each table has sequence number, timestamp and 
the OML client’s name/id as mandatory fields; in 
addition to the columns which correspond to the id 
attribute of each “metric” element. Once the testbed 
user defines the experiment, the application definition 
is used in conjunction with the experiment definition to 
create OML client and server configuration files. 

<measurement -points>
    <measurement -point  id="group1">

<metric id="rssi" type=“float"/>
 <metric id=“noise " type=“float"/>

   </measurement -point>
</measurements -points>

 
Figure 7. Database schema generation 

    

4. Deployment and evaluation experience 
 

This section talks about the real-world OML usage 
in ORBIT [1], which is a distributed wireless testbed. 
The ease of collecting and analyzing data, real-time 
experiment control and performance analysis is 
discussed. 
 
4.1. Example experimental setup 
 

A traffic generator application was written to get the 
rssi (received signal strength) for each packet, in 
addition to the offered load values for the senders, and 
throughput values for the receivers. OML interface was 



used to input the information about the measurement 
points leading to the generation of an application 
definition file. This file served as an input to the XSLT 
based code generator to automatically generate the 
client API, which in turn was integrated with the 
application code. The application definition file was 
also used to generate the database schema. 
   In the second step, the user defined the experiment by 
choosing the data filters for each measurement point 
defined in the application definition. This experiment 
definition was used in conjunction with the application 
definition to generate configuration files for the client 
nodes and the OML server. Both, the application and 
the experiment definition were stored in the database 
with the experiment results. 

Four runs of the same experiment were done by 
simply changing the filter parameters to gradually 
increase the amount of OML data generated by the 
experiment nodes running the application. Each time 
the filter parameters were changed, only the experiment 
definition was modified, hence avoiding the re-
compilation and redeployment of the application code 
on the experiment nodes. 
 
4.2. Real-time data availability and control. 
 

The experimenter wrote a simple Perl script, shown 
in Figure 8, to keep track of the number of packets loss, 
one of the measurement data metrics reported by the 
application using OML. User kept increasing the data 
rate till the number of packets lost went beyond a 
threshold of 150, when the user stopped the 
experiment. This shows the controllability which is 
achievable by real-time data collection using OML 
framework. 
#!/usr/bin/perl
use Mysql;
...
$dbh = Mysql->connect($hostname, $database, $user, $password);
$sql_query="select lost_packets from group 2 where node_id='node3-4' order by 
sequence_no desc limit 1";

for(;;) {
    sleep(1);
    $sth = $dbh->query($sql_query);
    while(@record = $sth->FetchRow) {
        print "$record[0]\n";
        if ($record[0] == 150) {
            quitExperiment ();
        } else {
            increaseDataRate (10);
        }
    }
}

 
Figure 8. Real-time data analysis and 

application control 
 
4.3. Collocation of Information and Ease of 
Data Analysis 
 

All the information pertaining to a particular 
experiment is stored in the database along with the 
experimental results. The application definition that 
defines what is being measured, the experiment 
definition that defines how it is being measured, the 
experiment results and the OML performance metrics 
are all available to the user at a single point. This 
allows quicker analysis and correlation of experiment 
results; as well as quick and easy repeatability of the 
same experiment. It also enables dynamic 
controllability of experiment by providing near real-
time access to the data. 

 
Figure 9. Import data from MySQL into Excel 

Storing experimental and OML performance results 
in the SQL database allows the use of standard analysis 
tools like Matlab and Excel. Importing data into these 
tools is an easy and user friendly process. 

Figure 9 shows the ease with which experimental 
results can be imported and plotted in Microsoft Excel. 



First the data source is selected and then the fields to be 
viewed and analyzed are imported in the Excel sheet. 
 
4.4. OML performance measurements. 
 

OML uses itself to collect the measurements data 
pertaining to its own performance. The OML server 
collects various statistics like the number of packets 
received; packets dropped, XDR decoding errors, SQL 
errors and the bdb queue size, and store this data along 
with the experiment data. 

 

Figure 10. OML performance analyses 

Figure 10 shows the performance of the OML 
server, which was running on a dual Xeon processor 
with 1 GB of memory and a gigabit network card. 
Performance analysis is done as a function of 
measurements traffic load. These results represent the 
average packet rate, for four different data filter 
configurations, from eight client nodes reporting 
measurements using OML. As we can see the average 
queue size remains small, even though the maximum 
queue size can be quite large due to bursty 
measurements traffic. No OML packet loss, XDR 
decoding errors and SQL errors were found. 
 

5. Future work 
 

The current version of OML does not allow 
changing filter configurations during the execution of 
the experiment. In future versions, we plan to support 
this feature as well as extend the library of data filters 
to provide more functionality for the same. Extensions 
with built-in measurements, like Ganglia [5], are also in 
the future roadmap. We are hopeful of deploying this 

framework on larger, distributed and diverse 
environments to further study its performance and 
enhance its usability. 
 

6. Conclusion 
 

This paper presents a generic, scalable and flexible 
framework for the collection of application generated of 
data in a distributed environment. This framework 
reduces the burden of data collection on application 
developers by providing simple APIs for transport of 
data in a reliable manner. Usability of the framework is 
significantly enhanced by use of technologies like SQL, 
hence allowing the use of standard tools for data 
analysis. Use of multicasting and Berkeley database 
enables a reliable and flexible framework; and provides 
network and computational scalability. The results show 
the benefits, usability and the performance of the 
framework. 

The OML framework has been successfully 
deployed as part of the ORBIT testbed and has been in 
extensicve use over the last few months. Besides 
measuring experimental data, OML is being used for 
data collection from a third-party wireless network 
monitoring tool. The ORBIT [1] hardware monitoring 
system also uses OML to collect and report various 
health parameters associated with the testbed nodes. 
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