
COSMOS/ORBIT
Data Collection

Tutorial

What is it?
• An application instrumentation tool that allows collection of data from

multiple nodes
• Client - Server implementation
• Minimal collection overhead
• Collect measurements to a single remote collection point
• Time-stamped push-based architectured

Some requirements
• dedicated NIC card for control and instrumentation to avoid experiment

traffic interference
• c/c++ applications compile against liboml2
Use this site as reference for OML

– https://oml-doc.orbit-lab.org/

OML design goal: distributed software
infrastructure to collect measurements
in real-time while providing flexible
(and dynamic) way to modify the
collection process.

Orbit Measurement Library (OML)

https://oml-doc.orbit-lab.org/

OML – Measurement Collection

3OML Server

Application

Experiment Node

OML Server

Application

Experiment Node

Application

Experiment Node

Application

Measurements

OML2 C++ API Outline
Steps involved to use OML Wrapped API in a C++ application.

1. Create OML object
CWriteOML() oml;

1. Start by initializing the object with required parameters
oml.init(std::string oml_id, std::string oml_domain, std::string oml_collect);

oml-id this is the sender to the measurements
oml-domain database filename where recorded values will be stored
oml-collect network location of oml server

OML2 C++ API Outline (cont)
3. Register measurement points - specify a variable name it’s data type.

oml.register_mp("RadioName", OML_STRING_VALUE);
oml.register_mp("PowerInDb", OML_DOUBLE_VALUE);

3. Start the collection daemon - this opens a database file and creates a schema
including the registered measurement points.

oml.start();

OML2 C++ API Outline (cont)
5. Update measurement point value with associated value

// a container of measurement points
double d64_power = radio.value();
oml.set_key("RadioName", (void*)string.c_str());
oml.set_key("PowerInDb", (void*)&d64_power);

5. Send measurement points to database.

oml.insert();

Data collection & recovery
Outline an existing application that is integrate with OML.
• Use C++ wrapped OML API.

Run OML enable application & send measurements to server.

Recover data from database file.
• Access database directly.
• Parse database file to view results.

Run application from inside node.

• Focus on ultra high bandwidth, low latency, edge cloud
• Open platform (building on ORBIT) integrating mmWave, SDR, and optical x-

haul
• 1 sq mile densely populated area in West Harlem
• Local community outreach
• Research community:

– Develop future experiments, provide input
– (short term) get involved in the educational outreach

More information:

http://advancewireless.org http://www.orbit-lab.org http://www.cosmos-lab.org
http://omf.orbit-lab.org http://oml-doc.orbit-lab.org

COSMOS Summary

http://advancewireless.org/
http://www.orbit-lab.org/
http://www.cosmos-lab.org/
http://omf.orbit-lab.org/
http://oml-doc.orbit-lab.org/

Supplementary information
• OML description and advanced functionality

Appendix

Simplified diagram

ctrl NIC

Bluetooth
wifi card 1
wifi card 2
SDR

data NIC

n1-1 n2-1 n20-1

n1-2 n2-2 n20-2

n1-20 n2-20 20-20

grid console

Control
network

Data
network

oml server

OML Client + Server

Application
or Service

Measurement
points

Filters Measurement
streams

OML
Server

Database
(SQL)

Database tables

File

OML client library

Experimental Support
Applications

• Traffic Generation/Measurements

– OTG … Traffic Generator

– Iperf

• Monitoring
– Libtrace

– Libsigar

– Spectrum Analyzer

– GPS

– (Weather)

• Components
– TinyOS/Motes

– (GnuRadio)

Filters

▪ Plug-in
Architecture

▪ User
extensibility

Current List
✔ Stddev
✔ Average
✔ First
✔ Histogram

OML2 Base Functions
• omlc_init() – used for OML initialization

omlc_init(arg(0), &argc, argv, o_log);

• oml_add_mp() – called to register each
measurement point with the container

oml_mp = omlc_add_mp("udp_out", oml_def);

• omlc_start() - used to start the local collection
daemon

• omlc_inject() – used to send all measurement
points to the oml server for storage

omlc_inject(oml_mp, values_container);

