
A Resource Access Decision Service for CORBA-based Distributed Systems

Konstantin Beznosov
Baptist Health Systems

of South Florida
6855 Red Road,

Miami, FL 33176
konstanb@bhssf.org

Yi Deng
Florida International University

University Park
Miami, FL 33199
deng@cs.fiu.edu

Bob Blakley
DASCOM

3004 Mission Street
Santa Cruz, CA 95060
blakley@dascom.com

Carol Burt
2AB

3178-C Highway 31 South, Pelham, AL 35124
cburt@2ab.com

John Barkley
National Institute of Standards and Technology

Gaithersburg, MD 20899-0001
jbarkley@nist.gov

Abstract

Decoupling authorization logic from application logic
allows applications with fine-grain access control require-
ments to be independent from a particular access control
policy and from factors that are used in authorization de-
cisions as well as access control models, no matter how
dynamic those polices and factors are. It also enables e-
laborate and consistent access control policies across het-
erogeneous systems. We present design of a service for re-
source access authorization in distributed systems. The ser-
vice enables to decouple authorization logic from applica-
tion functionality. Although the described service is based
on CORBA technology, the design approach can be success-
fully used in any distributed computing environment.

1. Introduction

Traditional access control mechanisms [1] provide lim-
ited capabilities for authorization decisions to be based on
factors that are specific to the application domain. The com-
plexity of access control policies in such application do-
mains as healthcare requires exercising access control poli-
cies that are more sophisticated and of finer granularity than
the general ones used in security services of such distributed
environments as CORBA.1 This complexity leads applica-
tion designers to embed domain-specific authorization logic
inside their applications. Some even document patterns of
designing “application security” [2].

1Common Object Request Broker Architecture

CORBA environment, including the CORBA Security
Service, provides a general-purpose infrastructure for de-
veloping distributed object systems in a broad range of spe-
cialized vertical domains. The CORBA Security service de-
fines the interfaces to a collection of objects that provide
a versatile set of services for enforcing a range of secu-
rity policies using diverse security mechanisms. Some of
these mechanisms require application systems to be aware
of security. Such security models currently require applica-
tion system designers to implement complex access control
decisions based on content and context of interactions be-
tween client and target objects.

Security requirements in such a domain as healthcare
mandate domain-specific factors (e.g. relationship between
the user and the patient, emergency context) to be used in
access control policies. At the same time, commonality of
business domain tasks and security requirements across an
enterprise computing infrastructure requires exercising fine-
grained access control policies in a uniform and standard
way.

This paper describes a CORBA-based authorization ser-
vice, utilization of which allows fine-grain application-level
access control in such a way that the functional design of
application systems is separated from complexity and id-
iosyncrasies of particular enterprise access control policies.
We show how decoupling of the authorization logic from
application logic can be done if the described authorization
service is used. In addition, our approach allows having
a multi-policy authorization model, and it permits securi-
ty administrators and application developers to maintain a
clear separation of responsibilities.

The authorization service is by no means a replacement
or substitution of standard CORBA Security service [3]. In



fact, the concrete design proposed in this paper assumes ex-
istence and takes advantage of CORBA-compliant security
infrastructure. More over, our solution is of general value
and it is applicable to any distributed computing environ-
ment such as Sun RPC, DCOM, DCE or Java.

The design of the authorization service provides a way
to have any level of access control granularity, allows inte-
gration with existing authorization models and systems, and
supports such dynamic attributes as patient–caregiver rela-
tionships using existing authorization models. To achieve
these benefits, our design requires application-level en-
forcement of authorization decisions and assumes agree-
ment on semantics of resource names between the appli-
cation developer and the owner.

This paper shows that decoupling of authorization logic
from application can be done without complicated interac-
tions between an application and the authorization service
and without significant communication overhead. Factors
specific to the application domain can be supported by au-
thorization systems using the traditional access matrix as
an underlying implementation. The body of the work de-
scribed in this paper has been served as a foundation of the
recently voted specification [4] of Resource Access Deci-
sion Facility from the Object Management Group. The ini-
tial design was prototyped and the current design has been
implemented.

The rest of the paper is organized as follows: the nex-
t section provides an overview of CORBA security model
and describes its access control model; Section 3 discuss-
es the problems that we address in this paper; the service
design is presented in Section 4; pros and cons of the de-
sign are discussed in Section 5; our approach is compared
to related work in Section 6; the implementation status is re-
ported in Section 7; we draw conclusions and discuss future
work in Section 8.

2. Overview of CORBA access control model

CORBA environment, including the CORBA Security
Service, provides a general-purpose infrastructure for de-
veloping and deploying distributed object-based systems in
a broad range of specialized vertical domains. All entities
in CORBA computing model are identified with interfaces
defined in the OMG Interface Definition Language (IDL). A
CORBA interface is a collection of three things: operations,
attributes, and exceptions. An implementation of a CORBA
interface is called a CORBA object. Hence, we use “COR-
BA object” or just “object” to mean “implementation of a
CORBA interface”, where it does not cause confusion. Ob-
ject functionality is exposed to other CORBA-based appli-
cations only through the corresponding interfaces. Objects
have object references by which they can be referenced. An
object reference is a handle through which one requests op-

erations on the object.
CORBA Security service (CS) defines interfaces to a col-

lection of objects for enforcing a range of security policies
using diverse security mechanisms. It provides abstraction
from an underlying security technology so that CORBA-
based applications could be independent from the particu-
lar security infrastructure provided by user enterprise com-
puting environment. Due to its general nature, CS is not
tailored to any particular access control model. Instead, it
defines a general mechanism which is supposed to be ade-
quate for the majority of cases and could be configured to
support various access control models. CS model comprises
the following functionalities visible to application develop-
ers and security administrators: identification and authenti-
cation, authorization and access control, auditing, integrity
and confidentiality protection, authentication of clients and
target objects, optional non-repudiation, administration of
security policies and related information.

One of the objectives of CS is to be totally unobtrusive
to application developers. Security-unaware objects should
be able to run securely on a secure ORB without any ac-
tive involvement on the site of application objects. In the
meantime, it must be possible for security-aware objects to
exercise stricter security policies than the ones enforced by
CS. In CS model, all object invocations are mediated by the
appropriate security functions in order to enforce various
security policies such as access control. Those functions
are part of CS and are tightly integrated with the ORB be-
cause all messages between CORBA objects and clients are
passed through the ORB.

CS uses the notion of principal. “A principal is a human
user or system entity that is registered in and authentic to the
system” [3]. In translation to the traditional security termi-
nology, a principal is a subject. CS manages access control
policies based on the security attributes of principals and
attributes of objects as well as operations implemented by
those objects. Objects that have common security require-
ments are grouped in security policy domains. Access con-
trol policies control what principals can invoke what opera-
tions on what objects in the domain the policies are defined
on. Policies can be enforced either by the ORB or by the
application. In the latter case, such an application is called
a security-aware application. Domains allow application of
access control policies to security-unaware objects without
requiring changes to their implementations or interfaces.

As it can be seen in Figure 2, the client-side and target-
side invocation access policy governs whether the client can
invoke the requested operation on the target object on be-
half of the current principal. This policy is enforced by the
ORB in cooperation with the security service it uses for al-
l (security-aware and unaware) applications. A client may
invoke an operation on the target object as specified in the
request only if this is allowed by the object invocation ac-



Figure 1. CORBA access control model

cess policy.

client application
access decision

Client
Object
Target

request

request

client-side invocation access decision

target application
access decision

target-side invocation access decision

Figure 2. CORBA Security service access
control model (from [3])

A user uses a UserSponsor to authenticate to the CS en-
vironment. A UserSponsor is an implementation artifact
which handles user authentication process. After the user
is successfully authenticated, a new principal with locality
constrained Credentials object is created. The information
in Credentials constitute the identity of the new principal

which initiates requests on CORBA objects on behalf of the
user. Principal authenticated security attributes are part of
the information stored in Credentials object.

We provide an illustration of the following CS access
control (AC) description in Figure 1. The concept of a user
is absent from CS AC model. Instead a principal repre-
sents the user completely. The notion of a session is indis-
tinguishable from the notion of a principal. Thus multiple
principals can act on behalf of a single user. They all poten-
tially have different sets of credentials and therefore exist in
CS as completely independent entities. Among other data,
principal credentials contain security attributes. Hereafter,
we understand attribute to mean security attribute. From CS
AC model point of view, a principal is nothing but an un-
ordered collection of authenticated attributes. All attributes
are typed. Attribute types are partitioned into two families:
privilege attributes and identity attributes. The family of
privilege attributes enumerates attribute types that identi-
fy principal privileges: access identifier, primary and sec-
ondary groups the principal is a member of, clearance, ca-
pabilities, etc. Identity attributes, if present, provide addi-
tional information about the principal: audit id, accounting
id, and non-repudiation id, reflecting the fact that a princi-



pal might have various identities used for different purpos-
es. Principal credentials may contain zero or more attributes
of the same family or type.2 Due to the extensibility of the
schema for defining security attributes, an implementation
of CS can support attribute types that are not defined by
CORBA Security standard. Although the normative part of
CS does not mandate the way attributes are managed, as-
signment of such attributes to users is meant to be done by
user administrators.

All a principal does in the CORBA computational mod-
el is invoke operations on corresponding interface imple-
mentations. Such implementations are also called objects.
Every object implements an interface. In order to make a re-
quest one needs to know two things: object reference, which
uniquely identifies an object, and operation name. CORBA
interfaces can inherit from other CORBA interfaces via in-
terface inheritance. An operation name is unique for an in-
terface3 the object is implementing. Thus, any operation is
uniquely identified by its name and by the name of the in-
terface it is defined in. In this paper, we use notation ikmn

to refer to n-th operation on k-th interface.
There is a global, i.e. not dependent on a policy domain

in which the object is located, set of rights (RequiredRights)
for each operation. This set, together with a combinator (all
or any rights), defines what rights a principal has to have in
order to invoke the operation. It is assumed that required
rights are defined and their semantics are precisely docu-
mented by application developers who know the best what
each operation does. Depending on the access policy (Do-
mainAccessPolicy) enforced in a particular AC policy do-
main,4 a principal is granted different rights (GrantedRight-
s) according to what SecurityAttributes it has. For the sake
of brevity, we omit delegation state qualifier for granted
rights. This does not change the correctness of the discus-
sion, as we show below. Each DomainAccessPolicy defines
what rights are granted for what security attributes. Securi-
ty administrators are responsible for defining what rights are
granted to what security attributes in what delegation state
on domain per domain basis. Whenever a principal attempts
an operation invocation, principal’s effective rights are com-
puted via operation AccessPolicy::get effective rights.5 CS
specification purposefully does not define how the opera-
tion combines rights granted through different privilege at-
tribute entries. The specifiers let CS implementers to define
the operation internal behavior ([3, p. 122]). A simplest im-

2This rule applies to all attribute types including access id, although it
is hard to foresee a useful implementation of CS where a principal would
have multiple or no access identities.

3Interface inheritance in CORBA does not allow to inherit from inter-
faces with operations of the same type. This rule resolves the problem of
operation name overloading.

4In CORBA security model, a security policy domain is just a collec-
tion of objects.

5Regular caching techniques can be used by an implementation to avoid
repetitive computations.

plementation of get effective rights could be when the set
of rights granted to a principal is a union of rights granted
to every security attribute the principal has.

3. Problem description

This section shows why there is a need in security-aware
implementations of CORBA objects to enforce their own
access control policies, as well as problems with embedding
such control into application systems.

3.1. Why application-level access control

There are two main reasons for application-level access
control, namely the necessity in fine-grain access control
and the need for authorization decisions based on factors
that can be “known” only to the application.

Fine-grain access control is necessary because some-
times the sensitivity of the information accessed via the
same operations6 of a CORBA service interface differs. In
healthcare for instance, different parts of the patient medi-
cal record have different levels of sensitivity. Obvious ex-
amples are patient name and HIV-related test data.

Another crucial reason for application-level access con-
trol is the need in using application domain-specific factors
in authorization decisions. Analyses made by one of the au-
thors and discussed elsewhere [6], [7] reveals the necessity
of sophisticated access control policies in healthcare sys-
tems. They are due to the various legal and liability require-
ments imposed by state and federal legislation [8]. Ideally,
authorization decisions in the healthcare domain should be
based on the following factors [9]: subject affiliation, sub-
ject role, subject location, access time, and relationship be-
tween the subject and the patient whose records are to be
accessed.

Relationship is a good example of an authorization deci-
sion factor, which is specific to the healthcare vertical do-
main. Its value ideally should be derived from the infor-
mation scattered across various clinical, billing, and patient
registration systems. Some types of relationships that need
to be managed in the healthcare context are: patient’s pri-
mary care provider; admitting, attending, referring, or con-
sulting physician of a particular patient; part of the patient
care team; healthcare staff explicitly assigned to take care
of the patient; patient’s immediate family; patient’s legal
counsel or guard; personal pastoral care provider. The re-
lationship factor is very dynamic and ideally it should be
computed dynamically every time a decision is made. We
expect that other vertical domains have similar requirements

6Operation is a synonym to method in OO terminology. We use it ac-
cording to the object management model [5] from the OMG.



in access control policies regulated by domain-specific fac-
tors that cannot be modeled using groups, roles, or identi-
ties.

3.2. Problems with authorization logic embedded in
application systems

Since the application programmer understands the appli-
cation functionality most intimately, building authorization
logic into the application allows the application to control
access at an arbitrary granularity level and to use authoriza-
tion rules of an almost unlimited complexity. However, au-
thorization logic coupled with application logic produces
serious consequences. Embedding authorization logic into
application systems causes problems that can be qualified
as software engineering and information enterprise securi-
ty administration. This paper discusses problems related to
operation and administration of enterprise security.

With authorization logic embedded into application
systems, enterprise security administrators end up hav-
ing to configure such access logic on an application-by-
application basis, which brings tremendous administrative
overhead and highly increases chances of human error. Be-
cause each application system has its own access control
model, which is administrated via proprietary interfaces,
multiple inconsistent security authorization models co-exist
in the same information enterprise. It is difficult to ensure
consistency of authorization policies across the enterprise.
Most of the time, security administrators end up having
no guarantee, whatsoever, that access rules and, especially,
changes to them are consistent across all application sys-
tems as well as with required company policies. In addi-
tion, an environment with mixed authorization and applica-
tion logic merges an administrator’s responsibilities with an
application developer’s responsibilities and vice versa.

The approach presented in the next section permits secu-
rity administrators and application developers to maintain a
clear separation of responsibilities, as well as to avoid most
of the software engineering shortcomings of embedding au-
thorization logic in the application.

4. Resource access decision service

In this section, first we describe the scope of the autho-
rization service and the interactions between the service and
application systems. Then, we describe the design of the
authorization service.

As it was shown in Section 2, the granularity of COR-
BA access control mechanisms is at the level of operations
on CORBA objects. The authorization service is to make
authorization decisions for access to those information and
computational resources by CORBA services that are not
first class CORBA objects and their operations, as shown

in Figure 3. Thus, the service complements CORBA secu-

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

operation 4

operation 3

operation 2

operation 1

O
b

je
ct

 I
n

te
rf

ac
e

C
O

R
B

A
 A

cc
es

s 
C

on
tr

ol
 S

co
p

e

Authorization Service Scope

Figure 3. Scope of the authorization service

rity access model. It relies on and uses CORBA security
environment.

4.1. Interaction Between Application Service and
Authorization Service

The main objective of RAD is to decouple application-
level authorization logic from application logic. Authoriza-
tion logic is encapsulated into an authorization service ex-
ternal to the application, which is traditionally part of an
application program. A simplified schema of interactions a-
mong application client, application service and an instance
of authorization service is depicted in Figure 4. To perform
an application-level access control, an application requires
an authorization decision from such a service and enforces
that decision. Simple interfaces between the application and
the authorization service are used, where an application pro-
grammer only needs to make a single invocation on the au-
thorization service in order to obtain a decision.

3. Reply to authorization request4. Reply to application request

1. Application request 2. Authorization request

Client Application

Service

Resource
Access

Decision

Service

Figure 4. Interactions between client, application
system, and authorization service.

The sequence of the interaction, illustrated by Figure 4,
is as follows:

1. An application client invokes an operation on the ap-
plication service (application, for short).

2. While processing the invocation, the application re-
quires an authorization decision from the RAD.



3. The RAD makes an authorization decision, which is
returned to the application.

4. The application, after receiving an authorization deci-
sion, enforces it. If access was granted by the RAD, the
application returns expected results of the invocation.
Otherwise, it either returns partial results or raises an
exception.

An application obtains an authorization decision only from
one instance of RAD. It is the contract between the appli-
cation and its enterprise environment to request an autho-
rization decision and to enforce it. Before we proceed with
greater details on the design of an authorization service, we
will describe syntaxes and semantics of a request for autho-
rization decision.

From RAD perspective, any application requesting an
authorization decision is an RAD client. From now on, we
will use the term “RAD client” to refer to any entity of the
distributed system that requested an authorization decision
from an RAD.

A nominal amount of data is passed between the appli-
cation and the authorization service in order to make autho-
rization decisions. When making a request for an autho-
rization decision, an RAD client passes the following three
parameters: a sequence of name-value pairs representing a
name of the resource to be accessed on behalf of the clien-
t; name of access operation (e.g. “create”, “read”, “write”,
“use”, “delete”); authenticated security attributes of the sub-
ject on behalf of which the client is requesting access to the
named resource.

Security attributes here are regular attributes of the cur-
rent user session. The interesting parameters passed by
RAD client are the first two: resource name and access type.
They are described below.

We introduce an abstraction called “protected resource
name” or just “resource name.” Resource name is used to
abstract application-dependent semantics and syntaxes of
entities under application-level access control. A resource
name can be associated with any valuable asset of an ap-
plication owner, which is accessed by a client on behalf of
a subject using it, and access to which is to be controlled
according to the owner’s interests. For example, electronic
patient medical and billing records in a hospital are usually
its valuable assets. The hospital administration is interest-
ed in controlling access to the records due to various le-
gal, financial and other reasons. Therefore, the hospital ad-
ministration considers such records as protected resources.
Moreover, different information in those records count as
different resources. Examples of different resources can be
records from different visits or episodes for one patient. At
the same time, a resource name can be associated with less
tangible assets, such as computer system resources, includ-
ing CPU time, file descriptors, sockets, etc. The RAD does

not attempt to interpret semantics of the resource name. We
will show in the discussion of the RAD design that it us-
es the resource name only to obtain additional security at-
tributes and to look up a set of policies that govern access
to the resource associated by an application system with the
resource name.

Access operation abstracts semantics of access to re-
sources associated with resource names. An application
may manipulate with patient records on behalf of different
care-givers, or may provide different hierarchies of menus
to different technicians of the hospital lab. In either case,
it is up to the application system developers and the enter-
prise security administrators to agree on semantics of the
operation name used for each access. The RAD does not
interpret semantics of access operation as it is shown in the
description of the RAD design.

Before an application requests an instance of RAD for
authorization decision, it is supposed to identify what the
resource name and the access operation name are associat-
ed with servicing the client request. There is not any partic-
ular algorithm defined for performing such an association.
For every application, or at least for every application do-
main, the way of associating protected entities with abstract
resource names can be different.

4.2. Design of the service

RAD service is composed of the following objects7: Ac-
cessDecisionObject (ADO) receives requests on authoriza-
tion decisions from RAD clients. Zero or more PolicyEval-
uators provide evaluation decisions for those policies that
govern access to the given resource. If a policy evalua-
tor does not have any policy associated with the given re-
source name, the evaluator returns a result meaning “don’t
know,” therefore delegating the decision combinator to ap-
ply its combination policy while combining results from
potentially several evaluators, depending on the combina-
tor configuration. PolicyEvaluatorLocator keeps track of
and provides references to potentially several policy evalua-
tors. DynamicAttributeService provides dynamic attributes
of the principal in the context of the intended access opera-
tion on the given resource associated with the provided re-
source name. DecisionCombinator combines results of the
evaluations made by policy evaluators into a final decision
by resolving evaluation conflicts and applying combination
policies.

Figure 5 shows the interaction among the parts of the au-
thorization service. Once the authorization service received

7Since in OMA a service entity can implement multiple interfaces, and
objects are nothing else but implementations of interfaces, we refer here to
an object to signify a particular interface implementation. An implementa-
tion of the authorization service described here can implement any number
of the specific interfaces in one entity of the CORBA environment.



Figure 5. Interaction diagram of the authorization service components

a request via the ADO interface: ADO obtains object ref-
erences to those PolicyEvaluators that are associated with
the resource name in question and an object reference for
the DecisionCombinator which will combine the decision-
s. ADO obtains dynamic attributes of the principal in the
context of the resource name and the intended access oper-
ation on it. ADO delegates an instance of DecisionCombi-
nator for polling PolicyEvaluators (selected in step 1). A
DecisionCombinator obtains decisions from PolicyEvalua-
tors and combines them according to the combination poli-
cy. The decision is returned to ADO. The ADO returns the
decision to the application.

4.3. Dynamic security attributes

One of the significant points of the design is handling
the factors specific to the application domain in the man-
ner neutral to their semantics. All such factors are handled
as dynamic attributes. We introduce qualifier “dynamic”
to distinguish them from regular privilege attributes of the
subject, which we call “static attributes” here. They are ob-
tained from the enterprise environment via specialized dy-
namic attribute services. An authorization service does not
interact with such services directly. It delegates the generic
dynamic attribute service to collect all dynamic attributes
from specialized services. The semantic of a particular ap-
plication domain (patient – care-giver relationship) can be
expressed in the form of dynamic attributes. This allows u-
tilization of already existing authorization mechanisms such
as the traditional access matrix [10].

Dynamic attributes are those attributes that express prop-
erties of a principal but are not administrated by security

administrators. A user usually has dynamic attributes due
to the various activities the user performs in the enterprise
work-flow. Dynamic attributes are so called because their
values usually change more frequently than traditional user
privilege attributes. Traditional “static” security attributes
are used for describing relatively fixed properties of users
and/or resources. The values of static attributes are typi-
cally set by security administrators and are obtained by an
application in an environment specific manner, e.g., from
a principal’s credentials in case of CORBA environment.
While the use of a dynamic attribute in an access decision
is determined by a security administrator, the values of dy-
namic attributes are usually set as part of normal processing,
i.e., dynamic attribute values are usually part of informa-
tion content not separately maintained security meta-data.
Consequently, dynamic attribute values must be obtained at
the time an access decision is required. This is in contrast
to traditional “static” privilege attributes whose values are
usually obtained when a session is established. The values
of dynamic attributes may change during a session as a re-
sult of normal work-flow processing.

Consider the following example of a dynamic secu-
rity attribute. Physician John Smith attends patient B.
The physician has an attribute specifying such a relation-
ship when principal with access id=johnsmith (speaking for
John Smith) is accessing resources associated with med-
ical records of patient B. This relationship attribute is an
example of a dynamic attribute in our model. It has the val-
ue “attending physician” returned by a generic DAS only
when John Smith accesses B’s records. The generic DAS
obtains the value of this relationship attribute by consulting
a specialized DAS, which has capabilities to compute the



value of relationship attribute. For instance, by looking at
the corresponding fields of B’s patient record which con-
tains a list of B’s attending physicians. When John Smith
is accessing resources not associated with any patient, this
dynamic attribute of type relationship is not returned by the
corresponding specialized DAS and consequently it is not
returned by generic DAS.

4.4. Policy Evaluators

Another significant design element is encapsulation of
authorization policies and their evaluators into separate en-
tities in the computational environment. Policy evaluators
can be considered either as distinct authorities each rep-
resenting a different set of authorization policies, or they
can be considered as policy evaluation machines each sup-
porting a particular policy language. Such design insulates
representation and interpretation of policies from the autho-
rization service. It also allows adding and removing policy
evaluators dynamically. By encapsulating the evaluation of
those policies in PolicyEvaluator objects, the design sup-
ports implementation of arbitrary authorization policies.

4.5. Separation of concerns

Separation of concerns among various stake-holders in-
volved in the authorization process enables control of dif-
ferent factors in the authorization process by appropriate
parties. Application developers decide what functions of
their application map into what access operations. User ad-
ministrators control what users (or roles) are assigned what
static security attributes. Implementors of the authorization
services and other third party vendors control quality, per-
formance and other properties of the authorization service
implementation. Work-flow administrators indirectly con-
trol what dynamic attributes are assigned to what users in
the context of what resources. Security administrators ad-
ministrate what access control policies govern what access
to what named resources.

5. Discussion

Our solution has the following advantages:
Simplicity. Simple interfaces between the application

and the authorization service are used. An application pro-
grammer is required to make a single invocation on the au-
thorization service in order to obtain a decision. All re-
quired information is represented by such simple structures
as resource names, operation names, and principal security
attributes. A nominal amount of data is passed between the
application and the Authorization Service in order to make
authorization decisions.

The programming complexity of making authorization
decisions for an individual policy is encapsulated in Pol-
icyEvaluatorLocator, DynamicAttributeService, and Poli-
cyEvaluator objects. Thus, simple policies allow overall
simplicity of the model. The complexity increases only by
introducing complex types of authorization policies and so-
phisticated specialized DynamicAttributeServices. PolicyE-
valuatorLocator can be as simple as an implementation of
relational table indexed by resource name.

Generality. Due to the design, the authorization service
can be utilized in various application domains. It intro-
duces the notion of resource name, which in its turn allows
arbitrary granularity of protected resources. The applica-
tion system decides, depending on the application domain,
how small the unit of access control is. The resource name,
principal security attributes as well as request dynamic at-
tributes, and the intended operation name should communi-
cate any semantic information that can be used for apply-
ing reasonable8 authorization policies. The design supports
arbitrary authorization policies by encapsulating the evalu-
ation of those policies in PolicyEvaluator objects.

Flexibility. Due to the use of CORBA infrastructure
with object implementation location transparency and it-
s services such as Naming and Trader, the proposed de-
sign enables implementations adaptable to changes in au-
thorization policies and their types as well as in the work-
flow of the user organization via replacement of PolicyE-
valuators and specialized DynamicAttributeServices. New
PolicyEvaluators can be registered with the PolicyEvalua-
torLocator and new specialized DynamicAttributeServices
can be registered with the DynamicAttributeService object
or obtained via CORBA Naming or Trader services. The
semantic of a particular application domain (patient–care-
giver relationship) can be expressed in the form of dynamic
attributes. This allows utilization of already existing au-
thorization mechanisms such as the traditional access ma-
trix. Separation of concerns among various stake-holders
involved in the authorization process enables control of d-
ifferent factors in the authorization process by appropriate
parties.

There are three main issues with the proposed approach.
It is not clear whether it is possible to abstract all protected
resources into resource names. The proposed solution re-
quires such abstraction. Matching in dynamic attribute se-
mantics between policy evaluators and specialized dynamic
attribute services has to be maintained. One of the ways to
reduce performance penalties of obtaining a decision from
an authorization service is to co-locate an application sys-
tem and an authorization service. Simple co-location in-
creases the number of authorization service instances to ad-

8We do not define here what policies fall in the scope of reasonable
ones. We think it is the subject of separate research, which we describe in
Section 8.



ministrate. On the other hand, an optimum administration
solution would be such that it requires to administrate only
one instance of administration interfaces. Current design of
the authorization service does not provide ways to have a
single set of administration objects and multiple instances
of authorization services.

There are also implementation issues that have to be ad-
dressed in order to develop an efficient and scalable imple-
mentation. One of them is proper parallelization in order
to avoid bottlenecks. The back-end data needed by Poli-
cyEvaluators and DASs could become a bottleneck in ac-
cessing authorization service, when multiple ADO clients
consult instances of ADOs. This could decrease scalability
of the system. Regular caching and replication techniques
should be sufficient for maintaining system scalability.

6. Related work

The ideas of discretionary access control (DAC) mod-
el proposed by Lampson in [10] has led to the concept of
a reference monitor outlined by Anderson in [11]. When
an application enforces its own access control policies, a
reference monitor is embedded in the application. Our au-
thorization framework allows externalization of a reference
monitor from an application without losing the capability
for an application to define its own space of protected re-
sources and its semantics.

Abadi et al. [12] and Lampson et al [13] developed a
unified theory of authentication and access control in dis-
tributed systems. Practical implementations reflecting some
results of the theory have been implemented in security ar-
chitectures of such distributed environments as DCE [14],
DCOM, and CORBA [3]. Our work suggests an authoriza-
tion framework for implementing multiple fine-grain and
workflow-dependent access control policies in application
systems developed for such environments. Even though
we present a concrete solution that uses CORBA securi-
ty infrastructure, the underlying schema should be imple-
mentable for DCE and DCOM, because the only require-
ment for the underlying security infrastructure is the capa-
bility of an application to query the infrastructure for the
principal security attributes of the client.

Multi-policy authorization paradigms and frameworks
have been proposed by a number of research projects ([15],
[16], [17], [18]). They use an object method in Argos [17]
or a database table record in [18] as the finest level of access
control decisions. In our approach, the authorization deci-
sion is obtained after the method on the object is invoked.
Hence, an application can exercise access control of any
granularity level by associating a resource name with pro-
tected elements of any size and semantics. One reference
monitor (supporting a particular policy) per request is used
in Argos to evaluate requested access. Due to introduction

of multiple evaluators and a combinator, we provide ways
for more than one policy (of different types), as in Bertino
et al. [18], to govern authorization decisions for the same
request. Bertino and Jajodia in [18] define an explicit autho-
rization model with conflict resolution and overriding rules.
Such rules have to be implemented by a particular instance
of decision combinator in our framework. This is left as
future work for our framework.

The proposed concept of dynamic attribute service gives
enough flexibility in using enterprise-specific factors to sup-
port all implicit access rights that Argos does as well as
PICASSO’s [19] patient-specific roles of the principal and
other types of access rights. Our approach allows Argos
and PICASSO policy engines to be used as one of the pol-
icy evaluators in the authorization service described here.
This would be similar, although not exactly the same, to
what Johnscher and Ditrich suggest in [17] when they write
that “Argos can be used as an access control service for any
application that is connected to the corresponding object re-
quest broker.”

7. Implementation status

A prototype of the first version of the authorization
service design has been implemented by 2AB, Inc. and
is available at http://www.omg.org/docs/corbamed/99-01-
19.zip. It includes the implementation of the authorization
service with interfaces as defined in [20], a policy admin-
istration system necessary to allow resources and policies
to be defined, and a client program to test sample policies.
A functioning prototype of the design outlined in this pa-
per and specified in details in [4] has been implemented at
the Center for Advanced Distributed Systems Engineering
(CADSE)9 of Florida International University.

8. Conclusions

In this paper we presented an approach in decoupling au-
thorization logic from application logic for those CORBA-
based application systems, which resort to application-level
access control in order to achieve fine granularity of protec-
tion or to use factors specific to the application domain in
authorization decisions, or both. We described the design of
an authorization service that allows any level of access con-
trol granularity, applying authorization policies of differen-
t types and from different authorities, as well as providing
application domain-specific factors for evaluating such poli-
cies.

The following two results are the main contributions of
the paper: (1) decoupling access control from application-
s can be done without complicated interfaces and without

9http://cadse.cs.fiu.edu



sending much information between an application and the
authorization service; and (2) dynamic attributes, such as
the patient–caregiver relationship, can be supported using a
traditional access matrix as an underlying implementation.

The body of the work described in this paper has been
served as a foundation of the recently voted specification
[4] of Resource Access Decision Facility from the Object
Management Group.

We plan to show what types of policies can be supported
by the proposed design effectively, to develop a more pre-
cise specification of the authorization service, and to obtain
experimental data on performance and scalability of the de-
scribed solution.

References

[1] Ravi Sandhu and Pierangela Samarati. Access control:
Principles and practice. IEEE Communications, 32(9),
September 1994.

[2] Joseph Yoder and Jeff Barcalow. Application securi-
ty. In Proceedings of The 4th Pattern Languages of
Programming Conference, 1997.

[3] Object Managment Group. CORBAservices: Common
Object Services, July 1998. OMG document number:
formal/98-07-05.

[4] Object Management Group. Resource Access Deci-
sion Facility, May 1999. OMG document number:
corbamed/99-05-04.

[5] Richard Mark Soley and Christopher M. Stone. Object
Management Architecture Guide. John Wiley & Sons,
3 edition, June 1995.

[6] Wayne Wilson and Konstantin Beznosov. COR-
BAmed Security White Paper. Object Managemen-
t Group, November 1997. OMG document number:
corbamed/97-11-03.

[7] Konstantin Beznosov. Issues in the security architec-
ture of the computerized patient record enterprirse. In
Proceedings of Second Workshop on Distributed Ob-
ject Computing Security, Baltimore, Maryland, USA,
May 1998. The Object Management Group and the U-
nited States National Security Agency.

[8] Konstantin Beznosov. Taxonomy of
CPR enterprise security concerns at Bap-
tist Health Systems of South Florida.
http://www.bhssf.org/IT/Projects/cpr/security/progress-
reports/categorize-requirements.html, December
1997.

[9] Konstanantin Beznosov. Requirements for access con-
trol: US healthcare domain. In Proceedings of the
Third ACM Workshop on Role-Based Access Control,
page 43. Fairfax, Virginia, USA, October 1998.

[10] Butler Lampson. Protection. In In 5th Princeton Sym-
posium on Information Science and Systems, pages
437–443, 1971.

[11] James Anderson. Computer security technology plan-
ning study. Technical Report ESD-TR-73-51, Vols. I
and II, Air Force Electronic Systems Division, 1972.
NTIS document number AD758206.

[12] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin.
A calculus for access control in distributed systems.
Technical Report 70, DEC, March 1991.

[13] Butler Lampson, Martin Abadi, Michael Burrows, and
Edward Wobber. Authentication in distributed system-
s: Theory and practics. Technical Report 83, DEC,
February 1992.

[14] Open Software Foundation, 11 Cambridge Center
Cambridge, MA 02142. OSF DCE Application Devel-
opment Guide: Core Components, 1.2.1 edition, 1996.

[15] Dobson J. and McDermid J. A framework for express-
ing models of security policy. In Proceedings of IEEE
Symposium on Security and Privacy, pages 229–239,
May 1989.

[16] Hosmer H. Multipolicy paradigm. In Proceedings of
the New Security Paradigm Workshop, Little Comp-
ton, RI, 1992.

[17] Dirk Jonscher and Klause R. Dittrich. Argos – a con-
figurable access control system for interoperable envi-
ronments. In Proceedings of the IFIP WG11.3 Ninth
Annual Working Conference on Database Security,
pages 39–66, Rensselaerville, NY, 1995.

[18] Bertino E., Jajodia S., and Samarati P. Supporting
multiple access control policies in database systems.
In Proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, California, May 1996.
IEEE Computer Society Press.

[19] Dixie B. Baker, Robert M. Barnhart, and Teresa T.
Buss. PCASSO: Applying and extending state-of-the-
art security in the healthcare domain. In Annual Com-
puter Security Applicatications Conference, 1997.

[20] Object Management Group. Healthcare Resource
Access Control (Initial Submission), October 1998.
OMG document number: corbamed/98-10-02.


