Detecting Conflictsin a Role-based Delegation M odel

Andreas Schaad
University of York
Department of Computer Science
YO105DD, York, U.K.
andreas@cs.york.ac.uk

Abstract

The RBAC96 access control model has been the basis
for extensive work on role-based constraint specification
and role-based delegation. However, these practical exten-
sions can also lead to conflicts at compile and run-time. We
demonstrate, following a rule-based, declarative approach,
how conflicts between specified Separation of Duty con-
straints and delegation activities can be detected. This ap-
proach also demonstrates the general suitability of Prolog
as an executable specification language for the simulation
and analysis of role-based systems. Using an extended defi-
nition of a role we show how at least one of the conflicts can
be resolved and discuss the impacts of this extension on the
specified constraints.

1 Introduction

Significant work has been done on role-based access
control models, most of which has been presented in
the ACM waorkshops on role-based access control. The
RBAC96 model [14] and its extensions are the result of
these discussions.

Two significant areas of extensions to the RBAC96
model have been proposed, one concentrating on the speci-
fication of constraints [3, 1], the others describing a frame-
work for role-based delegation [2, 8]. However, these two
extensions create a new range of problems within a role-
based access control model such as RBAC96. The main
concernis that specified Separation of Duty constraints can
conflict with amodel alowing for the delegation of author-
ity through role transfer.

A simple example is that two roles rl and r2 are de-
clared as mutually exclusive. A valid Separation of Duty
congtraint is that a user must not be assigned to the two ex-
clusive roles at the same time. Assuming that a user ul
aready holdsrl, adelegation of r2 to user ul would result
in a conflict with the separation constraint.

2 Outline

We give an initial motivation for the integration of role-
based constraints and del egation mechanisms into a single
system (Section 3), and discuss related work (Section 4). A
rule-based approach to detect possible conflicts at compile
and at run-time, using Prolog as a general constraint speci-
fication and implementation language, is presented (Section
5). Using the example of a department processing cheques,
we apply these rulesto detect conflicts and analysein which
cases the delegation of roles causes additional violation of
constraints (Sections 6 and 7). Thisis followed by a brief
discussion on the necessity of conflict analysis and the tech-
nical suitability of Prolog for such a task (Section 8). We
then discuss how a different definition of a role could help
usto resolve at least one of the previously detected conflicts
(Section 9 and 10) and finally provide a summary, conclu-
sion and discussion of future work (Section 11).

3 Motivation

We discussed the role-based access control system of a
European bank in [17]. This clearly showed that there are
real world applicationswhich require support for role-based
delegation.

A trivia but highly realistic example is that of an em-
ployee being ill. On a short-term basis his roles might have
to be delegated to another employee so that he can cover
his ill colleague for a day. However, making a formal re-
guest to the system administrator, and asking for the re-
quired changes to be performed immediately, is often not
feasible due to the lack of resources. Instead it would be
moreefficient to allow for adelegation of authority between
peers without any specific administrative power.

This example also presents us with an environment in
which the enforcement of Separation of Duty constraints
and implementation of conflict detection mechanisms are
of major importance with respect to the overall criticality of
the company’s operations.

4 Related Work

The seminal work on role-based access control mod-
els was the introduction of the RBAC96 model family
by Sandhu et a. [14], hereafter smply referred to as the
RBAC96 model. It has served as the basis for a significant
part of the role-based access control research and is likely
to become a NIST standard [15]. In the RBAC96 model
family, the central notion is that permissions are associated
with roles, and users are made members of appropriateroles
thereby acquiring the roles’ permissions.

RH

Role Hierarchy

Permission
Assigment

User
Assigment

Sessions

Figure 1. The RBAC96 model family

Severa extensions have been proposed to the RBAC96
model, one of which is the RCL2000 language for con-
straint specification [1] and the other the RBDMO delega-
tion model [2]. The RCL2000 language provides a frame-
work for the specification of Separation of Duty constraints
within the RBAC96 model. The constraints that are de-
scribed are partially based on previous work on separation
of duties, here mainly [4, 12, 11, 18, 7]. Although the del-
egation of authority has been subject to intensive research
before [10, 19, 13], the RBDMO model was the first to de-
scribe delegation between regular roleswithin the RBAC96
role context. A notable extension and formalisation of the
RBDMO model is presented in the rule-based approach of
Longhuaet al. [§].

Asfar as we are aware of, no work on conflict detection
exists within the scope of the RBAC96 model. Other role-
based frameworks[9] and description languages[6] address
this topic, but the proposed detection and resolution mech-
anisms heavily depend on their specific definition of roles
and policiesand cannot be directly applied within RBAC96-
type models.

5 Role-based Conflict Analysis
5.1 Using Prolog as a declar ative language

Prolog is adeclarative language based on facts, rules and
guestionswith built-in support for backtracking. Strings be-
ginning with an upper case letter indicate the use of avari-
able. Strings beginning with alower case are constants. For
a more thorough introduction to Prolog and its backtrack-
ing mechanism we refer to [5]. Facts are represented as n-
ary relationsof theform fact (x1,x2, ...,xn),adways
followed by afullstop. So avalid set of facts to expressthat
supervisor is arole, andreas is a user and andreas holds or
is assigned to the role of a supervisor would be:

role (supervisor) .
user (andreas) .
holds (andreas, supervisor).

Rules take the form of the form Head : -Body, where
the body is aconjunction of facts or other rules, all of which
need to be satisfied such that the head of the rule can suc-
ceed. So the following rule would express that a role R1
can be delegated by a user U1 to auser U2 if role (R1),
user (Ul), user (U2) can al beinferred from the facts
given to the system, and the rule holds (U1,R1) evau-
atesto true:

can _delegate(R1, U1, U2):-
role (R1),

user (U1) ,

user (U2),

holds (U1, R1).

Prolog also alows usto ask questions. So in order to de-
termineall the userswith their assigned rolesin our system,
we ask:

| ?- holds(User, Role).
and would receive an answer such as:

User = andreas, Role = supervisor;
User jonathan, Role = accountant;
User = james, Role = clerk;

Thisindicates that andreas holds the role of a supervisor,
jonathan that of an accountant and james that of a clerk in
the current system configuration. Asking the system aques-
tionsuch as”is’clerk’ avalidrolein our system?’ could be
asked by typing

| ?- role(clerk).

and would result in ye s as an answer, assuming that the
fact role (clerk) ispart of thefact base.

5.2 Specifying Role-based accesscontrol in Prolog

The basis for our simulation and later analysis is the
RBAC96 access control model and the RBDMO delegation
model. A summary of the formal RBAC96 elements, the
RBDMO del egation extensions and our corresponding Pro-
log code can be found in Table 1.

Trandating the RBAC96 model into Prolog clauses
is straightforward. The basic many-to-many user-role
and role-permission relations are expressed in the clauses
holds (User, Role) and cando (Role, Permis-
sion). The concept of sessions is captured using the
simplified relation plays (User, Role) to express ac-
tivation of a role. Role hierarchies are presented as a
binary relation between roles using the predicate supe-
rior (Rolel, Role2). RBAC96 functions such as
Users.R — U?, which delivers the set of users assigned
to arole, had to be expressed in more complex rulesand are
not explained in more detail here. However, the full Pro-
log tranglation and the facts we used for describing our later
scenario are aso described in the Appendix.

The RBDMO model defines the ability of a user to au-
thorize another user to become a member of a delegated
role. So unlike the decentralised administration and del-
egation of authority through defined administrative roles
[13], a user can now make delegation decisions by him-
self and delegate roles he was originally assigned with to
other users. Thus, a role can be assigned with origina
members and delegated members, a property defined by
the RBDMO functions Users_O(r) and Users_D(r) respec-
tively. Thisismodeled in Prolog extending the user-role as-
signment relation, using the predicates holds o (User,
Role) and holds_d (User, Role). Soinorder tode-
terminewhich rolesa user is generally assigned to we spec-
ified the following rules:

holds (User, Role):-
holds o(User, Role).

holds (User, Role) :-
holds d(User, Role).

Delegation in the RBDMO model is further based on the
following assumptions:

o No delegation between membersin the samerole.
e Delegationisonly alowed between the original holder
of arole and a delegate who does not possess that role

so far (One-step property).

e Delegationistotal and all permissions associated with
arole are delegated.

In Prolog, these assumptions are either implemented as
specific rules or can be inferred from the given facts. Al-
though the RBDMO model specifies role revocation and
timing properties we do not discuss these in this context
and they are not part of the implementation.

5.3 Adding constraintsto our specification

We implemented Separation of Duty constraints as a set
of Prolog rules and used them for asking questions to our
system. However, therules could also be triggered by spec-
ified events such as administrative actions. In this case any
administrative action would be checked against the speci-
fied constraints. ldeally conflicts should be detected even
before the operation is fully carried out.

The constraintswe implemented are asubset (Table 2) of
the static and dynamic Separation of Duty constraints pro-
posed in the taxonomy of Simon and Zurko [18] . Mutu-
aly exclusiveroles as described in [7] are added as facts to
the Prolog fact base. Thus, declaring the two roles of ac-
countant and clerk to be exclusive would be specified asthe
symmetric relation:

mutex (accountant, clerk).

The Static Separation of Duty (SSoD) constraint defines
that two roles are strongly exclusive, if no person is ever
allowed to hold both of them at the same time. Two ex-
clusive roles have thus no common assigned user. The
dynamic Separation of Duty constraints we implemented
are the Simple Dynamic Separation of Duty (SDSoD), the
Object-based Separation of Duty (ObjSoD) and the Opera-
tional Separation of Duty (OpSoD).

SDSoD requiresthat any two exclusive roles must not be
activated at the same time by the same user. ObjSoD allows
for simultaneous activation, but a user must not use any of
his exclusive roles to act upon an object he has acted upon
before in another of his exclusiveroles. Preserving OpSoD
means that all permissions a user has through his exclusive
roles should not allow him to perform al the actions re-
quired for the completion of acritical process.

When specifying these Prolog conflict detection rules,
we tried to keep our specification as simple as possible us-
ing pure Prolog. However, at certain points we had to make
use of standard built-in predicates such as setof/3, as
they would alow us to perform more complex operations
such as determining the set of assigned roles for a user.
Static conflict detection is solely based on the facts given to
our system at compile-time. Dynamic conflict detection re-
quired the simulation of user behaviour at run-time. We had
tousethe assert/1 and retract /1 database manipu-
lation features of Prolog to insert and del ete new or obsolete
factsto or from the database.

An example for such a dynamic manipulation would be
the insertion of the fact that user andreas activated his su-
pervisor role, which would be expressed as:

assert (plays (andreas, supervisor)) .

This adds the fact plays (andreas, supervi-
sor) toour fact base and isfrom the time of insertion used
for any search by the Prolog inference engine.

6 A cheque processing scenario

We use the standard simplified example of an accoun-
tancy department processing cheques as a basis for the sim-
ulation of Separation of Duty conflicts and their further
analysis. Issuing a cheque is a sensitive process. Separa-
tion of Duty constraints are used in order to prevent asingle
user from preparing, signing and dispatching a cheque all
by himself. In our scenario preparing a cheque means that
the details are filled in by an accountant. The supervisor
then signs the chegue, as he aone has the legally required
signature authority over the account from which the money
isdrawvn. A clerk finally dispatches the chegue to the re-
cipient. We assume that in this case the role of the supervi-
sor will be assigned with the permission to print a signature
onto the cheque, thus giving any member of the supervisor
role the ability to sign the cheque, although he might not
necessarily be legally entitled to do so. The initia config-
uration of our system is defined as follows (See Appendix
and Figure 2): User andreasis assigned to the role of the su-
pervisor, user jonathan is assigned to the role of the accoun-
tant and clerk, and the users jeremy and james are assigned
to the role of aclerk. The accountant can prepare cheques,
the supervisor can sign cheques, and the clerk can only dis-
patch cheques. The roles of the supervisor and accountant
and the roles of the accountant and clerk are mutually ex-
clusive. Mutual exclusivenessis non-transitive.

andreas —>—> sign_cheque

Figure 2. Original assignments

Inthisinitial configurationthe system will report aStatic

Separation of Duties conflict for user jonathanin hisrole as
an accountant and clerk when posed with the query:

| ?- staticsod(User, Rolel, Role2).

User = jonathan ,
Rolel = accountant ,
Role2 = clerk ;

We can imagine this constraint to be relaxed in order
to allow the accountant to prepare and dispatch cheques
in times of limited processing capacities due to staff short-
age. Now the users activate all their roles, simulated by as-
sertingfactssuchasassert (plays (jonathan, ac-
countant)) into the database. As expected, the simple
dynamic Separation of Duties constraint is broken for user
jonathan:

| ?- dynamicsod(User, Rolel, Role2).

User = jonathan ,
Rolel = accountant ,
Role2 = clerk ;

Again, we relax this constraint and continue to simu-
late the execution of permissions. The fact that the prepare
cheque permission was executed on the supplier cheque ob-
ject by user jonathan in his role as an accountant is again
asserted to the system through the following clause:

assert (was_executed on(
prepare cheque, supplier cheque,
jonathan, accountant)).

In asimilar way we let andreas sign the supplier cheque
and james dispatch the cheque. So far no further dynamic
constraintsare broken. Thingsare different for the customer
cheque. Thisrefundto apriority customer requiresfast pro-
cessing and so jonathan prepares the cheque in his role as
an accountant and later dispatches the same cheque in his
role as a clerk. If we now check for any constraints to be
broken, the system will report:

| ?- objectsod(User,Object,Rolel,Role2).

User = jonathan,

Object = customer_ cheque,
Rolel = accountant,

Role2 = clerk ;

Jonathan accessed the customer cheque object twice,
once in his role as an accountant and once in hisrole as a
clerk, which are mutually exclusive. The object-based Sep-
aration of Duty constraint is broken.

RBAC96 and RBDM O model components

Prolog implementation counterparts

1. P,R,U and S are sets of permissions, roles,
users and sessions respectively.

2. UAC U x R isamany to many user to role
assignment relation.

3. PAC P x Risamany to many permission to
role assignment relation

4. RH C Rx R isapartial order on R, expressing
the role hierarchy.

5. UAO C U x R isamany to many original user
to role assignment relation.

6. UAD C U x R isamany to many delegated
user to role assignment relation.

7. UA=UAO U UAD

8. Users O(r)={u | (3r' > r")(u,r") € UAO}

9. Users D(r)={u | (3r" > r")(u,r") € UAD}
10. Users(r)= Users.O(r) U Users D(r)

11. Userss R — 2Y isafunction mapping each
roleto a set of users.

12. User: S — U isafunction mapping each ses-
sion to asingle user.

13. Roles: S — 2% is a function mapping each
session to aset of roles.

14. Permissions. S — 27 is a function derived
from PA, mapping each session to a set of per-
missions

1. RBAC96 definition 1.
role (R), user (U). Sessionsare not explicitly modeled.

2. RBAC96 definition 2. represented by the fact
holds (User, Role).

3. RBAC96 definition 3. represented by the fact
cando (Role, Permission).

4. RBAC96 definition 4. represented by the fact
superior (Rolel, Role2).
Partial order not checked, could be implemented as a spanning tree.

5. RBAC96 definition 5. represented by the fact
holds_o(User, Role).

6. RBAC96 definition 6. represented by the fact
holds_d(User, Role).

7. RBAC96 definition 7. represented by the rule
holds (User, Role) :-holds_o(User,
holds_d (User, Role).

8. RBAC96 definitions 8.-10. implied by Prolog 5.-7. implementations.

9. RBAC96 definitions 11. represented by clause
setof (User, holds (User, Role),
Set_of_assigned_users).

10. RBACY6 definitions 12. and 13. indirectly represented by clause
setof (User, plays (User, Role),
Set_of_assigned_users).

Role),

11. RBAC96 definition 14. requires the more complex operation clause
collect.all permissions (List_of Roles_for_ User,
List_of_permissions).

Table 1. RBAC96/RBDMO components and Prolog counterparts

Static SoD Rules

Description

staticsod (U, R1,
holds (U, R1),
mutex (R1, R2),
holds (U, R2).

R2) : -

Thereisaconflict if auser U assigned to two exclusive roles R1, R2.

Dynamic SoD Rules

Description

dynamicsod (U, R1, R2):-

staticsod (U, R1, R2), Thereis aconflict if a user U activates two exclusive roles R1, R2 simultane-
plays (U, R1), ously.
plays (U, R2).

objectsod (U, Ob, R.l, R2) : - Thereisaconflict if auser U has accessed an object Ob twice through different
... (see Appendix) exclusiverolesR1, R2.

operationalsod (U, Op, P1l, P2):- There is a conflict if a user U has al permissions needed in an operation

... (See Appendix)

Op through the union of his exclusive roles. Pl represents the set of his

permissions, P2 the permissions required in the operation.

Table 2. Separation of Duty Rules

represented by the facts permission (P),

Still the operational Separation of Duty constraint has
not been broken. Assuming standard RBAC96 mecha
nisms and the given initial configuration, this constraint
will never be broken by any regular user activities. How-
ever, simulating a user to user role delegation, we can
cause a conflict. We now assume that andreas delegates
his role as a supervisor to jonathan. This is inserted
asthe fact holds_d (jonathan, supervisor) tothe
factbaseusingthedelegates (andreas, supervi-
sor, jonathan) rule. The newly delegated assignment
is now being represented by the dashed arrow in Figure 3.

andreas _>,—> sign_cheque
erem
j Yy \

—> dispatch_cheque

james

Figure 3. Original and delegated assignments

This will now cause an operational separation of duty
constraint to be broken as jonathan holds the original roles
of an accountant and clerk and the delegated role of a su-
pervisor, where accountant and supervisor and accountant
and clerk are declared as exclusive. Through these roles, he
now holds al the permissions (P1) required for processing
acheque (P2):

| ?- operationalsod(User,Object,Pl,P2).

User = jonathan ,

Object = process_cheque ,

P1 = [prepare cheque, sign_ cheque,
dispatch cheque],

P2 = [sign_cheque, dispatch cheque,
prepare_ chequel] ;

Although we only demonstrated how delegation activi-
ties between users can cause an operational Separation of
Duty constraint to be broken, it is clear that also any other
dynamic constraint can be proven to conflict with delega
tion activities. We can no longer rely on checking for con-
flicts at compile time only. Conflict detection checks must
be made with any delegation activity, since it is possible to
create new user/role assignments at run-time.

7 Analysisof Conflicts

Considering the simulation of our conflict detection
rules, we can make the following observations.

7.1 Non-hierarchical RBAC96

In a standard RBAC96 model without role hierarchies
but with sessions we were able to simulate static, dynamic
and object-based Separation of Duty constraints to be bro-
ken. This was on the basis of a given initial configuration
and a set of user actions.

The interesting question in this case is where the origin
of these conflictslies. We seetwo main possihilities. Onthe
one hand it may bethe case that mutual exclusion properties
are too strict and do not reflect operational needs. On the
other hand the system istoo complex and the side-effects of
administrative actions are difficult to determine.

7.2 Hierarchical RBAC96

Role inheritance in the RBAC96 context means that
permissions associated with a role are inherited upwards.
Adding hierarchies to the standard RBAC96 model in-
creases model complexity to agreat extent. Now the admin-
istrator not only hasto be careful about the definition of mu-
tually exclusive roles and user to role assignment, but also
about the specification of an inheritance hierarchy. In our
implementation, the conflict detection rules are not greatly
affected by the introduction of role hierarchiesand only an-
other rule alowing us to traverse the role hierarchy using
the Prolog backtracking mechanismsis needed.

Therulefor thetraversal of role hierarchiesis a standard
backtracking rule as described in [5].

inherits from(Super Role, Sub Role) :-
superior (Super Role,Sub Role).

inherits from(Super Role,Sub Role):-
superior (Super Role,Sub_Sub Role),
inherits from(Sub_Sub Role, Sub_ Role).

Thus in case of the static separation of duty rule we
would now haveto ask: 1) Whichrole(s) doesauser hold ei-
ther directly or be means of inheritance 2) Are theserole(s)
part of a mutual exclusion relationship? The efficiency of
this was already demonstrated by usin a prototypetool pre-
sented in an invited talk at [16].

Again, we can observe that Separation of Duty con-
straints can be broken as described in Section 7.1. Addi-
tionally, we can obtain conflicts through @) manipulation of
role hierarchies and b) assignment of users to roles part of
a hierarchy. Private roles as introduced in [14] might be
used as a mitigating mechanism to suppress unwanted in-
heritance.

7.3 Non-hierarchical RBAC96 and RBDMO

However, the focus of this paper is on the extension of
a hierarchy free RBAC96 model with delegation mecha-
nisms. The simulation we made showed that now also ad-
ministrative actions by a user of the system can lead to con-
flicts. All the static, dynamic, object and operational con-
straintswe specified can be broken by a) ordinary user activ-
ities (e.g. role activation, object access) and b) simple user
to user delegation activities.

7.4 Hierarchical RBAC96 and RBDMO

Again, introducing role hierarchies into an extended
RBAC96 model results in an increasing complexity. Now
the delegation of arolewhichis part of arole hierarchy can
also lead to explicit or implicit conflicts with static and op-
erational separation of duty conflicts. In combination with
certain user activities all four constraints can be broken.

8 Conflict Analysis- Why and How?

The scenarios and conflict examples we have presented
in this paper may appear trivial. Yet, rea role-based sys-
tems are far more complex. The declaration of mutualy
exclusive roles and role hierarchies might be done centrally
for the whole organisation, whilst user-role assignment ac-
tivities might occur within an application specific context.
Thus, it is often difficult to support an administrator in his
work, enabling him to observewhat the consequences of his
actions would be prior to final commitment.

We have experimented coupling Prolog with arelational
database and a graphical interface. The database would be
used to store the facts, while Prolog would be used to ex-
press rules. We found that the management mechanisms
of a database are very useful for maintaining the integrity
of our data whilst Prolog is far more efficient for process-
ing recursive queries as they result out of role hierarchies.
Considering the performance of such an approach depends
on the search strategy, depth and width of eventua hierar-
chies, design of rules and facts, and the compiler strategy
and query engine. We have not yet experienced any tech-
nical problemswith this approach and would rather see the
real difficulty in mapping information about organisational
structures and workflows to the restricted form of database
tables.

9 Resolving Conflicts

We argue that both, constraint specification and role del-
egation, are valid and useful extensionsto arole-based sys-
tem. However, we have seen that conflicts are possible. Too

many conflicts indicate an inefficient system configuration,
either because separation rules are too strict or the delega-
tion activities are not sufficiently restricted. Simply stat-
ing that separation rules always have precedence would be
one possible way, but other ways of resolving these con-
flicts must be discussed, especially when considering the
implementation of role hierarchies, more elaborate delega-
tion models such as [8], and the decentralisation of admin-
istrative activities through administrative roles [13]. Within
our simple scenario and the limitations of the RBAC96 and
RBDMO models we see the following possibilities:

e Constraining the delegation by introducing sets of
rolesthat cannot be delegated, sets of usersthat cannot
delegate and sets of certain users that cannot delegate
certain roles.

e Constraining delegation by evaluating the current con-
text, e.g. which user aready holds and plays which
original and delegated roles.

e Constraining delegation with respect to the history of a
user in hisrole, e.g. executed permissions or accessed
objects.

e Immediate revocation of delegated roles according to
the principle of least privilege.

e Temporary revocation or deactivation of his origina
roles, e.g. auser hasto cover his colleague, thus he will
be delegated the needed roles but his original roles are
revoked for the time of coverage.

A further possibility for conflict resolution would be the
application of a different definition of a role as we sug-
gested and described in [17]. This however, would require
the RBAC96 and RBDMO model to be changed.

10 An extended definition of arole

In the RBAC96 model "Role” is an atomic concept, de-
fined as ”...a named job function within the organization”.
We provide an extended definition of a role, distinguish-
ing between official positions within the organisational hi-
erarchy and descriptions of the job function of employees.
From now on we will refer to a role using the construct
function/Official Position. We will use lower case letters
for functions and title case letters for positions. An exam-
ple of this would be the supervisor/Group Manager role,
indicating that somebody has the function of being a super-
visor and holds the official position of a Group Manager.
If we decided to delegate not the entire role but only func-
tions and compose new delegated roles, we would be ableto
solve some of the previously detected conflicts. However,
this notion of an extended rolewould also requireadifferent
definition of delegation rules.

10.1 Delegating functions

Let us assume the following scenario. We have four ex-
tended roles defined by the tuples (Figure 4):

e clerk/Employee
e clerk/Team Manager
e accountant/Team Manager

e supervisor/Group Manager

These are identical to our previously used examplesin
the cheque issuing process. However, the assignment of
users to those roles is different. We remember that we had
assigned the user jonathan to the exclusive roles of accoun-
tant and clerk such that we could deal with certain types of
cheques more effectively. In our new definition of a role
we would only assign jonathan to a different function, his
position will remain unchanged.

supervisor
andreas —» /

Group Manager

— sign_cheque

accountant
jonathan —» /

Team Manager
\ clerk
/
Team Manager
jeremy

T~a clerk

/ —» dispatch_cheque
james — Employee pafeh_ened

—» prepare_cheque

Figure 4. Extended role assignment

Of course, we could have also chosen to let the accoun-
tant/Team Manager role inherit the functionality of a clerk
to achieve the same effect, but we assume that no inheri-
tance mechanisms are present. Let us now see how this ex-
tended definition could be used to resolve some of the con-
flicts identified earlier on. We first have to provide a new
definition for role delegation. A possible extended func-
tional delegation rule could be:

Def. 1 Auser ul can only delegate the function f1 of a role
(f1/P1) to another user u2, if:

e ulisassignedto an original role (f1/P1) and
e U2 also holds Position P1

So what effect does this rule have with respect to the
problem of conflicts between Separation of Duty properties

and role delegation? According to our definition of sim-
ple static and dynamic Separation of Duty properties (Ta-
ble 2), we might still have conflicts for the aboveinitial as-
signment. This depends on whether we declare two roles
to be mutually exclusive on basis of their functions or not.
If the functions of accountant and clerk are still exclusive
and simpl e static and dynamic constraints are based on this
property we will still obtain conflicts as in our earlier sce-
nario. However, the difference to our scenario is that user
andreas will not be able to delegate the supervisor function
to jonathan anymore, as their positions are different. Thus,
an operational Separation of Duty constraint will be difficult
to break assuming that sensitive permissions such as sign-
ing a cheque are only combined with senior positions and
arethusless likely to be delegated.

11 Summary and Conclusion

We have demonstrated how to implement and enforce a
set of static and dynamic Separation of Duty constraintsin a
role-based access control model, using arule-based, declar-
ative approach. Depending on the type of RBAC model,
theinitial configuration, administrative actions and user be-
haviour, these can be broken. Extending the model with
simple delegation mechanisms is an additional source of
conflict.

Simulating a role-based model with integrated con-
straints and delegation mechanismsis only a first step. We
intend to pursue further work on how to detect and resolve
these conflicts in a more formal model. According to our
definition of an extended role we might want to make adis-
tinction between function and position hierarchies. Thisex-
tended definition of arole and distinction between the func-
tion and position of an employee seemsto be afirst stepinto
the right direction. However, apart from redefining delega-
tion rules, well-known Separation of Duty constraints might
also have to be changed in order to cater for this extension.

We have recently finished work describing how we use
the specification language Alloy and its model checking fa-
cilities to analyse the implications of the simultaneous in-
tegration of administrative role-based access control (AR-
BAC) extensions and constraints. What we need to investi-
gate now is the relationship between such a formal specifi-
cation and a set of executable rules as presented here.

12 Acknowledgements

The author is sponsored by the Engineering and Physics
Research Council (EPSRC) under award no. 99311141.
The comments from the reviewers and from Dr. J. D. Mof-
fett helped to clarify this paper. Further support was given
from the HISE research group under Prof. J. McDermid.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

G. Ahn. RCL 2000. Phd dissertation, George Mason
University, 2000.

E. Barka and R. Sandhu. Framework for Role-
Based Delegation Models. In 16th Annual Com-
puter Security Applications Conference, New Orleans,
Louisiana, 2000.

F. Chen and R. Sandhu. Constraintsfor RBAC. In 1st
ACM Workshop on Role-Based Access Control, pages
3946, Gaithersburg, MD, 1995.

D. Clark and D. Wilson. A Comparison of Commer-
cial and Military Security Policies. In IEEE Com-
puter Society Press, editor, | EEE Symposium on Secu-
rity and Privacy, pages 184-194, Oakland, California,
1987.

W. Clocksin and C. Méllish. Programming in Prolog.
Springer, 4th edition, 1996.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The Ponder Policy Specification Language. In Policies
for Distributed Systems and Networks, volume 1995,
pages 18-38, Bristol, 2001. Springer Lecture Notesin
Computer Science.

R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. In Proceedings of the second ACM
workshop on Role-based access control, pages 23-30,
1997.

Z. Longhua, G. Ahn, and Chu. B. A Rule-based
Framework for Role-Based Delegation. In ACM SAC-
MAT, Chantilly, VA, USA, 2001.

E. Lupu, D. Marriott, M. Sloman, and N. Yialelis. A
policy based role framework for access control. Pro-
ceedings of the first ACM Workshop on Role-based ac-
cess control, pages 215-224, 1996.

J. Moffett and M. Sloman. The Source of Authority for
Commercia Access Control. |EEE Computer, pages
59-69, 1988.

M. Nash and K. Poland. Some Conundrums Concern-
ing Separation of Duty. In IEEE Computer Society
Press, editor, IEEE Symposium on Security and Pri-
vacy, pages 201-209, Oakland, CA, 1990.

R. Sandhu. Transaction Control Expressionsfor Sepa
ration of Duties. In 4th Aerospace Computer Security
Conference, pages 282—286, Arizona, 1988.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Sandhu, V. Bhamidipati, and Q. Munawer. The AR-
BAC97 model for role-based administration of roles.
ACM Transactions. Inf. Syst. Security, 2(1):105— 135,
1999.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. |EEE Computer,
29(2):38-47, 1996.

R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST
Model for Role-based Access Control: TowardsaUni-
fied Standard. In 5th ACM RBAC, Berlin, Germany,
2000.

A. Schaad and J. Moffett. The Incorporation of Con-
trol Principlesinto Access Control Policies (Extended
Abstract). In Hewlett Packard Policy Workshop, Bris-
tol, 2001.

A. Schaad, J. Moffett, and J. Jacob. The access control
system of a European bank - a case study. In ACM
Symposiumon access control model sand technologies
(SACMAT), Chantilly, VA, USA, 2001.

R. Simon and M. Zurko. Separation of Duty in Role-
Based Environments. In Computer Security Founda-
tions Workshop X, Rockport, Massachusetts, 1997.

M. Sloman and J. Moffett. Delegation of Authority. In
Integrated Network Management 1I, pages 595-606.
North Holland, 1991.

A Prolog Source Code

Andreas Schaad
01/06/2001 holds (User, Role):- %$General rule: UA = UAO union UAD
holds_o(User, Role).

%Simple Simulation of the RBAC96 model and RBDMO delegation extensions

3Integration of static and dynamic Separation of Duty properties holds (User, Role):-
%$based on mutually exclusive roles. holds_d(User, Role).
%Facts are represented as standard scenario of cheque processing delegates (Userl, Rolel, User2):- %inserts role delegation as fact

holds_o(Userl, Rolel),
not holds_o(User2, Rolel),
asserta(holds_d(User2, Rolel)).

G e e
:- dynamic [plays/2]. $Simulate role activation % Additional functions - Not model specific
:- dynamic [was_executed on/4]. %Simulate permission execution BT oSooSooooooooooooooooooooooos
:- dynamic [holds_d/2]. %Simulate delegation

%Collects all mutually exclusive roles for a user and
unknown_predicate_handler(_,fail). %make sure that the resulting list contains no doubles.
g collect_mutex_roles (User, Nodoubleslist):-

call (holds (User, Role)),

8 e call (mutex(Role, R)),
5 Facts assertz (queue (Role)) ,
S . fail;
user (andreas) . %$System Users assertz(queue (end)),
user (jonathan) . collect (Total),
user (jeremy) . set (Total, Nodoubleslist) .

user (james) .
collect (Total) : -

role (supervisor) . $System Roles retract (queue (List)),
role (accountant) . i)
role(clerk) . (List==end, !, Total=[];
append ([List], Rest, Total), collect (Rest)).
permission(sign_cheque) . %System Permissions
permission (issue_cheque) . %Collects for a given set of roles, the union of all permissions
permission(prepa;e cheque) . collect_all permissions([H|T], List_of permissions):-
- T=01, !,
cheque (customer_cheque) . %System Objects assert (rolestack (H)) ,
cheque (supplier_cheque) . assert (rolestack (end)),
- retrieve (List_of permissions);
holds_o(andreas, supervisor). %$0riginal User - Role assignemnt assert (rolestack (H)),
holds_o(jonathan, accountant) . collect_all permissions(T, List_of permissions).
holds_o(jonathan, clerk).)
holds_o(jeremy, clerk). retrieve (Total) : -
holds_o(james, clerk). retract (rolestack (Role)) ,
- |

cando (supervisor, sign_cheque) . %Role - Permission assignment (Role==end, !, Total=[];
cando (accountant, prepare cheque) . setof (Perms, cando(Role, Perms), Permlist),
cando (clerk, dispatch cheque) . append (Permlist, Rest, Total), retrieve(Rest)).
%superior (Rolel, Role2) %Role Hierarchy %Union of two sets

union([], ¥s, Y¥s).
mutexclusive (supervisor, accountant). $Mutualy exclusive roles union([X[Xs], Y¥s, 28):-
mutexclusive (accountant, clerk). member (X, Ys), !, union(Xs, Ys, Zs).

union ([X|Xs], Ys, [X|Zs]):-union(Xs, ¥s, Zs).
mutex (R1, R2):- %Symmetry rule

mutexclusive (R1, R2); %Removes double entries in a set X and gives cleared set Y.
mutexclusive (R2, R1). set (Xs, ¥s):-
set_1(xs, [1, ¥s).

srequired permissions for processing a cheque set_1([1, As, As). set_1([X|Xs], As, ¥s):-
operation (process_cheque, [prepare cheque, sign_cheque, dispatch_chequel) . member (X, As), !, set_1(Xs, As, ¥s).

set_1([X|Xs], As, Ys):-set_1(Xs, [X|As], ¥s).
G e
% Separation of Duty constraints %Is X a subset of Y? Careful! subset(Y, X).
o subset ([], _). subset([X|Xs], Ys):-
%$Simple static SoD: A user must not be assigned to any two member (X, Ys),
$mutually exclusive roles rl,r2. subset (Xs, Ys).

staticsod (User, Rolel, Role2):-
holds (User, Rolel),
mutex (Rolel, Role2),
holds (User, Role2).

%$Simple dynamic SoD: A user can be assigned to any two
smutually exclusive role rl,r2, but must not activate them at the same time.

dynamicsod (User, Rolel, Role2):-
staticsod(User, Rolel, Role2),
plays (User, Rolel),
plays (User, Role2).

%Object-based Separation of Duties: User can hold and play

smutually exclusive roles.

%He just may not act upon the same object through any of his mutex roles.
%$Fact that object was accessed is recorded in

$was_executed on(sign_cheque, cheque(customer cheque), jonathan, supervisor).

objectsod (User, Object, Rolel, Role2):-
was_executed_on (Permissionl, Object, User, Rolel),
was_executed_on (Permission2, Object, User, Role2),
Rolel\=Role2,
mutex (Rolel, Role2).

%Operational Separation of Duties: must not be in possession of all permissions
srequired in a sensitive operation.
operationalsod (User, Operation, Processlist, Permissionlist):-

user (User) ,

operation (Operation, Processlist),

collect_mutex roles (User, Mutexlist),

collect_all permissions (Mutexlist, Permissionlist),

subset (Processlist, Permissionlist).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

