
Detecting Conflicts in a Role-based Delegation Model

Andreas Schaad
University of York

Department of Computer Science
YO10 5DD, York, U.K.
andreas@cs.york.ac.uk

Abstract

The RBAC96 access control model has been the basis
for extensive work on role-based constraint specification
and role-based delegation. However, these practical exten-
sions can also lead to conflicts at compile and run-time. We
demonstrate, following a rule-based, declarative approach,
how conflicts between specified Separation of Duty con-
straints and delegation activities can be detected. This ap-
proach also demonstrates the general suitability of Prolog
as an executable specification language for the simulation
and analysis of role-based systems. Using an extended defi-
nition of a role we show how at least one of the conflicts can
be resolved and discuss the impacts of this extension on the
specified constraints.

1 Introduction

Significant work has been done on role-based access
control models, most of which has been presented in
the ACM workshops on role-based access control. The
RBAC96 model [14] and its extensions are the result of
these discussions.

Two significant areas of extensions to the RBAC96
model have been proposed, one concentrating on the speci-
fication of constraints [3, 1], the others describing a frame-
work for role-based delegation [2, 8]. However, these two
extensions create a new range of problems within a role-
based access control model such as RBAC96. The main
concern is that specified Separation of Duty constraints can
conflict with a model allowing for the delegation of author-
ity through role transfer.

A simple example is that two roles r1 and r2 are de-
clared as mutually exclusive. A valid Separation of Duty
constraint is that a user must not be assigned to the two ex-
clusive roles at the same time. Assuming that a user u1
already holds r1, a delegation of r2 to user u1 would result
in a conflict with the separation constraint.

2 Outline

We give an initial motivation for the integration of role-
based constraints and delegation mechanisms into a single
system (Section 3), and discuss related work (Section 4). A
rule-based approach to detect possible conflicts at compile
and at run-time, using Prolog as a general constraint speci-
fication and implementation language, is presented (Section
5). Using the example of a department processing cheques,
we apply these rules to detect conflicts and analyse in which
cases the delegation of roles causes additional violation of
constraints (Sections 6 and 7). This is followed by a brief
discussion on the necessity of conflict analysis and the tech-
nical suitability of Prolog for such a task (Section 8). We
then discuss how a different definition of a role could help
us to resolve at least one of the previously detected conflicts
(Section 9 and 10) and finally provide a summary, conclu-
sion and discussion of future work (Section 11).

3 Motivation

We discussed the role-based access control system of a
European bank in [17]. This clearly showed that there are
real world applications which require support for role-based
delegation.

A trivial but highly realistic example is that of an em-
ployee being ill. On a short-term basis his roles might have
to be delegated to another employee so that he can cover
his ill colleague for a day. However, making a formal re-
quest to the system administrator, and asking for the re-
quired changes to be performed immediately, is often not
feasible due to the lack of resources. Instead it would be
more efficient to allow for a delegation of authority between
peers without any specific administrative power.

This example also presents us with an environment in
which the enforcement of Separation of Duty constraints
and implementation of conflict detection mechanisms are
of major importance with respect to the overall criticality of
the company’s operations.

4 Related Work

The seminal work on role-based access control mod-
els was the introduction of the RBAC96 model family
by Sandhu et al. [14], hereafter simply referred to as the
RBAC96 model. It has served as the basis for a significant
part of the role-based access control research and is likely
to become a NIST standard [15]. In the RBAC96 model
family, the central notion is that permissions are associated
with roles, and users are made members of appropriate roles
thereby acquiring the roles’ permissions.

U

Users

P

Permissions

R

Roles

Constraints

UA
User

Assigment

PA
Permission
Assigment

S

Sessions

RH

Role Hierarchy

user roles

Figure 1. The RBAC96 model family

Several extensions have been proposed to the RBAC96
model, one of which is the RCL2000 language for con-
straint specification [1] and the other the RBDM0 delega-
tion model [2]. The RCL2000 language provides a frame-
work for the specification of Separation of Duty constraints
within the RBAC96 model. The constraints that are de-
scribed are partially based on previous work on separation
of duties, here mainly [4, 12, 11, 18, 7]. Although the del-
egation of authority has been subject to intensive research
before [10, 19, 13], the RBDM0 model was the first to de-
scribe delegation between regular roles within the RBAC96
role context. A notable extension and formalisation of the
RBDM0 model is presented in the rule-based approach of
Longhua et al. [8].

As far as we are aware of, no work on conflict detection
exists within the scope of the RBAC96 model. Other role-
based frameworks [9] and description languages [6] address
this topic, but the proposed detection and resolution mech-
anisms heavily depend on their specific definition of roles
and policies and cannot be directly applied within RBAC96-
type models.

5 Role-based Conflict Analysis

5.1 Using Prolog as a declarative language

Prolog is a declarative language based on facts, rules and
questions with built-in support for backtracking. Strings be-
ginning with an upper case letter indicate the use of a vari-
able. Strings beginning with a lower case are constants. For
a more thorough introduction to Prolog and its backtrack-
ing mechanism we refer to [5]. Facts are represented as n-
ary relations of the form fact(x1,x2,...,xn), always
followed by a fullstop. So a valid set of facts to express that
supervisor is a role, andreas is a user and andreas holds or
is assigned to the role of a supervisor would be:

role(supervisor).
user(andreas).
holds(andreas, supervisor).

Rules take the form of the form Head:-Body, where
the body is a conjunction of facts or other rules, all of which
need to be satisfied such that the head of the rule can suc-
ceed. So the following rule would express that a role R1
can be delegated by a user U1 to a user U2 if role(R1),
user(U1), user(U2) can all be inferred from the facts
given to the system, and the rule holds(U1,R1) evalu-
ates to true:

can_delegate(R1, U1, U2):-
role(R1),
user(U1),
user(U2),
holds(U1, R1).

Prolog also allows us to ask questions. So in order to de-
termine all the users with their assigned roles in our system,
we ask:

| ?- holds(User, Role).

and would receive an answer such as:

User = andreas, Role = supervisor;
User = jonathan, Role = accountant;
User = james, Role = clerk;

This indicates that andreas holds the role of a supervisor,
jonathan that of an accountant and james that of a clerk in
the current system configuration. Asking the system a ques-
tion such as ”is ’clerk’ a valid role in our system?” could be
asked by typing

| ?- role(clerk).

and would result in yes as an answer, assuming that the
fact role(clerk) is part of the fact base.

5.2 Specifying Role-based access control in Prolog

The basis for our simulation and later analysis is the
RBAC96 access control model and the RBDM0 delegation
model. A summary of the formal RBAC96 elements, the
RBDM0 delegation extensions and our corresponding Pro-
log code can be found in Table 1.

Translating the RBAC96 model into Prolog clauses
is straightforward. The basic many-to-many user-role
and role-permission relations are expressed in the clauses
holds(User, Role) and cando(Role, Permis-
sion). The concept of sessions is captured using the
simplified relation plays(User, Role) to express ac-
tivation of a role. Role hierarchies are presented as a
binary relation between roles using the predicate supe-
rior(Role1, Role2). RBAC96 functions such as
Users:� � �

�, which delivers the set of users assigned
to a role, had to be expressed in more complex rules and are
not explained in more detail here. However, the full Pro-
log translation and the facts we used for describing our later
scenario are also described in the Appendix.

The RBDM0 model defines the ability of a user to au-
thorize another user to become a member of a delegated
role. So unlike the decentralised administration and del-
egation of authority through defined administrative roles
[13], a user can now make delegation decisions by him-
self and delegate roles he was originally assigned with to
other users. Thus, a role can be assigned with original
members and delegated members, a property defined by
the RBDM0 functions Users O(r) and Users D(r) respec-
tively. This is modeled in Prolog extending the user-role as-
signment relation, using the predicates holds o(User,
Role) and holds d(User, Role). So in order to de-
termine which roles a user is generally assigned to we spec-
ified the following rules:

holds(User, Role):-
holds_o(User, Role).

holds(User, Role):-
holds_d(User, Role).

Delegation in the RBDM0 model is further based on the
following assumptions:

� No delegation between members in the same role.

� Delegation is only allowed between the original holder
of a role and a delegate who does not possess that role
so far (One-step property).

� Delegation is total and all permissions associated with
a role are delegated.

In Prolog, these assumptions are either implemented as
specific rules or can be inferred from the given facts. Al-
though the RBDM0 model specifies role revocation and
timing properties we do not discuss these in this context
and they are not part of the implementation.

5.3 Adding constraints to our specification

We implemented Separation of Duty constraints as a set
of Prolog rules and used them for asking questions to our
system. However, the rules could also be triggered by spec-
ified events such as administrative actions. In this case any
administrative action would be checked against the speci-
fied constraints. Ideally conflicts should be detected even
before the operation is fully carried out.

The constraints we implemented are a subset (Table 2) of
the static and dynamic Separation of Duty constraints pro-
posed in the taxonomy of Simon and Zurko [18] . Mutu-
ally exclusive roles as described in [7] are added as facts to
the Prolog fact base. Thus, declaring the two roles of ac-
countant and clerk to be exclusive would be specified as the
symmetric relation:

mutex(accountant, clerk).

The Static Separation of Duty (SSoD) constraint defines
that two roles are strongly exclusive, if no person is ever
allowed to hold both of them at the same time. Two ex-
clusive roles have thus no common assigned user. The
dynamic Separation of Duty constraints we implemented
are the Simple Dynamic Separation of Duty (SDSoD), the
Object-based Separation of Duty (ObjSoD) and the Opera-
tional Separation of Duty (OpSoD).

SDSoD requires that any two exclusive roles must not be
activated at the same time by the same user. ObjSoD allows
for simultaneous activation, but a user must not use any of
his exclusive roles to act upon an object he has acted upon
before in another of his exclusive roles. Preserving OpSoD
means that all permissions a user has through his exclusive
roles should not allow him to perform all the actions re-
quired for the completion of a critical process.

When specifying these Prolog conflict detection rules,
we tried to keep our specification as simple as possible us-
ing pure Prolog. However, at certain points we had to make
use of standard built-in predicates such as setof/3, as
they would allow us to perform more complex operations
such as determining the set of assigned roles for a user.
Static conflict detection is solely based on the facts given to
our system at compile-time. Dynamic conflict detection re-
quired the simulation of user behaviour at run-time. We had
to use the assert/1 and retract/1 database manipu-
lation features of Prolog to insert and delete new or obsolete
facts to or from the database.

An example for such a dynamic manipulation would be
the insertion of the fact that user andreas activated his su-
pervisor role, which would be expressed as:

assert(plays(andreas, supervisor)).

This adds the fact plays(andreas, supervi-
sor) to our fact base and is from the time of insertion used
for any search by the Prolog inference engine.

6 A cheque processing scenario

We use the standard simplified example of an accoun-
tancy department processing cheques as a basis for the sim-
ulation of Separation of Duty conflicts and their further
analysis. Issuing a cheque is a sensitive process. Separa-
tion of Duty constraints are used in order to prevent a single
user from preparing, signing and dispatching a cheque all
by himself. In our scenario preparing a cheque means that
the details are filled in by an accountant. The supervisor
then signs the cheque, as he alone has the legally required
signature authority over the account from which the money
is drawn. A clerk finally dispatches the cheque to the re-
cipient. We assume that in this case the role of the supervi-
sor will be assigned with the permission to print a signature
onto the cheque, thus giving any member of the supervisor
role the ability to sign the cheque, although he might not
necessarily be legally entitled to do so. The initial config-
uration of our system is defined as follows (See Appendix
and Figure 2): User andreas is assigned to the role of the su-
pervisor, user jonathan is assigned to the role of the accoun-
tant and clerk, and the users jeremy and james are assigned
to the role of a clerk. The accountant can prepare cheques,
the supervisor can sign cheques, and the clerk can only dis-
patch cheques. The roles of the supervisor and accountant
and the roles of the accountant and clerk are mutually ex-
clusive. Mutual exclusiveness is non-transitive.

andreas

jonathan

jeremy

james

supervisor

clerk

accountant

sign_cheque

prepare_cheque

dispatch_cheque

mutex

mutex

Figure 2. Original assignments

In this initial configuration the system will report a Static

Separation of Duties conflict for user jonathan in his role as
an accountant and clerk when posed with the query:

| ?- staticsod(User, Role1, Role2).

User = jonathan ,
Role1 = accountant ,
Role2 = clerk ;

We can imagine this constraint to be relaxed in order
to allow the accountant to prepare and dispatch cheques
in times of limited processing capacities due to staff short-
age. Now the users activate all their roles, simulated by as-
serting facts such as assert(plays(jonathan, ac-
countant)) into the database. As expected, the simple
dynamic Separation of Duties constraint is broken for user
jonathan:

| ?- dynamicsod(User, Role1, Role2).

User = jonathan ,
Role1 = accountant ,
Role2 = clerk ;

Again, we relax this constraint and continue to simu-
late the execution of permissions. The fact that the prepare
cheque permission was executed on the supplier cheque ob-
ject by user jonathan in his role as an accountant is again
asserted to the system through the following clause:

assert(was_executed_on(
prepare_cheque, supplier_cheque,
jonathan, accountant)).

In a similar way we let andreas sign the supplier cheque
and james dispatch the cheque. So far no further dynamic
constraints are broken. Things are different for the customer
cheque. This refund to a priority customer requires fast pro-
cessing and so jonathan prepares the cheque in his role as
an accountant and later dispatches the same cheque in his
role as a clerk. If we now check for any constraints to be
broken, the system will report:

| ?- objectsod(User,Object,Role1,Role2).

User = jonathan,
Object = customer_cheque,
Role1 = accountant,
Role2 = clerk ;

Jonathan accessed the customer cheque object twice,
once in his role as an accountant and once in his role as a
clerk, which are mutually exclusive. The object-based Sep-
aration of Duty constraint is broken.

RBAC96 and RBDM0 model components Prolog implementation counterparts

1. � , �, � and � are sets of permissions, roles,
users and sessions respectively.

2. UA � � � � is a many to many user to role
assignment relation.

3. PA� � �� is a many to many permission to
role assignment relation

4. RH� ��� is a partial order on R, expressing
the role hierarchy.

5. UAO� ��� is a many to many original user
to role assignment relation.

6. UAD � � � � is a many to many delegated
user to role assignment relation.

7. UA = UAO � UAD

8. Users O(r)=�� � ���� � ������ ��� � ��		

9. Users D(r)=�� � ���� � ������ ��� � ��
	

10. Users(r)= Users O(r) � Users D(r)

11. Users: �
 �� is a function mapping each
role to a set of users.

12. User: �
 � is a function mapping each ses-
sion to a single user.

13. Roles: �
 �� is a function mapping each
session to a set of roles.

14. Permissions: �
 �� is a function derived
from PA, mapping each session to a set of per-
missions

1. RBAC96 definition 1. represented by the facts permission(P),
role(R), user(U). Sessions are not explicitly modeled.

2. RBAC96 definition 2. represented by the fact
holds(User, Role).

3. RBAC96 definition 3. represented by the fact
cando(Role, Permission).

4. RBAC96 definition 4. represented by the fact
superior(Role1, Role2).
Partial order not checked, could be implemented as a spanning tree.

5. RBAC96 definition 5. represented by the fact
holds o(User, Role).

6. RBAC96 definition 6. represented by the fact
holds d(User, Role).

7. RBAC96 definition 7. represented by the rule
holds(User, Role):-holds o(User, Role),
holds d(User, Role).

8. RBAC96 definitions 8.-10. implied by Prolog 5.-7. implementations.

9. RBAC96 definitions 11. represented by clause
setof(User, holds(User, Role),
Set of assigned users).

10. RBAC96 definitions 12. and 13. indirectly represented by clause
setof(User, plays(User, Role),
Set of assigned users).

11. RBAC96 definition 14. requires the more complex operation clause
collect all permissions(List of Roles for User,
List of permissions).

Table 1. RBAC96/RBDM0 components and Prolog counterparts

Static SoD Rules Description

staticsod(U, R1, R2):-
holds(U, R1),
mutex(R1, R2),
holds(U, R2).

There is a conflict if a user U assigned to two exclusive roles R1, R2.

Dynamic SoD Rules Description

dynamicsod(U, R1, R2):-
staticsod(U, R1, R2),
plays(U, R1),
plays(U, R2).

There is a conflict if a user U activates two exclusive roles R1, R2 simultane-
ously.

objectsod(U, Ob, R1, R2):-
...(See Appendix)

There is a conflict if a user U has accessed an object Ob twice through different
exclusive roles R1, R2.

operationalsod(U, Op, P1, P2):-
...(See Appendix)

There is a conflict if a user U has all permissions needed in an operation
Op through the union of his exclusive roles. P1 represents the set of his
permissions, P2 the permissions required in the operation.

Table 2. Separation of Duty Rules

Still the operational Separation of Duty constraint has
not been broken. Assuming standard RBAC96 mecha-
nisms and the given initial configuration, this constraint
will never be broken by any regular user activities. How-
ever, simulating a user to user role delegation, we can
cause a conflict. We now assume that andreas delegates
his role as a supervisor to jonathan. This is inserted
as the fact holds d(jonathan,supervisor) to the
fact base using the delegates(andreas, supervi-
sor, jonathan) rule. The newly delegated assignment
is now being represented by the dashed arrow in Figure 3.

andreas

jonathan

jeremy

james

supervisor

clerk

accountant

sign_cheque

prepare_cheque

dispatch_cheque

mutex

mutex

Figure 3. Original and delegated assignments

This will now cause an operational separation of duty
constraint to be broken as jonathan holds the original roles
of an accountant and clerk and the delegated role of a su-
pervisor, where accountant and supervisor and accountant
and clerk are declared as exclusive. Through these roles, he
now holds all the permissions (P1) required for processing
a cheque (P2):

| ?- operationalsod(User,Object,P1,P2).

User = jonathan ,
Object = process_cheque ,
P1 = [prepare_cheque, sign_cheque,

dispatch_cheque],
P2 = [sign_cheque, dispatch_cheque,

prepare_cheque];

Although we only demonstrated how delegation activi-
ties between users can cause an operational Separation of
Duty constraint to be broken, it is clear that also any other
dynamic constraint can be proven to conflict with delega-
tion activities. We can no longer rely on checking for con-
flicts at compile time only. Conflict detection checks must
be made with any delegation activity, since it is possible to
create new user/role assignments at run-time.

7 Analysis of Conflicts

Considering the simulation of our conflict detection
rules, we can make the following observations.

7.1 Non-hierarchical RBAC96

In a standard RBAC96 model without role hierarchies
but with sessions we were able to simulate static, dynamic
and object-based Separation of Duty constraints to be bro-
ken. This was on the basis of a given initial configuration
and a set of user actions.

The interesting question in this case is where the origin
of these conflicts lies. We see two main possibilities. On the
one hand it may be the case that mutual exclusion properties
are too strict and do not reflect operational needs. On the
other hand the system is too complex and the side-effects of
administrative actions are difficult to determine.

7.2 Hierarchical RBAC96

Role inheritance in the RBAC96 context means that
permissions associated with a role are inherited upwards.
Adding hierarchies to the standard RBAC96 model in-
creases model complexity to a great extent. Now the admin-
istrator not only has to be careful about the definition of mu-
tually exclusive roles and user to role assignment, but also
about the specification of an inheritance hierarchy. In our
implementation, the conflict detection rules are not greatly
affected by the introduction of role hierarchies and only an-
other rule allowing us to traverse the role hierarchy using
the Prolog backtracking mechanisms is needed.

The rule for the traversal of role hierarchies is a standard
backtracking rule as described in [5].

inherits_from(Super_Role,Sub_Role):-
superior(Super_Role,Sub_Role).

inherits_from(Super_Role,Sub_Role):-
superior(Super_Role,Sub_Sub_Role),
inherits_from(Sub_Sub_Role,Sub_Role).

Thus in case of the static separation of duty rule we
would now have to ask: 1) Which role(s) does a user hold ei-
ther directly or be means of inheritance 2) Are these role(s)
part of a mutual exclusion relationship? The efficiency of
this was already demonstrated by us in a prototype tool pre-
sented in an invited talk at [16].

Again, we can observe that Separation of Duty con-
straints can be broken as described in Section 7.1. Addi-
tionally, we can obtain conflicts through a) manipulation of
role hierarchies and b) assignment of users to roles part of
a hierarchy. Private roles as introduced in [14] might be
used as a mitigating mechanism to suppress unwanted in-
heritance.

7.3 Non-hierarchical RBAC96 and RBDM0

However, the focus of this paper is on the extension of
a hierarchy free RBAC96 model with delegation mecha-
nisms. The simulation we made showed that now also ad-
ministrative actions by a user of the system can lead to con-
flicts. All the static, dynamic, object and operational con-
straints we specified can be broken by a) ordinary user activ-
ities (e.g. role activation, object access) and b) simple user
to user delegation activities.

7.4 Hierarchical RBAC96 and RBDM0

Again, introducing role hierarchies into an extended
RBAC96 model results in an increasing complexity. Now
the delegation of a role which is part of a role hierarchy can
also lead to explicit or implicit conflicts with static and op-
erational separation of duty conflicts. In combination with
certain user activities all four constraints can be broken.

8 Conflict Analysis - Why and How?

The scenarios and conflict examples we have presented
in this paper may appear trivial. Yet, real role-based sys-
tems are far more complex. The declaration of mutually
exclusive roles and role hierarchies might be done centrally
for the whole organisation, whilst user-role assignment ac-
tivities might occur within an application specific context.
Thus, it is often difficult to support an administrator in his
work, enabling him to observe what the consequences of his
actions would be prior to final commitment.

We have experimented coupling Prolog with a relational
database and a graphical interface. The database would be
used to store the facts, while Prolog would be used to ex-
press rules. We found that the management mechanisms
of a database are very useful for maintaining the integrity
of our data whilst Prolog is far more efficient for process-
ing recursive queries as they result out of role hierarchies.
Considering the performance of such an approach depends
on the search strategy, depth and width of eventual hierar-
chies, design of rules and facts, and the compiler strategy
and query engine. We have not yet experienced any tech-
nical problems with this approach and would rather see the
real difficulty in mapping information about organisational
structures and workflows to the restricted form of database
tables.

9 Resolving Conflicts

We argue that both, constraint specification and role del-
egation, are valid and useful extensions to a role-based sys-
tem. However, we have seen that conflicts are possible. Too

many conflicts indicate an inefficient system configuration,
either because separation rules are too strict or the delega-
tion activities are not sufficiently restricted. Simply stat-
ing that separation rules always have precedence would be
one possible way, but other ways of resolving these con-
flicts must be discussed, especially when considering the
implementation of role hierarchies, more elaborate delega-
tion models such as [8], and the decentralisation of admin-
istrative activities through administrative roles [13]. Within
our simple scenario and the limitations of the RBAC96 and
RBDM0 models we see the following possibilities:

� Constraining the delegation by introducing sets of
roles that cannot be delegated, sets of users that cannot
delegate and sets of certain users that cannot delegate
certain roles.

� Constraining delegation by evaluating the current con-
text, e.g. which user already holds and plays which
original and delegated roles.

� Constraining delegation with respect to the history of a
user in his role, e.g. executed permissions or accessed
objects.

� Immediate revocation of delegated roles according to
the principle of least privilege.

� Temporary revocation or deactivation of his original
roles, e.g. a user has to cover his colleague, thus he will
be delegated the needed roles but his original roles are
revoked for the time of coverage.

A further possibility for conflict resolution would be the
application of a different definition of a role as we sug-
gested and described in [17]. This however, would require
the RBAC96 and RBDM0 model to be changed.

10 An extended definition of a role

In the RBAC96 model ”Role” is an atomic concept, de-
fined as ”...a named job function within the organization”.
We provide an extended definition of a role, distinguish-
ing between official positions within the organisational hi-
erarchy and descriptions of the job function of employees.
From now on we will refer to a role using the construct
function/Official Position. We will use lower case letters
for functions and title case letters for positions. An exam-
ple of this would be the supervisor/Group Manager role,
indicating that somebody has the function of being a super-
visor and holds the official position of a Group Manager.
If we decided to delegate not the entire role but only func-
tions and compose new delegated roles, we would be able to
solve some of the previously detected conflicts. However,
this notion of an extended role would also require a different
definition of delegation rules.

10.1 Delegating functions

Let us assume the following scenario. We have four ex-
tended roles defined by the tuples (Figure 4):

� clerk/Employee

� clerk/Team Manager

� accountant/Team Manager

� supervisor/Group Manager

These are identical to our previously used examples in
the cheque issuing process. However, the assignment of
users to those roles is different. We remember that we had
assigned the user jonathan to the exclusive roles of accoun-
tant and clerk such that we could deal with certain types of
cheques more effectively. In our new definition of a role
we would only assign jonathan to a different function, his
position will remain unchanged.

andreas

jonathan

jeremy

james

supervisor
/

Group Manager
sign_cheque

prepare_cheque

dispatch_cheque
clerk

/
Employee

accountant
/

Team Manager

clerk
/

Team Manager

Figure 4. Extended role assignment

Of course, we could have also chosen to let the accoun-
tant/Team Manager role inherit the functionality of a clerk
to achieve the same effect, but we assume that no inheri-
tance mechanisms are present. Let us now see how this ex-
tended definition could be used to resolve some of the con-
flicts identified earlier on. We first have to provide a new
definition for role delegation. A possible extended func-
tional delegation rule could be:

Def. 1 A user u1 can only delegate the function f1 of a role
(f1/P1) to another user u2, if:

� u1 is assigned to an original role (f1/P1) and

� u2 also holds Position P1

So what effect does this rule have with respect to the
problem of conflicts between Separation of Duty properties

and role delegation? According to our definition of sim-
ple static and dynamic Separation of Duty properties (Ta-
ble 2), we might still have conflicts for the above initial as-
signment. This depends on whether we declare two roles
to be mutually exclusive on basis of their functions or not.
If the functions of accountant and clerk are still exclusive
and simple static and dynamic constraints are based on this
property we will still obtain conflicts as in our earlier sce-
nario. However, the difference to our scenario is that user
andreas will not be able to delegate the supervisor function
to jonathan anymore, as their positions are different. Thus,
an operational Separation of Duty constraint will be difficult
to break assuming that sensitive permissions such as sign-
ing a cheque are only combined with senior positions and
are thus less likely to be delegated.

11 Summary and Conclusion

We have demonstrated how to implement and enforce a
set of static and dynamic Separation of Duty constraints in a
role-based access control model, using a rule-based, declar-
ative approach. Depending on the type of RBAC model,
the initial configuration, administrative actions and user be-
haviour, these can be broken. Extending the model with
simple delegation mechanisms is an additional source of
conflict.

Simulating a role-based model with integrated con-
straints and delegation mechanisms is only a first step. We
intend to pursue further work on how to detect and resolve
these conflicts in a more formal model. According to our
definition of an extended role we might want to make a dis-
tinction between function and position hierarchies. This ex-
tended definition of a role and distinction between the func-
tion and position of an employee seems to be a first step into
the right direction. However, apart from redefining delega-
tion rules, well-known Separation of Duty constraints might
also have to be changed in order to cater for this extension.

We have recently finished work describing how we use
the specification language Alloy and its model checking fa-
cilities to analyse the implications of the simultaneous in-
tegration of administrative role-based access control (AR-
BAC) extensions and constraints. What we need to investi-
gate now is the relationship between such a formal specifi-
cation and a set of executable rules as presented here.

12 Acknowledgements

The author is sponsored by the Engineering and Physics
Research Council (EPSRC) under award no. 99311141.
The comments from the reviewers and from Dr. J. D. Mof-
fett helped to clarify this paper. Further support was given
from the HISE research group under Prof. J. McDermid.

References

[1] G. Ahn. RCL 2000. Phd dissertation, George Mason
University, 2000.

[2] E. Barka and R. Sandhu. Framework for Role-
Based Delegation Models. In 16th Annual Com-
puter Security Applications Conference, New Orleans,
Louisiana, 2000.

[3] F. Chen and R. Sandhu. Constraints for RBAC. In 1st
ACM Workshop on Role-Based Access Control, pages
39–46, Gaithersburg, MD, 1995.

[4] D. Clark and D. Wilson. A Comparison of Commer-
cial and Military Security Policies. In IEEE Com-
puter Society Press, editor, IEEE Symposium on Secu-
rity and Privacy, pages 184–194, Oakland, California,
1987.

[5] W. Clocksin and C. Mellish. Programming in Prolog.
Springer, 4th edition, 1996.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The Ponder Policy Specification Language. In Policies
for Distributed Systems and Networks, volume 1995,
pages 18–38, Bristol, 2001. Springer Lecture Notes in
Computer Science.

[7] R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. In Proceedings of the second ACM
workshop on Role-based access control, pages 23–30,
1997.

[8] Z. Longhua, G. Ahn, and Chu. B. A Rule-based
Framework for Role-Based Delegation. In ACM SAC-
MAT, Chantilly, VA, USA, 2001.

[9] E. Lupu, D. Marriott, M. Sloman, and N. Yialelis. A
policy based role framework for access control. Pro-
ceedings of the first ACM Workshop on Role-based ac-
cess control, pages 215–224, 1996.

[10] J. Moffett and M. Sloman. The Source of Authority for
Commercial Access Control. IEEE Computer, pages
59–69, 1988.

[11] M. Nash and K. Poland. Some Conundrums Concern-
ing Separation of Duty. In IEEE Computer Society
Press, editor, IEEE Symposium on Security and Pri-
vacy, pages 201–209, Oakland, CA, 1990.

[12] R. Sandhu. Transaction Control Expressions for Sepa-
ration of Duties. In 4th Aerospace Computer Security
Conference, pages 282–286, Arizona, 1988.

[13] R. Sandhu, V. Bhamidipati, and Q. Munawer. The AR-
BAC97 model for role-based administration of roles.
ACM Transactions. Inf. Syst. Security, 2(1):105 – 135,
1999.

[14] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[15] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST
Model for Role-based Access Control: Towards a Uni-
fied Standard. In 5th ACM RBAC, Berlin, Germany,
2000.

[16] A. Schaad and J. Moffett. The Incorporation of Con-
trol Principles into Access Control Policies (Extended
Abstract). In Hewlett Packard Policy Workshop, Bris-
tol, 2001.

[17] A. Schaad, J. Moffett, and J. Jacob. The access control
system of a European bank - a case study. In ACM
Symposium on access control models and technologies
(SACMAT), Chantilly, VA, USA, 2001.

[18] R. Simon and M. Zurko. Separation of Duty in Role-
Based Environments. In Computer Security Founda-
tions Workshop X, Rockport, Massachusetts, 1997.

[19] M. Sloman and J. Moffett. Delegation of Authority. In
Integrated Network Management II, pages 595–606.
North Holland, 1991.

A Prolog Source Code

%--
% Conflict detection in a role-based delegation model
%--
%Author: Andreas Schaad
%Date: 01/06/2001

%Simple Simulation of the RBAC96 model and RBDM0 delegation extensions
%Integration of static and dynamic Separation of Duty properties
%based on mutually exclusive roles.

%Facts are represented as standard scenario of cheque processing
%--

%--
% Pre-processor
%--
:- dynamic [plays/2]. %Simulate role activation
:- dynamic [was_executed_on/4]. %Simulate permission execution
:- dynamic [holds_d/2]. %Simulate delegation

unknown_predicate_handler(_,fail).
%--

%--
% Facts
%--
user(andreas). %System Users
user(jonathan).
user(jeremy).
user(james).

role(supervisor). %System Roles
role(accountant).
role(clerk).

permission(sign_cheque). %System Permissions
permission(issue_cheque).
permission(prepare_cheque).

cheque(customer_cheque). %System Objects
cheque(supplier_cheque).

holds_o(andreas, supervisor). %Original User - Role assignemnt
holds_o(jonathan, accountant).
holds_o(jonathan, clerk).
holds_o(jeremy, clerk).
holds_o(james, clerk).

cando(supervisor, sign_cheque). %Role - Permission assignment
cando(accountant, prepare_cheque).
cando(clerk, dispatch_cheque).

%superior(Role1, Role2) %Role Hierarchy

mutexclusive(supervisor, accountant). %Mutualy exclusive roles
mutexclusive(accountant, clerk).

mutex(R1, R2):- %Symmetry rule
mutexclusive(R1, R2);
mutexclusive(R2, R1).

%required permissions for processing a cheque
operation(process_cheque, [prepare_cheque, sign_cheque, dispatch_cheque]).

%--
% Separation of Duty constraints
%--
%Simple static SoD: A user must not be assigned to any two
%mutually exclusive roles r1,r2.

staticsod(User, Role1, Role2):-
holds(User, Role1),
mutex(Role1, Role2),
holds(User, Role2).

%Simple dynamic SoD: A user can be assigned to any two
%mutually exclusive role r1,r2, but must not activate them at the same time.

dynamicsod(User, Role1, Role2):-
staticsod(User, Role1, Role2),
plays(User, Role1),
plays(User, Role2).

%Object-based Separation of Duties: User can hold and play
%mutually exclusive roles.
%He just may not act upon the same object through any of his mutex roles.
%Fact that object was accessed is recorded in
%was_executed_on(sign_cheque, cheque(customer_cheque), jonathan, supervisor).

objectsod(User, Object, Role1, Role2):-
was_executed_on(Permission1, Object, User, Role1),
was_executed_on(Permission2, Object, User, Role2),
Role1\=Role2,
mutex(Role1, Role2).

%Operational Separation of Duties: must not be in possession of all permissions
%required in a sensitive operation.
operationalsod(User, Operation, Processlist, Permissionlist):-

user(User),
operation(Operation, Processlist),
collect_mutex_roles(User, Mutexlist),
collect_all_permissions(Mutexlist, Permissionlist),
subset(Processlist, Permissionlist).

%---
% Delegation extensions
%---

holds(User, Role):- %General rule: UA = UAO union UAD
holds_o(User, Role).

holds(User, Role):-
holds_d(User, Role).

delegates(User1, Role1, User2):- %inserts role delegation as fact
holds_o(User1, Role1),
not holds_o(User2, Role1),
asserta(holds_d(User2, Role1)).

%---
% Additional functions - Not model specific
%---

%Collects all mutually exclusive roles for a user and
%make sure that the resulting list contains no doubles.
collect_mutex_roles(User, Nodoubleslist):-

call(holds(User, Role)),
call(mutex(Role, R)),
assertz(queue(Role)),
fail;
assertz(queue(end)),
collect(Total),
set(Total, Nodoubleslist).

collect(Total):-
retract(queue(List)),
!,
(List==end,!,Total=[];
append([List], Rest, Total), collect(Rest)).

%Collects for a given set of roles, the union of all permissions
collect_all_permissions([H|T], List_of_permissions):-

T=[], !,
assert(rolestack(H)),
assert(rolestack(end)),
retrieve(List_of_permissions);
assert(rolestack(H)),
collect_all_permissions(T, List_of_permissions).

retrieve(Total):-
retract(rolestack(Role)),
!,
(Role==end,!,Total=[];
setof(Perms, cando(Role, Perms), Permlist),
append(Permlist, Rest, Total), retrieve(Rest)).

%Union of two sets
union([], Ys, Ys).
union([X|Xs], Ys, Zs):-

member(X, Ys), !, union(Xs, Ys, Zs).
union([X|Xs], Ys,[X|Zs]):-union(Xs, Ys, Zs).

%Removes double entries in a set X and gives cleared set Y.
set(Xs, Ys):-

set_1(Xs, [], Ys).
set_1([], As, As). set_1([X|Xs], As, Ys):-

member(X, As), !, set_1(Xs, As, Ys).
set_1([X|Xs], As, Ys):-set_1(Xs, [X|As], Ys).

%Is X a subset of Y? Careful! subset(Y, X).
subset([], _). subset([X|Xs], Ys):-

member(X, Ys),
subset(Xs, Ys).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

