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Abstract

Workflow management systems (WFMSs) have attracted
a lot of interest both in academia and the business commu-
nity. A workflow consists of a collection of tasks that are
organized to facilitate some business process specification.
To simplify the complexity of security administration, it is
common to use role-based access control (RBAC) to grant
authorization to roles and users. Typically, security policies
are expressed as constraints on users, roles, tasks and the
workflow itself. A workflow system can become very com-
plex and involve several organizations or different units of
an organization, thus the number of security policies may be
very large and their interactions very complex. It is clearly
important to know whether the existence of such constraints
will prevent certain instances of the workflow from complet-
ing. Unfortunately, no existing constraint models have con-
sidered this problem satisfactorily.

In this paper we define a model for constrained work-
flow systems that includes local and global cardinality con-
straints, separation of duty constraints and binding of duty
constraints. We define the notion of a workflow specifica-
tion and of a constrained workflow authorization schema.
Our main result is to establish necessary and sufficient con-
ditions for the set of constraints that ensure a sound con-
strained workflow authorization schema, that is, for any
user or any role who are authorized to a task, there is at
least one complete workflow instance when this user or this
role executes this task.

1 Introduction

In recent years, workflow management systems have at-
tracted significant interest from the research community.
Typical examples of workflows include purchase order pro-
cessing, the handling and refereeing of papers in electronic

journals, and the processing of tax refunds.

Informally, a workflow is a collection of tasks which are
organized to facilitate some business process specification,
re-engineering and automation [11]. Workflow manage-
ment systems (WFMSs) make it possible to deploy busi-
ness processes within a computerized system, thereby gain-
ing significant improvements in efficiency. However, there
remain significant challenges to be resolved before we see
widespread use of sophisticated commercial WFEMSs. Of
particular significance to the security community is the ad-
ministration of security-relevant information and the speci-
fication of authorization policies and constraints.

The study of authorization constraints has a long his-
tory dating back to the Chinese Wall model of Brewer and
Nash [7]. The specification and enforcement of authoriza-
tion constraints has recently received a lot of attention in the
role-based community [1, 10, 12, 17].

In the past decade, a considerable amount of work
has also been done on the use of role-based access con-
trol (RBAC) to support access control in workflow sys-
tems [2, 3, 5, 6, 14]. RBAC is a natural choice for work-
flow systems because tasks are synonymous with permis-
sions and can be assigned to roles.

However, a role-based model alone is not sufficient to
meet all the requirements of security policies of an organi-
zation. There exist several schemes and models in the liter-
ature for specifying different kinds of constraints in work-
flow systems, such as separation of duty constraints [4, 5,
6, 8, 13, 15, 18], binding of duties constraints [8, 18] and
cardinality constraints [5]. Separation of duty requirements
exist to prevent conflicts of interest and to make fraudulent
acts more difficult to commit. Binding of duty constraints
require that if a certain user executed a particular task then
that user must also execute a second task in the workflow.

A workflow system may span multiple organization
units, or even multiple organizations, each of them hav-
ing its own security policies. Thus the number of con-
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straints may grow very large and the interactions between
constraints will be complex and difficult to predict. The
purpose of constraints is to enforce a secure workflow, but
they should not prevent a workflow being completed. Given
a set of constraints and sets of authorized users and roles
for each task, there should exist a workflow execution that
satisfies all the constraints. Therefore, the specification of
constraints is a difficult task and the ability to determine
whether a set of constraints is consistent with the security
requirements of the organization and permits every instance
of a workflow to complete successfully would be useful to
security administrators.

Unfortunately, solutions to this problem have largely
been overlooked in the literature. Bertino et al. [5] con-
sider the completion of workflow instances and solve the
problem by preventing an authorized user from perform-
ing a task if it would mean subsequent tasks would have
no authorized users that satisfied the workflow constraints.
Wainer et al. [18] tackled this problem from another direc-
tion: namely, if a workflow can not complete because of the
constraints, then some constraints may be overridden. Our
argument is that an unsuccessful workflow execution may
be caused by the inconsistency within the specification of
the constraints.

In this paper, we focus on solving the consistency prob-
lem of the constraints. We provide an approach to help the
workflow designers to define a sound constrained workflow
authorization schema. So the first contribution of this pa-
per is to define consistency rules for constraint-task pairs
that guarantee there is no inconsistency, ambiguities and
redundancy contained in the set of constraints. When the
constraint-task pairs conform to these rules, then for each
user and each role authorized in a task in the workflow, there
is at least one successful workflow instance that satisfies all
the constraints.

In the context of workflow systems, we believe that ex-
isting approaches do not make a sufficiently clear distinc-
tion between the specification of a workflow and a work-
flow instance. A workflow can be viewed as an abstraction
that describes the ordering of the tasks within the workflow
and the number of executions for each task, upon which au-
thorization and constraints can be specified. A workflow
instance or execution is an instantiation of the correspond-
ing workflow specification and consists of a set of task in-
stances upon which the authorization and constraints must
be enforced. The second contribution of this paper is to
explicitly define a workflow instance and a task instance.
This leads to a natural definition of a workflow authoriza-
tion schema, which associates roles with tasks in the work-
flow specification. We then extend this definition to define
a constrained workflow authorization schema, which speci-
fies the constraints that should be enforced on each instance
of the workflow.

We also believe that existing approaches to the specifica-
tion of authorization constraints are unnecessarily compli-
cated. There exist similarly complicated approaches to sep-
aration of duty constraints in the RBAC literature. The third
contribution of this paper is to describe a simple tuple-based
method for constraint specification, making the expression
and verification of authorization constraints easy for both
system administrators and application writers. The scheme
is based on a model for separation of duty constraints in
role-based systems [10]. We identify two constraint types:
cardinality constraints and entailment constraints. Entail-
ment constraints can be used to model separation of duty
and binding of duty constraints.

The specification language associates constraints with
tasks rather than a workflow, thereby facilitating distributed
authorization and enforcement of constraints. (Usually, a
centralized WFMS system is not desirable [3] because the
reference monitor can become a performance bottleneck.)

In the next section we introduce some preliminary con-
cepts and notation from RBAC literature. In the following
section, we describe our model for workflows. In section
4, we discuss the specification of three different kinds of
constraints using tuples and explicitly define the meaning
of these constraints. In section 5, we define a set of consis-
tency rules that can guarantee a sound constrained workflow
authorization schema. The last section suggests some future
research directions.

2 Role-based access control

It is natural to use role-based access control (RBAC) in
order to determine who is permitted to perform tasks within
a workflow: the permission to execute a task can be asso-
ciated with one or more roles and users can be associated
with those roles; and it provides natural support for imple-
menting any separation of duty requirements on task execu-
tion. We will base our discussion on the RBAC96 family of
models [16]. In particular, we use the RBAC; model, which
supports the use of a role hierarchy. With this model, if a
role is authorized to play a task, the roles dominating this
role will inherit the execution authorization.

We assume the existence of a partially ordered set of
roles (R, <) that can be visualized as a role hierarchy. Users
are associated with roles using the user-role assignment re-
lation UA C U x R. Similarly, permissions are associ-
ated with roles using the permission-role assignment rela-
tion PA C P x R, where P denotes the set of permissions.
We will assume that a task is an atomic action within the
context of a workflow instance. Hence we will assume that
a task is synonymous with a permission.

If (p,r) € PA and (u,r) € UA, then we say that p is
explicitly assigned to r and u is explicitly assigned to r. We
assume that the set of roles explicitly assigned to a permis-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW’04)
1063-6900/04 $ 20.00 IEEE



sion is an antichain in R.! However, unlike the RBAC96
model, we also assume that all user-role assignments have
to be made explicit. In particular, if u is explicitly assigned
to r, then w is not implicitly assigned to any role »' < r;
such assignments would have to be explicitly entered in the
UA relation.

3 A formal model for workflow systems

A workflow specification is a triple (T, <, p) where
(T, <) is a finite partially ordered set of tasks with a least
element ty and a greatest element ty and p : T — Nis
a function indicating how many times a task must be exe-
cuted in each instance of the workflow. We assume tg # ty.

A workflow authorization schema over a partially or-
dered set of roles (R, <) is a pair (S, PAt), where S =
(T, <, p) is a workflow specification and PAT C T X Ris
the task-role assignment relation for T. Given ataskt € T,
we define

R(t) = {r' € R:3(t,r) € PAr,r" >}
U(t)={ueU: (ur) € UAr e R(t)}.

In other words, R(t) is the set of roles authorized to perform
t; U(t) is the set of users authorized to perform t. Analo-
gously, given € R and R’ C R, we will write

U(r)={ueU: (ur)ec UA}
UR)=|J U.

reR’

Definition 1 Given a workflow specification
((T,<,p), PAt), a workflow instance I is a list of task
instances [(ty,u1,71),. .., (tn, Un, )], wWhere (t;, u;,r;)
is an instance of task t; € T performed by user u; € U(t;)
acting inroler; € R(t;) and ift; < t; then t; precedes t; in
the list. A workflow instance [(t1,u1,71),. .., (tn, Un, Tn)]
is complete if for all t € T, the number of occurrences of t

equals p(t).

Definition 2 A
(tn, Un, )] is

workflow  instance  [(t1,u1,71), ...,

e beforet € T ifit is a complete instance of the workflow
specification ((T', <, p'), PAY), where T = {t' € T :
t <t} PAy = {(t,7) € PAr :t € T'} and p' :
T' — Nsuch that p'(t') = p(t') forallt' € T';

e duringt € T ifitis a complete instance of the workflow
specification ((T', <, p'), PAY), where T' = {t' € T :
t' <t} PAT = {(t,r) € PAr :t € T'}and p' :

'In other words, if (p,r), (p,7’) € PA with  # 7/, then r £ r’ and
r L.

T — N such that p'(t') = p(t') for all t' < t and
0 < p'(t) < p(t)?

o aftert € T if it is a complete instance of the workflow
specification ((T', <, p'), PAY), where {t' € T : ' <
t} C T, PA; = {(t,r) € PAv : t € T'}and p' :
T" — Nsuch that p/(t') = p(t') ift’ < t.

A workflow instance [(t1,u1,71), ..., (tn, Un, )] is a par-
tial instance of the workflow specification ((T, <, p), PAT)
if it is a complete execution of the workflow specification
(T, <, p), PAYT), where T is an order ideal in T and
o'+ T' — N such that p'(t) < p(t).?

We denote the set of instances before t by Pre(t), the set
of instances during t by In(t) and the set of instances after
t by Post(t). If I € Post(t), then we say that task t has
completed in I. For any instance of t in I, if it is performed
by user w acting in role r, then we say t completes with
and r; t may complete with several users and roles in [ if it
has several different instances in I.

Definition 3 Ler I = [(t1,u1,71),.-., (tn, Un,™n)] De
a partial instance of a workflow. We say I' =
[(t1,u1,71), .-+, (tn, Un,Tn), (t,u, )] is an evolution of I,

which we will denote [I, (t,u,r)].

Let I € Pre(t) and let the set of tasks executed in I be
T’, then I may evolve into [/, (t,u, )] for any t such that
T'U{t} is an order ideal in T. Clearly, [I, (t,u, )] € In(t)
if p(t) > Land [I, (t,u,r)] € Post(t) otherwise. Similarly,
if I € In(t), then [I, (t,u,7)] € In(t) or [I,(t,u,r)] €
Post(t).

As we observed in the introduction, a role-based model
alone is generally not sufficient to meet all the requirements
of the security policies of an organization. There exist sev-
eral schemes and models in the literature for specifying dif-
ferent kinds of constraints in workflow systems. Bertino et
al. [5] identified three different types of constraints: static,
dynamic and hybrid constraints. These types differ in when
they are evaluated: static constraints can be evaluated with-
out executing a workflow instance; dynamic constraints can
be evaluated only during the execution of a workflow in-
stance because they express restrictions based on the ex-
ecution history of the workflow; hybrid constraints can be
partially verified without executing the workflow. In our pa-
per, we are only interested in hybrid constraints because we
want to statically check the consistency of such constraints
defined in a workflow.

The example workflow specification we will use
throughout this paper is a combination of examples used by

2If p(t) = 1, then it is not possible for a workflow instance to be during
t (since there is a single execution of the task).

3Given a poset X, Y C X is an order ideal if for all y € Y and
z € X,z < yimplies thatx € Y.
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Bertino et al. [5] and Knorr and Stormer [15]. It is based on
a workflow that is used to produce payments for tax refunds
and contains the following tasks:

(t1) A clerk prepares a cheque for a tax refund;

(t2) The cheque is approved or denied by two different
managers;

(ts) A third manager makes a final decision (based on the
decisions made in task 2);

(t4) A clerk issues or voids the cheque (based on the deci-
sion made in task 3).

Figure la represents the workflow specification. Fig-
ure 1b represents a role hierarchy, where GM denotes Gen-
eral Manager, RM denotes Refund Manager, TM denotes
Technical Manager and RC' denotes Refund Clerk. We de-
note the two instances of ty by t» 1 and ts ». Figure 1 also
includes the UA and PA relations.

In addition, we articulate the following constraints:

(c1) The two instances of to should be performed by differ-
ent users [5, 15];

(c2) to and t3 should be performed by different users [5];
(c3) t1 and t4 should be performed by different users [5];

(c4) to must be performed by a role that is more senior
than the role that performed t; unless t; and to are
performed by GM [5];

(c5) tp and to must be performed by different users [15];

(c¢) Bob should not be able to perform task t, if his sister
Alice performed task t; [15];

(c7) Atleast three roles should perform the workflow [5].4

Note that a constraint may apply to one task (e.g., ¢1),
two tasks (e.g., co) or a set of tasks (typically this will be T,
as in c¢7). Constraints are enforced in a workflow instance.
A constraint that applies to a single task will be enforced at
that task. A constraint involving two tasks t’ and t, where
t’ < t, is enforced at t since it is impossible to enforce it
unless we know which user or role has performed t’. A
constraint that applies to a set of tasks T C T will be en-
forced at each of the tasks in T’. We will formally define
what it means for a workflow instance satisfy a constraint
in Section 5.

4The original constraint in [5] is “At least three roles must be associated
with the workflow”, which is taken as static constraints in their terminol-
ogy. This constraint just checks if |R| > 3. We change it “at least three
roles should perform the workflow” which is a hybrid constraint since we
are only interested in such constraints.

Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW’04)
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t3
to1 to2
t
(a) Workflow specification
GM
RM M

RC
(b) Role hierarchy
Task | Role
ty RC
to RM
ts RM
tg RC
(c) Task-role assignment relation PA
User | Role
Alice RC
Bob RM
Carol | RM
Dave RC
Eve GM
Fred ™

(d) User-role assignment relation UA

Figure 1. A workflow authorization schema

4 Constraint specification

We will refer to constraints that apply to two tasks as en-
tailment constraints in this paper. Informally, an entailment
constraint requires that the execution of t is constrained in
some way by the execution of t’ (where t’ < t): separation
of duties and binding of duties are examples of entailment
constraints.

The constraints relevant to one task or a set of tasks are
actually cardinality constraints which impose restrictions
on the number of users or roles required to execute a task
or a set of tasks. We define two types of cardinality con-
straints that differ in their scope: a local cardinality con-
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straint specifies the restrictions on different task instances
of a given task in the same workflow instance; a global car-
dinality constraint specifies restriction on the task instances
of a set of tasks in a workflow instance. We do not consider
inter-case (workflow instance) constraints [8, 13] in this pa-
per; they will be subject of future work.

Cardinality constraints and entailment constraints are of
particular interest when considering consistency because
these constraints apply to multiple “elements”: e.g., mul-
tiple instances of the same task in a local cardinality con-
straint, or multiple tasks in global cardinality constraints
and entailment constraints. We note that inconsistency is
more likely to arise when a constraint applies to several “el-
ements” rather than a single element (as in time-dependent
constraints [8, 13], for example).

4.1 Entailment constraints

If the execution of a task t is constrained by the execution
of another task t’, where t' < t, then we say that t is an
entailed task of t'.

An entailment constraint defined on t has the form
(ur,t’, E,pred), where ur € {u,r}, F C Uy if ur = u,
E C Ry if ur = r and pred is a binary predicate such as #
or <. The semantics of the constraint (ur,t’, F, pred) are
that if an actor a € F (either a role or a user) performed t’
then t must be performed by some b such that pred(a, b) is
true.

Let ¢ = (r,t/, E, pred) be a role-based entailment con-
straint. We will assume that pred can be evaluated by con-
sidering the structure of the role hierarchy. In other words,
pred € {=,#,<,<,>,>}. Actually, there are subtleties
in the interpretation of role-based entailment constraints. In
¢y, for example, which requires that to must be performed
by a role that is more senior than the role that performed
t; [5], it is not clear whether these two tasks can be per-
formed by the same user given this user has two roles and
one role is higher than another one. In order to provide strict
security guarantee, in the role case, when the constraints re-
quire two different roles for two tasks pred € {#,<,<
,>, >}, it implicitly means two different users will be re-
quired, but if pred is ‘= then this restriction is not neces-
sary.

In RBAC96 (and most other RBAC models) it is assumed
that if (p, ) € PA then p is implicitly assigned to all roles
in that dominating r. This fact means that the number of
permission-role assignments can be significantly reduced —
an attractive feature of the RBAC paradigm. However, this
is problematic if entailment constraints with pred € {=, #
, >, >}. For example, if pred is ‘=’, then the constraint re-
quires the two tasks be executed by the same role. If the
traditional RBAC model is used in which permission inher-
itance is upwards, then the constraint will lose its real mean-

ing. One obvious way is to prohibit the permission-role as-
signment inheritance when the constraints are applied.

4.2 Cardinality constraints

A set of authorized roles is defined for each task in a
workflow and each authorized role is thereby authorized to
perform that task. Thus it is meaningless to define role-
based local cardinality constraints. Therefore we are only
interested in the user-based local cardinality constraints. A
local cardinality constraint is a pair (k,n,,), where k € N
indicates the number of executions (instances) in the current
workflow instance® and 7, indicates the number of different
users that must perform these k instances. In this paper, we
assume that n,, = 1 or n,, = k. For example, (k, 1) means
that each instance of the task is performed by the same user
(i.e., binding of duties) and (k, k) means that each instance
of the task is performed by a different user (i.e., separation
of duty). If n,, = 1, it implicitly means this user should
use the same role to perform the task instances. Clearly
the use of such constraints may mean that certain workflow
instances cannot be completed. The constraint (k, k), for
example, will prevent a workflow instance from completing
if fewer than k users are authorized to perform t. We will
discuss this problem in Section 5.

The need for global cardinality constraints is not so ob-
vious. We note that tasks are assigned to roles and that a
maximal role will typically be authorized to perform most,
if not all, the tasks in a workflow. However, we may wish
that some subset of tasks in the workflow is executed by a
number of roles greater than some threshold value in order
to provide a form of relaxed separation of duty. Like role-
based entailment constraints, we assume that different roles
implies different users. We will not consider binding of du-
ties in a global cardinality constraint because such a con-
straint can be specified by a set of entailment constraints.

A global cardinality constraint is specified as a pair
(T, n,.), where T" C T and n, indicates the minimum num-
ber of different roles that must execute the tasks in T'. If
t € T’, then we call t a restricted task of the global cardi-
nality constraint. We assume that [T’| > 2 and n,, > 1: if
|T’| = 2, then the cardinality constraint can be specified as
an entailment constraint; if n,, = 1, then it can be defined
as a set of entailment constraints.

4.3 Workflow authorization with constraints

In Section 3 we defined a workflow authorization
schema to be a pair (S, PAt), where S = (T,<,p) and
PA+ C T x R is the permission-role assignment relation
for the workflow specification. A constrained workflow

3k is redundant since it has the same meaning as p(t), but it is included
in the constraint for ease of reference.
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authorization schema is a triple (S, PAt, PCy), where
PC+ C C x T and C is the set of constraints defined on T.
C = C,UCy U C,, where C] denotes the set of local car-
dinality constraints, C'; denotes the set of global cardinality
constraints and C, denotes the set of entailment constraints.

We say that t is assigned to cif (¢,t) € PCt and (¢, t) is
a constraint-task pair if (c,t) € PCy. We will write C(t)
for the set of constraints to which t is explicitly assigned.
We will use C;(t), Cy(t) and C.(t) to denote the set of local
cardinality, global cardinality and entailment constraints t is
assigned to, respectively. We assume that |C(t)| < 1 and
|Cy(t)] < 1. In other words, a task can be assigned to at
most one local cardinality constraint and at most one global
cardinality constraint. There is no restriction on the number
of entailment constraints that can be assigned to a task.

The table below shows the constraints for our tax refund
example and their association with tasks in the workflow
specification.

Constraint Task
C1 = (2, 2) t2
c2 = (u,t2, Uy, #) t3
C3 = (1171317 Ut17#) t4
CQL = (I‘,tl,Rtl,<) to
CZ = (I‘,tl, GM, :) t3
Cc5 = (ll7 t1, Uy, 75) to
ce = (u,t1, {Alice}, notrelated) | t4
c7r = (T, 3) t
Cc7 = (T, 3) to
Cc7r = (T, 3) t3
cr = (T, 3) ts

Constraints like cg may be used to prevent collusion be-
tween family members [2, 5]. However, the enforcement of
constraint cg requires the the existence of some kind of in-
formation store and engine for evaluating such predicates.
The analysis of such constraints is beyond the scope of this
paper. Henceforth we will assume that the predicate in a
user-based entailment constraint belongs to the set {=, #}.

5 Consistency

For any t € T, we have R(t), U(t), Ci(t), Cy(t) and
C.(t). In order to make the constraints consistent — that
is, for all w € U(t) and r € R(t), there is at least one
workflow instance that satisfies all of them — we have to
ensure that two definitions are satisfied: constraint-task
pair self-consistency and constraint-task pairs inter-play-
consistency.

5.1 Consistency analysis

We defined a simple constraint specification language in
Section 4, but each element in the specification should be

defined accurately in order to avoid incorrectness and am-
biguities. In addition, the constraint specification should be
consistent with the authorization schema.

Letc = (r,t, E,pred), (c,t) € PCtand ' € E. Then
the set of (t', 7/, ¢)-constrained roles authorized to perform
t, denoted R(t|t',’, ¢), is given by

{r € R(t) : pred(r’,r) = true}.

If the execution of t is not constrained by the execution of
t’, then we adopt the notation R(t|t’,»’,null) = R(t) for
completeness.

Similarly, let ¢ = (u,t’, E,pred), (¢,t) € PCt and
u’ € E. Then the set of (t',u/, ¢)-constrained users autho-
rized to perform t, denoted U (t|t’, v/, ¢), is given by

{u e U(t) : pred(u’,u) = true};

we write U (t|t’,7/,null) = U(t) when t is not constrained
by t'.

Definition 4 An entailment constraint
¢ = (ur,t', E,pred) such that (c,t) € PCyt is well-
formed if t' < t and either

ur = u, pred € {=,#}and E C Uy, or (1)
ur =r, pred € {=,#,<,<,>,2}and E C Ry. (2)

A local cardinality constraint ¢ = (k,n,,) such that (c,t) €
PC'y is well-formed if

k= p(t); 3)
Ny = lorn, = k. 4)
A global cardinality constraint ¢ = (T',n,.) such that

(¢c,t) € PCt is well-formed if

T > 3; S
te T’; (6)
ny > 1. (7

That all the constraint-task pairs are well-formed can-
not guarantee there is a workflow execution that satisfies all
constraint-task pairs. We will define a sound constrained
workflow authorization schema, which guarantees a suc-
cessful workflow exists and for all t € T, there is at least
one successful workflow instance for any v € U(t) and
r € R(t).

The constraints will make a workflow system very com-
plicated, especially if we require this soundness property.
In order to simplify the analysis we make a number of as-
sumptions.
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Assumption 1 Ler ¢y = (ury,t', Ey,pred,) and co =
(ury,t”, Ea, preds) be two well-formed entailment con-
straints such that (¢1,t), (ca,t) € PCt. Then

t/ — t// (8)
ur; — uryg (9)
pred, # preds (10)

Firstly, we assume that a task t can be entailed by no
more than one task t’, which we denote by e(t). Secondly,
if two or more entailment constraints containing the same
task t’ are associated with the same task t, then they are all
either user-based or role-based constraints. Finally, we as-
sume the predicates are different. A consequence of this as-
sumption is that there are at most two user-based entailment
constraints and at most six role-based entailment constraints
that can be associated with a task.

Assumption 2 Let C.(t) = {c1,...,cx}, where ¢; =
(r,t', E;,pred;), 1 < k < 6, is a well-formed entailment
constraint. Then either

Ey = R(t) and E; N E —@(1<z<
E1CR( )andElﬁEj:@(

)or (11)

k
K)o (12)

k) <.
NN

Let C.(t) = {c1,...,cx}, where ¢; = (u,t/, E;, pred;),
(1 < k < 2)is a well-formed entailment constraint. Then
either

E,=U{')and E; # U(t )(1<z k) or (13)
E,cU)and E;,NE; =0(1<i<j<k) (14

In other words, we assume that there is at most one en-
tailment constraint whose domain is equal to the set of au-
thorized roles or users and if there is such a constraint, we
label it ¢ for convenience. We also assume that all other
pairs of constraint domains are pairwise disjoint.

Given a € R(t'), if ¢; = (r,t', R(t'),pred;) and o €
FE; for some other constraint ¢;, then we must decide which
of ¢; and ¢; should be applied. Similar considerations apply
to user-based entailment constraints.

Definition 5 Let C.(t) = {ci1,...,cx}, where ¢; =
(ur, E;,t',pred;). If a executes t' in a workflow in-
stance I, the enforced entailment constraint for o, denoted
AC(a,t'), is defined as follows:

Ci ifae E;andi > 1,
AC(O&,t,) =4C ifa € Eq,
null otherwise.

In other words, we enforce the constraint that contains
the smallest domain to which « belongs.

Assumption 3 If ((k,n),t'), ((ur,t’, E,pred),t) € PCt,
then either n = 1 orC (t) ={(u,t',E,#)}.

The reason for this assumption is that if t’ is executed
multiple times, then the execution of t is restricted by those
of t' and ambiguities may arise. However, if n,, = 1, then
the multiple instances for t’ have the same user acting in the
same role, so they can be considered to be a single instance
thereby avoiding ambiguity. Similarly, if n,, > 1 and there
is a single user-based separation of duty constraint in C(t)
then no ambiguities can arise because t should be performed
by a user who is different from all the users that performed
instances of t'.

Assumption 4 For any global cardinality constraint
(T',n,) and forallt € T/,

e if ((k,n),t) € PCt, thenn =1;

o if ((r,t',E,pred),t) € PCr, thent' € T';

o lf ((u,t',E,pred),t) € PCt, thent' € T and
Celt) = {(u.V. E.A).

In other words, if a restricted task t is assigned to a lo-
cal cardinality constraint, then every instance of t has to be
performed by the same user. A global cardinality constraint
requires that a set of tasks is executed by a number of differ-
ent roles, thus ambiguities could arise in the interpretation
of the global cardinality constraint if n # 1. This assump-
tion further suggests that if t has role-based entailment con-
straints, then e(t) = t’ should be one of the restricted tasks.
The reason is that the role that executes t is restricted by the
role executing e(t), thus the legitimate role path should cor-
respond to the entailment constraints of t. In other words,
including e(t) as a restricted task will simplify the compu-
tation of a legitimate role path. Note that if e(t) is one of
the restricted tasks, then t is not required to be a restricted
task. Finally, if t has user-based entailment constraints, then
e(t) must also be a restricted task and t must have a single
separation of duty constraint associated with it. We do not
allow entailment constraints in which two restricted tasks
are performed by the same user because such tasks would
implicitly be performed by the same role and complicate the
analysis of global cardinality constraints.

Note that ¢ in our example in section 2 does not satisfy
this assumption since ((2,2),t2) € PCt. However, we can
simply replace ¢z with ¢ = ({t1,t3,t4}, 2).

Figure 2 shows an algorithm © that will be used to an-
alyze the consistency of a global constraint (T’, n,.), where

= {t'o,...,t'n_1}. O is a similar to the role planner
algorithm used by Bertino et al. [5]. The role planner al-
gorithm computes legitimate role paths for all tasks in a
workflow, whereas © only computes legitimate role paths
corresponding to the restricted tasks in T’.
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A role path GP is a list of length [ = |T’|, where the
ith element in the list, denoted G P[], is a role authorized
to perform task t; that is consistent with the constraints ap-
plied to t;. A legitimate role path LP is a role path that
contains at least n,. distinct roles. A role r has a legitimate
role path LP at position ¢ (or task t;) if r = LP[i]. A set
of roles {r},...,7.} (1 < x < I) are on a legitimate role
path if there exists LP such that LP[i] = 7% (j = 1,...,z),
assume r;- corresponding to the ith position in the role path.
© checks for each r € R(t;) that there exists at least one
legitimate role path, otherwise this role will never satisfy
this global cardinality constraint. Note the complexity of ©
is exponential in the number of tasks in T’. More precisely,
the overall worst-case complexity is O(N}), where Np is
the maximum number of roles associated with any task in
T’ and n = |T’|. Bertino et al. justify why their role planner
algorithm is feasible in practice. A similar argument applies
to O©.

Definition 6 Let t,t' € T witht' < t, and let I =
[(t1,u1,71), .-y (tn, Un, )] € Post(t). We say I satisfies
the workflow constraints C(t) if all the following conditions
hold:

1. u; € U(t)andr; € R(t) ift; = t;

2. if (k,n),t) € PCt then there are k occurrences of t
in I and they are performed by n different users;

3. if there is more than one occurrence of e(t) in I then
u; # uj for all u; and uj where t; = tand t; = e(t);

4. if there is only one occurrence of e(t) in I, and assume
t; = e(t):

o if Co(t) is in user case and AC(u;,e(t)) =
(u,e(t), E, pred), then pred(u;,u) evaluates to
true for all (t,u,r) € I;

o if C.(t) is in role case and AC(r;e(t)) =
(r,e(t), E,pred), then pred(r;,r) evaluates to
true for all (t,u,r) € I;

5. if ((T",n),t) € PCy then for any sublist J of Post(t)
containing only tasks in T, the roles in J must be on
some legitimate role path (determined by ©) and if two
different tasks in J are executed by different roles then
they must be executed by different users.

In definition 6, item 1 requires the task instance for t
should be executed by authorized users and roles. Item 2
requires the task instances of t should satisfy a local cardi-
nality constraint if there is one. Items 3 and 4 check that
any entailment constraints are satisfied. Item 5 requires that
if t has a global cardinality constraint, then t and other re-
stricted tasks that have completed in this workflow instance,

they should be in some legitimate role path. With the con-
straints defined in the workflow specification, some defini-
tions in section 2 should be considered a little bit differently
to take constraints into account. In other words, each task
instance of t should satisfy C(t) in any workflow instance.

Definition 7 A constrained workflow authorization schema
(T, PAt, PCv) is sound if

e all (c,t) € PC is well-formed;

o for each v € U(t), there exists a complete workflow
instance in which t completes with u.

e for each r € R(t), there exists a complete workflow
instance in which t completes with r.

Definition 8 Two well-formed constraint-task pairs (c1,t)
and (c2,t') inter-play if one of the following conditions
hold:

eci,co€Coandt=1t;

o ci,co € Co, t # t' and there exists (T',n,) € Cy such
that t,t' € T';

e 1 €Ceco=(k,n),n>landt=1;
e ¢ €Cco=(k,n),n>1landt =e(t);

o ¢y = (ki,n1), co = (k2,m2), t' = e(t), ng > 1 and
ny > 1;

e ci€C,coeCyt=1t ort=#t butbothtandt are
restricted tasks of ca;

e ce€CyceCyc1=coandt#t.

In simple terms, two constraint-task pairs inter-play if
the two tasks are equal, one is the entailed task of the other
or they are restricted tasks in the same global constraint.

A set of well-formed constraint-task pairs Ce(t) x {t}
is denoted by CTE(t). We call a set of well-formed
constraint-task pairs an inter-play set if each pair of con-
straints inter-play. An inter-play set is denoted by CT". Each
CT has a set of affected tasks whose completion will be af-
fected by the consistency of C'T". We denote this set of tasks
by AT (CT). There are four possibilities for C'T":

1. CT = CTE(t)if |CTE(t)| > 2: AT(CT) = {t};

2. OT = CTE(t) U {((k,n),t)} if |CTE(t)| > 1 and
n> 1. AT(CT) = {t};

3. 0T = {((K,n'),t'), (e, 1), (w,t', B, #), ) } if n” >
land (¢, =nullor¢ = (k,n)): AT(CT) = {t};
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Input: n is the number of input sets; n,. is the required number of different roles of a legitimate role
path; Sp, S1,...,S,_1 are sets to hold roles.

Output: true if for each role in S; (: = 0,...,n — 1) there exists at least one legitimate role path;
false otherwise.

RP = null /* RP stores legitimate role paths */
role_assignment(0,[]) /* [] denotes the empty vector */
for 1=0 to n—1
for all reS;
if there does not exist r &€ RP such that v. =7r then
/* vi is the (1+1)th element of vector v */
return false
return true

procedure
role_assignment ( current, path_hyp)
J = current

repeat
if r€5; and r is unmarked
mark r
path_hyp|j] = r
if j<n-1
role_assignment(j + 1, path_hyp)
if j=n-—1

if the number of different roles in path_hyp >n
insert path_hyp into RP
until each r € S; has been marked
unmark the roles in S;

Figure 2. Algorithm ©

4. CT = Ut*ET” CTE(t") U Ut’eT'{(Cvt/)} if UaeR(t’) R(t|t),a, AC(a, t')) = R(t);
|CTE(t*)| > 1, where ¢ € Cy, T’ is the set of re-
stricted tasks of ¢, T = {t € T' : e(t) € T'}: Case2 if ¢ = (u,t',E,pred) € C.(t), then for
AT(CT) =T". any o« € E, U{t|t,a, AC(a,t")) # 0 and

AU{IY, a, AC(a,t))) = U(t);
Given PCt we can determine the set of all possible Uaeu(e) UCIE, (a:t) ®

CT’s, denoted PCT. We require for each (c,t) € PCr, if Case 3
there exists C'Ty € PCT, (¢,t) € CTy and t € AT(CTy),
then there does not exist CTy € PCT with CTy # CTh, Cased if ¢ - (T, ny) c Cy(t),  then

ifc= (k,ny,) € Ci(t), then n,, < |U(%)|;

>

(¢,t) € CTy and t € AT(CT;). In simple words, we O(T|,ny, Ry ..., Ry ) = true;
require each inter-play set to be as big as possible. We ! il

use SC = {(c,t) € PCt : BCT € PCOT,(c,t) €
CT or 3CT € PCT and (c,t) € CT and t ¢ AT(CT)}
to indicate a set of constraint-task pairs that are not in any
inter-play set or they are in some inter-play set but t is not
an affected task of this set.

Note that if a global cardinality constraint ¢ does not re-
late to another constraint, that is, for any restricted task t,
it has no entailment constraints, then this global cardinal-
ity constraint is checked for self-consistency just once, even

though it is assigned to each of the restricted tasks tq, . . ., t;,
Definition 9 A well-formed constraint-task pair (c, t) is and constraint-task pairs (ty, ), .. ., (t//|, ) inter-play.
self-consistent if (¢, t) € SC and satisfies one of the fol-
lowing cases: Definition 10 An inter-play set C'T' is inter-play-consistent
when:
Casel if ¢ = (r,t',E,pred) € C.(t), then for

any « € E, R(t|t,a, AC(a,t")) # 0 and Casel if CT = CTE(t) and |CTE(t)| > 2, then
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(a) if Cc(t) is a set of role-based constraints, then
forany a € R(t'), R(tlt', o, AC(ar,t')) # 0
and | J y Rt o, AC(a,t')) = R(t);

(b) if C.(t) is a set of user-based constraints, then
forany a € U(Y), U(tlt',a, AC(ax,t)) # 0
and ey oy Ut a, AC(, t')) = U(1);

Case2 if CT = CTE(t) U {((k,n),t)}, n > 1 and
|CTE(t)| > 1, then

aeR(t

(a) if |CTE(t)| = 1, then for (¢',t) € CTE(t),
(c',t) is self-consistent;

(b) if |CTE(t)| > 1, then CTE(t) is inter-play-
consistent;

(c) if Cc(t) is in user case, then for any o €
U), U, o, AC(a,t'))| > ny

(d) if C.(t) is in role case, then for any a €

terms of the relevant tasks: if the entailment constraint for a
task t € T’ is in role case, the checking is straightforward,
if the entailment constraint for t is in user case, it should
check if t and e(t) has the same role in the role path and
if this role only has one authorized user. (If this role does
have only one authorized user, it obviously contradicts As-
sumption 4, which requires that the user-based entailment
constraint for t can only has pred =#).

Theorem 1 A constrained workflow authorization schema
(T, <, p), PAt, PCy) is sound if and only if all constraint-
task pairs in SC'" are self-consistent and all the inter-play
sets are inter-play-consistent.

In order to prove this theorem, we need to prove two
lemmas.

Lemmal Lett € T be a task such that for all t' < t, t/

R(), [U(R(tlt',a, AC (e, t')))| > n; has completed. If for all (c,t) € PC, either (¢,t) € SC
. and (c,t) is self-consistent or (c,t) € CT, and CT is inter-
Case3 if CT = {((K',n'),t),(cr,1), ((u,t', E,#),t)} play-consistent, then

then
(a) if ¢ = null and |U(t) NU(t")| < n/, then
U] > |Ut)NnUE)

(b) ifc; # null, ¢
n/, then |U(t)]

(c) ifc; # null, ¢
n/, then |U(t)]

- (k;,n), and |U(£)NU (¥')] =
>n+ ’I”LI,'

= (k,n) and |U(t)NU (V)| <
2 |U@R)NU(E)| +n;

Cased if CT = Uy crv CTE(t") U Uy e {(c,t)} given
|CTE(t*)| > 1, where ¢ € Cy, T' is the set of
restricted tasks of cand T = {t € T' : e(t) €
T'}, then

(a) if |CTE(t")] 1, then for (c,t*) €
CTE(t), (¢, t*) is self-consistent;

(b) if |CTE(t*)| > 1, then CTE(t*) is inter-
play-consistent;

(C) @/(|T/‘,7’Lr, 1/;/17"'7 é/

|T/|’S) = true with
S = Upeer CTE(t");

Again, the basic intuition behind inter-play-consistency
is that a workflow instance in which all the constraints in
a set of inter-playing constraint-task pairs are satisfied can
always be completed. Algorithm ©’ is an variant of ©
that takes S as a parameter. S is the union of entailment
constraint-task pairs for the restricted tasks. Since for the
restricted tasks, if they have entailment constraints, then
the selection of roles in a legitimate role path should corre-
spond to these constraints, so we include S in ©’ for check-
ing. Thus, before the role path is inserted into R P, besides
checking the number of distinct roles, S should be checked
for it to see if the entailment constraints are satisfied in
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e for any authorized user v € U (t), there is some work-
flow instance I which completes at t with u;

e for any authorized role v € R(t), there is some work-
flow instance I which completes at t with r.

A consequence of this lemma is that for any u € U(t)
acting in role r € R(t), there exists some I € Pre(t) such
that [I, (t,u,r)] € Post(t) or [I, (t,u,r)] € In(t). Fur-
thermore, if I € In(t), then there exists a sequence of
evolutions of I into I, where I’ € Post(t). If for any
u € U(t), there is some workflow instance I which com-
pletes at t with u, then a consequence following it is that
any r € R(t), there is some workflow instance I which
completes at t with 7.

Lemma 2 In a workflow instance I which completes at t
with wor r, any t' > t will complete, given I has completed
at allt” < t and every constraint-task pairs in SC' are self-
consistent and all inter-play sets are inter-play-consistent.

We refer the reader to Appendix for the formal proof of
the theorem and two lemmas.

5.2 The consistency of the example

Now we can use the self-consistent and inter-play-
consistent definition to check the consistency of our exam-
ple in section 3. We first note that ¢4 and c5 are both as-
signed to to, but ¢4 is a role-based entailment constraint and
cs is user-based. This does not conform to our assump-
tion that all the entailment constraints of a particular task
should either be user-based or role-based. As a matter of
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fact, ¢4 implies c5 in our system because c4 requires that
task to should be executed by a role that dominates the role
that executes t1, and two different roles executing two tasks
implies two different users. Hence we can omit constraint
c5. We also find that some constraint-task pairs are not con-
sistent. For example, CT = {(c}, t2), (¢}, t2),((2,2),t2)}
inter-play, but it is not inter-play-consistent: if Bob, Carol
or Fred executes ty, then the workflow instance can not
complete at to because there are not two authorized users
that can perform the two instances of t;. One solution to
solve this inconsistency is to have more than three users as-
signed to GM . Another solution is to release the constraint
c4 but keep c5, namely, task ts is executed by any user who
acts on GM or RM given this user does not execute t.

5.3 Computational complexity

Of course, the soundness property of a constrained work-
flow authorization schema can be checked by exhaustively
searching for legitimate role paths (corresponding to T) and
user paths (similar to the definition of a role path), like the
role and user planner algorithms proposed in [5].

These two algorithms are used to check consistency by
assigning users and roles to tasks that constitute a work-
flow instance in such a way that no constraints are violated.
The overall worst-case complexity of the role planner is
O(NE), where Ng is the the maximum number of roles
associated with any task in the workflow and n is the num-
ber of tasks in the workflow. A rough user planner, that is
for each role in a role path, assigning the users who act on
this role so as to form a user path, has the worst complexity
of O((NrRNyNget)™), where Ny is the maximum number
of roles associated with any task in the workflow; Ny is
the maximum number of users associated with any role in
the workflow; N, is the maximum number of activations
associated with any task in the workflow.

Obviously, this user planner is likely to be too compli-
cated to be useful in practice. The authors of [5] suggest
a heuristic solution: for each role path obtained by the
role planner, compute the maximum number of users re-
quired for each role r; in the role path. This set is denoted
as Uyorstease(r:). The worst case scenario arises when
each task instance with r; requires a different user in each
such task instance, thus Uyorstcase(Ti) = Xt;eTAS K, act;
where TASK,, indicates the set of tasks executed by r;
in this role path. The authors suggested to perform user
planning for only those roles 7; such that Uy,orstease (1) +
const; < U; where U; is the set of users assigned to r;;
const; is a safety factor which can be decided by work-
flow designer. The overall worst-case complexity of this
user planner is O((I - Ny (1) - Naet(1))™), where [ denotes
the number of roles for which the user planning is done
(I = egnNR, 0 < €1 < 1); Ny(l) denotes the maximum
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number of users associated with any role for which the user
planning is done; and m is the number of tasks in the work-
flow which is done user planning (m = ean, 0 < ex < 1).

In our system, we suppose there are n tasks in the work-
flow; Ng is the maximum number of roles associated with
any task; Ny is the the maximum number of users asso-
ciated with any task. We assume Ny > Np. In consis-
tency checking, many of the operations are relevant to sets
of users or roles. In order to get efficient operations, we
assign a different integer (starting from 0) to each role se-
quentially. We assume that each role set is sorted according
to these integers using a sorting algorithms with linear time
complexity, such as counting sort [9]. The same process
should be applied to user sets.

If a constraint-task pair belongs to SC, then it should be
checked for self-consistency as given by the four cases in
definition 9. We now examine the time complexity of each
of these cases.

Case 1 The complexity of computing R(t|t',c,c) is
O(Ng) and there are at most N such choices of

a, so the overall complexity is O(N3).

Case 2 Similarly the complexity is O(Ng).

Case 3 The complexity is simply O(1).

Case 4 The complexity is O(NL), where [ is the number

of restricted tasks.
We now examine the situation for an inter-play set C'7".

Case 1 The worst case is subcase 2, which has complexity
O(NE).

Case 2 Checking the consistency of CTE(t) is O(Ng);
computing  U(t|t/,a, AC(a,t")) is O(Ny)
and there are Ny such operations; comput-
ing U(R(t|t,a, AC(a,t"))) is O(NyNpg) and
there are Np such operations. Hence the total
complexity in this case is O(NZ + N:2Ny).

Case 3 The complexity is O(Ny ).

Case 4 Checking the consistency of CTE(t) is O(NZ);
computing ©' is O(NL). Hence the total complex-

ity in this case is O(NL + nNZ).

The complexity of computing SC and PCT is O(N¢),
where N¢ is the number of constraint-task pairs in the
workflow specification. Therefore the complexity of con-
sistency checking in our system is

O(n(NE) + n(NENy) + eNk + Ne),

where c is a constant to indicate the number of global cardi-
nality constraints in the workflow. (We have 0 < ¢ < n/3,
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since we require the number of restricted tasks in a global
cardinality constraint should be at least 3.) It is easy to see
the computation of our consistency checking is far more ef-
ficient than those role planner and user planner algorithms
in [5].

6 Conclusion

We provide an approach to help workflow designers to
define a sound constrained workflow authorization schema.
We defined a set of consistency rules for constraints that
guarantee there is no inconsistency and ambiguities within
these constraints even when they inter-play with each other.
When the constraints conform to these rules, then a sound
constrained workflow authorization schema is guaranteed.
We gave explicit definition of a workflow instance and a
task instance. We defined a workflow authorization schema,
which associates roles with tasks in the workflow specifi-
cation, which is extended to a constrained workflow au-
thorization schema. A constrained workflow authoriza-
tion schema specifies the constraints that should be en-
forced on each instance of the workflow. We used a sim-
ple tuple-based method for constraint specification, making
the expression and verification of authorization constraints
easy for both system administrators and application writ-
ers. The specification language associates constraints with
tasks rather than a workflow, thereby facilitating distributed
authorization and enforcement of constraints.

Future Work We will extend our research in two direc-
tions: one is to extend our specification scheme to include
inter-case constraints [8, 13]. Another is to define a more
general and optimized framework for the consistency rules.
Additionally, we hope to relax the restrictions that each task
can only entail one task, and all the entailment constraints
can only be either user-case or role-case.
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Appendix: Proofs of results

Proof of Theorem 1:
necessity.

We need to prove sufficiency and

Sufficiency If ((T,<,p), PAt,PCt) is a sound con-
strained workflow authorization schema, then for any
(c,t) € SC, it is self-consistent; for any CT € PCT, it
is inter-play-consistent.

Sufficiency can be proved with counter examples for
each case. We suppose ((T, <, p), PAt, PCt) is sound,
but 3¢ € C which is not self-consistent or ICT" that C'T’
inter-play but it is not inter-play-consistent.

Case 1 If a constraint-task pair (c,t) does not inter-play
with any other constraint-task pair but is not self-consistent,
then there are three subcases.

Subcase1 ¢ = (ur,t’, E,pred) € C.(t) gives rise to two
further possibilities:

e if Ja € F but R(tlt',a, AC(a,t')) = 0, then if
I € Post(t') completes with o, I cannot evolve to a
complete workflow instance because no one is able to
execute t. If U, cpe) R(tt, o, AC(a,t')) # R(t)(
according to the definition of R(t|t,a, AC(a,t')),
Uaer) B(tlt, o, AC(a,t')) € R(t)), thus 3r such
that » € R(t) is not in any R(t|t',a, AC (v, t')), s0
for any I € Post(t’), I will not evolve to a complete
workflow instance so that t complete with r in it.

e if Ja € F but U(tlt',a, AC(a,t')) = 0, then if
I € Post(t') completes with «, I cannot evolve to a
complete workflow instance because no one is able to
execute t. If U, cqroy U(tIY, o, AC(a, t')) # U(t)(
according to the definition of U(t|t', o, AC(ax, 1)),
Usev ) Ut a, AC(e, t')) € U(t)), thus Ju such
that w € U(t) is not in any U(t|t',a, AC(a,t')), so
for any I € Post(t’), I will not evolve to a complete
workflow instance so that t completes with w.

Subcase2 ¢ = (k,n,) € Ci(t):

e if n, > |U(t)|, then there are not enough authorized
users to execute t and for any I € Pre(t), I cannot
evolve to a I’ such that I’ € Post(t).

Subcase 3 ¢ = (T'.n,) € Cy(t):

o if O(|T'|, npr, Rt'17 RN Rt?T’I
r’ € R(t}) att;(i = 1,..,|T’]), there is no legitimate
role path, thus for any I € Pre(t), I cannot evolve to
a complete workflow instance so that t complete with

7.

) = False, then for a role
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Case 2 If C'T inter-play, but is not inter-play consistent,
then there are four subcases.

Subcase 1 CT = CTE(t) given |CTE(t)| > 2:

e The argument is the same as subcase 1 in case 1.

Subcase2 CT = CTE(t)U{((k,n),t)} suchthatn > 1,
given |CTE(t)| > 1:

e C.(t) is in user case: for any o« € U(t'), if
|U(t]t', o, AC (i, t'))| < n, then for those I € Pre(t)
such that t’ completes with «, I cannot evolve to a I’
such that I’ € Post(t) since there are not enough au-
thorized users to execute t .

o if C.(t) is in role case: for any @ € R(t'),
|U(R(t|t, o, AC(cr,t')))| < m, then for those I €
Pre(t) such that t’ completes with «, I cannot evolve
to a I’ such that I’ € Post(t) since there are not
enough authorized users to execute t .

Subcase 3 CT = {(¢,t),(a,t),(ce,t)}s ce =
(w,t', E,#), ¢ = (K',n'):

e when ¢; = null: if [U(t) NU )| < n/,but |U(t)] =
|U(t) N U(t)], then for any I € Pre(t) such that t/
completes with all the users in U(t) N U(t'), then I
cannot evolve at t since there is no user can execute t;

e when ¢; # null and ¢; = (k,n): if |U(t) NU(t')| >
n',but |U(t)| < n+ n/, then for any I € Pre(t) such
that t’ completes with a set of users and each of them
isin U(t) NU(t'), then I cannot evolve to I” such that
I' € Post(t) since there are not enough users who can
execute t;

e when ¢; # null and ¢; = (k,n): if [U(t) NU(t')| <
n',but [U(t)| < |U(t) NU(t')| + n, then for any I €
Pre(t) such that t’ completes with a set of users and
each of them is in U(t) N U(t'), then I cannot evolve
to I’ such that I’ € Post(t) since there are not enough
users who can execute t;

Subcase 4 CT = Jpern CTE(t") U Uper (e t)}
given |CTE(t*)| > 1, where ¢ € C,, T’ is the set of re-
stricted tasks of cand T = {t € T' : e(t) € T'}:

o if @’(|T’|,nr,R{,1,... ,R{‘,m
role 7’ € R(t}) at t;(i = 1,..,|T’|), there is no le-
gitimate role path, thus for any I € Pre(t), I cannot
evolve to a complete workflow instance so that t com-

plete with 7.

,S) = False, then for a
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Necessity If for any (c,t) € SC, (c,t) is self-consistent
and for any CT € PCT, CT is inter-play-consistent, then
(T, <, p), PAt, PCv) is a sound constrained workflow au-
thorization schema.

Before prove it, we make an assumption.

Assumption 5 For any r,v’ € R, if r # 1/, then U(r) #
U, ifUr)NU(r") # 0, then |U(r)| > 1and |U(r")| >
1.

It certainly has no need to prove the well-formed prop-
erty of a sound constrained workflow authorization schema
since self-consistency and inter-play-consistency implies all
the constraint-task pairs are well-formed. So we need to
prove for any user authorized in t, there exists a complete
workflow instance so that t completes with w. If for any
user v authorized in t, there exists a complete workflow in-
stance so that t completes with u, then it is straightforward
to get the solution that any role r which is authorized in
t, there exists a complete workflow instance so that t com-
pletes with 7.

To prove each user u € U(t), there exists a complete
workflow instance so that t completes with u, we need to
prove Lemma 1 and Lemma 2.

Proof of Lemma 1: The result is proved by induction. We
first need to prove this lemma holds for t;, the first task in
T. There are three cases to consider.

Case 1 No constraint is assigned to it. Then there is no
restriction regarding the choice an authorized user in any
workflow instance, so for any authorized user  in ty, 31 €
Post(t1) so t; completes with  in I.

Case 2 A local cardinality constraint is assigned to
it. Self-consistency guarantees the workflow instance can
complete at t; with a set of required different authorized
users. For any user w authorized in t;, he can be in such a
set. Thus 37 € Post(t;) so that t; completes with w in T

Case 3 A local cardinality and a global cardinality con-
straint or a global cardinality constraint is assigned to it. In
case 3, according to assumption 4, we know that if a lo-
cal cardinality constraint is assigned to t; together with a
global cardinality constraint, it has form (k, 1). So it will
not inter-play with any other constraint. After all, it is like
an empty constraint in terms of consistency problem. So
we only need to consider the global cardinality constraint.
Either the self-consistency case 4 or inter-play consistency
case 4 guarantees that each role can be in some legitimate
role path, so t; can complete with any role, further with any
user.

14

We suppose the lemma holds for t;,ta,...,t; (1 < i <
n), now we will prove it holds for t;; (t; < tj4+1 < tn).
There are three cases to consider.

Case 1 If t;; has no constraints, then there is no restric-
tion about the choose of an authorized user in any work-
flow instance, so for any authorized user w in t; 1, for any
I € Pre(t;y1), I can evolve to I’ so that t;; completes
with v in I’

Case 2 t;; is assigned a constraint ¢, (¢,t;41) € SC, so
(¢, ti11) is self-consistent.

Subcase 1 If ¢ = {(ur,t',E,pred)} € Ce(tit1): if
ur = 1, Uyepp) B(tipalt', o, AC(o, 1)) = R(tis1)
guarantees that for any r € R(t;11), Jo € R(t") such that
r € R(tit1/t',a, AC(a,t’)). Since we suppose lemma 1
holds for t’, thus 3/ € Post(t’) and t’ completes with a.
Assume I evolves to I’ so that I’ € Pre(t;+1), then t can
complete with r and all the users acting in r. But if r # «,
then the user that executes t’ should be different from the
user executing t;;. According to assumption 5, any user
assigned to r can find a different user for « even if he is
authorized to « too. So for any u € U(t;4+1) acting in role
7, t;+1 can complete with w in a I’ given I’ is evolved from
1,1 € Post(t') and t’ completes with v’ (u # u') acting in
role . If ur = u, the proof is similar to the role case, but
simpler.

Subcase 2 If ¢ = (k,ny,) € Ci(tig1): ny < |U(tig1)]
guarantees the workflow instance can complete at t;4.; with
a set of required different authorized users. So for any au-
thorized user w in t; 1, 31 € Post(t;+1) S0 t;+1 completes
with v in I.

Subcase 3 If ¢ =
o(T',nm, Ry,..., R
is in at least one legitimate role path, thus some workflow
instance can complete at t;;; with . In the global cardi-
nality constraint, it implicitly requires each different role in
the role path should be acted by a different user. In case
a user acts on more than one roles and these roles are in
the same role path, then this user can only perform one
restricted task given other tasks that he is authorized too
is performed by a different user (according to assumption
5, this user can always find such a set of different users
to execute these tasks). So for any u € U(t;y1) acting
inr, 31 € Pre(tjs1), forany t' € T  and t' < t;yq, t
completes in [ with 7" and v/, all r’s are in some legitimate
role path, v’ # w if 7/ # r, then I can evolve to I’ such that
I' € Post(t;+1) and t complete with w in I’.

(T/a n'r*) € C’g (ti+1),

th’l) = True guarantees that r
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Case3 forany (c,t;11) € PCr, (¢,tir1) € CT and CT there must be some user who can performt'; if (¢, t’) ¢ SC,

inter-play-consistent: then 3CT € PCT such that (c,t") € CT, then all kinds of
cases in inter-play-consistency can guarantee there must be
Subcase 1 CT = CTE(t;41): some user who can perform t'.

e The proof is similar to case 2 subcase 1. )
Necessity follows from Lemmas 1 and 2.

Subcase 2 CT = CTE(t;i+1) U{((k,ny), tig1}:

e if C.(ti4+1) are in user case: for any o € U(t') where
t' = e(tiy1), |U(tit1|t',a, AC(a,t'))| > n guaran-
tees for any I € Post(t') such that t’ completes with
« in I, I can evolve to I’ such that I’ € Post(t;1+1).
For any u € U(t;+1), u corresponds to some «
by the inter-play-consistency or self-consistency of
CTE(t;+1), thus t;1 can complete with v in I". If
C¢(ti11) are in role case, the proof is similar to user
case. The consideration of two different roles execut-
ing t’ and t; 1 is similar to case 2 subcase 1.

Subcase 3 CT = {((K',n),t), (c1,tiz1), (0, t', E, #
)stiv1)}:

o if ¢, = null: if u ¢ U(t'), then any I € pre(t;11)
can evolve to I’ such that I’ € post(t;+1) and t;14
complete with w in I’; if w € U(t'), then some [ €
pre(t;+1) can evolve to I’ such that I’ € post(t;+1),
w is different for any user who executes t’ (this is guar-
anteed by inter-play-consistent case 3, that is for any
u € Ultiy1) NU('), there is some set of users who
are authorized to execute t’, so that u is different from
any of them);

e if ¢; # null, the proof is similar to that for ¢; = null.

Subcase 4 CT = Jporr CTE(t") U Uper il t)},
tiy1 € T

e O’ guarantees that 7 is in at least one legitimate role
path and this role path does not contradict to any en-
tailment constraints assigned to those restricted tasks.
The proof is similar to case 2, subcase 3.

O

Proof of Lemma 2: The proof for this lemma is straight-
forward. For any I € post(t;+1), assume t;;1 completes
with a set of users U acting in a set of roles Rin I (since
a task might be executed for several times, so there might
be more than one user and role in U and R) U and R
will only affect some t’' if t' is the entailed task of t;,1
ort € T* where T* C T if t;01 € T (T’ is a set
of restricted tasks of a global cardinality constraint and

={teT :t>t1}) Forany (c,t') € PCr,
if (¢,t') € SC, then the cases in self-consistency guarantee
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