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Abstract—Role-based access control (RBAC) models have generated a great interest in the security community as a powerful and

generalized approach to security management. In many practical scenarios, users may be restricted to assume roles only at

predefined time periods. Furthermore, roles may only be invoked on prespecified intervals of time depending upon when certain

actions are permitted. To capture such dynamic aspects of a role, a temporal RBAC (TRBAC) model has been recently proposed.

However, the TRBAC model addresses the role enabling constraints only. In this paper, we propose a Generalized Temporal Role-

Based Access Control (GTRBAC) model capable of expressing a wider range of temporal constraints. In particular, the model allows

expressing periodic as well as duration constraints on roles, user-role assignments, and role-permission assignments. In an interval,

activation of a role can further be restricted as a result of numerous activation constraints including cardinality constraints and

maximum active duration constraints. The GTRBAC model extends the syntactic structure of the TRBAC model and its event and

trigger expressions subsume those of TRBAC. Furthermore, GTRBAC allows expressing role hierarchies and separation of duty (SoD)

constraints for specifying fine-grained temporal semantics.

Index Terms—Access control, role-based, temporal constraints, role hierarchy, separation of duty.
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1 INTRODUCTION

ROLE-BASED access control (RBAC) models have generated

great interest in the security community as a powerful

and generalized approach to security management [4], [7],

[9], [13], [16]. These models allow the assignment of users

and permissions to roles. A user can acquire all the

permissions of a role of which he is a member. The RBAC
model is naturally suitable to organizations where users are

assigned organizational roles with well-defined access

control privileges [9]. RBAC models are policy neutral [16]

and can express a wide range of security policies including

discretionary and mandatory, as well as user-defined or

organizational specific policies [14]. Major advantages of

RBAC include support for security management and the

principle of least privilege [16]. For example, a change in a
user’s responsibility or role within an organization can be

managed efficiently by assigning him a new role and

revoking his assignment to any previous role. In addition,

role hierarchies and grouping of objects into object classes

facilitate the management of permissions [9], [16].

Because of its relevance and above-mentioned benefits,
the RBAC model has been extensively investigated [1], [4],
[7], [9], [13]. Although this model has attained a considerable
level of maturity, there are many applications that cannot be
supported by this model and its different variants. In
particular, applications with temporal semantics, such as
workflow-based systems, fall in this category [6]. In many
organizations, processes and functions may have limited
time spans or have periodic temporal durations. For
instance, a part-time staff member in an organization may
be authorized to work only on working days between
9:00 a.m. and 1:00 p.m. If a part-time staff member is
represented by a role, enforcing such rules requires that the
part-time employee assumes the role only in that interval.
Such a requirement can be supported by specifying times
when the role can be enabled so that a legitimate user can
activate it. A part-time role may be further restricted to only
two hours of active time in any given session. In addition,
depending upon the organizational needs, the size of the
part-time staff assuming a role during the daytime may be
different from the size of the part-time staff employed during
the night shift.

Bertino et al. have proposed the Temporal-RBAC
(TRBAC) model that addresses some of the temporal issues
related to RBAC [7]. The main features of this model include
periodic enabling of roles and temporal dependencies
among roles which can be expressed through triggers. A
role is said to be enabled if assumed by a user. Priorities are
associated with role events, which in conjunction with a set
of precedence rules, are used to resolve conflicts. TRBAC
also allows an administrator to issue runtime requests for
enabling and disabling a role. The model, however, cannot
handle several other important temporal constraints, which
are elaborated as follows: First, the model does not include
temporal constraints for the user-role and role-permission
assignments. It assumes that only roles are enabled and
disabled at different time intervals. In this paper, it is
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demonstrated that in some applications, roles need to be
static, that is, they are enabled at all times, while users and
permissions assigned to them can be transient. Second, the
TRBAC model only handles the temporal constraints on the
role enabling but does not support well-defined distinct
notions about role enabling and role activation. A role is said
to be active if there is at least one user who has assumed that
role. Therefore, the TRBAC model cannot handle several
constraints related to the activations of a role such as the
constraints on the maximum active duration allowed to a
user and the maximum number of activations of a role by a
single user within a particular interval of time. Third, as the
model does not consider duration constraints and con-
straints on the actual activations of roles, it does not support
the notion of enabling and disabling of constraints. The
activation constraints should be clearly defined with respect
to the enabled time of a role. We, therefore, introduce the
notion of constraint enabling/disabling in this paper.
Finally, TRBAC does not address the time-based semantics
of role hierarchies and separation of duty (SoD) constraints
[11], [15], [17], [18].

In this paper, we illustrate the importance of the
constraints mentioned above and propose a Generalized
TRBAC (GTRBAC) model that subsumes all the essential
features of the TRBAC model and can handle all the issues
mentioned above. A related work on this topic is the
Temporal Data Authorization Model (TDAM) [3], which
can express access control policies based on the temporal
characteristics of data. However, TDAM does not capture
temporal characteristics of user to role assignment. Ahn et al.
propose a constraint specification language called RCL2000
[1]. However, this language does not support specification of
temporal constraints.

The paper is organized as follows: In Section 2, we
provide the general background on the NIST RBAC model
and the notion of periodic expressions. Section 3 presents
the description of the temporal constraints in the proposed
GTRBAC model. Syntax and semantics of these constraints
are also discussed in this section. In Section 4, we address
the issue of conflict resolution in GTRBAC. In addition, we
introduce the notion of safe temporal constraints and
activation base (TCAB) and discuss the execution semantics
of the GTRBAC model. In Section 5, we present time-based
semantics of role hierarchies and separation of duty
constraints. The related work is discussed in Section 6 and
the conclusion of the paper is given in Section 7.

2 OVERVIEW

In this section, we briefly overview the NIST RBAC model
and the periodic time expression.

2.1 The NIST RBAC Model

The NIST RBAC model as proposed by Ferraiolo et al.
consists of four basic components: a set of users Users, a
set of roles Roles, a set of permissions Permissions,
and a set of sessions Sessions [9]. A user can be a human
being or an autonomous agent. A role is a collection of
permissions needed to perform a certain function within an
organization. A permission refers to an access mode that
can be exercised on an object in the system and a session
relates a user to possibly many roles. In each session, a
user can request activation of some of the roles he is

authorized to assume. Such request is granted only if the
corresponding role is enabled at the time of the request
and the user is entitled to activate the role at that time. In
the RBAC model, for four sets, namely, Users, Roles,
Permissions, and Sessions, several functions are
defined. The user role assignment (UA) and the role

permission assignment (PA) functions model the assignment
of users to roles and the assignment of permissions to
roles, respectively. The user function maps each session to a
single user, whereas the role function establishes a
mapping between a session and a set of roles activated
by the corresponding user in the session. On Roles, a
hierarchy is denoted by � . For roles ri; rj 2 Roles, if
rj � ri, then ri inherits the permissions of rj. In such a case,
ri is a senior role and rj a junior role.

2.2 Periodic Expression

Periodic time is represented through a symbolic formalism
and can be expressed as a tuple h½begin; end�; Pi, where P is
a periodic expression denoting an infinite set of periodic time
instants, and ½begin; end� is a time interval denoting the
lower and upper bounds for the instants in P [12], [5]. The
periodic time uses the notion of calendar defined as a
countable set of contiguous intervals [7]. We assume a set of
calendars containing the calendars Hours, Days, Weeks,
Months, and Years, where Hours is the calendar that is
assumed to have the finest granularity. A subcalendar
relationship can be established among these calendars.
Given two calendars C1 and C2, C1 is said to be a
subcalendar of C2, written as C1 v C2, if each interval of
C2 is covered by a finite number of intervals of C1.
Calendars can be combined to represent more general
periodic expressions denoting periodic intervals such as the
set ofMondays or the set of the third hour of the first day of each
month. A periodic expression is defined as:

P ¼
Xn

i¼1

Oi:Ci . x:Cd;

where Cd; C1; . . . ; Cn are calendars and O1 ¼ all, Oi 2
2NN [ fallg , Ci v Ci�1 for i ¼ 2; . . . ; n, Cd v Cn, and x 2 NN.

The symbol . separates the first part of the periodic

expression that distinguishes the set of starting points of

the intervals, from the specification of the duration of each

interval in terms of calendar Cd. For example, fall:Y earsþ
f3; 7g:Months . 2:Monthsg represents the set of intervals

having a duration of two months with their starting times

synchronized with the same instant as the third or the

seventh month of every year. In practice, Oi is omitted if its

value is all. In case Oi is a singleton, it is represented by its

unique element. Similarly, x:Cd can be omitted when x is

equal to 1. A set of time instants corresponding to a periodic

expression P is denoted by SolðI; P Þ. Similarly, the set of

intervals in ðI; P Þ is denoted by �ðP Þ. For simplicity, in this

paper, the bounds begin and end, constraining a periodic

expression, is denoted by a pair of date expressions of the

form mm/dd/yyyy:hh. The end point end can also be 1.

For instance, [1/1/2001, 12/31/2001] denotes all the

instants in the year 2001.

JOSHI ET AL.: A GENERALIZED TEMPORAL ROLE-BASED ACCESS CONTROL MODEL 5



3 TEMPORAL CONSTRAINTS IN

GTRBAC—SYNTAX AND SEMANTICS

This section discusses various types of temporal constraints
relevant to role-based systems. In particular, we focus our
discussion on numerous temporal constraints applied to
RBAC components. The proposed GTRBAC model pro-
vides duration and periodicity constraints, as well as other
forms of specialized activation constraints. A key aspect of
the proposed model is that it distinguishes between the
notions of role enabling and role activation. Such distinction
leads to the notion of states of a role. In the proposed model,
a role can assume one of the three states: disabled, enabled,
and active. The disabled state indicates that the role cannot be
used in any user session, i.e., a user cannot acquire the
permissions associated with the role. A role in the disabled
state can be enabled. The enabled state indicates that users
who are authorized to use the role at the time of the request
may activate the role. Subsequently, if a user activates the
role, the state of the role becomes active. A role in the active
state implies that there is at least one user who has activated
the role. Once in the active state, reactivation of the role does
not change its state. When a role is in the active state, upon
deactivation, the role transitions to the enabled state
provided there is only one session in which it is active;
otherwise, the role remains in the active state. A role in the
enabled or active state transitions to the disabled state if a
disabling event occurs. The proposed model allows the
specification of the following types of constraints:

1. temporal constraints on role enabling, user-role, and role-
permission assignments,

2. activation constraints,
3. runtime events,
4. constraint enabling expressions, and
5. triggers.

Table 1 summarizes the constraint types and expressions of
the GTRBAC model.

Basic event expressions used by the GTRBAC constraint
specification language are depicted in Table 2. Priorities are
associated with each event in the proposed model. We
define ðPrios;�Þ as a totally ordered set of priorities and
assume that Prios contains two distinct elements ? and >
such that, for all x 2 Prios, ? � x � >. We use x � y, if
x � y and x 6¼ y. Status predicates, listed in Table 2, are used
to capture the state information associated with roles. In
GTRBAC, event expressions, priorities, and status predi-
cates are used to express the constraints listed in Table 1.
Next, we present the syntax and semantics of the constraint
expressions listed in Table 1 and illustrate their use in
expressing an access control policy for an example in
medical domain.

3.1 Periodicity and Duration Constraints on Role
Enabling and Assignments

An important feature of the proposed GTRBAC model is
that periodicity and duration constraints can be applied
to various components of RBAC. Specifically, by con-
straining the role enabling or activation times, these
constraints can be applied to roles as well as to user-role
and role-permission assignments. Depending on the
organizational requirements, role enabling, and assign-
ments can be restricted to particular intervals or to a
specified duration.
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Periodicity Constraints ðI; P ; pr : EÞ. Periodicity con-
straints are used to specify the exact intervals during
which a role can be enabled or disabled, and during
which a user-role assignment or a role permission
assignment is valid. As shown in Table 1, the periodicity
constraint expressions have the general form ðI; P ; pr : EÞ.
The pair ðI; P Þ specifies the intervals during which an
event E takes place. E can be a role enabling event:
“enable/disable r” or either of the assignment events:
“assignp=deassignp p to r” or “assignU=deassignU u to
r.” Pr indicates the priority of event, which will be
elaborated in later sections.

Fig. 1 shows an example of periodicity constraints on
user-role assignments. The two thick lines at the time axis
represent the intervals ðt3; t6Þ and ðt8; t11Þ in which role r is
enabled. The lines above the time axis indicate intervals in
which users are assigned to role r. The dotted portions of
these lines indicate intervals in which user-role assignments
are valid, although their assignment may not be in effect
because the role is disabled in these intervals. For example,
when user u1 is assigned to role r in interval ðt1; t5Þ, he can
activate role r only in the interval ðt3; t5Þ, as the role is
disabled in the remaining part of interval ðt1; t5Þ. Similarly,

user u2 is assigned to r in interval ðt4; t10Þ, but can activate
the role only in intervals ðt4; t6Þ and ðt8; t10Þ. User u3 is
assigned to r in interval ðt2; t7Þ, but can assume r only in
interval ðt3; t6Þ.

Duration Constraints ð½ðI; P ; ÞjD�; Dx; pr : EÞ. Duration
constraints are used to specify durations for which enabling
or assignment of a role is valid. When an event occurs, the
duration constraint associated with the event validates the
event for the specified duration only. In case no duration
constraint exists for the event, the event remains valid until
it is disabled by some other means, e.g., by a trigger.

The general form of the duration constraint expressions
for role enabling and assignment is ð½ðI; P ; ÞjD�; Dx; pr : EÞ,
where x is either R, U, or P, corresponding to events:
“enable=disable r,” “assignU=deassignU r to u,” and
“assignP=deassignP p to r,” respectively. D and Dx refer
to the durations such that D � Dx. The symbol “|” between
ðI; P Þ and D indicates that either ðI; P Þ or D is specified.
The square bracket in ½ðI; P ; ÞjD� implies that this parameter
is optional. Accordingly, we have three types of duration
constraints:

ðI; P ;Dx; pr : EÞ; ðD;Dx; pr : EÞ; and ðDx; pr : EÞ:

The expression ðI; P ;Dx; pr : EÞ indicates that event E is
valid for the duration Dx within each valid periodic interval
specified by ðI; P Þ. ðDx; pr : EÞ implies that the constraint is
valid at all times. Therefore, if event E happens at any time,
it is restricted to duration Dx. The constraint c ¼ ðD;Dx; pr :
EÞ implies that there is a valid duration D within which the
duration restriction Dx applies to event E. In other words,
the constraint c is enabled for duration D. The constraint
enabling expressions as shown in Table 1 can be used to
enable such constraints and the activation constraints
discussed later. The constraint enabling/disabling event
has the expression of the form “enable=disable c,” where c
is a constraint expression ðD;Dx; pr : EÞ. A constraint
enabling event corresponds to either a runtime request or
a triggered event. The duration constraint expression has
the same general form as that of the activation constraint
expression, described below. Hence, the semantics of the
duration constraints on role enabling and assignments is
similar to that of the activation constraints. The examples
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about activation constraints in Fig. 2 also illustrate how
duration constraints mentioned here are imposed.

3.2 Temporal Constraints on Role Activation

Role activation requests are made at the discretion of a user
at arbitrary times and, hence, periodicity constraints on role
activations should not be imposed. On the other hand,
duration constraints can be imposed on role activations. In
the proposed model, duration constraints on role activa-
tions can be classified into two types: total active duration
constraint and maximum duration per activation constraint. The
total active duration constraint on a role restricts the span of
the role’s activation duration in a given period to a specified
value. After the users have utilized the specified total active
duration for a role, the role cannot be activated again, even
though it may still be enabled. It can be noted that the total
active duration allowed for a role may span a number of
intervals in which the role is enabled. The total active
duration may be specified on per-role and per-user-role basis.
Per-role constraint restricts the total active duration for a
role. Once the sum of all the activation durations of a role
reaches the maximum allowed value, no further activation
of the role is allowed and the current activations are
terminated. Per-user-role constraint restricts the total active
duration for a role by a particular user. Once a user utilizes
the total active duration of his role, he is not allowed to
further activate the role, whereas other users may still
activate the role.

The maximum duration constraint per activation restricts the
maximum allowable duration for each activation of a role.
Once such duration expires for a user, the role activation for
that user becomes void. However, there may still be other
activations of the same role in the system, including one by
the same user in some other session. This constraint can also
be specified on a per role or per user role basis. A per role
constraint restricts the maximum active duration for each
activation of a role for any user, unless there is a per user-role
constraint specified for that user. A per-user-role constraint

restricts the maximum active duration allowed for each
activation of a role by a particular user. Activation duration
can be limited within a prespecified interval.

In some applications, restrictions on the number of
concurrent activations of a role may be required for
controlling access to critical objects or resources. For
example, we may want to ensure that a single user does
not access all the resources while others are denied the
access. Such cardinality restriction on role activation can be
categorized into two types: total n activations constraint and
maximum n concurrent activations constraint. In the first
category, a role is limited to a total of n activations. This
constraint may also be specified on per-role or per-user-role
basis. The per-role constraint allows at most n activations of
a role in a given period of time, irrespective of whether
these activations occur simultaneously in different sessions
or at different times. Similarly, the per-user-role constraint
restricts a total of n activations of a role by a specified user.

In the second category, a role is restricted to n concurrent
activations at any time. A constraint on a per-role basis may
be specified to restrict the number of concurrent activations
of a role to a maximum value. The activation of these roles
may be associated with the same or different users. On the
other hand, the per-user-role constraint restricts the total
number of concurrent activations of a role by a particular
user to a given value. Different users may have different
permissible upper limits on the number of concurrent
activations of the same role.

Activation constraints have the general form

ð½ðI; P ÞjD�; CÞ;

where C represents the restriction applied to a role
activation. For example,

C ¼ ðDactive; ½Ddefault�; activeR total rÞ

corresponds to the total active role duration-per-role con-
straint. ½ðI; P ÞjD� is an optional temporal parameter and
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has the same meaning as given by the duration
constraints. Therefore, similar to the duration constraints,
an activation constraint assumes one of the three forms:
ðI; P ; CÞ, ðD;CÞ, or ðCÞ. The first two expressions are
semantically identical to the expressions for the duration
constraints. Constraint ðCÞ implies that the activation
restriction specified by C applies to each enabling of the
associated role. If C is a per-role constraint, it has an
optional default parameter that can be used to specify the
default value corresponding to the per-user-role restriction.
For example, if C ¼ ðDactive; ½Ddefault�; activeR total rÞ, then
Ddefault indicates that the default per-user-role active dura-
tion is the value applied to all the users assigned to the
role. In case Ddefault is not specified, it is assumed to be
equal to the per-role value, Dactive. Parameters of other
activation constraints can be similarly interpreted.

Fig. 2 illustrates the three different forms of an activation
cardinality constraint C. In Fig. 2a, the constraint c is of
form ðD;CÞ. In this case, the role is enabled in the intervals
ðt1; t3Þ and ðt4; t6Þ. A trigger or a runtime request can enable
this constraint at time t2 (i.e., event “enable c” occurs).
Subsequently, c becomes valid for duration D, which in this
case corresponds to interval ðt2; t5Þ. However, within
interval ðt2; t5Þ, a subinterval ðt3; t4Þ can exist in which role
r is not enabled. The cardinality constraint c implies that the
total number of activations of role r in the intervals ðt2; t3Þ
and ðt4; t5Þ combined should not exceed Nactive.

Fig. 2b illustrates an activation constraint of the form
c ¼ ðI; P ; CÞ. Here, ðt2; t3Þ and ðt6; t7Þ are intervals in ðI; P Þ
and, hence, during each of these intervals the total number
of activations of role r is restricted to Nactive. Fig. 2c shows a
constraint of the form c ¼ ðCÞ, where, for each enabling
period of r, constraint ðCÞ is valid. For example, role r is
enabled by a periodicity constraint in the intervals ðt1; t2Þ,
ðt3; t4Þ, and ðt7; t8Þ. During each of these intervals, at most
Nactive activations of role r are allowed. Furthermore, role r

can also be enabled in interval ðt5; t6Þ because of the
duration constraint ðD; enable rÞ. The activation constraint
c is then also applicable to this interval, for which only
Nactive activations of role r are allowed.

3.3 Runtime Requests, Triggers, and Constraint
Enabling

As mentioned earlier, a user’s request to activate a role is
made at his discretion. In GTRBAC, such a request is
modeled as a runtime event. Similarly, the administrators’
runtime requests to initiate events that may override any
existing valid events are also modeled. Such events can be
used to override a predefined policy to make useful
changes in the policy. For example, an administrator may
initiate events to disable roles detected to be in use by
some malicious users. A relevant requirement in many
application domains is the need of automatically executing
certain actions due to the occurrence of an event, such as
the enabling or disabling of a role. In GTRBAC, we model
such dependencies among events by using triggers. In
addition, the duration constraints on role enabling and
assignments and role activation constraints can be enabled
for a prespecified interval or duration. GTRBAC includes
expressions to enable or disable such constraints.

As shown in Table 1, a user’s runtime request to activate
or deactivate a role can be expressed as: 1) s: activate r
for u after 4t and 2) s: deactivate r for u after 4t.
The priority associated with this request is assumed to be
the same as that of event “assign r to u” that authorizes
the activation of role r by user u. Similarly, an administrator’s
runtime request expression, written as pr : E after 4t is a
prioritized event that occurs 4t time units after the request.
In case the priority and the delay need to be omitted, we set
pr ¼ >, where > represents the highest priority and 4t ¼ 0.

The trigger expression has the form E1; . . . ; En,
C1; . . . ; Ck ! pr : E after 4t, where Eis are simple event
expressions or runtime requests, Cis are status predicates,
pr : E is a prioritized event expression with pr � >, E is a
simple expression such that E 2 fs : activate r for ug, and
4t is a duration expression. It can be noted that because an
activation request is made at a user’s discretion, the event E
should not be “s: activate r for u.” However, event “s:
activate r for u” can trigger other events and, hence, can
be a part of the body of a trigger. Note that the event “s:
deactivate r for u” is allowed to appear in the head of a
trigger as it can be used to enforce access control policy. We
illustrate the GTRBAC specification of an access control
policy through the following example for a medical informa-
tion system.

Example 3.1. Consider the GTRBAC access control policy of
Table 3, from a medical information system. In row 1a,
the enabling times of DayDoctor and NightDoctor roles
are specified as a periodicity constraint. The ðI; P Þ forms
for DayTime (9:00 a.m.-9:00 p.m.) and NightTime
(9:00 p.m. -9:00 a.m.) are as follows:

DayTime ¼ð½12=1=2003;1�; all:Days

þ 10:Hours . 12:HoursÞ;

and

NightTime ¼ð½12=1=2003;1�; all:Days

þ 22:Hours . 12:HoursÞ:

In constraint 1b in Table 3, Adams is assigned to the role
of DayDoctor on Mondays, Wednesdays, and Fridays, whereas
Bill is assigned to this role on Tuesdays, Thursdays, Saturdays,
and Sundays. The assignment in constraint 1c in Table 3
indicates that Carol can assume the DayDoctor role every-
day between 10:00 a.m. and 3:00 p.m. In constraint 2a in
Table 3, users Ami and Elizabeth are assigned to the roles of
NurseInTraining and DayNurse, respectively, without any
periodicity or duration constraints. In other words, their
assignments are valid at all the times. Constraint 2b in
Table 3 specifies a duration constraint of 2 hours for the
enabling time of the NurseInTraining role, but this con-
straint is valid only for 6 hours after the constraint c1 is
enabled. Consequently, once the NurseInTraining role is
enabled, Ami can activate the NurseInTraining role at the
most for two hours.

Trigger 3a in Table 3 indicates that the constraint c1 in
row 2b is enabled once the DayNurse is enabled. As a result,
the NurseInTraining role can be enabled within 6 hours.
Trigger 3b in Table 3 indicates that 10 min after Elizabeth
activates the DayNurse role, the NurseInTraining role is
enabled for a period of 2 hours. As a result, a nurse-in-training

JOSHI ET AL.: A GENERALIZED TEMPORAL ROLE-BASED ACCESS CONTROL MODEL 9



can have access to the system only if Elizabeth is present in the
system. In other words, once the roles are assumed, Elizabeth
acts as a training supervisor for a nurse-in-training. Note that
Elizabeth can activate the DayNurse role multiple times
within a duration of 6 hours after the DayNurse role is
enabled. The activation constraint 4c in Table 3 limits the total
activation time associated with the NurseInTraining role to
2 hours. The constraint set 4 shows additional activation
constraints. For example, constraint 4a indicates that there
can be at most 10 users activating DayDoctor role at a time,
whereas 4b shows that there can be at most 5 users activating
the NightDoctor role at a time.

4 GTRBAC CONFLICT RESOLUTION AND

EXECUTION SEMANTICS

In this section, we address issues related to conflicts that
may arise in the GTRBAC model and propose an approach
for conflict resolution and generating an execution model.
We define set � consisting of all the event expressions,
constraints, and triggers in a GTRBAC system as Temporal
Constraint and Activation Base (TCAB). The set � is
essentially a set of constraints listed in Table 1. Further-
more, we assume users’ and administrators’ runtime
requests as a sequence

RQ ¼ hRQð0Þ; RQð1Þ; . . . ; RQðtÞ; . . .i:

Note, RQðtÞ 2 RQ is a set of runtime requests at time t and
may be empty.

4.1 Conflicts in GTRBAC

Various types of conflicts may arise in a GTRBAC system.
Unambiguous semantics are needed to capture such
conflicting scenarios. For example, both role enabling event
caused by a periodicity constraint and role disabling event
caused by the firing of a trigger can correspond to the same
role and may occur at the same time. Such a scenario gives
rise to conflicts. Essentially, there are three categories of
conflicts that may occur for a given � and a request
sequence RQ, as elaborated in Table 4. These include:

1. Conflicts between events of the same category (type 1
conflicts). Events in the same category are associated
with the same pair of states of a role or assignment.
For example, event “enable r” results in changing
the disabled state of role r to an enabled state whereas

event “disable r corresponds to changing the
enabled state of a role to the disabled state. Similarly,
events “assign r for u” and “deassign r for u”
belong to the same category. The entries ðaÞ � ðeÞ in
Table 4 refer to conflicts among the events belonging
to the same category. A pair of events E1 and E2 in a
row is said to conflict (written as E2 ¼ ConfðE1ÞÞ if
the corresponding condition C holds.

2. Conflicts between events of different categories: (type 2
conflicts). Conflicts may also arise between events of
different categories. For instance, an activation
request “activate u for r” and a role disabling
event “disable r” are conflicting events if they
attempt to occur simultaneously, as a disabled role
cannot be active. Similarly, activation event “acti-
vate u for r” and user-role deassignment event
“deassignu r to u” cannot occur at the same time as
a user may activate a role only if he is assigned to the
role. We also note that events “enable r” and
“s:deactivate r for u” do not conflict, even if
both events occur simultaneously.

3. Conflicts between constraints (type 3 conflicts). Conflicts
may also occur between two constraints defined for
role enabling or role assignment (type 3a shown in
Table 4). For example, a duration constraint on role
enabling, (DR, enable r) and a duration constraint
on role disabling (DR, disable r) may occur at the
same time if both “enable r” and “disable r”
events are valid at the same time. It can be noted that
such conflicts occur because of the underlying
conflicting events.

A conflict can occur between the per-user activation
constraint and the per-role activation constraint
(type 3b) as shown in Table 4. For example, consider
the per-role constraint

ðDactive; ½Ddefault�; activeR total rÞ

and the per-user-role constraint

ðDuactive; u; activeUR total rÞ:

The first constraint indicates that role r is allowed for

an activation duration ofDuactive, whereas the second

constraint specifies that user u is allowed to assume

role r for a total activation duration of Duactive. If

duration Ddefault is specified, then all the users are

restricted to a total activation time of Ddefault. There
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is an inherent ambiguity whether the user u should
be allowed a total activation time of Duactive or
Ddefault. Note, in the per-user constraint if ddefault is not
specified, then we assume Ddefault ¼ Dactive. In other
words, any single user may activate role r for the
entire activation duration of Dactive. Therefore, the
per-user-role constraint will again conflict with the
per-role constraint.

The GTRBAC model uses the notion of blocked events to
resolve conflicts of types 1 and 2, as defined below. When
priorities cannot resolve conflicts, the model uses a negative-
takes-precedence principle to resolve the type 1 conflicts.
According to this principle, disabling of a role takes
precedence over enabling the role and the deactivation of
a role takes precedence over the activation of the role.
Similarly, for type 2 conflicts, the event corresponding to
role disabling and user-role deassignment is preferred over
the activation event, as an enabled role and a valid
assignment are prerequisites for role activation. The
following definition states these conflict resolution rules.

Definition 4.1.1 (Conflict resolution for Type 1 and
Type 2). Let S be a set of prioritized event expressions and

constraints. Let pr : E be a prioritized event expression, where
E is an event and pr 2 Prios. pr : E is said to be blocked by
S, if the following conditions hold:

1. If there exists a q 2 Prios, such that q : ConfðEÞ 2 S
and the following holds:

a. If pr : E and q : ConfðEÞ result in a type 1
conflict, then either

i. E corresponds to E1 in Table 4, and pr � q
or

ii. E corresponds to E2 in Table 4 and q � pr;
b. If pr : E and q : ConfðEÞ result in a type 2

conflict, and E ¼ s : activate r for u.
2. If there exists a valid constraint ð½ðI; P ÞjD�; XÞ that

does not permit event pr : E to occur.

Set of nonblocked events in S is denoted by NonblockedðSÞ.
Furthermore, if both type 1 and type 2 conflicts occur, events
blocked by type 1 conflicts are removed prior to removing events
blocked by type 2 conflicts. In addition, if S has valid constraints
of the form ð½ðI; P ÞjD�; XÞ, events blocked by these constraints
are evaluated last.
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In Definition 4.1.1, condition 1.a.i implies that event “q:
disable r” blocks “pr: enable r” if pr � q. If, however,
pr � q, then according to condition 1.a.ii, the event “q:
enable r” would block the event “pr: disable r.”
Condition 1.a applies to all the conflicts of type 1. Rule 1.b
applies to type 2 conflicts depicted in Table 4. According to
this rule, events associated with role disabling or user-role
deassignment override the role activation events, as role
activation by a user depends on both the role enabling and
user-role assignments. It is important that a role disabling
or user-role deassignment event is not blocked if either one
aims to block an activation event. By resolving the type 1
conflicts first, we ensure that an activation event is blocked
by a role disabling or user-role deassignment that has not
been blocked. Parts b and c of Example 4.1 presented next
illustrate the necessity of handling type 1 conflicts prior to
handling type 2 conflicts. The second part of the definition
indicates that an event may also be blocked by the duration
constraints on role enabling and assignments, and activa-
tion constraints on roles. When several activation requests
for a role are present, some of these activation requests may
need to be blocked to enforce an activation constraint. For
example, assume that there is a cardinality constraint that
says only five activations of role r are to be allowed at a
time. If, at a particular time, seven activation requests
associated with role r are present, the cardinality constraint
on the role will block two of these events. In such a case, a
predefined selection criterion is needed to select the
activation requests that are to be blocked. Such a selection
criterion may depend, for example, on the priority of the
activation requests, or the duration for which the activation
has existed, or their combination. Furthermore, note the
general form of the activation request is “activate r for

u after 4t,” which indicates that a user may request role
activation in advance. The selection criteria can use the
value of 4t to determine activation requests that should be
blocked. Furthermore, once the type 1 and type 2 conflicts
have been resolved, events blocked by constraints following
the resolution rule for the type 3b conflicts are selected. The
following example further illustrates the notion of blocked
events.

Example 4.1. Assume a system with two priorities H ¼ High

and VH ¼ VeryHigh with H < VH. We consider the follow-
ing three cases of increasing complexity:

1. Let

S ¼fH : enable r0; H : disable r0; VH : enable r1;

H : disable r1g:

According to condition 1.a.i of Definition 4.1.1,
NonblockedðSÞ ¼ fH : disable r0; VH : enable r1g,
since event “H:enable r0” is blocked by event
“H:disable r0.” Similarly, according to condi-
tion 1.a.i, event “H:disable r1” is blocked by
“VH:enable r1.”

2. Next, we consider a more complex case for

S ¼fH : enable r0; H : disable r0; VH : enable r1;

H : disable r1 VH : ðs : activate r1 for uÞg:

Assume we first resolve type 2 conflicts and then
type 1 conflicts. In this case, event “VH: (s:ac-
tivate r1 for u)” is removed first as it is

blocked by the event “H:disable r1” as per
condition 1.b.i. We then encounter the case where
NonblockedðSÞ ¼ fH : disable r0; VH : enable r1g.
Note that event “H:disable r1,” that blocks
event “VH:(s:activate r1 for u),” which itself
is a blocked event. Hence, blocking of event
VH:(s:activate r1 for u) by H:disable r1 is
not correct.

Alternatively, assume we first remove type 1
conflicts, which results in

NonblockedðSÞ ¼fH : disable r0; VH : enable r1;

H : ðs : activate r1 for uÞg:

In the next step, we remove any type 2 conflicts.
As event “H:(s:activate r1 for u)” is not
blocked by any event, the final result is

NonblockedðSÞ ¼fH : disable r0; VH : enable r1;

H : ðs : activate r1 for uÞg:

3. S is further extended as follows:

S ¼fH : enable r0; H : disable r0; VH : enable r1;

H : disable r1; VH : ðs : activate r1 for u1Þ;
H : ðs : activate r1 for u2Þ; enable cg;

where c ¼ ð1; H : activeR Total r1Þ. After resolving
type 1 and type 2 conflicts, we generate

NonblockedðSÞ ¼fH : disable r0; VH : enable r1;

VH : ðs : activate r1 for u1Þ;
H : enable c; H : ðs : activate r1

for u2Þg:

Note that constraint c implies that only one
activation of r1 is permitted. Thus, one of the
activation requests must be blocked. Because of
the low priority, event “H:(s:activate r1 for

u2)” is blocked. Hence, the final set of nonblocked
events generated is

NonblockedðSÞ ¼fH : disable r0; VH : enable r1;

VH : ðs : activate r1 for u1Þg:

It can be noted that type 3a conflicts associated with

constraints are mainly due to the underlying conflicting

events associated with the constraint expressions. Hence,

the resolution of type 1 conflicts in Definition 4.1.1 is

applicable to type 3a conflicts as well. To resolve type 3b

conflicts, we use a combination of “per-role-takes-pre-

cedence over the per-user-role constraint” and “more

specific constraint takes precedence” rules. These rules

are formally defined below.

Definition 4.1.2: (Conflict resolution for Type 3b con-
flicts). Let ðdna; ½dndefault�; pr : activeR x rÞ be a per-role
constraint and ðdnua; u; activeUR x rÞ be a per-user-role
constraint defined for the same role r and

R x 2 fR Total; R Max;R n; R cong:
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Then, the following rules apply:

1. If there are activation constraints of the same type for a
role, the highest priority constraint blocks the others as
per Definition 4.1.1.

2. With respect to the per-role parameter dna and the per-
user-role parameter dnua, the former overrides the
latter.

3. With respect to the default parameter dndefault and the
per-user-role parameter dnua, the more-specific per-
user-role constraint overrides the less-specific per-role
constraint. In other words, when per-role activation
constraint ðdna; dndefault; pr : activeR x rÞ and per-
user-role activation constraint

ðdnua; u; activeUR x rÞ

are both specified, user u has constraint dnua, but not
dndefault.

4. The following conditions hold: 1) da � dua and
2) da ¼ n:dua, for some n > 0. In other words, the
value of per-user-role should not exceed the value of
per-role.

Note, in Rule 3 the more-specific per-user-role constraint
overrides the less specific per-role constraint as both the
parameters dndefault and dnua refer to, for example, the
number of roles that can be associated with a user at a
particular time. For Rule 2, however, parameters dna and
dnua do not refer to the same information. If parameter dna

refers to the total number of activations of a role that is
allowed, then dnua refers to the maximum number of
activations of a role allowed for a particular user.
Intuitively, the total number of activations of a role by a
single user should not exceed the total number of activa-
tions allowed for that role. Conflict resolution Rule 2
ensures that the value specified for a role binds the value
specified for a user for that role.

4.2 GTRBAC Execution Model

Based on the rules for conflict resolution defined in the
previous section, we now discuss the execution semantics of
the GTRBAC model. In this section, we define system states
and traces, and construct an execution model for GTRBAC.
We also provide a definition to capture events that are
caused at each instant of time and present a state generation
algorithm for constructing new states from the existing
states based on the current set of valid constraints.

The dynamics of occurrences of events and various states
of role enablings and activations in GTRBAC are repre-
sented as a sequence of snapshots. Each snapshot provides
the current set of prioritized events and the status of role,
user-role, and role-permission assignments as well as that
of the activation constraints. To efficiently represent status
information in form of snapshots, we first define the
following two structures, called u-snapshot and r-snapshot.

Definition 4.2.1 (u-snapshot/ r-snapshot). We define:

1. A u-snapshot for user u with respect to a role r as a
tuple ðu; r; dua; nua; dm; nm; Su; DuÞ, where r 2 Roles,
u 2 Users such that u is assigned to r and the
constraint parameters are as defined in Table 5.

2. An r-snapshot for a role r as a tuple

ðr; dra; nra; drm; nrm; status; Pr; UrÞ;

where r 2 Roles and the other constraint variables are
as defined in Table 5.

These snapshots are used to model events, status of various
roles and assignments, and status of constraints obtained by
two distinct sequences EV and ST , respectively. The model
in the form of system trace is defined below.

Definition 4.2.2 (System Trace). A system trace—or simply a
trace—consists of infinite sequences of EV and ST , such that
for all integers t � 0:
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. The tth element of EV , denoted as EV ðtÞ, is a set of
prioritized event expressions. Intuitively, this is the set
of events which occur at time t.

. The tth element of ST , denoted as ST ðtÞ, is a set of r-
snapshots corresponding to existing roles at time t.
Algorithm ComputeST in Fig. 3 is used to compute
ST ðtÞ for each t.

A trace is called canonical if ST ð0Þ = set of r-snapshots of the

form ðr;1;1;1;1; disabled;�;�Þ for all roles r in the

system, i.e., all r-snapshots are initialized to

ðr;1; ;1;1;1; disabled;�;�Þ:

We assume that a system starts from an initial state at time

t ¼ 0, where all the roles are disabled and no user-role

assignments, role-permission assignments, or valid activa-

tion constraints are active. As the time progresses, the events

listed in Table 4 take place, thus changing status of various

roles and assignments. The notion of a GTRBAC trace with

such an initial state is represented by a canonical trace.
The above definition of a trace enforces the intended

semantics of events. The set NonblockedðEV ðtÞÞ contains

the maximal priority events that occur at time t. We note

that � and RQ determine a unique state. It can also be

noted that the state information contained in ST ðtÞ
concerning the active state of roles depends on the

activation constraints enabled at time t. A duration

constraint or role activation constraint ðcÞ is valid if

event “enable c” is in NonblockedðEV ðtÞÞ. Therefore,
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given a previous state, event set and the valid activation
constraint set, the following proposition holds.

Proposition 4.1 [7]. Given a sequence EV , and an initial status

S0, a unique trace ðEV ; ST Þ is generated with ST ð0Þ ¼ S0.

The proposition implies that a procedure for generating a
unique trace can be developed. Accordingly, we describe an
algorithm ComputeST, shown in Fig. 3, which computes
the next state from an existing state using a given set of
events and valid constraints. Based on the unblocked events
and the current set of valid constraints, the algorithm
updates the state information contained in r-snapshots and
u-snapshots. All the events in NonblockedðEV ðtÞÞ happen at
time t. The state information represented by the r-snapshots
in ST ðtÞ contains the effect of the events in

NonblockedðEV ðtÞÞ

on state ST ðt� 1Þ. In Step 1 of the algorithm shown in Fig. 3,
all nonblocked assignment/deassignment and deactivation
events are processed. In Step 2, the role disabling events are
processed. Note, when a role is disabled, the role-specific
and the user-specific parameters are reset to 1, which
indicates that if there are no per-role or per-user-role
constraints, then the activation duration and the number of
concurrent activations are unlimited. Note, the conflict
resolution rules for type 2 conflicts indicate that the role
disabling and the user-role deassignment events affect the
active sessions related to the corresponding roles and users.
Hence, it is important to first process these events and then
update the information related to active roles that remain
active for the next unit duration.

In Step 3 of the algorithm (Fig. 3), the values of per-role
parameters in r-snapshots are reverted to their initial value
1 corresponding to those activation constraints that
become invalid. In Step 4, per-role constraint variables in
r-snapshots of the newly enabled roles are initialized. In
Step 5, new activations of roles are processed. In this
process, first, the cardinality variables per-role and per-user-
role are decremented to find the remaining number of
activations allowed after this activation request has been
granted. Next, the users’constraint variables are initialized
and session information is entered to the session list. In Step
6, the remaining active duration of each role is decremen-
ted. The total role duration is also adjusted accordingly. For
the disabled roles, the duration constraint variables, for
both roles and users assigned to them, are decremented.
Decrementing the duration constraint variables take care of
any activation constraint that is valid at the time the
associated role is disabled. The following theorem shows
that the algorithm terminates correctly. Also, the theorem
provides the complexity of the algorithm.

Theorem 4.1 (Correctness and complexity of ComputeST):

Given EV ðtÞ, ST ðt� 1Þ, and �, the algorithm ComputeST:

1. produces ST ðtÞ such that the updated status of
r-snapshots and u-snapshots in ST ðtÞ satisfies all the
constraints in � and the valid activation constraints for
the interval ðt; tþ 1Þ, and

2. terminates, and has complexity

OðnRðnU þ nP þ nSmÞÞ;

where nR, nP, nU, and nSm represent the number of
roles, permissions, users, and the maximum allowable
number of sessions, respectively, in a system.

Note that each case of Step 1 has a complexity of the order
of either nR:nU (for user-role assignment/deassignment) or
nR:nP (for role-permission assignment/deassignment). For
Steps 2, 3, 4, and 6, the complexity is a constant multiple of
nR. For Step 5, the complexity is in the order of nR:nS ; this is
because each activation refers to a session and each session
can have at most nR roles. Hence, the complexity of the
algorithm is OðnRðnU þ nP þ nSmÞÞ. A detailed proof of the
theorem can be found in [10].

Given a � and a request stream RQ, we need to identify
events in EV . Intuitively, each event should be caused by
some element of � or RQ. When a trigger causes a
prioritized event, the event expressions in the body of the
trigger should not be blocked. Events in EV are formally
defined as follows.

Definition 4.2.3 (Caused Events). Given a trace, a � and a
request sequence RQ, the set of caused prioritized events at
time t, is the least set Causedðt; EV ; ST ;�; RQÞ (in short,
written as CSetðtÞ below) that satisfies the following
conditions:

1. If ðI; P ; pr : EÞ and t 2 SolðI; P Þ, then pr : E
2 CSetðtÞ. (for periodicity constraint)

2. I f ðpr : E after 4tÞ 2 RQðt�4tÞ4t � tÞ, then
pr : E 2 CSetðtÞ; (for runtime request)

3. If

½E1; . . . ; En; C1; . . . ; Ck ! p : E after 4t� 2 �

and the following conditions hold, then pr : E
2 CSetðtÞ; (for triggers):

a. 0 � 4t � t.
b. 8Ci, such that ð1 � i � kÞ, Ci holds (Ci is C or

Ct as shown in Table 2).
c. 8Ei, such that ð1 � i � nÞ, pr : Ei 2 EV ðt�4t

not blocked by EV ðt�4tÞ.
4.

a. If c ¼ ðI; P ;XÞ 2 � and t 2 SolðI; P Þ. (for
duration/activation constraints)

i. 0 � 4t ¼ ðt� t1Þ � Dx.
ii. ½B ! pr : E after 4t� 2 � or a runtime

request pr : E 2 RQðt� t1Þ, as a result of
which pr : E 2 CSetðt� t1Þ not blocked
ðEV ðt� t1ÞÞÞÞÞ, then

pr : enable c 2 CSetðtÞ :

b. If c ¼ ðD;XÞ 2 �, where x 2 fU; R; Pg, and if
there exists a pair t1; t2 such that

i. t1 � t2 and 4t1 ¼ ðt� t1Þ � D.
ii. ð9½B ! pr : enable cafter 4t1� 2 � O R

pr : enable c 2 RQðt� t1Þ as a result of
which enable c 2 CSetðt� t1Þ and is not
blocked by EV ðt� t1ÞÞ, then

pr : enable c 2 CSetðtÞ;
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Furthermore, in addition to (a) and (b), if X ¼
ðDx; pr : EÞ 2 � is a duration constraint such
that x 2 fU; R; Pg, and the following condition
holds

i. 9½B ! pr : E after 4t2� 2 � OR

pr : E 2 RQðt� t2Þ;

as a result of which pr : E 2 EV ðt� t2Þ and
is not blocked by EV ðt� t2Þ,

then pr : enable c 2 CSetðtÞ and

q : enable c 2 CSetðtÞ;

where q is the priority specified for c.

Condition C1 implies that all the events scheduled via a
periodic event are added into the set

Causedðt; EV ; ST ;�; RQÞ:

Condition C2 indicates that all the explicit runtime requests
are added into the set Causedðt; EV ; ST ;�; RQÞ. Similarly,
Condition C3 implies that all the events, scheduled through
a trigger, are added to Causedðt; EV ; ST ;�; RQÞ, provided
that the conditions Cis specified in the body of the trigger
are satisfied and each of the events Eis occurs at time
t�4t. Furthermore, it is necessary that events Eis are not
blocked by any other concurrent event, as indicated by
condition C3(c).

Condition C4 implies that all the events not blocked by
valid duration or activation constraints are added to
Causedðt; EV ; ST ;�; RQÞ. C4(a) defines the condition that
must be satisfied by caused events associated with either a
duration or activation constraint. Note that events restricted
by a duration or activation constraint are caused by either
the runtime requests or by the triggers and are not activated
by any periodicity constraints. Furthermore, such events
must not be blocked by any concurrent event. These
conditions are ensured by condition C4(a)(ii).

Condition C4(a)(i) ensures that an event is still valid only
if the duration Dx associated with the event has not expired.
Similarly, C4(b) implies that all the events that are
associated with the duration or activation constraints of
the form c ¼ ðD;XÞ are considered. Note, as the start time
of D is not known, semantically we require that c itself be
enabled for a duration D. In other words, “enable c” is a
caused event for D duration. Furthermore, “enable c”
should not be blocked by any concurrent event at that time.
The condition C4(b)(ii) ensures that these conditions hold.
Condition C4(b)(iii) defines those events which are re-
stricted by the constraint c.

It can be noted that the TCABs and request streams
determine changes in a system state at each time instant.
Next, we define the system behavior induced by TCABs
and request streams and address the safeness issue.
Intuitively, safeness implies that for each event in EV ðtÞ,
there is a definite and known cause.

Definition 4.2.4 (Execution Model). A trace ðEV ; ST Þ is an
execution model of a TCAB � and a request stream RQ, if for
all t � 0, EV ðtÞ ¼ Causedðt; EV ; ST ;�; RQÞ.

It is possible that some specifications may yield no
execution model, whereas some ambiguous specifications

may admit two or more such models [7]. For instance, if an
event in EV ðtÞ, say enable r, triggers another event which
in turn causes event disable r to occur, the later one is
added in EV ðtÞ. According to the conflict resolution rule,
event disable r blocks enable r. Such a situation is
undesirable as the event enable r that is the cause of event
disable r is itself being blocked by the event disable r.
However, if such cases are excluded, the GTRBAC
specification yields exactly one model for all the possible
runtime requests. There are simple syntactic conditions that
prevent any undesirable behavior as a result of conflicting
events. Such syntactic conditions—called safeness—are
introduced next.

4.3 Safe TCABs

We introduce a safeness condition that can be verified in
polynomial time and guarantees that a given TCAB has one
and exactly one execution model. The notion of dependency
graph is essential to analyze the safeness of the execution
model. Each TCAB � can be represented as a directed
labeled dependency graph DGR ¼ hN;EDi, where N , a set
of nodes, represents the set of all prioritized event
expressions pr : E that occur in the head of a trigger
½B ! pr : E� 2 �, and ED (the set of edges) consists of the
following triples, for all triggers ½B ! pr : E� 2 �, for all events
E0 in the body B, and for all nodes q : E0 2 N ,

1. hq : E0;þ; pr : Ei and
2. hr : ConfðE0Þ;�; pr : Ei, for all ½r : ConfðE0Þ� 2 N such

that q � r.

Each triple ðN1; l; N2Þ represents an edge from nodeN1 to
N2, labeled by l. Given the initial status of the roles and
assignments, safeness of � implies that the system’s behavior is
unambiguously determined by �, and RQ. Bertino et al. [7]
have shown that for the TRBAC event set, � is safe if its
dependency graph DGR contains no cycles in which some
edge is labeled “-.” GTRBAC event set subsumes the
TRBAC set. Furthermore, the triggers do not allow event
“activate r for u” in the head of the trigger, as indicated
in Section 4, whereas events can have dependencies
expressed in a trigger exactly as specified in TRBAC.
Hence, the dependency graph analysis also applies to the
GTRBAC. Note that safeness is a sufficient condition for a
predictable system behavior. Although it is difficult to find
the necessary conditions, even if found, they offer little
practical help because such syntactic properties fail to
recognize that the ill-formed portions of a program may be
harmless because they can never be activated [7]. Checking
existence and uniqueness of a model are, in general,
NP-hard problems [7]. Algorithm SafetyCheck illustrated
in Fig. 4 is used for the safeness verification of a TCAB. The
first part of the algorithm builds the dependency graph
associated with �, and the second part checks for cycles
with a negative edge. The correctness of the algorithm can
be proven from the results reported in [7]. If � is found to be
unsafe, then we need to remove a trigger to ensure that a
cycle with a negative edge does not exist in the dependency
graph of �.

5 GTRBAC TEMPORAL HIERARCHIES AND

SEPARATION OF DUTY CONSTRAINTS

Hierarchies and Separation of Duty constraints play crucial
roles in policy specification and security management in an
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organization. By allowing permission-inheritance, role

hierarchies reduce overhead associated with the permission

administration [9], [16]. SoDs contain useful restrictions for

avoiding possible fraud that users may commit by carrying

out conflicting activities [9], [15], [18]. In this section, we

present formal semantics of hierarchies and SoDs in the

context of time. In a temporal context, it is essential to

establish unambiguous semantics of permission-inheritance

and role-activation within a hierarchy when enabling and/

or activation times of hierarchically related roles are

considered. In a role hierarchy, permission-inheritance

semantics identify the permissions that a role can inherit

from its junior roles. Similarly, once a user is assigned a

role, the role-activation semantics identify the set of junior

roles that can be activated by that user.
Prior to presenting the temporal hierarchies and time-

based SoDs, we introduce four status predicates, namely,

can activateðu; r; tÞ; can acquireðu; p; tÞ;
can be acquiredðp; r; tÞ; and acquiresðu; p; s; tÞ

as defined in Table 6. Predicate can activateðu; r; tÞ
indicates that user u can activate role r at time t, implying

that user u is implicitly or explicitly assigned to role r.

Similarly, can be acquiredðp; r; tÞ implies that permission p

is implicitly or explicitly assigned to role r, whereas

can acquireðu; p; tÞ indicates that role p is implicitly or

explicitly assigned to u. acquiresðu; p; s; tÞ implies that u

acquires permission p at time t in session s. Axioms in

Table 6 list the key relationships among these predicates

and identify the permission-acquisition and role-activation

semantics in GTRBAC.
Axiom (1) states that if a permission is assigned to a role,

the permission can be acquired through that role. According
to axiom (2), all the users assigned to a role can activate that
role. Axiom (3) indicates that if a user u can activate a role r,
then all the permissions that can be acquired through r can be
acquired by u. Similarly, axiom (4) states that if there is a user
session in which a user u has activated a role r, then u
acquires all the permissions that can be acquired through role
r. We note that axioms (1) and (2) indicate that permission-
acquisition and role-activation semantics are governed by
the explicit user-role and role-permission assignments.

5.1 Temporal Role Hierarchies

A role hierarchy expands the scope of the permission-
acquisition and role-activation semantics beyond the
explicit assignments through the hierarchical relations
among roles. We define three categories of hierarchies:

1. unrestricted hierarchies, in which permission-inheri-
tance and role-activation semantics are not affected
by the presence of any timing constraints on the
hierarchically related roles,

2. enabling time restricted hierarchies, in which the
permission-inheritance and role-activation seman-
tics depend on the enabling times of the hierarchi-
cally related roles, and
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3. activation time restricted hierarchies, in which the
permission-inheritance and role-activation seman-
tics depend on the active states of the hierarchically
related roles.

Table 7 lists the hierarchies and the associated constraints. As
shown in the table, unrestricted and enabling-time restricted
hierarchies may be of three types: inheritance-only hierarchy
(I-hierarchy), activation-only hierarchy (A-hierarchy), or
inheritance-activation hierarchy (IA-hierarchy). Condition c
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for the I-hierarchy implies that if ðx � tyÞ, then according to
Axiom (1), the permissions that can be acquired through x
include all the permissions assigned to x and all the
permissions that can be acquired through role y, as shown by
condition (c) in Table 7. Condition c corresponding to
A-hierarchy implies that if user u can activate role x, and
x �t y, then he can also activate role y, even if u is not explicitly
assigned to y. Implicitly, u cannot acquire y’s permissions by
merely activating x. The IA-hierarchy includes both permis-
sion-inheritance and role-activation semantics.

When the enabling intervals associated with hierarchi-
cally related roles partially overlap, we need to consider the
issue of how inheritance and activation semantics apply in
intervals where only one of the roles is enabled. In order to
capture the inheritance and activation semantics when the
enabling times of the hierarchically related roles partially
overlap, we introduce the concept of weakly restricted and
strongly restricted hierarchies. The weakly restricted hierar-
chies allow inheritance or activation semantics in the
nonoverlapping intervals, whereas the strongly restricted
hierarchies allow inheritance and activation semantics only
in the overlapping intervals. According to the condition of
weakly restricted I-hierarchy, if ðx �w;t yÞ, only role x needs to
be enabled at time t for the inheritance semantics to apply.
Role ymay or may not be enabled at that time. Similarly, for
the Aw-hierarchy, x �w;t y, only role y needs to be enabled.

In activation-time restricted hierarchies, inheritance de-
pends on the activation states of the hierarchically related
roles. In an activation-time hierarchy ðAa-hierarchyÞ a user
can activate the junior role only if he has already activated
the senior role. Note that the Aa-hierarchy relation allows
activation of the junior and senior roles in the same or
different sessions. A session-specific activation-time hierarchy
ðAsa-hierarchyÞ is a more restrictive form of Aa-hierarchy,
where simultaneous activation of both the senior and junior
roles is allowed only within the same session. Another level
of restriction is also implied by the strong session-specific
activation time hierarchy ðAssa-hierarchyÞ. In Assa-hierarchy,
the additional condition implies that both the roles must be
active in the same user session. It can be noted that Aa, Asa,

and Assa-hierarchies have mutually inclusive semantics in
that they allow juniors to be activated only if the senior is in
the active state.

The exclusive-activation-time hierarchy, represented as
Ae-hierarchy, defines a mutually exclusive semantics to a
hierarchy relation. The three conditions for Ae-hierarchy
imply that only one of the hierarchically related roles can be
activated at a time. Furthermore, when a role is activated
the permissions of its juniors are not inherited. The
IAe-hierarchy extends Ae-hierarchy with an additional
condition that if a role is activated, permissions that can
be acquired through its junior are also acquired.

In a given set of roles, various inheritance relations may
exist. Therefore, in order to ensure that the senior-junior
relation between two roles existing in one type of hierarchy
is not reversed in another, the following consistency
property needs to be satisfied in a role hierarchy.

Consistency Property 5.1. Let < f > and < f 0 > be
hierarchies such that < f 0 > 6¼ < f > , and x and y be distinct
roles such that x < f > y, then the condition :ðy < f 0 > xÞ
must hold.

5.2 Time-Based Separation of Duty Constraints

RBAC models allow static and dynamic SoD constraints

(SSoD and DSoD). We can bind an SoD constraint to be

applied in a specific set of intervals by using periodicity

constraints of the form ðI; P ; SoDÞ. Similarly, a duration

constraint can be specified for an SoD as ð½I; P jD; �Dx; SoDÞ.
However, different semantic interpretations of the con-

straint ðI; P ; SoDÞ or ð½I; P jD; �SoDÞ can exist. Before

presenting such interpretations of a periodicity constraint

ðI; P ; SoDÞ, we first observe that for a single interval, say �,

the constraint expression ð�; SoDÞ can be interpreted in two

ways, as defined for weak and strong forms of time-based

SSoD in Table 8.
The weak form ð�; SSoDW Þ implies that within the

specified interval there does not exist a time instant in
which conflicting roles are assigned to the same user.
ð�; SSoDW Þ does not, however, restrict conflicting roles
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from being assigned to the same user at different time
instants. The strong form ð�; SSoDSÞ implies that within the
specified interval, if there is an instant in which a role, say r,
is assigned to a user, then at no other instant in � can the
user be assigned to a role that conflicts with r. By using
these two forms, we obtain three semantic interpretations of
periodicity constraint ðI; P ; SSoDÞ, as listed in the Table 8.
The weak form ðI; P ; SSoDW Þ implies that at each time
instant in ðI; P Þ, a user should not be assigned to conflicting
roles. ðI; P ; SSoDW Þ, however, allows a user to be assigned
to two conflicting roles at different time instants. The strong
form ðI; P ; SSoDSÞ implies that for each recurring intervals
in ðI; P Þ, the strong form of interval constraint ð�; SSoDSÞ
applies. The extended strong form ðI; P ; SSoDESÞ implies
that there do not exist two or more time instants in ðI; P Þ for
which a user is assigned to conflicting roles. The weak,
strong, and extended strong forms also exist for the duration
constraints of the form ð½I; P jD�; Dx; SSoDÞ.

Note that Table 8 defines time-based semantics of the

SSoD constraint only. The weak, strong, and extended strong

forms also exist for periodicity and duration constraints of

the forms ðI; P ;DSoDÞ and ð½I; P jD�; Dx DSoDÞ on DSoD

constraints. These forms capture all the possible ways to

express the needed semantics of SoDs with intervals

associated with them.

5.3 Examples of Temporal Hierarchies and SoD
Constraints

In this section, we present a few examples to illustrate the use
of temporal hierarchies and SoD constraints. Examples 5.1
and 5.2 show applications of temporal hierarchies, whereas
Example 5.3 illustrates the application of time-based SoD
constraints.

Example 5.1. Consider three roles PartTimeDoctor, Day-

Doctor, and NightDoctor forming a hierarchy as shown in

Fig. 5a. The senior role PartTimeDoctor is enabled in

intervals (3:00 p.m., 6:00 p.m.) and (7:00 a.m., 10:00 a.m.).

As PartTimeDoctor is related to the DayDoctor and

NightDoctor through IW -hierarchy, all the permissions of

roles DayDoctor and NightDoctor are inherited by the

PartTimeDoctor role in both the intervals (3:00 p.m. -

6:00 p.m.) and (7:00 a.m. - 10:00 a.m.).
Next, we replace the IW -hierarchy with IS-hierarchy as

shown in Fig. 5b. According to the definition of the
IS-hierarchy, only the permissions of role DayDoctor are
inherited by the PartTimeDoctor role in the first interval

(3:00 p.m. - 6:00 p.m.), as both the roles are enabled
during this interval. The second enabling interval
(7:00 a.m. - 10:00 a.m.) of the PartTimeDoctor role
overlaps with the enabling times of the two junior roles.
The subinterval of interval (7:00 a.m. - 10:00 a.m.) that
overlaps with the enabling interval of role DayDoctor is
(9:00 a.m., 10:00 a.m.). Hence, in interval (9:00 a.m.,
10:00 a.m.), the PartTimeDoctor role inherits the permis-
sions of the DayDoctor role only. Similarly, the sub-
interval of interval of (7:00 a.m. - 10:00 a.m.) associated
with of the PartTimeDoctor that overlaps with the
enabling interval of the NightDoctor role is (7:00 a.m. -
9:00 a.m.). Hence, according to the definition of
IS-hierarchy, role PartTimeDoctor inherits only the Night-
Doctor role’s permissions in interval (7:00 a.m. -
9:00 a.m.). Note, the use of IS-hierarchy in the second
case captures the fact that the permissions related to
roles DayDoctor and NightDoctor are mutually exclusive.

Example 5.2. As an application ofAssa andAe-hierarchies, we
consider the Bell-LaPadula’s model of multilevel security,
which assigns subjects andobjects security levels that form
a lattice and defines two rules to restrict information flow
[14]. The first rule, called simple security property, states that
a subject s can read an object o if and only if lðsÞ � lðoÞ,
where lðsÞ and lðoÞ denote the security levels of the subject
and object, respectively. The second rule, called * property,
states that that a subject s canwrite an object o if and only if
lðoÞ � lðsÞ. It has been shown that these Bell-LaPadula
rules can be expressed using RBAC constraints on user-
role assignment, sessions, and hierarchies [14]. Consider a
multilevel system consisting of security levels La, Lb, Lc,
and Ld forming a lattice as shown in Fig. 6. Fig. 6a shows
theGTRBAChierarchy that represents the two rules.Here,
Wx and Rx represent the write and read roles that
correspond to security level Lx. A user with a clearance
of Lx is assigned the roleRx. Because of theAssa-hierarchy
between thewrite and read role pairs, a user at a particular
level can activate only the associated read-write role pairs.
However, the I-hierarchy amongwrite roles and read roles
allow the simple and *properties of the BLP model. In some
systems, a user may be allowed to use his assigned
clearance level or levels below it. Such a case can be
captured by the GTRBAC hierarchy shown in Fig. 6b. A
user with a clearance of Lx is assigned to role Rx. The
IAe-hierarchyallowsauser at aparticular level to activate a
read-role at that level or a role below the user’s clearance
level. As mentioned earlier, the Assa-hierarchy relations
allow a read-write role pair to be acquired at the given
level. Osborn et al. provide such transformation for
different variations of the BLP model by defining various
constraints [14]. The GTRBAC hierarchies shown in Fig. 6
provide a more straightforward representation.

Example 5.3. Suppose that a doctor can assume either
DayDoctor or NightDoctor role on a given day, but not
both. Consider the strong SSoD:

ðð½1:1:2003;1�;WorkingDaysOfWeekÞ; SSoDS

ðfDayDoctor;NightDoctorg; 00Smith 00ÞÞ:

According to this condition, starting on 1.1.2003, the
SSoDW constraint applies every five working days of a
week. In other words, for a particular week, if Dr. Smith is
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assigned to role DayDoctor, he cannot be assigned to the
NightDoctor role on any of the working days in that week.
Next, consider the extended strong SSoD: (([1.1.2003, 1],
WorkingDaysOfWeek, SSoDES ({DayDoctor, NightDoctor},
“Smith”)). It implies that Dr. Smith is assigned to only one
role for all the working days after 1.1.2003.

5.4 Safety of GTRBAC with Temporal Hierarchies
and SoD Constraints

The addition of SoD constraints and temporal hierarchies to
the list of constraints in Table 1 requires extending the
notion of blocked events and TCAB safety as they introduce
new scenarios in which events may be blocked or unsafe
conditions may occur.

In particular, in order to enforce specified SoD con-
straints, certain events may need to be blocked. Ahn et al.
show that both SSoD and DSoD constraints can be
expressed as cardinality constraints with respect to given
user and role sets [1]. For example, given a conflicting role
set R and a user u, the DSoD implies that the number of
roles from set R that user u can activate at a particular time
is restricted to one. Thus, by using a condition similar to
condition C4 of Definition 4.2.3 associated with the
activation cardinality constraint, the events added to
Causedðt; EV ; ST ;�; RQÞ in the presence of the SoD con-
straints can be easily expressed.

It can be noted that only the addition of Assa-hierarchy
needs to be evaluated with respect to the safeness of �. For
example, algorithm SafetyCheck can detect unsafe situa-
tions such as the presence of a trigger pair ðenable x ! pr :
E; pr : E ! disable xÞ in �. However,

� ¼factivate x for u ! pr : E;

pr : E ! s : deactivate y for ug

is considered safe by algorithm SafetyCheck as the events
in triggers are of different categories for which there is no

conflict. However, if we add Assa-hierarchy between roles x

and y, i.e., if

� ¼factivatio x ! pr : E;

pr : E ! s : deactivate y for u; ðx �ssa;t yÞg;

then � becomes unsafe. To illustrate this point, suppose that

initially

EV ðtÞ ¼ fs : activate x for u; s : activate y for ug:

As the events are not blocked, the pair of triggers in �

generate

EV ðtÞ ¼ fs : activate x for u; s : activate y for u;

s : deactivate y for u; pr : Eg:

Note, event “s:activate y for u” is now blocked by the

event “s:deactivate y for u,” resulting in

NonblockedðEV ðtÞÞ ¼ fs : activate x for u;

s : deactivate y for u; pr : Eg:

As Assa-hierarchy requires that both the roles x and y be

active simultaneously in a session, the hierarchy constraint

will block the event “s:activate x for u.” Hence, event

“s:activate x for u” causes event “s:deactivate y for

u” which blocks the former event. Conflicting events due to

Assa-hierarchy are shown in Table 9. Note that these events

are essentially type 2, as the conflicting events are of

different categories. Algorithm SafetyCheck needs to be

extended to include a check for cycles containing events E1

and E2 with label “-.” Note that these conflicting scenarios

are introduced because an Assa-hierarchy, in addition to the

role-activation semantics, defines a session-based con-

straint. Except for the Assa, Ae, and IAe-hierarchies, the

other hierarchies define only the permission-inheritance

and role-activation semantics and, hence, they do not
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introduce such conflicting scenarios. Although Ae and
IAe-hierarchies are constraints, they do not create any
unsafe conditions. If ðx �e;t yÞ is present in � and events
“s:activate x for u” and “s:activate y for u” both
occur, one of the events is blocked. Furthermore, an
activation event cannot cause another activation event to
occur that blocks the former event because a trigger head
cannot contain an activation event. Hence, no unsafe
condition is introduced.

6 RELATED WORK

The need for supporting constraints in an RBAC model has
been addressed by many researchers. In particular, the
attention has been focused on supporting separation of duties
(SoD) constraints [1], [6], [11], [13], [15], [18]. Ferrariolo et al.
[8] propose an RBAC model that supports the cardinality
constraints. Sandhu et al. present a framework of four RBAC
models [16]. In [1], Ahn et al. propose RCL2000—a role-
based constraint specification language. Bertino et al. have
proposed a logic-based constraint specification language
that can be used to specify constraint on roles and users and
their assignments to workflow tasks [6]. However, none of
these models address temporal constraints. Bacon et al. have
proposed the OASIS model for active security and have
addressed some context-based access control requirements
of large-scale systems [4]. It allows evaluation of dynamic
user credentials and context conditions and uses precondi-
tions to capture dependencies. The OASIS model, however,
does not address temporal constraints and simply assumes
that an implicit support for capturing events is available in
the implementation platform. GTRBAC triggers provide a
more general framework for capturing timing context and
system events. With the additions of predicates to capture
context information, all the functionalities provided by the
OASIS model can be easily captured. The TRBAC model
proposed by Bertino et al. [7] is the first known extension to
an RBAC model that addresses the temporal constraints.
Bertino et al. propose time-based access control model in [5]
that supports temporal authorization and derivation rules in
a non-RBAC environment. Atluri et al. [3] propose a
Temporal Data Authorization Model (TDAM) that can express
access control policies based on the temporal characteristic
of data, such as valid and transaction time. Furthermore,
TDAM does not support constraints on roles. Hence,
temporal constraints that can be expressed in TDAM are
different from those that can be expressed in the proposed
GTRBAC model. The GTRBAC model can capture temporal
characteristic of data only at the level of permission by using
time-constrained role-permission assignments and triggers
only. TDAM can, hence, augment the capabilities of the
GTRBAC model. Unlike TDAM, GTRBAC also captures
temporal characteristics of users and system/organizational

functions represented by roles. Work related to hierarchies
and separation of duty constraints can be found in [11], [13],
[15], [16], [17], [18]. To the best of our knowledge, hierarchies
and separation of duty constraints with temporal semantics
have not been addressed in the literature.

7 CONCLUSIONS

We have proposed a generalized temporal role-based access
control model that allows specification of a comprehensive
set of temporal constraints. In particular, constraints on role
enabling and activation and various temporal restrictions
on user-role and role-permission assignments can be
specified through the GTRBAC model. We have also
presented time-based semantics of hierarchies and SoD
constraints. A notion of safeness has been introduced to
generate a safe execution model for a GTRBAC system.
Although, overlapping intervals along the line of temporal
work by Allen with regards to various entities of RBAC [2]
have not been discussed, the semantics of overlapping
intervals are elaborated for temporal hierarchies. The
interval constraints along the line of work in [2] can be
considered as dependency constraints where temporal
intervals associated with a role are dependent on the
intervals associated with some other roles. Depending upon
the type of system deploying the proposed model, further
extensions to the semantics of the constraints in the model
may be needed. For example, in transaction/workflow
types of systems, one crucial issue is to determine the
timing constraints related to the execution of a transaction.
A relevant question is what happens if a user’s role is
suddenly disabled by some event while the user is in the
middle of executing a transaction permitted by a user-role
assignment. Should the user’s transaction be terminated at
that moment or should it be allowed to complete? We leave
such application specific issues for future work.
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