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Abstract. We propose and evaluate a novel framework for
enforcing global coordination and control policies over in-
teracting software components in enterprise computing en-
vironments. This framework combines a per-node reference
monitor with two existing coordination and control systems
to enforce policies that, among other properties, are stateful
and communal. Each reference monitor filters messages ex-
changed between the interacting software components Sim-
ilar to a firewall, passing only messages that are allowed
by the policies in effect. This filtering approach decouples
coordination and control from application implementation,
allowing the coordination and control mechanism and ap-
plication implementations to evolve independently of each
other. We demonstrate the power of our framework by us-
ing it to specify and enforce an RBAC policy with delega-
tion, revocation, and separation-of-duty over accesses to a
cluster of NFS and SMB file servers without changing any
client or server implementations. Measurements show that
our framework imposes acceptable overheads when enforc-
ing this policy.

1. Introduction

Today’s enterprise computing environments are increas-
ingly comprised of heterogeneous components that were
not constructed according to any single system design.
Rather, independently constructed components are com-
posed under the assumption that they will interoperate har-
moniously because they implement standardized interaction
protocols. Unfortunately, these components often do not
work well together despite their adherence to standards be-
cause: (1) standards often define the mechanisms for in-
teraction but provide little support for governing interac-
tion, and (2) standards always leave some implementation
details unspecified and so different implementations of the
same standard are not always fully compatible. To exacer-
bate the problem, as personal devices proliferate, many or-
ganizations are being forced toward a decentralized control
model, where shared infrastructures are maintained by pro-
fessional staffs but personal devices are managed by their
individual owners. Thus, even the composition of the en-
terprise system may not be well defined and understood.
Needless to say, these systems are unreliable, insecure, and
difficult to use and maintain [8, 14, 18].

A number of research efforts have sought to address the
above problem by introducing mechanisms to enforce ex-

plicit policies that coordinate and control the activities of
the disparate components within such environments, e.g.,
[4, 7, 11, 15]. Unfortunately, many of these mechanisms
require the modification of existing software, which lim-
its their applicability and slows their adoption. In this pa-
per, we propose a novel approach for applying these mech-
anisms to software components that interact using stan-
dardized message passing protocols without requiring any
changes to the applications. Our approach also allows new
applications to be developed that are neutral with respect
to specific coordination and control frameworks, effectively
decoupling coordination and control from application im-
plementation.

Specifically, we use a per-node reference monitor as a
transparent “hook” for enforcing enterprise-wide policies
over the message exchanges between interacting software
components. Our reference monitor leverages the firewall
capabilities prevalent in today’s operating systems to inter-
cept all packets sent to/from a node and a packet analyzer
to reconstruct protocol-level messages that should be sub-
jected to enterprise-wide policies. We then combine our ref-
erence monitor with two existing complementary systems,
Law Governed Interaction (LGI) [11] and KeyNote [4], to
implement an overall coordination and control framework.

We give an overview of our framework and explain how
the three components, the per-node reference monitor, LGI,
and KeyNote, fit together in Section 3, after we have pre-
sented an example policy in Section 2 to provide concrete
context for the description. For now, we observe that the
resulting mechanism can be used to explicitly specify and
enforce policies that, among other properties, are stateful
and communal. Stateful policies are those that are sensi-
tive to the history of interactions. Example stateful policies
include those encapsulating coordination principles such as
delegation and revocation, as well as the Chinese Wall pol-
icy [5]. Communal policies provide for control decisions to
be based on state accumulated across a community of in-
teracting components, rather than just state accumulated at
each individual component.

We demonstrate the power of our framework by using it
to coordinate and control accesses to a set of file systems.
Access control is a good representative problem because
while a large body of research has accumulated to argue
the importance of principles such as delegation and revoca-
tion [4, 10, 20], separation of duty, and auditing [16], most
existing access control mechanisms are still based on the
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access control matrix model, where large parts of the ma-
trix are manually maintained by system administrators. For
example, in UNIX, a simple coordination problem such as
sharing a set of files between two people, say a professor
and his TA, requires the intervention of a system adminis-
trator to set up and later remove a group. This can often
lead to inappropriate control that can adversely affect the
security of the system, e.g., the professor making his files
world-accessible to share with his TA or the group remain-
ing defined long after the interaction has ended.

Further, in today’s client-server applications, access con-
trol is typically established by individual servers, where the
policy and its enforcement are embedded in the code of the
server. This server-centric approach has numerous disad-
vantages, including: (1) the difficulty of changing the pol-
icy and evolving the access control mechanism; (2) the lack
of uniformity in what policies are enforced and enforceable
by different servers; and (3) the inability to enforce com-
munal policies—the revocation of access rights provides a
ready example where communal access control is needed:
it is often easier to detect client misbehavior by observing
a client’s interactions with multiple servers as opposed to
individual pair-wise client/server interactions.

Thus, we describe how our framework can be used to
specify and uniformly enforce the policy introduced in Sec-
tion 2, which is a role-based access control (RBAC) policy
with delegation, revocation, and separation-of-duty, across
a community of NFS and SMB (SAMBA) file servers. We
also quantify the performance overheads imposed by our
framework, showing that the enforcement of our policy can
incur non-trivial but (in our opinion) acceptable overheads.

In summary, our contributions include: (1) defining
a framework for enforcing sophisticated coordination and
control policies over communities of interacting software
components that works external to the implementations of
these components; this decoupling of coordination and con-
trol from application implementations will help to migrate
advance coordination and control policies and mechanisms
from the realm of research to practice; (2) demonstrating
that our framework can be applied to practical client/server
protocols such as NFS and SMB; and (3) showing that our
framework can specify and enforce policies encompassing
principles that have been deemed critical to enterprise secu-
rity with acceptable overheads, even when applied to per-
formance sensitive services such as NFS and SMB.

2. Motivating Example

We begin by describing an example policy for coordinat-
ing and controlling accesses to a set of file servers to con-
cretely motivate the type of policies that we seek to support.
We will show later how our mechanism can enforce this
policy over accesses to a set of NFS and SMB (SAMBA)

file servers without requiring any changes to the client and
server applications.

To introduce our example policy, let us suppose that an
enterprise has a set of registered principals (users) U, a set
of roles R, and a relation M : U — R defining the roles
that each principal can assume for access control purposes.
Then, given a set of file servers, the enterprise might wish
to establish a policy P g with the following stipulations:

Authentication: To enable access from a client machine, a
principal must: (1) present a certificate signed by the dis-
tinguished certification authority ca to authenticate that it is
the owner of a public key KP"?, and (2) present a certificate
signed by the private key paired with KP4® stating that it is
running with uid U on the client machine with ip address
I. An authenticated registered principal gains immediate
access under all roles that it can assume. An unregistered
principal, e.g., a guest, can also authenticate but does not
have any access rights until it gains some delegated rights.
This authentication must be renewed hourly.

Delegation: A principal p can gain delegated rights by pre-
senting a certificate signed by ca, specifying that some reg-
istered principal py has delegated certain access rights to
p under a role R4. A registered principal pg may dele-
gate rights under any role R; where Ry # Admin and
(pa, Ra) € M. The delegated rights may optionally have
an expiration time and be limited to a file f or directory d,
with the latter implying that the delegated rights can be used
to access all files and directories under d.

Revocation: X access denials across any subset of servers
within an hour will lead to suspension of all delegated rights
for a particular principal. Y access denials within an hour
will lead to suspension of all access rights for a principal.
Suspended privileges can be reactivated through the presen-
tation of two reactivation certificates signed by ca, specify-
ing that reactivation permission has been obtained from two
distinct principals who can assume the role Admin.

Per-file policies: The owner of each file can establish a per-

file policy! specifying the roles that can access that file and
their access rights.

While the above policy has been deliberately made sim-
ple for ease of presentation, it still demonstrates several im-
portant elements for establishing powerful yet flexible ac-
cess control policies. First, its support for delegation em-
powers users to coordinate accesses to their files more flex-
ibly yet securely without having to involve system adminis-
trators. For example, a professor can allow his TA to access
course-related files by simply delegating access rights to an
appropriate directory. Further, the professor can specify a

I'The overload of the term policy here is somewhat confusing. Through-
out our discussion, we always use the per-file prefix whenever there is any
potential for confusion between the global policy and the per-file policies.
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Figure 1. Overview of our coordination and control framework: (a) Each server runs a software reference monitor
that filters accesses to the server, (b) the reference monitor provides a unification point for the application of LGI and

KeyNote to the coordination and control problem.

delegation expiration time of the end of the term to ensure
that the TA does not retain access rights forever. The pro-
fessor can similarly delegate access rights to visitors and
collaborators so that gaining access for these principals be-
comes just a matter of presenting a set of certificates.

Second, the stipulation that the role of Admin cannot be
delegated demonstrates the use of a global constraint to pre-
vent individual actions that may critically impact the de-
pendability of the system. Delegation of the Admin role is
dangerous because, among other things, Admins likely have
write access to configuration files that can affect the perfor-
mance, reliability, and security of the system.

Finally, the revocation component allows the enterprise
to establish an important restriction based on state derived
from a principal’s interactions with a community of servers.
Regaining revoked privileges requires the intervention of
two administrators, which is an example of the common
separation-of-duty principle.

3. Overview

Figure 1(a) gives an overview of our framework, which
consists of a set of reference monitors, a set of user agents,
and a set of services comprising the enterprise security in-
frastructure. In general, each node hosting software com-
ponents subjected to enterprise-wide policies, e.g., NFS
clients and servers whose interactions must obey P g, would
also host a reference monitor. This reference monitor filters
all incoming messages, passing through only those allowed
by the policies in effect. Figure 1(a) shows the reference
monitors running only on the servers because this is suf-
ficient to enforce policies that only coordinate and control
accesses to server resources such as P . Existing message
passing applications such as NFS clients and servers will
then interact as normal. However, this interaction is only
possible if the client’s user can “convince” the reference

monitor protecting the server to pass the client’s requests
through to the server.

Typically, a user can convince a reference monitor to ac-
cept his client’s access requests by obtaining and presenting
an appropriate set of credentials. The process of obtaining
and presenting credentials is itself a sequence of interac-
tions between the user agents, reference monitors, and secu-
rity infrastructure that is subjected to control by enterprise-
wide policies. In our framework, this process is coordinated
using LGI, a mechanism for controlling message exchanges
between a community of software agents according to an
explicit law. Thus, the parts of a policy that are concerned
with coordinating and controlling the gathering and presen-
tation of credentials must be expressed as an LGI law. The
law L that embodies this part of our example policy Pg
is discussed in detail in Section 5.

The security infrastructure is typically comprised of
components such as the certification authority and security
manager shown in Figure 1. With respect to P g, these com-
ponents perform functions such as certificate generation and
mapping of principals to roles that they may assume.

Each user agent is some user’s gateway to our frame-
work, allowing the user to interact with the reference moni-
tors and security infrastructure. With respect to P, a user
wishing to access a file server would use the user agent to
authenticate himself, obtain the roles that he may assume,
and present these roles to the server’s reference monitor to
convince it to permit the access.

Each reference monitor is a combination of a software
firewall and a user-level access control (AC) agent (Fig-
ure 1(b)). The firewall intercepts all packets forming
protocol-level requests that are subject to the policies in ef-
fect and passes them to the AC agent. The AC agent uses
a packet analyzer such as Ethereal [6] to reassemble these
packets back into meaningful protocol-level requests. For
each request, the AC agent then extracts the information
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needed for access control, namely the principal, the object
to be accessed, and the access being attempted.

To determine whether a request should be permitted, the
AC agent would gather all information that may affect the
decision from the enterprise security infrastructure, the user
agents, and possibly other reference monitors. With respect
to Pg, the AC agent would retrieve the roles that the re-
questing principal may assume from the principal’s user
agent. Critically, since this interaction and the interactions
through which the user agent obtained the roles are con-
trolled by Lg, the AC agent can be confident that the user
agent cannot provide false information—the reason for this
confidence will become clearer once we provide more in-
formation about LGI in Section 4.1 and L in Section 5.
The AC agent also contacts the policy database running on
the protected server to retrieve any information specific to
the object to be accessed; e.g., the per-file access control
policy.

Once it has gathered all the necessary information, the
AC agent uses KeyNote, a system designed to answer the
question “does a set of credentials prove that a request com-
plies with an access control policy,” to decide whether the
request should be permitted. For P g, the credentials corre-
spond to the roles and the access control policy corresponds
to the per-file policy. If the request is permitted, then the
message will be forwarded to the server. Otherwise, a re-
quest denial is returned to the client.

Information can also flow from the AC agent to the se-
curity infrastructure and user agents. For example, the AC
agent will inform the user agent when requests are denied
so that L can enforce the revocation stipulations of P .

For efficiency, we assume that an AC agent can cache
information about principals and objects so that it does not
need to communicate with remote services to mediate every
access request. The AC agent may also batch the reporting
of request denials.

It is important to observe that the AC agent is mainly
an information conduit between LGI and KeyNote. In par-
ticular, policy stipulations are never embedded in the code
of the AC agent. Rather, all policy stipulations are ex-
pressed as parts of an LGI law or as per-object KeyNote
policies, which provides a clean separation between policy
and mechanism. In essence, our approach uses LGI to co-
ordinate the handling of credentials between the users, the
security infrastructure, and the reference monitors, and uses
KeyNote to mediate specific access requests. With respect
to P g, this maps to the use of LGI to coordinate the man-
agement of the roles that users can gain and lose through
delegation and revocation, and the use of KeyNote to me-
diate specific file access requests such as open, read, and
write.

We chose LGI as the overall coordination and control
mechanism because it supports a rich domain of stateful

communal policies in a variety of environments [1, 2, 12,
13]. Further, LGI’s inherently distributed nature is well-
suited to our approach since we propose to have an AC
agent per node for scalability.> We chose KeyNote because
it was specifically designed to evaluate whether an access
is authorized in a dynamic environment where principals
can delegate rights to each other. We could have used LGI
for this purpose as well. However, KeyNote targets a more
constrained problem and so its evaluation engine provides
well-defined compliance semantics and is more efficient
than LGI. In fact, as shall be seen, we do not exploit the
full capability of KeyNote. Thus, an even more constrained
evaluation engine could have led to increased performance.

In many cases, a coordination and control policy will
have components that are specific to objects being shared
by the interacting software components as this allows the
global policy to be augmented by the individual owners
of the objects. For example, with respect to Pg, each
file has an associated policy that specifies access rights to
the file by specific roles. To support the storage of these
object-specific policies, we have implemented a simple pol-
icy database using the Berkeley DB [19]. This is the policy
database mentioned earlier, which is responsible for servic-
ing the AC agent’s requests for per-object policies.

Because the policy database is implemented external
to the software component (service) exporting the objects,
there is a consistency issue between the policies stored in
this database and the objects stored by the service. To min-
imize this problem, we expect that each server would run
a policy database to hold the per-object policies for objects
stored by services running on that server. Then, inconsis-
tencies should only arise if the machine crashes unexpect-
edly in the middle of two related writes, say the write of a
newly created object to the service and the corresponding
per-object policy to the policy database. In this case, we
would need some tool like f£sck to synchronize the policy
database with the object store after a crash.

4. Background and Related Work

In this section, we briefly describe LGI and KeyNote to
provide context for the discussion of our experimental study
in Section 5. We also discuss other related work.

4.1. Law-Governed Interaction (LGI)

LGl is a control mechanism that governs the message ex-
changes within a community of distributed agents according
to an explicitly specified policy called a law. The messages
exchanged under a given law L are called £-messages, and

%It is easy to imagine a centralized reference monitor for all the servers
of an enterprise but such a design is unlikely to scale well.
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the group of agents interacting via £-messages is called a
community C.. For each agent x in a community C., LGI
maintains what is called the control state CS,, of this agent.
These control states, which can change dynamically sub-
ject to law L, enable the law to make distinctions between
agents, and to be sensitive to dynamic changes in their state.
The semantics of control states for a given community is de-
fined by its law and can represent such things as the role of
an agent in this community and the privileges it carries.

Laws. The law £ governing a community C. is defined
over a set of regulated events that can occur at members
of C., mandating the effect that such events should have—
this mandate is called the ruling of the law for a given
event. Regulated events include the sending and arrival of
L-messages, the coming due of an obligation (discussed be-
low), and the submission of a certificate. The operations
that comprise the rulings of the law for a regulated event are
called primitive operations. They include operations on the
control state of the agent where the event occurred (called
the “home agent”), operations on messages, and the impo-
sition of an obligation on the home agent.

Thus, a law £ can regulate the exchange of messages
between members of C. based on the control state of the
participants; it can mandate various side effects for a mes-
sage exchange, such as modification of the control states of
the sender and/or receiver of a message, and the emission
of extra messages.

Law enforcement. The law £ governing a community C.
is enforced by a set of trusted agents called controllers.
Controllers are logically placed between all members of
C. and are used to mediate all exchanges of L-messages
between them. Each member x of C must adopt L at
some controller 7, which maintains x’s control state and
imposes £ over regulated events whose home agent is x.
Each L-message sent from an agent x to another agent y is
then forwarded first through 7, then through 7,, before it
is delivered to y (if allowed by £). Every L-message ex-
changed between a pair of agents x and y is thus mediated
by their controllers 7, and 7y, so that this enforcement is
inherently decentralized although several agents can share
a single controller if desirable.

The global nature of LGI laws requires that all members
of a community C, observe the same law £. To ensure this
homogeneity, a hash H of £ is appended to all £-messages
sent from one controller to another. A controller then ac-
cepts an L-message if and only if H is identical to the hash
of its own law.

Finally, for controllers to trust one another, they may au-
thenticate to each other using certificates signed by a certi-
fication authority acceptable to L.

Writing laws. LGI laws are written using either a Prolog-
based or a Java-based language. The two languages sup-

port the exact same semantics; here, we will briefly describe
some relevant components of the Prolog-based language.

A Prolog-based law L is a program L, which, when pre-
sented with a goal e representing a regulated event at a
given agent x’s controller, evaluates the rule associated with
e in the context of CS,, to produce a list of primitive opera-
tions representing L’s ruling for e.

The regulated events most relevant to our case study in
Section 5 include:

sent (X, M, Y):an L-message M sent by X to Y has ar-
rived at X’s controller.

arrived (X, M, Y):an L-messageM sentby X to Y has
arrived at Y’s controller.

certified (X, certificate(issuer(I),
subject (Y), attributes(A))):X has presented a
valid certificate issued by I. A is a list of attributes being
certified about the subject Y.

obligationDue (type): the self-imposed obligation
of type type has fired. Typically, obligations are set to
occur sometime in the future to ensure that some action is
carried out in a timely manner.

In addition to the standard types of Prolog goals, the
body of a rule may contain two distinguished types of goals.
These are sensor goals, which allow the law to access the
control state of the home agent, and do goals, which con-
tribute to the ruling of the law. A sensor goal has the form
t@Cs, where t is any Prolog term. It attempts to unify t
with each term in the control state of the home agent. A do
goal has the form do (p) , where p is a primitive operation.
It appends the operation p to the ruling of the law.

Commonly used primitive operations include:

+T (v): add term T to the home agent’s control state with
value v.

forward (x,m,y): send message m from x’s controller
to y’s controller, triggering an arrived (x,m,y) event
at y’s controller.

deliver (x,m,y): deliver the message m from x (sent
via x’s controller) to y.

imposeObligation (type, t): impose an obligation
with the specified type that will come due at time t.

Example. To see how the above pieces fit together, consider
the simple example shown in Figure 2. Rule R1 in this
snippet specifies that each agent operating under law Lrp
must have a name as certified by the certificate authority
ca. Then, suppose that an agent x sends an L p-message to
another agent y. Recall that each such message must first be
routed through z’s controller 7 .. The arrival of the message
at 7, corresponds to a sent event and so would trigger
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R1. adopted(Any, cert([certificate (issuer(ca),
subject (Self), attributes([name(N)]))]))
:- do(+name(N)) .

R2. sent (X, M, Y)
:- name (N)@CS, do(forward (X, [from(N) |M] , Y)).

R3. arrived (X, M, Y) :- do(deliver).

Figure 2. Snippet of an example law Lp.

Rule R2. The ruling of Rule R2 is to forward the message
prepended with x’s name to y at 7. The addition of z’s
name to the message ensures that spoofing is impossible.
When the message arrives at 7, it would trigger Rule R3,
which leads to the delivery of the message to y.

4.2. KeyNote

KeyNote is a trust management system designed to an-
swer the question: does a set of credentials C' prove that a
request  complies with a local security policy P? Specif-
ically, KeyNote implements a general-purpose evaluation
engine that can be invoked by an application each time it
needs to answer the above question. For each invocation,
the application passes to KeyNote a list of credentials, a
set of policies, the requester’s public keys, and a set of en-
vironment attributes. The result of each evaluation is an
application-defined string such as “authorized” or “denied.”

Policies and credentials are specified using KeyNote’s
assertion language, where each assertion is essentially a del-
egation of some rights. The only difference between poli-
cies and credentials is that each credential must be crypto-
graphically signed whereas a policy is trusted by KeyNote
and so is not signed; this means that KeyNote must cryp-
tographically validate credentials but not policies during an
evaluation. Attributes are also trusted and so are not vali-
dated during the evaluation.

Each KeyNote assertion takes the following form:

Authorizer: “POLICY”

Licensees: “<public key>"

Conditions: (file == “f”” && operation == “read”)
— “authorized”;

where the Authorizer field identifies the principal that is del-
egating some rights, the Licensees field specifies a set of
receiving principals, and the Conditions field specifies the
rights to be delegated along with a set of conditions on the
environment attributes that must be true for the delegation
to hold. In the example above, the string POLICY indi-
cates that this is a root assertion representing an “intrinsic”
(as opposed to delegated) set of rights; the Licensees field
specifies the public key representing some receiving prin-
cipal p; and the Conditions field specifies that p should be
given “read” access to file f. In general, the set of licensees

can be specified using expressions formed from conjunc-
tion, disjunction, and threshold operations. Conditions may
include string comparisons, numerical operations and com-
parisons, and pattern-matching operations.

Each time it is invoked, KeyNote performs a depth-first
search through the given credentials and policies to find an
assertion graph from one or more root assertions to an asser-
tion that authorizes the request. Each assertion in this chain
represents a delegation of rights and thus can only refine the
authorizations conferred on it by the previous assertions in
the graph. If no such chain can be found, then the answer
to the compliance question is no, which is mapped to an
application-defined string such as “denied.”

4.3. Other Related Work

A number of research and industry efforts have explored
the use of a centralized reference monitor to impose global
access control policies [7, 21, 22]. In contrast, our system
uses a distributed network of reference monitors, one per
server, and uses LGI to coordinate between them and other
security services. The inherently distributed nature of our
mechanism provides three important advantages. First, the
access control evaluation can be done at the server itself,
avoiding the overhead of additional network communica-
tion. Second, our framework is more scalable and does not
have a single point of failure. Tivoli is one centralized sys-
tem that has addressed the second issue through the repli-
cation of the reference monitor [7]. However, such replica-
tion introduces the difficulty of maintaining consistent state
in the presence of dynamic policies. In fact, Tivoli’s access
control model is mostly limited to static policies; while Kar-
joth showed that Tivoli can support the Chinese Wall policy,
this involved extending Tivoli (through an extension API)
with customized code. It was unclear how this extension
interacted with the replication. Finally, while not addressed
in this work, our framework can be used to enforce hierar-
chies of policies across coalitions of enterprises, addressing
a problem that is rapidly rising in importance.

Our reliance on the ubiquity of software firewalls is simi-
lar to Bellovin’s work on distributed firewalls [3]. However,
Bellovin’s work was concerned with dynamically adjusting
firewall policies of individual machines as the environment
around them changes.

One effort that is particularly related to our experimental
study of access control for file systems is Miltchev et al.’s
Distributed Credential File System (DisCFS) [9]. This work
explores the use of KeyNote and IPSec to extend NFS’s ac-
cess control model to the general credential-based model of
KeyNote. This work is related to our in that it seeks to in-
troduce a richer access control model, including dynamic
delegation, to file systems. It’s different than our work,
however, in that it required changes to the file system client
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and server; indeed, it led to the new DisCFS file system.
In general, a key contribution of our work is that we seek
to provide a practical gateway for applying trust manage-
ment systems and advance policies to standard client-server
protocols without requiring changing the protocols or appli-
cations. Further, our use of LGI allows us to support com-
munal policies that KeyNote was not designed for.

5. Case Study

In this section, we first show how our framework can be
used to explicitly specify and uniformly enforce policy Pg
across a set of heterogeneous NFS and SMB servers. We
then evaluate the performance of our implementation. Fi-
nally, we draw on our implementation experience to discuss
characteristics that would make protocols more amenable
to coordination and control mechanisms that depend on the
interception of messages such as ours.

5.1. Implementation

Our implementation includes a security manager, a user
agent, an AC agent, a policy database, and a law Lg. The
security manager is an LGI-aware application that main-
tains a database of registered users and the roles that they
can assume using the Berkeley DB. The user agent is a sim-
ple LGI-aware application that allows the user to present
certificates for authentication and gaining delegated rights.
The user agent is simple enough that it can be implemented
as a Java Applet runnable from any Java-enabled browser.
The AC agent is an LGI-aware application that uses a com-
bination of iptables, Ethereal, and KeyNote to enforce ac-
cess control on specific requests. The policy database is a
simple wrapper around the Berkeley DB that holds the per-
file policies.

The interactions between the user agents (one per user),
security manager, and AC agents (one per server) are coor-
dinated and controlled by L. We show a small snippet of
L in Figure 3 just to give the reader a feel for what the
law looks like. The entire law, comprised of approximately
40 rules, can be found at http://p2p.cs.rutgers.edu. We also
show one critical message exchange sequence coordinated
by Lg in Figure 4.

In the remainder of the section, we first describe how
policy Pg is expressed and enforced by the above compo-
nents. Then, we describe how the AC agent derives the nec-
essary information (principal, object, and access request)
from protocol messages and its caching and buffering ac-
tions. Finally, we discuss implementation details specific to
processing NFS and SMB protocol messages.

Authentication. To access a server protected by our system
from some client machine, a user must authenticate himself
to the system by running the user agent. On startup, the user

‘Preamble: authority(ca, keyHash(K 7).
alias(sm, "sm@A.com”). initialCS([]).

ca is the distinguished certification authority trusted by this law. sm is the
distinguished security manager.

R1. certified(UA, certificate(issuer(ca), subject(UA),
attributes (name (NAME) ) ) )
:- do(addAuthority (NAME, keyHash (SubjectHash))),
do (add (meAsCA (NAME) ) ) .

The user agent has presented a valid certificate doubly signed by ca and
itself specifying that its name is NAME. Save the user’s public key as an
authorizer in order to accept future certificates signed by the user. Also save
the certified name NAME.

R2. certified(UA, certificate(issuer (N), subject (UA),
attributes (ip (IP),uid(UID))))
:- meAsCA (N)@CS, do(forward(Self,
attributes (ip (IP), id(UID), name(N)), sm)).

The user agent is informing the security manager that its user is running
with user id UID on the client machine with address IP.

R3. arrived(UA, attributes(ip(IP), id(UID), name(N)),
SM) :- do(add(user (ip(IP), id(UID),
lgiName (UA)))), do(deliver).

When a message from UA containing a (IP, UID, N) tuple arrives at the
security manager’s controller, save the tuple (IP, UID, UA) to the security
manager’s control state and deliver the message.

R4. sent (SM, roles(R), UA)
:- do(forward(SM, roles(R), UA)).

The security manager is sending back the roles that a user may assume to
the user’s user agent.

Figure 3. Part of the enterprise law L.

agent first connects to an LGI controller and adopts Lg.
Then, it presents two certificates: (1) a certificate signed by
the distinguished certificate authority ca acceptable to Lg
(Preamble in Figure 3) specifying that the user owns a par-
ticular user name N and public key KP"*; and (2) a certifi-
cate signed by the private key paired with KP"* specifying
the user’s UID and the client machine’s /P address. The
presentation of the 1st certificate, assuming that the certifi-
cate is valid, leads to the addition of N and KP“? to the user
agent’s control state (Rule R1). The presentation of the 2nd
certificate leads to the forwarding of the tuple (IP, UID, N)
to the security manager (Rule R2).

When the above message arrives at the security man-
ager’s controller, the pair (IP, UID) together with the user
agent’s LGI name will be inserted into the security man-
ager’s control state (Rule R3). The user agent’s LGI name
is saved so that future queries from the AC agents can be
forwarded to the user agent (see Subsection Enforcement
below). An obligation will also be set to discard this entry
if a keep-alive message is not received within time T,,..
Finally, a query message containing the name N will be
generated and forwarded to the security manager.

If the security manager finds N in its database, it will re-
ply with the list of roles that the user can assume (Rule R4).
When this reply arrives at the user agent’s controller, the
roles will be inserted into the user agent’s control state (Rule
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not shown). The reply is then forwarded to the user agent to
inform it that the authentication process has been completed
and the roles that its user may assume.

While the user agent is connected to its controller and
operating under L g, an obligation is set to periodically send
a keep-alive message to the security manager so that the
user’s authentication information will not be discarded from
the security manager’s control state.

Delegation. Registered principals can delegate their access
rights to others by providing them with certificates signed
by ca specifying the delegating principal P, the receiving
principal P, the delegated role R4, and, optionally, the del-
egated rights, a file or directory, and an expiration time. A
receiving principal can then invoke delegated rights by pre-
senting one or more delegation certificates through the user
agent. If the delegated role is Admin, the delegation will be
unconditionally refused. Otherwise, a message will be for-
warded to the security manager to verify that the delegating
principal may assume the delegated role. A positive reply
from the security manager will lead to the delegated rights
being added to the control state of the user agent. If the
control state of the user agent contains a non-empty list of
AC agents (see Subsection Enforcement below), then the
newly acquired rights will be forwarded to these AC agents.
Finally, if the certificate had an expiration time, an obliga-
tion is set up to discard the entry at that time.

For the remainder of the discussion, we refer to the roles
pre-assigned to a user as his intrinsic roles and roles that the
user has gained through delegation as his delegated roles.

Per-File Policies. Each file has an owner and an owner-
specified access control policy describing the roles that can
access the file and the corresponding access rights. A role
may be an arbitrary string, e.g., “Admin,” or a public key,
in which case only the owner of the corresponding private
key can assume that role. The access control policy is ex-
pressed as a Keynote policy. Currently, the set of possible
access rights include {read, write, search} and each access
evaluation can return one of {granted, denied}. The search
right is equivalent to Unix’s access right x for directories.

When a file is created, the AC agent assigns it a default
access control policy specified by the owner. The owner
can access and modify this policy as desired using a set of
simple scripts that we have developed.

Enforcement. For each intercepted access, e.g., read or
write, if the AC agent currently has no information about the
requesting principal, it would send a message to the security
manager (M1 in Figure 4). This message is routed through
the AC agent’s controller, triggering the sent event El,
which simply forwards the message (M2) to the security
manager. At the security manager’s controller, this message
will be rerouted to the principal’s user agent using the user
agent’s LGI name that was saved earlier (E2 and M3). At

M3: QueryRoles(IP, UID,
AC Agent’s LGl Name)

{Roles},
{AC Agents’ LGl names}

[I:ES: Arriveg [I:EQ: Arrivet::ﬂ

(IP, UID, UA’s LGI Name)

Controller SM

UA Controller
M4: Roles({Roles}) M2: QueryRoles(IP, UID)
>
M5: Roles({Roles}) M1: QueryRoles(IP, UID)

AC
Agent

Request(IP, UID, T
NFS or SMB Op,Name) | pyeyet
Client "l Filter

M
Legend: ——p Message E"] Regulated LGI Event LGl Control State

Figure 4. Message exchange sequence for the AC
agent to obtain the roles that the requesting principal
may assume.

the user agent’s controller, this message will cause this par-
ticular AC agent’s LGI name to be inserted into the user
agent’s control state (E3). A message containing all of the
principal’s roles is also sent to the AC agent (M4). Expira-
tion times and file/directory restrictions for delegated roles
are also included. At the AC agent’s controller, the message
is delivered to the AC agent (M5), which can now use the
roles to mediate the intercepted request.

If the object being accessed is the file /a/f, then the AC
agent also needs to access the policy database to obtain the
per-file policies associated with /, a, and f. Finally, the AC
agent would invoke KeyNote three times, twice to deter-
mine whether the principal has search right for / and /a and
once to determine whether the principal has the necessary
access right to /a/f.

For each evaluation, intrinsic roles are passed to
KeyNote as attributes while delegated roles are passed as
policy assertions as follows. Suppose that a principal iden-
tified by key KP“ can assume a delegated role of R, and
is attempting to access file f. In this case, the following
assertion will be generated:

Authorizer: “Rg”

Licensees: “< K7 >”

Conditions: (operation == “read” || operation == “write”
|| operation == “search”) —“granted”;

For the above rule to have an effect, however, some rule
granting access rights to R4 would have to exist in f’s pol-
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Protocol | Regulated Messages

NFS MOUNTPROC_MNT, MOUNTPROC_UMNT, MOUNT-
PROC_UMNTALL, LOOKUP, SETATR, READLINK,
READ, WRITE, CREATE, REMOVE, RENAME, LINK,
SYMLINK, MKDIR, RMDIR, READDIR

SMB SESSION_SETUP, TREE_CONNECT, OPEN, CLOSE,
TREE_DISCONNECT, CREATE, CREATE_NEW,
CREATE_TEMPORARY, CREATE_DIRECTORY,
DELETE_DIRECTORY, DELETE, MOVE, RENAME

Table 1. Controlled message types.

icy. For example, suppose f’s policy includes the following
assertion:

Authorizer: “POLICY”
Licensees: “Rg;”
Conditions: (operation == “read”) — “granted”;

Then, the principal would gain read access to f through the
authorization chain of POLICY — Ry — KPub,

If the results of all KeyNote evaluations are granted, then
the intercepted request will be forwarded to the server. If the
result is denied, then the access is not authorized. In this
case, either an error is generated and sent back to the client
or the request is modified in such a way that is guaranteed
to force the server to deny the request.

A count of denied accesses is maintained for each prin-
cipal. Each time this count reaches a predetermined level,
the AC agent sends a message to the principal’s user agent.
When this message arrives at the user agent’s controller, the
count will be added to an overall count maintained in the
user agent’s control state. An obligation will periodically
clear this count. According to P, if this count ever ex-
ceeds a certain level, a suspension tag will be added to the
user agent’s control state. This tag will prevent all further
accesses. Regaining blocked privileges is done by present-
ing two reactivation certificates issued by distinct principals
under role Admin.

Caching inside the AC agent. The AC agent caches three
types of information: (1) Per-file access control policies are
cached for an adjustable period T¢,,. These policies are al-
ways discarded after T, regardless of client access patterns
to ensure that the cached information does not become stale
because of updates by the file’s owner. (2) Principals’ cre-
dentials are cached for an adjustable period T¢.. This period
is extended by T, every time the AC agent receives a “keep
alive” message from the principal’s user agent. And (3)
KeyNote evaluation results are cached using a tuple of (ac-
cess type, IP, UID, object’s pathname) as the key. These re-
sults are invalidated when the principal’s credentials change
and/or the object’s policy is evicted from the policy cache.

Implementation details for NFS. Our system does not
intercept all messages to minimize control overhead; we

wrote some simple iptables extensions to intercept only a
subset of NFS message types and pass them to the user-
level AC agent. Table 1 lists the message types that we do
intercept and control. These map to important accesses such
as read, write, open, create, delete, etc. We do not control
purely informational requests such as an inquiry for the at-
tributes of a file. In a highly secure environment, this might
present a disclosure concern, which would necessitate the
interception and control of all message types.

Recall that for each access, we must extract the principal,
the object, and the access type. The principal and access
type are easily extracted from NFS client requests. Extract-
ing the name of the object being accessed is more difficult,
requiring the mapping of an NFS handle to a pathname. For-
tunately, Ethereal already implements the logic necessary
to extract such mappings from requests such as LOOKUP
and the corresponding replies and maintains them in a hash
table. Evicting entries from this table can be difficult, how-
ever, because NFS versions 2 and 3 use persistent file han-
dles. Any eviction may cause our system to not have the
necessary mapping to evaluate a future request. Currently,
we evict mappings that have not been used for a threshold
amount of time despite this problem. If the system ever re-
ceives a request containing a handle that cannot be mapped,
it returns a stale handle error, which becomes visible to the
user. NFS version 4 allows the server to limit the use of a
handle to some finite period, which solves this problem.

If an evaluation leads to a denial of an access, the AC
agent will send an NFSERR_ACCES reply back to the client.

In our system, the NFS servers are set up with
AUTH_UNIX authentication. All directories to be exported
are set up as world-writable and exported with rw and async
options. All users authenticated by the security manager can
mount an exported directory. The local permissions of files
and directories are set to world read, write, and access.

Implementation details for SMB. Similar to NFS, we do
not intercept all SMB messages; Table 1 shows the message
types that are intercepted. Interestingly, note that we do not
need to intercept read/write requests. This is because the
necessary access control is already performed at the open;
for example, the server will itself refuse a write request on
a file that was opened only for read.

SMB servers are set up to use user-level authentication.
All shares are set up in such a way that only one particular
user can access them. This user is private and only known to
the AC agent. When an authenticated user tries to access an
SMB share, before the request reaches the server, the user
name and password will be replaced with the private user
by the AC agent.

Similar to NFS, the AC agent maintains a map between
file ids and file names. An entry will be evicted when the
AC agent sees a close message for a particular file id. Un-
like NFS, the AC agent also associates a connection with
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Operation Time

Keynote eval. of simple root policy 23 us
Keynote eval. of root policy + 1 delegation 41 us
Keynote eval. of root policy + 10 delegations 172 us
AC agent obtains a per-file policy from policy DB
containing 50,000 entries 8.0 us

containing 500,000 entries 20.8 us
Authentication with the security manager under Lr | 509 ms
AC agent obtains roles from user agent 61 ms

Table 2. Latencies for KeyNote evaluations, for
AC agent to obtain per-file policies from the policy
database, and for two LGI-mediated interactions.

each specific principal and its roles. SMB servers are also
set up to send keepalive packets every 1 minute. A connec-
tion will be considered as dead by the AC agent if it doesn’t
receive any packets in 3 minutes. The AC agent will silently
reclaim all resources of a dead connection.

To deny an access, the AC agent will modify the request
to ensure that the request will be refused by the SMB server
based on its local access control policy. Then, when the
server receive the request, it will reply with an access con-
trol error. For example, if the request is to open the file with
read/write flags while the policy states that the user only has
read permission, the write flag will be removed from the re-
quest. For users who tries to access a file which he has no
permission, the file name will be changed to a local spe-
cial file which is owned by a private user and is set up with
permissions disabled.

5.2. Performance

We now quantify the performance impact of our ap-
proach. We first present micro-benchmark measurements
for a client to access an NFS and SMB server when operat-
ing under policy P . Then we present measurements using
the modified Andrew benchmark [17] to evaluate the impact
on normal usage of the protected file systems.

Our experimental setup was as follows. We had 1 LGI
controller running on a 1.6GHz P4 PC with 512MB of
memory. We had 1 NFS server, | SMB server, 1 client, and
1 security manager, each of which was running on a sep-
arate 2.8GHz P4 PC with 1GB of memory. All nodes ran
Linux v2.6.9. The security manager used the Berkeley DB
version 4.2.52 to hold the public keys and roles of registered
principals. We populated this database with 500 entries to
represent a medium-sized enterprise unit. Each file server
also ran a policy database and our reference monitor, where
the AC agent used iptables 1.2.9, the Ethereal packet ana-
lyzer version 0.10, and KeyNote version 2.3. The client and
servers are configured to use IPsec Authenticated Header in
tunnel mode to prevent IP spoofing, ensuring the integrity

Base RM-AC

Op. Time (us) | Time (us) | % Deg.
NEFS create 420 677 61.2
NFS write 170 257 51.2
NFS read 151 236 56.3
SMB create 1,042 1,246 19.6
SMB write 212 213 0.5
SMB read 175 176 0.6

Table 3. Per-operation latencies.

of identifying a user by his (IP, UID) pair.

Micro-benchmarks. Table 2 gives the times to perform
Keynote evaluations, to access a Berkeley DB, and to com-
plete various LGI-mediated interactions. Of these, the costs
of KeyNote evaluations are probably the most significant as
they may be incurred frequently. These results show that
the base cost for a KeyNote evaluation is fairly expensive
but probably acceptable, particularly since we cache the
results of these evaluations. Although our current policy
only allows a single level of delegation, we also present the
times for KeyNote evaluations when given longer delega-
tion chains. These results show that very long delegation
chains can lead to large performance overheads.

The cost of obtaining a per-file policy from the server
is purely the cost of accessing the Berkeley DB database.
This cost seems quite reasonable, particularly since we also
cache these policies for 30 seconds. Finally, we show the
authentication time and the time for the AC agent to obtain
a user’s roles for completeness; these times are not of real
concern because they are typically incurred only when the
user is initiating access.

Table 3 compares the worst-case per-operation latencies
for create, read, and write operations performed under our
framework (RM-AC) with the base case of no global ac-
cess control. Recall that when a file is created, it is given
a default access control policy. Thus, the time for create
includes the time for creating a default policy and writing it
to the policy database. The times for read and write do
not include accesses to the policy database since the corre-
sponding per-file policy has been cached (via the create).

For SMB, there is almost no overhead for read and write
because our framework only has to control creates and
opens; the server will itself refuse a write request on a file
that was open only for read (and vice versa). The overhead
for create is also not too high at 19.6%. For NFS, the over-
heads are much more significant. It is particularly high for
create because each create involves several messages that
must be intercepted for both control and for mapping han-
dles to file names. Overheads for the first read and write
to a file are significant because reads and writes must be
intercepted and controlled. Subsequent accesses, however,
should be more efficient because the AC agent caches the
results of KeyNote evaluations. Also, when we consider the
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Base RM-AC
Phase | Time (ms) | Time (ms) | % Deg.
NFS
mkdir 49 85 74.9
copy 2,051 2,558 24.7
stat 512 688 34.3
grep 1,084 1,090 0.6
compile 21,282 21,837 2.6
SMB
mkdir 38 110 24.1
copy 3,232 3,587 11.0
stat 239 244 2.0
grep 3,805 4,339 14.0
compile 21,707 21,859 0.7

Table 4. Execution times for phases of the modified
Andrew Benchmark

common case of reading/writing larger amounts of data, the
overheads become much lower. For example, the latency
only degrades by 23% and 10% when writing 4KB and 8KB
of data, respectively.

Modified Andrew Benchmark. Next we look at the im-
pact of our approach at the macro-level using the modified
Andrew benchmark. This benchmark has five phases as
follows: (1) mkdir: creates a tree of directories, (2) copy:
copies a 14,488KB collection of C source files into the di-
rectory tree created in phase 1, (3) stat: traverses the new
tree and examines the status of each file and directory, (4)
grep: reads every file in the new tree, searching for a string,
and (5) compile: compiles and links the files. Table 4 shows
the results for both NFS and SMB. First, observe that the
overhead of our approach is quite low when file system ac-
tivities are interspersed with non-trivial computation (and
each KeyNote evaluation is likely amortized across a se-
quence of read/write operations because of caching effects):
1-3% for the compile phase and 1-14% for the grep phase.
(The overhead for the grep phase running over NFS is es-
pecially low because the NFS client is still caching much of
the content from the copy phase.) On the other hand, the
overheads are consistent with our micro-benchmark mea-
surements for the three phases that involve just file system
activities, mkdir, copy, and stat.

We have also measured the impact of our framework on
servers’ throughput, e.g., when multiple clients are running
the Andrew Benchmark against a single server. We do not
show these results here because of space constraints. They
are similar to the above results for latencies in that for rea-
sonable workloads, e.g., multiple greps ran from multiple
clients, the degradation in throughput is quite small.

5.3. Discussion

Our goal is to be able to enforce enterprise-wide policies
on client-server interactions without requiring changing or

extending the application protocols. However, our imple-
mentation exposed several characteristics of protocols that
can either ease our task or make it much more challenging.
In particular, controlling NFS and SMB, which represent
significantly different design points proved insightful.

First, NFS’s use of a connection-less protocol (UDP)
made it much easier for us to generate error messages when
necessary. Thus, access denials were easy to implement.
SMB’s use of TCP made it difficult to insert messages di-
rectly into the connection; thus, we had to manipulate the
access requests very carefully to implement denials. In
general, protocol features for allowing external input on
whether a request should be accepted or denied would sig-
nificantly ease the implementation of an external access
control mechanism such as ours.

On the other hand, the stateless nature of NFS, particu-
larly with respect to the fact that there are no open and close
operations led to several difficulties. First, we had to con-
trol each and every read and write access, which leads to
greater overhead. Second, evicting mappings from file han-
dle to file names was difficult. Thus, protocols that bound a
stream of accesses to an object with distinguished requests
(e.g., open and close) where access control can be limited to
these distinguished requests should lead to better efficiency.

Finally, in both cases, we had to maintain a mapping
of external object names (file names) to internal handles.
We suspect that this is a representative problem for most
servers, which may prove to be the trickiest challenge for
applying our approach to an arbitrary protocol. Thus, pro-
tocols should limit the lifetimes of internal handles given
out to clients, perhaps by using renewable leases for such
handles. Also, it should be easy to map internal handles
to external object names. (Clearly, this should be true for
the principal’s identity as well since we need the principal,
operation, and the object being accessed to perform access
control.)

In summary, our approach uses standardized message ex-
change protocols as the intersection points between our ac-
cess control mechanism and applications. Thus, protocol
characteristics can strongly affect the applicability of our
approach. The above are some of the ways that protocol
designers can help to make protocols more amenable to our
approach.

Orthogonal to the above protocol-related issues is the is-
sue of message interception in the presence of encrypted
communication. Application-level encryption can present
an unsurmountable obstacle to our framework (without re-
quiring changes to the application). Encryption is not a
problem, however, when the application relies on system-
level encryption mechanisms such as IPSec and port redi-
rection through ssh tunnels since we can intercept the mes-
sages after they have been decrypted but before they are
forwarded to the application.
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6. Conclusion

In this paper, we have introduced a novel framework
for enforcing enterprise-wide coordination and control poli-
cies over conglomerates of software components that inter-
act using standardized message exchange protocols. Our
framework can express and enforce sophisticated policies
without requiring any changes to existing applications. Our
approach also allows new applications to be developed that
are neutral with respect to specific coordination and control
frameworks, effectively decoupling enterprise-wide coordi-
nation and control from application implementation.

Our approach centers around the use of firewall-based
reference monitors, one per server, as transparent “hooks”
for intercepting and controlling message exchanges. We
then combine these hooks with LGI and KeyNote, two ex-
isting complimentary systems, to provide a powerful and
scalable coordination and control framework.

We demonstrate the feasibility and power of our frame-
work by providing a concrete example, the unified enforce-
ment of an enterprise-wide policy across NFS and SMB file
servers. We show how our framework can be used to sup-
port an enterprise-wide policy that includes RBAC, dele-
gation, revocation, and separation-of-duty. Measurements
of our implementation show that our mechanism can in-
cur non-trivial but acceptable overheads. We thus conclude
that our approach can be used as a practical migration path
for moving advance coordination and control policies and
mechanisms from the realm of research to practice.
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