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Abstract

Linux is the most popular open source project. The
Linux random number generator is part of the kernel of
all Linux distributions and is based on generating ran-
domness from entropy of operating system events. The
output of this generator is used for almost every secu-
rity protocol, including TLS/SSL key generation, choos-
ing TCP sequence numbers, and file system and email
encryption. Although the generator is part of an open
source project, its source code (about 2500 lines of code)
is poorly documented, and patched with hundreds of
code patches.

We used dynamic and static reverse engineering
to learn the operation of this generator. This paper
presents a description of the underlying algorithms and
exposes several security vulnerabilities. In particular,
we show an attack on the forward security of the gener-
ator which enables an adversary who exposes the state
of the generator to compute previous states and outputs.
In addition we present a few cryptographic flaws in the
design of the generator, as well as measurements of the
actual entropy collected by it, and a critical analysis of
the use of the generator in Linux distributions on disk-
less devices.

1 Introduction

Randomness is a crucial resource for cryptography,
and random number generators are therefore critical
building blocks of almost all cryptographic systems.
The security analysis of almost any system assumes a
source of random bits, whose output can be used, for ex-
ample, for the purpose of choosing keys or choosing ran-
dom nonces. Weak random values may result in an ad-
versary ability to break the system, as was demonstrated

by breaking the Netscape implementation of SSL [8], or
predicting Java session-ids [11].

Since a physical source of randomness is often too
costly, most systems use a pseudo-random number gen-
erator. The state of the generator is seeded, and peri-
odically refreshed, by entropy which is gathered from
physical sources (such as from timing disk operations, or
from a human interface). The state is updated using an
algorithm which updates the state and outputs pseudo-
random bits.

This paper studies the Linux pseudo-random num-
ber generator (which we denote as the LRNG). This is
the most popular open source pseudo-random number
generator, and it is embedded in all running Linux envi-
ronments, which include desktops, servers, PDAs, smart
phones, media centers, and even routers.

Properties required of pseudo-random number gen-
erators. A pseudo-random number generator must be
secure against external and internal attacks. The attacker
is assumed to know the code of the generator, and might
have partial knowledge of the entropy used for refresh-
ing the generator’s state. We list here the most basic
security requirements, using common terminology (e.g.,
of [3]). (A more detailed list of potential vulnerabilities
appears in [14].)

• Pseudorandomness. The generator’s output looks
random to an outside observer.

• Forward security. An adversary which learns the
internal state of the generator at a specific time can-
not learn anything about previous outputs of the
generator.

• Break-in recovery / backward security. An adver-
sary which learns the state of the generator at a
specific time does not learn anything about future
outputs of the generator, provided that sufficient en-
tropy is used to refresh the generator’s state.
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The Pseudorandomness requirement is sufficient in at-
tack scenarios where the adversary does not have knowl-
edge of the generator’s state. In many scenarios, how-
ever, an adversary might be able to learn the state of the
generator; for example, by bypassing access restrictions
of the operating system, or by reading the state from
memory or from the hard disk if it is stored there. The
forward security requirement ensures that an adversary
which learns the generator’s state at a certain time can-
not gain information about the output of the generator at
previous times (as we show below, this requirement is
not fully satisfied by the LRNG). The break-in recovery
requirement ensures that learning the state at a particu-
lar time does not compromise all future outputs of the
generator.

1.1 The Linux Pseudo-Random Num-
ber Generator (LRNG)

The Linux kernel is an open source project developed
in the last 15 years by group of developers led by Linus
Torvalds. The kernel is the common element in all vari-
ous Linux distributions, on all types of devices.

The output of the LRNG can be used by internal
kernel functionalities which use random bits, and by
calls to its application programming interface (API). The
Linux kernel uses random data for various purposes,
such as generating random identifiers, computing TCP
sequence numbers, producing passwords, and generat-
ing SSL private keys. Within the kernel, the interface
for receiving random values from the LRNG is the func-
tion get_random_bytes(*buf, nbytes).

The API to the LRNG is through two device drivers
named /dev/random and /dev/urandom. Both
devices let users read pseudo-random bits. The differ-
ence between the two is in the stated level of security of
the random bits, and the resulting delay. The first de-
vice (/dev/random) outputs “extremely secure” bits1

and may block the user until such bits can be generated
by the system. The second device (/dev/urandom)
outputs less secure bits but its output is never blocked.
Section 2.4 explains the difference between the two de-
vices.

Why reverse-engineering the LRNG is not easy.
The LRNG is part of an open source project and there-
fore one might assume that its source code is available
for public scrutiny and that its security can be easily an-
alyzed (or at least, is not based on “security by obscu-

1This wording is according to the LRNG designer. Essentially,
this type of output is only available when enough physical entropy is
gathered. Our discussion of the resulting security is in Section 3.4.

rity”). However, the LRNG is not well documented and
there is no clear description of the implemented algo-
rithm. The LRNG is composed of about 2500 lines of
code, and in addition, hundreds of code patches were
applied to the code during the last five years (and con-
sequently, the available documentation does not always
reflect the current code). One example of the complex-
ity of the LRNG code is the fact that for 17 months the
LRNG code included a bug in which entropy addition
used a vector of size 4 × n instead of n. We also note
that throughout our analysis we were not helped by any
of the LRNG authors.

These factors turned the reverse-engineering of the
LRNG into a challenging task. We therefore com-
bined static reverse-engineering of the source code of
the Linux kernel with dynamic tracing to present a clear
algorithmic representation of the LRNG (see Section 3).
Dynamic reverse-engineering is not simple in this case,
due to two main restrictions. The first is the fact that any
kernel change requires a new build and installation. This
process takes a couple of hours to finish, and performing
it dozens of times makes the process very tedious. The
second, and more troubling restriction, is the fact that
any change made to the kernel may also result in some
influence on the kernel “noise generation” and hence on
the LRNG behavior. We therefore implemented a user-
mode simulator of the LRNG as part of our analysis. It
can be downloaded from the authors’ web page.

As a final note on the complexity of the implemen-
tation, we add that the complexity of the algorithm, the
lack of documentation, and the high volume of changes
to the LRNG code, resulted in dozens of programming
bugs. Many of these bugs resulted in security vulnera-
bilities during the last five years.

The basic structure of the LRNG. At a high level,
the LRNG can be described as three asynchronous com-
ponents. The first component translates system events
into bits which represent the underlying entropy. The
second component adds these bits to the generator
“pool”. When bits are read from the generator, the third
component applies three consecutive SHA-1 operations
to generate the output of the generator and the feedback
which is entered back into the pool.

Each sample of “randomness” originating from sys-
tem events is collected as two 32-bit words. The first
word measures the time of the event and the second
word is the event value, which is usually an encoding
of a pressed key, a mouse move or a drive access. In or-
der to keep track of the amount of physical randomness
which is added to the pool, the LRNG holds a counter for
counting an estimate of this value, which is calculated as
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a function of the frequencies of the different events. The
LRNG denotes this value as entropy (see Section 2.4 for
the exact definition) although it is different than the clas-
sical entropy definition by Shannon [21].

1.2 Our Contributions

This paper describes research conducted on analyz-
ing the LRNG. It provides the following contributions:

• Publication of a description of the LRNG algo-
rithm. As described above, a considerable amount
of work was required in order to analyze the LRNG
code and provide a high-level description of the un-
derlying algorithm.

• An attack which breaks the forward-security of the
LRNG. Namely, we show how, given a state of
the generator, it is possible to reconstruct previous
states. The time complexity of this attack is 264 or
296, depending on the attack variant. The memory
overhead of the attack is O(1).

• An analysis of the amount of entropy which is
added to the generator in one typical implementa-
tion.

• An analysis of the security of an implementation on
a disk-less system (an OpenWRT based router).

• We also identify some vulnerabilities in the current
implementation (including an easy deniale of ser-
vice attack) and provide recommendations for im-
proving future implementations of pseudo-random
number generators.

1.3 Related Work

Existing PRNG implementations. In the past,
PRNGs were either a separate program or a standard
library within a programming language. The evolution
of software engineering and operating systems intro-
duced PRNGs which are part of the operating system.
From a cryptographic point of view, this architecture
has three main advantages: (1) the ability to introduce
more complex algorithms which are implemented
using unique kernel optimization, (2) the ability to use
kernel based entropy events as input to the generator,
and (3) the fact that in a multi-user, multi-threaded
environment, many consumers can read random bits,
and therefore an adversary might be prevented from
reading a long stream of consecutive bits of the PRNG
output.

A published overview of the use of cryptography in
OpenBSD [5] includes a very informative introduction
to this operating system’s usage of PRNGs, and of cryp-
tography’s general role in this operating system. The
PRNG of the FreeBSD operating system is described
in [18]. It uses time stamps of events as an entropy (i.e.,
physical randomness) source. These are hashed using
AES [19] into two pools, each of 256 bits. When out-
put is extracted, AES encryption is used to repeatedly
encrypt a 256-bit counter, using an encryption key that
is taken from the entropy pools. FreeBSD implements a
single non-blocking device and the authors declare their
preference of performance over security.

Castejon-Amenedo et al. [4] propose a PRNG for
UNIX environments. Their system is composed of an
entropy daemon and a buffer manager that handles two
devices—blocking and non-blocking. The buffer man-
ager divides entropy equally between the two devices,
such that there is no entropy that is used in both. A no-
table advantage of this scheme is the absolute separation
between blocking and non-blocking devices, which pre-
vents launching a denial-of-service attack on the block-
ing device by using the non-blocking device (such an
attack is possible in Linux, as we later discuss in Sec-
tion 3.4).

Analysis of PRNGs. A comprehensive discussion of
the system aspects of PRNGs, as well as a guide to de-
signing and implementing a PRNG without the use of
special hardware or of access to privileged system ser-
vices, is given by Gutmann [9]. Issues related to oper-
ating system entropy sources were discussed in a recent
NIST workshop on random number generation [12, 10].

An extensive discussion of PRNGs, which includes
an analysis of several possible attacks and their rele-
vance to real-world PRNGs, is given by Kelsey et al.
in [14]. Additional discussion of PRNGs, as well as new
PRNG designs appear in [13, 7].

The recent work of Barak and Halevi [3] presents
a rigorous definition and an analysis of the security of
PRNGs, as well as a simple PRNG construction. This
work suggests separating the entropy extraction process,
which is information-theoretic in nature, from the out-
put generation process. Their construction is based on a
cryptographic pseudo-random generator G, which can
be implemented, for example, using AES in counter
mode, and which does not use any input except for its
seed. The state of the PRNG is the seed of G. Peri-
odically, an entropy extractor uses system events as an
input from which it extracts random bits. The output of
the extractor is xored into the current state of G. This
construction is much simpler than most existing PRNG
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constructions, yet its security was proved in [3] assum-
ing that the underlying building blocks are secure. We
note that our analysis shows that the Linux PRNG con-
struction, which is much more complex than that of [3],
suffers from weaknesses which could have been avoided
by using the latter construction.

Analysis of open-source security packages. It is hard
to examine the security of implementations of security
packages, and, in the case of proprietary software, one
usually has to trust the software authors. However, even
in the case of open source security packages it is hard to
trust security, since the fact that source code can be read
does not imply that it is actually examined by security
experts. For example, the work of Nguyen [20] exam-
ined the (open) source code of the GNU Privacy Guard
secure email software (GnuPG or GPG), and identified
several cryptographic flaws. The most serious of these
flaws has been present in GPG for almost four years.

2 The Structure of the Linux Random
Number Generator

Our study is based on version 2.6.10 of the Linux
kernel, which was released on December 24, 2004.

2.1 General Structure

The generation of random numbers in Linux is com-
posed of three asynchronous procedures. In the first pro-
cedure, operating system entropy is collected from var-
ious events inside the kernel. In the second procedure,
entropy is fed into an LFSR-like pool, using a mixing
function. When random bits are requested, the third
procedure occurs, output is generated and the pool is up-
dated. The only non-linear cryptographic operation used
by these procedures is the SHA-1 hash function. (We
note that the recent attacks on the collision resistance of
SHA-1 seem irrelevant for the purpose of attacking the
LRNG.)

Pools and counters. Figure 2.1 describes the LRNG
flow. The internal state is kept in three entropy pools:
primary, secondary and urandom, whose sizes are 512,
128 and 128 bytes, respectively. Entropy sources add
data to the primary pool2 ; output from the primary pool
is extracted and fed to the secondary and urandom pools,
while the LRNG output is extracted from the secondary
pool or from the urandom pool. During the extraction

2As is described below, system entropy might also be added to the
secondary pool, if the LRNG estimates that the primary pool has full
entropy.

operation, the inner state of a pool is modified in a feed-
back manner.

Figure 2.1: The general structure of the LRNG: Entropy
is collected (C) from four sources and is added (A) to
the primary pool. Entropy is extracted (E) from the sec-
ondary pool or from the urandom pool. Whenever en-
tropy is extracted from a pool, some of it is also fed back
into this pool (broken line). The secondary pool and the
urandom pool draw in entropy from the primary pool.

Each pool has its own entropy estimation counter.
This is an integer value between zero and the pool size
in bits, which indicates the current estimated entropy of
the pool. When output is extracted from the pool this
counter is decremented, and when entropy is added the
counter is incremented. An entropy counter is always
decremented by the number of extracted bits. Incre-
menting the counter is more complex. If the added bits
originate from one of the entropy sources, then their en-
tropy is estimated, and the counter is incremented ac-
cordingly. The entropy estimation uses the timing of the
last few events of the same entropy source (see discus-
sion below). If the entropy bits are transferred from the
primary pool, the entropy counter of the receiving pool
is incremented by the number of transferred bits.

The entropy counter of the secondary pool plays a
crucial role when extracting entropy using the block-
ing interface, /dev/random. Its task is to determine
whether there is enough entropy in the pool to supply
the requested amount of random data. If the answer is
negative, the LRNG tries to transfer entropy from the
primary pool to the secondary pool, and if this fails, it
blocks and waits until some entropy input arrives and
increments the entropy counter.

Adding physical entropy. Entropy bits are added to
the primary pool from external sources. Desktop and
server PCs can use four different sources: mouse and
keyboard activity, disk I/O operations, and specific inter-
rupts. When such an event occurs, it produces a 32-bit
word representing its timing and a 32-bit word encoding
its attributes (e.g., which key was pressed). In addition,
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the differences between the timings of successive events
of the same type are used to estimate the entropy pro-
vided by this event. In Section 2.4 we define this proce-
dure in detail.

Due to the asynchronous nature of the system, col-
lected entropy cannot be simply added to the pools but
is rather collected and batched. A few times a minute the
batched data is added to the pools (in a process described
in Section 2.5). The default operation is to add entropy
to the primary pool. If this pool is full (its entropy count
equals 4096) entropy is added to the secondary pool.
When the secondary pool is full the process returns to
the primary pool, and so on. Entropy is never added to
the urandom pool. This process increments the entropy
counter of the respective pool by the estimated entropy
amount.

Generating output. Random bits are extracted from
one of the three pools: they are extracted from the
urandom pool when the user uses /dev/urandom and
when the kernel calls get_random_bytes; from the
secondary pool when the user uses /dev/random; and
from the primary pool when one of the two other pools
does not have enough entropy and needs re-filling. The
process of entropy extraction includes three steps: up-
dating the pool’s contents, extracting random bits to be
output, and decrementing the entropy counter of the
pool. This process involves hashing the pool contents
using SHA-1, and adding the results to the pool. We
study each of the LRNG steps in the following sections.

2.2 Initialization

Operating system startup includes a sequence of rou-
tine actions. This sequence includes the initialization
of the LRNG with constant operating system parame-
ters and with the time-of-day, and additional disk op-
erations and system events which affect the LRNG us-
ing the interface for adding external entropy (discussed
in Section 2.5). This sequence of operations might be
easily predicted by an adversary, especially in systems
which do not have a hard drive. If no special actions are
taken, the LRNG state might include very limited en-
tropy. (For example, the time of day is given as a count
of seconds and of micro-seconds, each represented as a
32-bit value. In reality these values have very limited
entropy as one can find computer uptime within an ac-
curacy of a minute, which leads to a brute-force search
of only 60 × 106 < 226 different options.)

To solve this problem, the LRNG simulates continu-
ity along shutdowns and startups. This is done by sav-
ing a random-seed at shutdown and writing it back to the

pools at startup. A script that is activated during system
startups and shutdowns uses the read and write capabil-
ities of the /dev/urandom interface to perform this
operation.

During shutdown the script reads 512 bytes from
/dev/urandom and writes them to a file, and
during startup these bits are written back to the
/dev/urandom device. This device is defined such
that writing to it modifies the primary pool and not
the urandom pool (as one could expect from its name).
The resulting operations applied to the primary pool are
pretty much identical to the effect of receiving these 512
bytes as the encoding of system events, and adding them
to the primary pool using the usual procedure for adding
entropy, which is outlined in Section 2.5. The only dif-
ference is that the added bytes do not increment the en-
tropy estimation. The secondary pool and the urandom
pool are refreshed by the primary pool, and therefore the
script affects all three pools.

It is important to note that this script is part of a Linux
distribution package, such as RedHat, and not part of the
kernel code itself (this is also the reason that the script
must interact with the pools using a device driver rather
than reading and writing from/to the pools). The author
of the LRNG ([22]) instructs Linux distribution develop-
ers to add this script in order to ensure the unpredictabil-
ity of the LRNG at system startups. This implies that the
security of the LRNG is not completely stand-alone, but
dependent on an external component, which can be pre-
dictable in certain Linux distributions.

Security implications: Some Linux distributions,
such as the KNOPPIX distribution which is a bootable
PC system on a CD or a DVD [1], or the OpenWRT
Linux distribution for routers [2], do not use a script of
this type and therefore initialize the LRNG from scratch
in each reboot. This might result in an initial LRNG
state which is rather predictable. It is also obvious that
when the seed is saved in a file on the hard disk af-
ter system shutdown, anyone who can physically access
the disk can read that file and learn the seed, or alterna-
tively replace the seed with a different value (say, a pre-
vious value of the seed for which the adversary already
recorded the output of the generator). Access permis-
sions are not too helpful here, since they are related to
the operating system and not to the hard disk.

2.3 Collecting Entropy

In a PC environment, the LRNG collects entropy
from events originating from the keyboard, mouse, disk
and system interrupts. When such an event occurs, two
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Keyboard Mouse Hard Drive Interrupts
8 12 3 4

Table 1. The number of unknown bits in
operating system events.

32-bit words are used as input to the entropy pools.
The first word encodes the timing of the event in jiffies
(namely, the number of milliseconds from the time the
machine was booted) or in cpu-cycles granularity (cur-
rently cpu-cycles granularity is only used on SMP). The
second word encodes the event type. For example, in
case of a keyboard event the word encodes the key that
was pressed. Table 1 presents the number of unknown
bits per each type of event. Note that the actual entropy
of these events is much lower, as most of them are pre-
dictable to a large extent. Appendix A describes in detail
how each value is calculated.

In other environments, the LRNG gathers entropy
from the available resources. For example, an Open-
WRT router does not include a hard disk, mouse and
keyboard and therefore these cannot be used as an en-
tropy sources. On the other hand, the router collects en-
tropy from network events.

2.4 Estimating the Entropy Amount

One of the fundamental issues in using physical en-
tropy is estimating the amount of entropy which is added
to the generator, and more generally, estimating the cur-
rent amount of entropy in the pools.

As noted above, the difference between
/dev/random and /dev/urandom is that the
/dev/random interface does not return more bits
than its current entropy estimation and thus might
block. The /dev/urandom interface, and the kernel
interface (get_random_bytes), return any number
of pseudo-random bits, according to the request. This
difference implies that entropy estimation is important
mainly for the /dev/random interface.

The LRNG estimates the amount of entropy of an
event as a function of its timing only, and not of the event
type. The estimate is done in the following manner:

Definition 2.1 Let tn denote the timing of event number
n. Define

δn = tn − tn−1

δ2
n = δn − δn−1

δ3
n = δ2

n − δ2
n−1

Note that tn, δn, δ2
n, δ3

n are each 32 bits long.

The amount of entropy added by the event is defined
to be log2 (min (|δn|, |δ2

n|, |δ3
n| )[19−30]) where S[a−b]

denotes bits a to b (inclusive) of S (where location 0 is
the MSB). If min (|δn|, |δ2

n|, |δ3
n| )[19−30] = 0 then

the estimate is 0. (Even if the estimate is 0, the event
is used to update the state of the LRNG. The entropy
count, however, is only updated if the entropy estimate
of the event is positive.)

This estimation is relevant only in the case of
adding entropy from OS sources to the pools. When
a user writes data to one of the device drivers
(/dev/random or /dev/urandom) the entropy
counter is not changed. When n bits are extracted from a
pool the entropy estimation is decremented by n. When
bits are transferred from one pool to another the first is
decremented and the second incremented—both by the
amount of transferred bits.

2.5 Updating the Pools

The mechanism for updating the pools is based on
a TGFSR (Twisted Generalized Feedback Shift Regis-
ter [15, 16]). The main advantage of the TGFSR is its
extended cycle length for any initial seed. The period of
a TGFSR with a state of 128 words (on a 32-bit PC) can
be 2128×32 − 1 steps.

Definition 2.2 (TGFSR) A series ai ∈ {0, 1}w and a
matrix Aw×w are a TGFSR based on a primitive polyno-
mial xp +xp−t1 + · · ·+xp−tm +1 (1 ≤ t1, . . . , tm < p)
if and only if

ai = ai−p+t1 ⊕ · · ·⊕ ai−p+tm ⊕ ai−pA
i = p, p + 1, . . .

The only input to the TGFSR is the initial value of the
state (which is a p × w bit seed), and in each iteration
the internal state is used to generate the new state.

The shift register used in the LRNG is based on
the TGFSR (and its implementation which is described
in [15]) but is different from it since it adds entropy in
each iteration. We define the pools of the LRNG as
arrays of length m words (m = 32 or m = 128) which
are indexed by an index j.

Adding entropy. Entropy is added in each round of
state and output computation, as well as when entropy is
added from external sources, or from the primary pool to
the secondary and urandom pools. Entropy is added by
running the algorithm add(pool,j,g) and updating
the value of the index j, where g is the new entropy word
which is added to the pool. Figure 2.2 defines the update
operation for a pool of size 32 words.
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Algor i t hm add ( pool , j , g ) :
temp := g
temp := temp xor poo l [ j ]
temp := temp xor poo l [ ( j +1) mod 32]
temp := temp xor poo l [ ( j +7) mod 32]
temp := temp xor poo l [ ( j +14) mod 32]
temp := temp xor poo l [ ( j +20) mod 32]
temp := temp xor poo l [ ( j +26) mod 32]
temp := ( temp >> 3) xor t a b l e [ temp & 7]

/ / t h e l a s t 3 b i t s o f temp choose a t a b l e
/ / e n t r y which i s xored t o ( temp >> 3)

poo l [ j ] := temp

/ / t a b l e [ ] i s d e f i n e d as f o l l o w s
/ / t a b l e [ 0 ] = 0 x0
/ / t a b l e [ 1 ] = 0 x3b6e20c8
/ / t a b l e [ 2 ] = 0 x76dc4190
/ / t a b l e [ 3 ] = 0 x4db26158
/ / t a b l e [ 4 ] = 0 xedb88320
/ / t a b l e [ 5 ] = 0 xd6d6a3e8
/ / t a b l e [ 6 ] = 0 x9b64c2b0
/ / t a b l e [ 7 ] = 0 xa00ae278

Figure 2.2: Pseudo-code of the entropy addition algo-
rithm for the urandom and secondary pools. pool is the
pool to add entropy to, g is the added entropy, table is
a table with eight words, and j is the current position in
pool.

Each pool is updated based on a primitive polyno-
mial. The polynomial is chosen according to the size
of the pool, and therefore the secondary and the uran-
dom pools share the same polynomial, which is x32 +
x26 + x20 + x14 + x7 + x + 1. The primary pool poly-
nomial is x128 + x103 + x76 + x51 + x25 + x + 1,
and the entropy addition for that pool is identical to
that of the smaller pools, except for using this polyno-
mial for updating the pool (namely, xoring g with entries
j, j +1, j +25, j +51, j +76 and j +103 modulo 128).

Entropy addition can be analyzed by assuming that
the generator is reseeded in each iteration. Alternatively,
one might analyze it by assuming that the TGFSR is
used to encrypt the entropy input. The LRNG reseed-
ing process changes the elementary properties of the
TGFSR. The long period can no longer be guaranteed,
and the process is no longer a linear function of the ini-
tial state.

2.6 Extracting Random Bits

Entropy is extracted from the secondary pool in case
of /dev/random and from the urandom pool in case
of /dev/urandom or get_random_bytes. It is
also extracted from the primary pool for the purpose of
refreshing the other pools.

Extracting entropy from a pool is not a simple oper-
ation. It involves hashing the extracted bits, modifying
the pool’s state and decrementing the entropy estimate
by the number of extracted bits.

Figures 2.3 and 2.4 present a pseudo-code and a di-
agram of the extraction algorithm. Entropy extraction
is done in blocks of 10 bytes. The process is described
for the case of the urandom or secondary pools, which
are 32 words long. For simplicity the description does
not include the steps of decrementing the entropy esti-
mation, and the entropy refilling process. The algorithm
applies the SHA-1 function to the first 16 words, and
adds part of the result to location j. It then applies a
variant of SHA-1, which we denote as SHA-1’ (see be-
low), to the right half of the pool, and adds parts of the
result to locations j − 1 and j − 2. Finally, it applies
SHA-1’ to the 16 words ending at location j − 2, and
uses the result to compute the output in the following
way: The output of SHA-1’ is 5 words (20 bytes) long.
These words are folded as described in Figure 2.5, and
the resulting 10 bytes are the output of the iteration. This
output is copied to the target (user or kernel) buffer, and
the number of bytes to be copied is updated. The loop
continues until the requested number of bytes are output.

Algo r i t hm E x t r a c t ( pool , nby te s , j ) :
whi le n b y t e s > 0

tmp := SHA−1( po o l [ 0 . . 1 5 ] )
/ / t h e r e s u l t i s 5 words lo ng

add ( pool , j , tmp [ 0 ] )
tmp := SHA−1 ’ ( poo l [ 1 6 . . 3 1 ] )
add ( pool , j−1 mod 32 , tmp [ 2 ] )
add ( pool , j−2 mod 32 , tmp [ 4 ] )
tmp := SHA−1 ’ ( p oo l [ ( j −2−15) mod 32

. . . ( j −2) mod 3 2 ] )
tmp := f o l d i n g ( tmp [ 0 . . 4 ] )

/ / t h e r e s u l t i s 2 . 5 words lo ng
o u t p u t ( tmp , min ( nby te s , 1 0 ) )
n b y t e s := nby te s −10
j := j−3 mod 32

end whi le

Figure 2.3: Pseudo-code of the extraction algorithm.
pool is a 32 work pool from which entropy is extracted,
nbytes is the number of requested bytes, and j is the cur-
rent position in pool.

The SHA-1 variant being used. The first hash func-
tion used in the procedure is the original SHA-1 function
(see [6] for the exact definition of SHA-1). Each of the
following hash operations in this iteration, which we de-
note as SHA-1’, use for their five initial constant values
(IV) the five output words of the previous hash result.
(We note that if the LRNG had used the original SHA-
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Figure 2.4: Extraction algorithm

input : W0, W1, W2, W3, W4

output : W0 ⊕ W3, W1 ⊕ W4, W2[0−15] ⊕ W2[16−31]

Figure 2.5: Folding operation. Folding 5 words (160
bits) to 2.5 words (80 bits). Wi denotes the ith word,
Wi[l−m] denotes bits l − m (inclusive) of the ith word..

1 function, the attacks in Section 3.1 would have been
considerably more efficient, as is described there.)

Extracting randomness from the primary pool. Bits
are extracted from the primary pool when it is required
to refresh one of the other pools. In this case, the al-
gorithm is slightly different since the primary pool is
longer. The SHA-1 (or SHA-1’) operation is applied to
each of the eight 16 word chunks of the primary pool,
and once more to the 16 words ending at location j − 8.
The first eight SHA-1 operations update eight words in
the pool, and the last operation generates the output. The
algorithm is described in Appendix B.

3 Analysis

Our analysis of the security of the LRNG is com-
posed of four parts: (1) a cryptanalytic attack on the
forward security of the LRNG, (2) an analysis of the en-
tropy added by system events, (3) observations on the
insecurity of the LRNG in the OpenWRT Linux distri-
bution for routers, and (4) observations on security en-
gineering aspects of the LRNG, including a denial-of-
service attack.

3.1 Forward Security

We first observe that the output which is extracted
from a pool is calculated as the last state in the

Extract algorithm. Namely, it is computed after the
state of the pool is updated. This means that if the state
of the pool at time t is known then it is easy to compute
the output which was extracted from the pool during its
last state transition (i.e., the output which was computed
in the transition from time t − 1 to time t). This is a
flaw in the forward security of the LRNG, since it en-
ables anyone who observes the state of the LRNG at a
certain time to compute the last output of the LRNG. We
show below how to mount a stronger attack on the for-
ward security of the LRNG and compute, given the state
at time t, previous states, which consequently enable to
compute previous outputs of the LRNG.

We describe below how to reverse the state of a single
pool, assuming that in its last update it was not refreshed
with new entropy. Let us recall that the states of the
urandom and secondary pools are updated when random
bits are extracted from the LRNG, and that if the entropy
estimates of these pools are low these pools attempt to be
refreshed with output from the primary pool. Only the
secondary pool, however, is blocked if no such refresh is
available. The state of the primary pool is updated with
randomness from system events whenever it is updated.
The attack is therefore mostly relevant to the urandom
pool which is often used for extracting many bits while
not receiving any entropy updates. The attack is also
relevant to the secondary pool, if the attack starts from
a time in which the value of the entropy counter is high,
and to the primary pool, if the entropy which is added to
the pool is mostly predictable.

The input of the attack is the state of a pool at time t
(denoted as poolt). It computes the state of the pool at
time t − 1 (denoted as poolt−1). Now, given poolt−1 it
is easy to compute the random value which was output
in the extract operation that transitioned the pool state
from poolt−2 to poolt−1. In other words, the forward
security requirement is not satisfied since it is possible
to compute a previous output of the LRNG. The same
analysis can be continued and compute the state and the
corresponding outputs at times t−2, t−3 and so on, until
the last time that the pool received an entropy update.

Below we describe two methods for reversing the
state of the LRNG. The first method is a generic attack
which has an overhead of 296, which is much better than
an exhaustive search (whose overhead is 21024 for the
case of a 32 word pool), but is rather impractical. The
second attack is almost practical, with an overhead of
264, but it is only applicable when the index j is in a
specific range (covering 18 of the 32 possible values of
j in a 32 word pool). This means that a lucky attacker,
which starts its attack when the value of j is at the end

Proceedings of the 2006 IEEE Symposium on Security and Privacy (S&P’06) 
1081-6011/06 $20.00 © 2006 IEEE 



of this range, can compute five previous states of the
pool (and the corresponding outputs) with an overhead
of about 264. Both attacks use O(1) memory.

The Extract algorithm is described in Figure 2.3
and is used for advancing the pool and extracting an out-
put from it. To simplify the analysis, let us first assume
that the pool is either the secondary or the urandom pool,
and is therefore 32 words long, and that the add opera-
tion is a simple addition modulo 232 − 1, instead of the
TGFSR operation detailed in Section 2.5.

The analysis starts with knowledge of the state of the
pool at time t (namely, poolt), and of the value of the
index j. (To simplify the notation, we denote by jt, or
simply by j, the value of the index j at the beginning of
the computation of the Extract operation that transi-
tions the pool from time t − 1 to time t.)

A generic attack: As a warmup we describe a generic
attack which is based on a simple observation: all but
three words of the pool (those indexed by j, j − 1 and
j − 2) are identical in both poolt and poolt−1. Given
poolt there are therefore only 296 possible candidate
values, or “guesses”, for poolt−1 — those obtained by
copying the values of the words in locations different
from [j − 2, j] and going over all possible values for
the 96 bits in words j, j − 1 and j − 2. The transition
from poolt−1 to poolt is deterministic and defined by
the Extract algorithm in Figure 2.3. The attack there-
fore applies this algorithm to each candidate value of
poolt−1, and checks if the result is equal to poolt. If the
two values are not equal then the candidate value is dis-
missed. Otherwise, the candidate value is put in a short
list of possible values for poolt−1 (we show immedi-
ately that this list is indeed short).

Note that although the Extract procedure uses
three invocations of SHA-1, which cause the bulk of the
overhead, all but a fraction of 2−32 of the candidates for
poolt−1 can be dismissed after a single application of
SHA-1. The overhead of the search is therefore about
296 applications of SHA-1.

Estimating the accuracy of the attack. We know that
the true value of poolt−1 is in the computed short list,
but that there might be some additional “false posi-
tives”. I.e., values for locations [j − 2, j] in time t − 1
which are different from the true value, but for which
applying the Extract algorithm results in the right
value for poolt. Fortunately, we do not expect many
false positives. There are 296 − 1 false candidates for
poolt−1[j − 2, j], and each of them has a probability of
2−96 to become a false positive (assuming that we model
SHA-1 as a random function and therefore the proba-

bility of computing the right value of poolt[j − 2, j]
is 2−96). The number of false positives is therefore k
with probability of about

(
n
k

)
n−k(1 − 1/n)n−k, where

n = 296 − 1. Namely, with probability e−1 there are
no false positives (k = 0), with probability e−1 there is
a single false positive, with probability of about 0.5e−1

there are two false positives, and so on.
Given the short list of possible values of poolt−1,

the previous procedure can be applied for each value in
the list to compute all possible values of poolt−2. Ap-
plying this procedure to the correct value of poolt−1

always results in one or more candidates for poolt−2,
which include the correct value of poolt−2 and possi-
bly additional false positives (according to the distri-
bution that was detailed above). However, applying
the procedure to a value which is a false positive for
poolt−1, results, with probability e−1, with no candi-
date for poolt−2. If this event happens then it can be
concluded that the tested value for poolt−1 is a false pos-
itive, and this value can be removed from the list. (If this
is not the case then with probability e−1 the tested value
results in a single candidate for poolt−2, with proba-
bility 0.5e−1 it results in two candidates for poolt−2,
etc.) The number of possible values for poolt−k is there-
fore a random variable. In Appendix C we show that
the sequence {|poolt−k| − k}k=1,2,... is a martingale,
that E(|poolt−k|) = k, and that the probability that
poolt−k > k + b is at most 1/b. We can therefore con-
clude that for all practical purposes the procedure out-
puts a list of reasonable size of the possible values of the
state at time t − k.

A more efficient attack. We now show that for 18 of
the possible 32 values of the index j, it is possible to re-
verse the pool by a procedure with an overhead of 264.
This procedure is applicable if the value of j is in the
range [16, 31], and for j = 1, 2. We detail the proce-
dure for the case of j ∈ [18, 31]. In this case the words
which are affected by the state transition are located in
the upper half of the pool, while the first half of the
pool does not change from time t − 1 to time t (namely,
poolt[0, 15] = poolt−1[0, 15]). It is therefore possible,
given poolt, to apply SHA-1 to words [0, 15] and com-
pute the value that was added to location j. Given this
value it is possible to compute poolt−1[j] from poolt[j].
In addition, the initialization vector for the second appli-
cation of SHA-1 is computable from poolt−1[0, 15]. It
is therefore possible to go over all 264 potential values
of poolt−1[j−2, j−1], apply SHA-1 to poolt−1[16, 32]
and compute the resulting values that were added to lo-
cations j − 2 and j − 1. If these values are not equal to
the difference between the values of these locations in
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time t and in time t − 1, it is safe to dismiss the “guess”
of poolt−1[j − 2, j − 1]. The true value of poolt−1 is
never dismissed, while false positives appear with the
same probability distribution as in the previous analy-
sis (the only difference is the value of n, which is 264

instead of 296). The number of possible candidates for
poolt−k behaves according to the same distribution as
in the previous procedure, as is analyzed in Appendix C.
The expected number of candidates for poolt−k is there-
fore only k. The overhead of the attack is O(264) oper-
ations and O(1) memory.

We note here that the pool could have been reversed
with an overhead of 264 or less operations for any value
of j, if the Extract procedure had used the original
SHA-1 function rather than the version which changes
the initialization vector after the first invocation of the
function. The effect of the SHA-1 variant which is
used in the LRNG is that one cannot compute the val-
ues added to locations j − 1 and j − 2 before computing
poolt−1[0, 15]. For j ∈ [3, 15] this means that we must
check all options for poolt−1[j − 2, j].

Reversing the primary pool. Assume that we are
given the state of the primary pool, and that we know
which entropy value was added to the pool when it was
advanced to this state. The only difference of this case
from the case of the shorter pools is that the size of the
pool is 128 words. The generic attack can still be ap-
plied with a 296 overhead. The more efficient attack can
be applied if j is in the range [120, 127].

The add operation. The previous analysis assumed
that the add operation in the Extract algorithm is an
addition modulo 232 − 1. However, this operation is
implemented as is described in Section 2.5 and there-
fore the value added to location j is a function of the
current values of several locations in the pool, as is de-
picted in Figure 2.2. This change obviously does not
affect the generic attack, since poolt is still a deter-
ministic function of poolt−1. The second, more effi-
cient, attack is also not affected: the value added to lo-
cation j is a function of the result of applying SHA-1
to poolt−1[0, 15] = poolt[0, 15] and computing a func-
tion of the SHA-1 result, of poolt−1[j], and of five other
locations in poolt−1 which are not changed in the transi-
tion to poolt. Given poolt[j], we can examine its three
most significant bits and identify the entry of table
which was xored to temp in the transition (this is easy
since each of the eight entries in table has a different
value to its three most significant bits). The index of the
entry identifies the three least significant bits of temp
(before it was shifted to the right). It is now possible

to reverse the operation that was performed in the sec-
ond to last line of add, and xor the result with g and
with the five pool entries which where used to generate
it. The result is poolt−1[j].

3.2 Entropy Measurements

When entropy is added to the LRNG pool, each event
adds two 32 bit words. In Section 2.3 we described the
actual active range of bits within the type-value field
and Appendix A provides the details for each case.

We now turn to the entropy of the timing of the en-
coded events. As mouse and keyboard events are us-
age dependent and network interrupts are not commonly
used as an entropy resource for the LRNG, we ran a
trial which measured the entropy which is added to the
LRNG by hard disk events. Our trial included over ten
days of measurements on a single Linux machine, with
a total of over 140, 000 entropy addition events. The
system was mostly idle, and the measurements were in
a setting that recorded their results on a different com-
puter, without affecting the disk of the examined ma-
chine.

We mark by tn the time of event n, and the dif-
ference between two consecutive events is defined as
δn := tn − tn−1. Table 2 presents the frequency of
different δn values. Note that all but 0.8% of the val-
ues are in the range [77, 82]. All other values are larger
by about four orders of magnitude. The resulting en-
tropy is only H := 1.03 bits per event, which is to say
that event timing, which is encoded as a 32 bit field, had
in this setting an entropy of at most a single bit. The
recordings furthermore show that there is a correlation
between consecutive δn values (and therefore the en-
tropy is even lower). The entropy of pairs of events is
1.53 bits per pair, and consequently, the conditional en-
tropy of δn given δn−1 is only 0.5 bits.3

We also checked the entropy estimate that would have
been calculated by the LRNG for these measurements,
using the procedure outlined in Section 2.4. This esti-
mate turns out to be very conservative. Only 2224 of the
140,000 measurements resulted in a positive addition to
the entropy estimate. These events occurred, more or
less, only when δn had a very large value, and conse-
quently the n and n + 1 measurements had a large en-
tropy estimate (namely, the 1100 events of Table 2 for

3Closer examination reveals patterns such as the following one: For
about 84% of the measurements it holds that δi+1 = δi. Given this
event, the conditional probability that δi+2 = δi is about 90%, and
the conditional probability that δi+2 �= δi but δi+3 = δi is 9.9%.
Consequently, for only 0.1% of the cases in which δi+1 = δi we get
that both δi+2 and δi+3 are different from δi.
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δn Frequency
77 243
78 1730
79 11468
80 113402
81 11786
82 625
83 0
84 0

> 84 1112

Table 2. Frequency of time differences be-
tween two consecutive HD entropy addi-
tion

which δn � 84, each resulted in a pair of consecutive
measurements which contributed to the entropy count).
The total estimate of the added entropy was 17500 bits.
Given that the measurements were taken over a period of
ten days, there was an average delay of about 15 minutes
between pairs of events which had a positive contribu-
tion to the entropy count. The average contribution of
these pairs was about 16 entropy bits. This is quite a se-
vere bottleneck for the blocking interface to the LRNG.

3.3 Analysis of the OpenWRT Linux
Distribution

OpenWRT [2] is a Linux distribution for wireless
routers. It provides many cryptographic services such
as SSL termination, a SSH server, and a wireless en-
cryption. The security of all these services is dependent
upon the output of the LRNG.

An OpenWRT router has very limited entropy
sources. There are no keyboard, mouse or hard drive
attached to the router. The WRT uses its flash memory
(of size 4− 16 MBytes) as a special file system, but this
file system does not provide entropy to the LRNG.

In addition, the WRT implementation does not save
any LRNG state between reboots. Hence, the only en-
tropy source for the LRNG is network interrupts, which
might be observable by an adversary (!). This is true in
particular for wireless routers where most network in-
terrupts are caused by wireless activity, which is easily
visible by an external adversary.

Given this data we can conclude that the WRT imple-
mentation of the LRNG is weak. The state of the LRNG
is reset in every reboot to a predictable value (composed
of the time of day and a constant string), and the only
source of entropy is, to a large extent, observable by ex-

ternal adversaries. The result is that an adversary can
simulate the state and the output of the LRNG. We note
that security can be improved by saving LRNG output
at shutdown and loading it into the state at reboot. This
would require potential attackers to either eavesdrop to
all network traffic from the time the router was initial-
ized, or obtain access to the LRNG state.

3.4 Security Engineering

Denial of service. There is no limitation on the num-
ber of bits a user can read from the random de-
vices per time unit. However, the secure interface
/dev/random blocks its output when the entropy
estimate is low, until additional “noise” is added to
the pools. These facts together suggest two denial
of service attacks which block all users from reading
/dev/random bits.

The first attack is simply to read bits from
/dev/random. As there is no limit and no prioriti-
zation, this results in blocking other users, and might
delay them for a long period of time. We tested this
attack using simple dd if=/dev/random and were
able to block other readers of /dev/random.

Furthermore, an attack can even be mounted re-
motely, by triggering system requests for random bytes
(get_random_bytes) in a significantly higher rate
than that of the entropy input events. Since the urandom
non-blocking pool (from which these bits are taken) is
refilled from the (blocking) primary pool, this attack will
result in denial-of-service for the primary and secondary
pools. A simple way for an adversary to issue this attack
may be to set many TCP connections. For each connec-
tion, a TCP-syn-cookie is generated, which requires 128
bytes from the non-blocking pool, hence reducing the
entropy count.

Solution. As entropy is a limited and valuable re-
source, its consumption must be controlled. The com-
mon solution in operating systems for such a resource is
through the definition of a new quota per user or group
for the consumption of random bits.

Guessable passwords. Usually, the first user-
operation in a computer system is user login, and the
first input entered by the user is the password, or a
user-name and password pair.

In a scenario of a disk-less system, without a ran-
dom seed that is saved between startups, we can imag-
ine a situation where an attacker knows the initial state
of the LRNG, and where the sequence of updates of the
LRNG during system reboot is quite predictable. The
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state of the LRNG might therefore be, to a large extent,
a deterministic function of the initial password entered
by the user. If the attacker is able to read random bits
fast enough, it might be able to identify the password
by going over all possible password values, and check-
ing which one results in the LRNG output which was
observed.

This attack, which was noted by Kelsey et al. [14], is
particularly relevant if the LRNG does not obtain input
from a hard disk or from interrupts resulting from net-
work events (as is the case for example with one of the
most popular network cards, the 3Com PCI 3c905B Cy-
clone 100baseTx). In this case the input to the LRNG
comes mostly from the user’s input. We attempted to
use this observation to extract the user password from
the output of the LRNG of the KNOPPIX Linux distri-
bution [1], which is bootable from a CD and therefore
does not save the LRNG state. We were unsuccessful
in this attack, largely because the examined system used
a hard disk which provided considerable amount of en-
tropy during the boot process.

Solution. It is better to remove the influence of the val-
ues of keyboard events on the LRNG. Keyboard entropy
should be based on the timing of its events, and not on
the type-values. (The timing of keyboard events might
also reveal information about data entered by the user,
but this seems like a second-order risk compared to the
risk from the values of keyboard events.)

An adversary can create noise that directly affects
the LRNG output. Normally, there is a separation be-
tween the input and output of the LRNG, but when the
primary pool is full, the batched entropy is added di-
rectly to the secondary pool, from which it is output
when /dev/random is used. This direct flow between
the input and the output of the LRNG might provide an
adversary with the ability to create noise that directly
affects the generator’s output.

Solution. It is best to always flush the batched entropy
to the primary pool, even if it is full. This makes a
strict separation between the input and the output sides
of LRNG.

The LRNG state reveals the previous LRNG out-
put. The Extract procedure (Fig. 2.3) first updates
the pool and then computes its output. The result of
this design decision is that an adversary which learns
the internal state of the LRNG learns the state of the
pool which was used to compute the last LRNG output,
and can easily compute this output (and hence break the
forward-security of the LRNG).

Solution. It is best to switch the order of operations.
The state update will than take place after LRNG output.

4 Conclusions and Recommendations

This paper analyzes the Linux random number gen-
erator. The LRNG algorithm is complex and includes a
large state made of three different storage pools, a com-
plex mechanism for adding entropy from system events,
and an extraction algorithm based on a shift register and
several SHA-1 operations.

We showed that these layers add complexity to the
implementation but do not prevent attacks on the for-
ward security of the LRNG. In addition we described
weaknesses in the OpenWRT Linux distribution.

Our study was conducted on the latest (at the time)
Linux kernel, labeled version 2.6.10, which was re-
leased on December 24, 2004. Since then the kernel kept
developing. Lately, version 2.6.15 was released in Janu-
ary 2006, and patches are being published since then4.

Limitations. As far as we could tell the different
Linux distributions for PCs (e.g., RedHat, Debian, Slak-
ware) have little if any effect on the LRNG struc-
ture, since all distributions use the same kernel source.
Changes occur only within the system up and down
times, and to our findings are only cosmetic. As there are
hundreds of different distributions this statement may be
not true for all of them.

Our study does not cover all Linux kernel options.
For example, we did not take into account multi-cpu
hardware configurations, or unique hardware configura-
tions such as the Qtronix keyboard and mouse device5

whose entropy collection method is different than the
one described here.

Open source security. The LRNG is an open source
project which enables an adversary to read the entire
source code and even trace changes inside the source
configuration management system. This feature gives
powerful tools to the adversary. On the other hand, open
source benefits security by enabling security audits, and
enabling easy changes to the code. It is rather easy to
add patches to the current LRNG code in order to pre-
vent the attacks we described in this paper (this would
have been much harder, if at all possible, for closed
source PRNGs).

4See http://www.linuxhq.com/kernel/file/
drivers/char/random.c for the incremental changes in
random.c.

5http://lxr.linux.no/source/drivers/char/
qtronix.c?v=2.6.10
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“Open” is not a synonym for “secure”. We feel that
the open source community should have a better policy
for security sensitive software components. These com-
ponents should not be treated as other source elements.
We suggest to add a better quality assurance procedure
for the cryptographic elements of the kernel. For exam-
ple, the PRNG must pass statistical tests which can be
put into the kernel build process. Open source must also
have, in our opinion, a clear and updated documentation
of the algorithms used in the code. Such documentation
could have saved us from the trouble of reverse engineer-
ing the code, and would have provided better access for
other researchers to review the security of the LRNG.

4.1 Recommendations

Following our analysis of the LRNG, we suggest the
following recommendations for the design of pseudo-
random number generators.

• Fixing the LRNG. The issues which were reported
in this paper should be fixed. In particular, the
LRNG code should be changed to prevent attacks
on its forward security. The OpenWRT implemen-
tation should be changed to provide more entropy
to the LRNG, or at least save its state during shut-
down.

• Implementing a quota for the consumption of ran-
dom bits. Random bits are a limited resource, and
attackers can easily mount a denial-of-service at-
tack (even remotely) by consuming random bits at
a high rate. The common solution for this type of
problem is to implement a quota system which lim-
its the effect of each user, or each process, on the
operation of other users of the same system. Such a
quota system should be added to the Linux kernel.

• Adopting the Barak-Halevi construction. The
Barak-Halevi (BH) construction and its analysis [3]
are attractive in their simplicity, which clearly iden-
tifies the role of every component of the system,
and enables a simple implementation. In compar-
ison, the current LRNG construction is an overkill
in some aspects (like the size of the pools or the
number of SHA-1 invocations), but its complex-
ity does not improve its security but rather hides
its weaknesses. We suggest that future construc-
tions of pseudo-random number generators follow
the BH construction (and in general, try to “keep it
simple”).

• Since randomness is often consumed in a multi-
user environment, it makes sense to generalize the

BH model to such environments. Ideally, each user
should have its own random-number generator, and
these generators should be refreshed with different
data which is all derived from the entropy sources
available to the system (perhaps after going through
an additional PRNG). This architecture should pre-
vent denial-of-service attacks, and prevent one user
from learning about the randomness used by other
users.6
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A Entropy Collection

We explain each “noise” source and the different
valid values for the 32 bits of the type-value during
the entropy addition procedure:

keyboard event. The type-value contains the key-
board press and release codes, valid range between
[0, 255].

mouse event. type-value := (type �
4) ⊕ code ⊕ (code � 4) ⊕ value. Where
type describes the event type - pressing or releasing in
case of mouse buttons and start movement or end move-
ment in case of mouse movement; code is the mouse
button pressed (left, right or middle) or wheel scrolling
in case of mouse buttons, and the axis of the movement
(horizontal or vertical) in case of mouse movement;
value is true/false in case of mouse buttons press or
release7, 1 or −1 for denoting scrolling direction (1 for
up, −1 for down) in case of wheel scrolling, and the size
of movement in case of mouse movement. In short, the
mouse data is a 32-bit word with the movement size as
its main entropy factor. However, only 10 bits are used
for movement, another 2 bits are used for the buttons,
so in fact only 12 out of the 32 bits are effective.

disk event. Computed at completion of a disk (such
as IDE, SCSI, Floppy, block devices) I/O operation. Its
type-value is composed of major and minor numbers
(major and minor numbers are operating system sym-
bols that together uniquely define a device):

type-value := 0x100 + ((major � 20) | minor)

If there is only one IDE disk, the type-value is fixed,
since the major and minor numbers are constants. (In
most cases the major is 3 (first IDE disk) and the mi-
nor is 0 (master), and their combined type-value yields
0x300100.) Assuming an average machine has no more
than 8 disks, the type-value actual span is limited to 3
bits.

interrupt event. The result of an interrupt occurrence
is the IRQ (interrupt request channel) number, with a
valid range of [0,15]. It is important to note that as of
the current kernel versions only very limited number of
hardware device drivers supply interrupt values to the
LRNG. In many setups interrupts will not add any en-
tropy events.

7Each action produces an input for all three buttons to the mouse
type-value formula. The button that was active gets an action value =
1 while the others get value = 0.
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B Extracting Randomness from the Pri-
mary Pool

The primary pool is updated using a procedure which
is described in the following pseudo-code:

Algo r i t hm E x t r a c t ( pool , nby te s , j ) :
w h i l e n b y t e s > 0

tmp := SHA−1( poo l [ 0 . . 1 5 ] )
/ / t h e r e s u l t i s 5 words long

add ( pool , j , tmp [ 0 ] )
tmp := SHA−1 ’ ( poo l [ 1 6 . . 3 1 ] )
add ( pool , ( j −1) mod 128 , tmp [ 2 ] )
tmp := SHA−1 ’ ( poo l [ 3 2 . . 4 7 ] )
add ( pool , ( j −2) mod 128 , tmp [ 4 ] )
tmp := SHA−1 ’ ( poo l [ 4 8 . . 6 3 ] )
add ( pool , ( j −3) mod 128 , tmp [ 1 ] )
tmp := SHA−1 ’ ( poo l [ 6 4 . . 7 9 ] )
add ( pool , ( j −4) mod 128 , tmp [ 3 ] )
tmp := SHA−1 ’ ( poo l [ 8 0 . . 9 5 ] )
add ( pool , ( j −5) mod 128 , tmp [ 0 ] )
tmp := SHA−1 ’ ( poo l [ 9 6 . . 1 1 1 ] )
add ( pool , ( j −6) mod 128 , tmp [ 2 ] )
tmp := SHA−1 ’ ( poo l [ 1 1 2 . . 1 2 7 ] )
add ( pool , ( j −7) mod 128 , tmp [ 4 ] )
add ( pool , ( j −8) mod 128 , tmp [ 1 ] )
tmp := SHA−1 ’ ( poo l [ ( j −8) mod 128

. . . ( j −8−15) mod 1 2 8 ] )
tmp := f o l d i n g ( tmp [ 0 . . 4 ] )

/ / t h e r e s u l t i s 2 . 5 words long
o u t p u t ( tmp , min ( nby te s , 1 0 ) )
n b y t e s := nby te s−min ( nby te s , 10)
j := ( j −9) mod 128

end w h i l e

C Probability Calculations

The number of false positives generated by the proce-
dure for reversing the pool is a random variable with the
following distribution: The probability of having k false
positives, for k = 0, . . . , n, is

(
n
k

)
n−k(1 − 1/n)n−k ≈

e−1/k!, where n is either 264 or 296.
Starting from a single state of the pool at time t, let us

denote by di the number of false positives at time t − i.
Note that for every i there exists, in addition to the false
positives, an additional candidate which is the true value
of the pool at time t − i.

In time t we have one good candidate and no false
positives (d0 = 0). Now,

E(d1) =
n∑

k=1

ke−1/k! = e−1
n−1∑

k=0

1/k! = e−1 · e = 1.

It also holds that E(di|di−1 = 1) = E(d1) = 1. As
a result, E(di|di−1 = c) = (c + 1)E(di|di−1 = 1) =
c + 1. (We multiply E(di|di−1 = 1) by c + 1 since
we obtain false positives at time t − i from the c false

positives at time t − i + 1 and in addition from the true
value of poolt−i+1.)

A martingale is a sequence of random variables
X0, X1, X2, . . . which satisfies the relation

E(Xi|Xi−1, . . . , X0) = Xi−1.

It is known that for a martingale E(Xi) = E(X0), and
there are known tail bounds on the divergence from this
expectation (see [17] for details).

Let us define the sequence zi = di − i (the devia-
tion of di from the value i). The sequence {di} is not a
martingale but the sequence {zi} is, since E(zi|zi−1 =
c) = E(di|di−1 = c + i− 1)− i = c + i− 1 + 1− i =
c = zi−1. We therefore get that E(zi) = E(z0) = 0 and
E(di) = i.

It is now possible to apply the Kolmogorov-Doob
inequality (see [17]), which states that Pr(max(zi) >
b) < E(z0)/b = 1/b (for the purpose of using this in-
equality we define zi = di− i+1 and therefore z0 = 1).
As a corollary we can obtain, for example, that the prob-
ability that di is greater than i + 100 is at most 1/100.
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