CERIAS Tech Report 2004-03

RTML: A ROLE-BASED TRUST-MANAGEMENT
MARKUP LANGUAGE

Ninghui Li, John C. Mitchell

Center for Education and Research in
Information Assurance and Security,
Purdue University, West Lafayette, IN 47907-2086

William H. Winsborough

Center for Secure Information Systems
George Mason University

4400 University Drive, Mail Stop 4A4
Fairfax, VA 22030-4444

Kent E. Seamons, Michael Halcrow, Jared Jacobson
Computer Science Department

Brigham Young University
Provo, UT 84602

RTML: A Role-based Trust-management Markup Language

Ninghui Li John C. Mitchell
Department of Computer Science Department of Computer Science
Purdue University Stanford University
656 Oval Drive, West Lafayette, IN 47907-2096 Gates 4B, Stanford, CA 94305-9045
ninghui@cs.purdue.edu jcm@stanford.edu

William H. Winsborough
Center for Secure Information Systems, George Mason Uriiyers
4400 University Drive, Mail Stop 4A4 Fairfax, VA 22030-4444
wwinsborough@acm.org

Kent E. Seamons Michael Halcrow Jared Jacobson
Computer Science Department, Brigham Young University, ®roM 84602
{seamons, mhalcrow, jmj3&cs.byu.edu

Abstract membership and may delegate authority to add additional
members to a roleRT’s notion of role is more general than

RT is a framework for Role-based Trust Manage- typically used in Role Based Access Control (RBAC) [23].
ment [20]. In comparison with systems like SPKI/SDSI Roles inRT are localized to each principal, can have pa-
and KeyNote, the advantages®T’ include: a declarative, rameters, and can express concepts such as identity in sys-
logic-based semantic foundation, support for vocabulary tems like X.509 [14], role and permission in RBAC, name
agreement, strongly-typed credentials and policies, more and authorization in SPKI/SDSI [11], and attribute in at-
flexible delegation structures, and more expressive suppor tribute certificates.
for Separation-of-Duty policies. S))

This paper describes advances in tRg" framework _ One distinguishing fgature of theT framework is that it
that broaden its applicability and presents RTML, an XML- directly gddregses the issue of vocabular_y a_greement. When
based data representation fétT" policies and credentials. ~ credential chains delegate access permissions of resource
Improvements in RT include new data types to encode per-a” thg principals qulved in the chain pegd touse conﬂtstg
missions involving structured resources and ranges, iestr {€rminology to specify resource permissions and delegatio
tive inheritance of roles for flexible refinement of permis- conditions. When different credential issuers use incom-
sions, and notions of identity roles and identity-basedsol ~ Patible schemes, their credentials cannot be meaningfully
for enforcing separation-of-duty when a physical user kold €°mbined. Some intended permissions may not be granted,
multiple keys. RTML establishes a precise format&dr or, when schemes intended for different purposes acciden-

credentials and policies, facilitating deployment of tHe R tally interact, unintended a_uthorization may follow. Some
framework. systems do not address this issue at all; others try to come

up with one vocabulary for all applications. Our philosophy
is that, although different applications often share commo
policy concepts, they need to be able to use different vocab-
ularies. InRT, we address this issue through a scheme in-
spired by XML namespaces [7]. We introduapplication

RT is a framework for Role-based Trust Management. domain specification documents (ADSDEgch ADSD is
The framework comprises several sub-languages, describeglobally uniquely identified by a URI, and defines a suite
in previous papers [20, 21].RT credentials define role of related data types and role names, calladeabulary

1 Introduction

Credentials, when using a role name, refer to the ADSD in above described extensions. (We omit “version 1” in the rest
which the role name is declared. This enalis to have of this paper.) This work on RTML, fleshing out the design
strongly typed credentials and policies. This feature sielp of RT, involves efforts from three research projects, with
ensure interoperability and reduce the possibility of eyro focuses on trust management, attribute-based access con-
in writing policies and credentials and unintended interac trol, and automated trust negotiation. Each of the projects
tion of credentials. found previous public-key certification systems such as

In the process of turning the design of RT [20] into a X.509, SPKI/SDSI, and KeyNote [3] too limited in one way
system that can be used by several projects, we extende@r another [20, 25, 27]. RTML's main purpose is to be used
the design in the following ways. as an alternative to these systems.

First, two new categories of data types are addeek A major design decision in RTML is how ADSDs and
typesandrecord types Tree types can be used to represent Credentials interaCt. We explored the pOSSIbIlIty of mak'
structured resources like file hierarchies, DNS names, etcing ADSDs themselves XML schemas [12], but settled on
Record types can be used to group |Og|ca||y related ﬁeldsmaking both ADSDs and Cl’edentia|S XML documents. One
together, e.g., an address may be defined using a record typgan think of ADSDs ash files in C programs and cre-
that contains fields such as street number, zip code, etc. Thélentials asc files. Data types and role names are de-
credential Safety requirements is also relaxed. Thesaexte clared in ADSDS, and credentials must use these role names
sions enable one to represent permissions that involve-stru in @ type-consistent way. The RTML system includes an
tured resources and ranges, without sacrificing the tridctab XML schema document that defines the syntax of ADSDs
ity property. and credentials. The RTML system also has a predefined

Second, we add the notion eéstrictive inheritance =~ ADSD which includes data types for representing com-
among roles to support flexible refinement of permissions, Monly used basic types, distinguished names, email ad-
Consider the following example in SPKI. A firewall dele- dresses, DNS names, and file paths; this ADSD is provided
gates tok 4 the permission “(connect cs.stanford.edu)” and N Appendix B.1.
allows K 4 to further delegate K 4 in turn delegates these
rights to K. Now if Kp grants toK s the permission
“(connect cs.stanford.edu 80)”, which is augmented with
a port number, one can conclude that the firewall autho-
rizes K¢ to connect to the host through the given port. It

is straightforward to achieve this iRT' by encoding these we assume that_publlc key certificates are .used. None of
permissions using a role with the name “connect” and two the three scenarios can be fully captured using SPKI/SDSI,

parameters: host and port. However, suppose the firewallkeyNote, or attribute certificates. The latter two cannot be

administrator first declares the connect role to take the hos €XPressed in the original design 817" in [20] and require
parameter, alone, and later, affér, has delegated the con- the new extensions introduced in this paper. We will show

nect role toks , realizes the need for adding the port param- NOW t0 express these scenarios in Section 3.

eter. In this case we want to avoid requiriKgg to issue its Scenario 1 (|_|nk|ng De|egation and |ntersecti0n)A fic-
delegation again, as is the case with the original design oftitious Web publishing service, EPub, offers a discount to
RT. This is achieved by declaring another role, say, “con- anyone who is both a graduate student and an ACM member
nect2” to inherit “connect”. (This is a restrictive form of since 2001. EPub delegates the authority over the identifica
inheritance, in that membership in connect2 implies autho- tion of students to entities that EPub believes are legtéma
rization to fewer resources than does membership in con-ynjversities. EPub additionally delegates the authonigro
nect.) This approach achieves the flexibility of untyped cre gentifying universities to a fictitious Accrediting Boafor
dentials without giving up the other advantages of strong universities, ABU. Bob is an ACM member and a master

1.1 Scenarios

In the following, we use three example scenarios to il-
lustrate what can be expressedRfi’. In these scenarios,

typing. student of StateU, which is accredited by ABU.
Third, we now explicitly address the relationships be- EPub knows the public key of ACM and ABU. The pub-
tween physical users and principals (key®)I" has man- lic key of StateU, which issues Bob’s student credential,

ifold roles and exclusive product, designed to support Sepa should be certified in StateU’s accrediting credential.- Fur
ration of Duty policies, which require that two or more dif- thermore, EPub requires that the same university name ap-
ferent people be responsible for the completion of a sensi-pears in both its accreditation credential and the stuslent’
tive task. This purpose could be defeated in the origiiAl credential. Similarly, EPub requires that the same student
design by a user possessing multiple keys. To address thimame appears in both the ACM member credential and the
issue, we introduce identity roles and identity-basedstole student credential.

In this paper, we also present RTML version 1, an XML- 1The schema is available at the following URL:
based data representation of tRg" framework with the http://crypto.stanford.edu/ninghui/rtml/RTMLv1.0gck

Scenario 2 (Controlled Delegation of PermissionsA tion in decentralized distributed systems. Some of these
firewall FW issues a credential to give a system admin, SA, principles appeared in earlier work on distributed access
the authority to grant to anyone who has a Stanford ID per- control, e.g., [1, 16]. The concept of trust management
mission to connect to the host “cs.stanford.edu” and to anyis later used and extended in several systems [3, 4, 6, 9, 11,
host in the domain “cs.stanford.edu”. The permission is ex- 17, 20, 21].
pressed using a role with one parameter, “host”. Later, FW In the “trust-management” approach, a requester submits
wants to further parameterizes the permission by adding thea request to aauthorizer who specifiesaccess rulegalso
port parameter. SA now grants to Alice, who has a Stan- calledpolicieg, which govern access to protected resources;
ford ID, the permission to connect to any host in the domain then the authorizer and the requester jointly compute a set
“stanford.edu” at any port between 8000 and 8443. Then, of credentials to be used in this request. Finally the autho-
when Alice requests to connect to the host “cs.stanford.edu rizer decides whether to authorize this request by ansgerin
at port 8443, FW should allow this connection. the proof-of-compliancejuestion: “Do the access rules and
Note that SA can effectively delegate only to entities who credentials authorize the request?”
have Stanford IDs. This is what we call a controlled dele- A TM system has a TM language for specifying creden-
gation. In fact, when SA does not have a Stanford ID, he tials and access rules. A TM system also needs a process of
will not be able to get any connection permission by using computing which credentials to use in an authorization pro-
the credential issued to him, although he can manage thecedure; this is often called credential (or certificate)icha
permission. discovery [9]. When credentials are stored in a distributed
; G ; manner, the discovery process needs to consider how to lo-
Scenario 3 (Identity-based Separation of Duty}A bank | cate these credentials [21]. When credentials and/or access

FB has three roles: manager, cashier, and auditor. FB's po | dered ive. the di
icy requires that a certain transaction be approved by a man U'€S are considered sensitive, tné discovery process may

ager, two cashiers, and an auditor. The two cashiers must bge carried out by using a "automated trust negotiation” pro-
different. A manager who is also a cashier can serve as oné®ss [24,27, 28, 29].

of the two cashiers. And the auditor must be different from A TM system also needs a proof-of-compliance check-
the other parties in the transaction. ing program. A chain discovery program can also be used

The intention of the policy is to require different users, for pr.O(I)f-of-comphaEce,hsmcr:a If it canl_g|scover a chat, i
who are members of appropriate roles, to be jointly respon-CTirtaln y cr:]anll/'erlfyt atthe c alanS Vab' : I.-lov%ever,' acom-
sible for a transaction. A further complication arises when pllance checking program can o ten be simpler, since it is
a physical user may possess multiple public keys. We WantOfte_n not d_|ff|cult t(_) ha\(e the discovery program produce a
to ensure that the transaction is approved by distinct psers¢nain thatis organized in away such that checking the chain

rather than distinct keys. To make this possible, we assumé> eaS|fer. Tlhesg programsbcgg bde_used I"?‘S services indepen-
that FB assigns a unique employee number to each user, anfent Of applications or embedded in applications.

every key that a user possesses is certified to be associated)
with the user’'s employee number. 2.2 History of the RT framework

1.2 Organization The design ofRT was influenced by systems like the
logic for access control in [1, 16], SPKI/SDSI [11, 22], and
The rest of the paper is organized as follows. Back- Delegation Logic [17, 18]. The most basic partRif’, RTy,
ground information is given in Section 2. In Section 3, we was presented in [21], together with algorithms that search
show how to express the three scenarios described in Secfor chains ofRT; credentials, and a type system about cre-

tion 1.1 and explain the new extensions added®f. In dential storage that ensures chains can be found among
Section 4, we describe RTML. We then discuss related work credentials whose storage is distributed. A trust negotia-
in Section 5, and conclude in Section 6. tion protocol that support&7;, credentials was introduced

in [27]. Four additional components of thRT frame-
2 Background work were introduced in [20]RT}, RT», RTT, andRTP.

RT, adds toRT; parameterized rolesRT, adds toRT}
In this section, we give background information on trust logical objects, which can group logically related objects

management and thRT framework. together so that permissions about them can be assigned
together. RT” provides manifold roles and role-product
2.1 Trust Management operators, which can express separation-of-duty policies

RTP provides delegation of role activations, which can ex-
The term “trust management” was introduced in [5] to press selective use of capacities and delegation of these ca
group together several principles in dealing with autteriz pacities. In [19], Constraint BrALOG is used to extend

RT; with the ability to express permissions regarding struc- the set to contain just one principal. (The notion of iden-
tured resources and ranges, while at the same time ensuringity and the relationship between users and principals will
tractability of evaluating implications of access ruleslan be further explored in Section 3.3.) A role in RBAC can be

credentials. viewed as a set of principals who are members of this role;
In this paper, we describe RTML version 1, which imple- role hierarchy relationships can be viewed as ways to define
ments constraint-enhanc&¥ in the RT framework[20]; role membership3. A permission corresponds to a set of

it does not yet hav&®T, or RT'P. On the other hand, RTML principals who have the permission. Granting a permission
extends the original design to address several practical is to a principal amounts to making the principal a member of
sues, as discussed in Section 1. the set corresponding to the permission. Granting a permis-
In RTML, access rules are similar to credentials and only sion to a role amounts to asserting that the set correspgndin
involve properties of requesters. This suffices for some ap-to the permission includes as a subset the set corresponding
plications. In other applications, access rules may irelud to the role. A name in SDSI is also resolved to a set of
other conditions of access, such as current time, appdicati principals. An attribute is a set of principals who have the
state, auditing requirements, etc. RTML does not yet sup- attribute.
port these features. In those applications, RTML may still The notion of manifold roles generalizes that of single-

be used for expressing credentials. element roles to allow each member of the role to be a
principal set, instead of a principal. That the principdl se
2.3 Background of RT {K1, K>} is a member of the manifold rol& 4.R means

that K; and K; together have the privileges associated with

A principal® can issue credentials and make requests. K a-R, but either one of them acting alone may not have
RT assumes that it can be verified that a principal indeed that privilege. The semantics of a manifold role is a set
issued a particular credential or request. The most typicalOf principal sets. Manifold roles are introduced to support
kind of principals are public keys, butT does not man- ~ Separation of Duty policies [8, 26] in a more expressive way
date so. In some environments, a principal could also be,than do threshold structures.
say, a symmetric key or a user account. In one web-based
file sharing demonstration application we developed, user3 Extensions toRT
ids are used as principals.

~ The mostimportant concept i7" is that ofroles Roles In the following subsections, we present the new exten-
in RT are localized to principals. Each principal has its own sjons toRT by describing how to express the policies asso-

authority name space for roles; this is the same as localizedjated with each of the three application scenarios given in
name spaces in SDSI. One needs to use a principal and &ection 1.1.

role term to refer to a role, e.gK 4.R, in which K4 is a

principal andR is a role term. In the simplest case, a role 3 1 Linking Delegation and Intersection

term just contains the name of role. More generally, a role

term may contain parameters. A ralé,.R can be read ABU, the fictitious accrediting board for universities,

asKa's R role. Only K4 has the authority to define the creates an ADSD, in which two roles are declared: uni-

members of the rol& 4. R, andK 4 does so by issuing role- e rgity (which has only one parameter: name) and student

def|n|t|o_n credentials. _A role may be defined by multiple (which has five parameters: university, department, pro-

credentials; the effect is that of union. gram, id, and name). ACM creates an ADSD and declares
RT hassingle-element rolesndmanifold roles The se- gne role: acmMember, which has four parameters: name,

mantics of a single-element role is a set of principals. The ;5355 number. and since. EPub creates an ADSD for its

notion of single-element roles unifies several concepts N 5un use. which declares a new role discount and includes
access control and trust management literature, includingine two ADSDs by ABU and ACM.

groups in many systems, identity in identity certification the credentials, access rules, and conclusions drawn
systems such as X.509, roles and permissions in RBAC,fom them, are given in Figure 1 in an abstract syn-
names in SDSI, authorization tags in SPKI, and attributes 5y [ine (1) represents the accrediting credential of
in attribute certificates. Itis possible to unify these cepts
because the common mathematical underpinning of the se- 3This view of a role loses some of the meaning that can be assdciat

. . - . with arole in RBAC, e.g., constraints. Constraints like naliuexclusive
mantics of these concepts is sets of principals. A group ISroles are implemented in RTML by using manifold roles. Constgai

clearly a set of principals. An identity is a set of princpal jike cardinality constraints can be associated with theeszding of roles,
corresponding to one physical user; some systems requireput they do not exist in RTML. These constraints can be impléetehy
applications that use RTML and checked when credentialseing issued.

2Principals are called entities in earlier papersRifi [20, 21]; here we Other constraints, like mutually exclusive permission ast fom the set
use “principal” to avoid potential confusion with entitigsXML. reading.

Credentials:

K apu.university(name="'StateU’»— Kg¢ateU D)
Ksiateu-Student(university="'StateU’, name="Bob Smith’, prograM.S., ---) «—— Kpgop (2)
Kacm-acmMember(number='UJ12345’, name="Bob Smith’, sind@3®2---) «— Kpgp 3)

Access rules of EPub
discount —— Kacnm.acmMember(name=?X, sinc@001)N student(name=?X, progras‘M.S., ‘Ph.D."}) (4)

university() <= Kapu)]
student(university=?X}= university(name=?X) (6)
From (1) and (5), EPub concludes that: university(namest&st’) «— Kgiateu (7)
From (6) and (7), EPub concludes that: student(univer$tgteU’) <= Ksiateu (8
From (2) and (8), EPub concludes that: student(universtgteU’, name='Bob Smith’;- -) «— Kpop 9
From (3), (4), and (9), EPub concludes that: discountK . (10)

Figure 1. Scenario 1: Linking Delegation and Intersection

StateU. It means thal{s.tcu iS @ member of the role Perm role is declared and has one parameter: host. The
“ K agu.university(name="'StateU’)". Line (2) represents type of the “host” parameter is “dns”, which is pre-declared
Bob’s student credential issued by StateU. Line (3) repre- by the RTML system. (One can also use a type declared
sents Bob’s ACM member credential. in the current ADSD via the type declaration mechanism
Line (4) represents EPub’s discount policy: Anyone who provided by RTML.) In another ADSD, a socketPerm role
is both an ACM member since 2001 and a graduate studenis declared taestrictively inherithostPerm, and a new pa-
is entitled to the discount, and the name in the two creden-rameter “port” is added, which has the pre-declared type
tials should be the same. Note that not all parameters appeatunsigned short”.
in the role term for acmMember; only those that need to be Figure 2 gives the access rule, credentials, and some im-
constrained have to appear. The same is true for the roleplications of them. Line (1) represents the delegation from
term for student. The RTML encoding of this policy inin- FW to SA. The roleKs;ansorq.StanfordID() is called the
cluded in Appendix B.2. scopeof this delegation. Line (2) represents the delegation
Line (5) encodes EPub’s delegation over the university from SA to Alice. Line (3) represent Alice’s Stanford ID
role to Kagy; this is called asimple delegation The credential. RTML encoding of the two ADSDs declaring
role term “university()” has no parameter at all, because hostPerm and socketPerm and credentials (2) and (3) are
the name parameter is not constrained. This delegationincluded in Appendix B.3.
means that any principal that is a member of the role When socketPerm is the only role that restrictively in-
Kapu-university(nameX) is also a member of EPub’s herits hostPerm, then credential (1) is equivalent to the tw
university(name=) role. In other words, itimplies thatthe credentials (4) and (5). The request, as represented by (6),
simple containment “university}— Kapu.university()". s true because ‘cs.stanford.edu’ is a descendant of ‘stan-
When no restrictive inheritance is involved, these two are ford.edu’, and3443 < [8000..8443].

indeed equivalent. And the delegation syntax is simply @a |n general, when’ restrictively inherits-, then any def-
convenient syntactic sugar. In Section 3.3, we will illast inition “Kar(---) «— e also implies “K 4.7/ (---) «—

their differences. e”. Furthermore, any delegationi",.r(---) <= e” also
Line (6) encodes EPub’s delegation over the identifica- jmplies “Ka.r'(---) <= ¢". The rationale is that when
tion of students of a UniverSity to prinCipalS who are certi- r! restrictive|y inheritgn, thenr’(. ..) represents a more re-
fied to be that university. This is callediaking delegation stricted permission than(- - -), andr’(- - -) is weaker than
This implies that for any principakl’ and university name r(---) in the sense that any member of thig.r(- - -) role

X, it K is a member of EPub’s “university(nam&3” is also a member of th& 4.7/(- - -) role. This is achieved
role, then EPub d6|egates the authority over the role by having for each definition whose head usealso gen-
“student(universityX)” to K. erating a definition that has head usirig

Now we explain the difference between the delegation
3.2 Controlled Delegation of Permissions “Kar() < Kpg" and the containment K o.r() «—

Kpg.r()". The delegation is stronger than the containment;
Assume that a role, stanfordID, is declared in some it implies the containment (abou) and another contain-
ADSD; the details of the parameters of the stanfordID role ment aboutr’: “K4.r'() «— Kpg.r’()". The contain-
are notimportant in this scenario. In another ADSD, a host- ment about- only implies “K 4.r'() «— Kpg.r()", which

Credentials:

Kpw.hostPerm(host currentAndDescendants(‘cs.stanford.edud= Kgsa @ Ksanford-StanfordID() 8}
Kga.socketPerm(host descendants('stanford.edu’), perf8000..8443]) «— Kajice (2)
KStanford-StanfordlD(.) — KAlice (3)

Assuming socketPerm is the only role that restrictivelyeirits hostPerm, then (1) is equivalent to (4) and (5),
in which we use as a shorthand for “currentAndDescendants(‘cs.starddrd)”:

Kpw.hostPerm(host t) «— Kga.hostPerm(host ¢t) N Ksiantora-StanfordID() 4)

Krw.socketPerm(host t) «— Kga.sockerPerm(host t) N Ksianfora-StanfordID() (5)
From (2), (3), and (5), the request, represented by thevioilp query, should be authorized:

Krw.socketPerm(host ‘cs.stanford.edu’, port 8443) «— Kajjce (6)

Figure 2. Scenario 2: Controlled Delegation of Permissions

is weaker than the containment abettabove, since any cal user should correspond to one specific instance of the

member of ‘K z.r()” would also be a member df z.7/(). identity role. For example, if Carl’s employee ID with FB
is '1111’, for any keyKp held by Carl, FB only issues
3.3 Identity-based Separation of Duty “FB.employeeNumber(id="1111y—Kp", and no other

employeeNumber credential containihAg,.

The bank creates one ADSD, which declares six roles: FB may then declare the roles twoCashiers, man-
manager, cashier, auditor, twoCashiers, managerAndT.agerAndTwoCashiers, and approval to be based on the iden-
woCashiers, and approval. The latter three are declared tdity employeeNumber; we call these roldentity-basedin
be manifold roles. For simplicity, we assume that thesesrole contrast, we call normal rolggincipal-based Members of
do not contain parameters. identity-based roles are computed based on the identities o

Three definitions implementing the approval policy Principals.
are given in Figure 3. Definition (1) means that FB's We say that a principak’p has an identity with respect
twoCashiers role contains every principal gét;, K,} 0 Ka.rif for some parameters, denoted by ", Kp is a
such that bothk; and K- are members of FB's cashier member ofK4.r(---); and we say thak 4.r(---) is Kp's
role, andK; # K,. Definition (2) means that FB's man- identity wrt K 4.r. Two principalsk and K’ areequivalent
agerAndTwoCashiers role contains every principaset ~ Wrt K4.r, denoted byK' = K'[K 4.r] (we omit “[K 4.r]"

{K} U p; such thatK is a member of FB's manager role When itis clear from the context), & and K’ are equal, or
andp; is a member of FB's twoCashiers role. Definition they have the same identity wit,.r.

(3) means that the approval role contains every princigal se ~ When using the rule “twoCashiers—cashier ©

p = {K} U py such thatK is a member of FB's auditor ~ cashier”,{ K, K>} is a member of twoCashiers only when
role, p, is a member of FB’'s managerAndTwoCashiers, and K; and K, each have identities and are not equivalent (wrt

K & ps. FB’s employeeNumber role), and each &f and K is
_ _ _ equivalent to some member of FB'’s cashier role, i.e., there
Identity roles and identity-based roles exists two memberg’, K, of FB's cashier role such that

When an employee holds multiple keys, the definitions in K; = K} andK,; = KJ,.
Figure 3 may not achieve the goal of SoD, which requires The notion we are using to ensure principals correspond
different users rather than keys be responsible for theiran to different users can be generalized to support applicatio
action. In decentralized and public-key based systems, oneof ® to manifold roles. Two principal sets; andp, are
cannot assume that there is always an one-to-one relationequivalentf every principal inp; is equivalent to one prin-
ships between keys and users. Such a relationship is of<ipal in p, and vice versa. Two principal sgis andp, are
ten very difficult to enforce. In addition, there are often non-intersecting with respect to a given identity rdlell
practical considerations that dictate one user havingimult principals inp; andp; have identities and no principal in
ple keys. For example, a user may be required to changep; is equivalent to any principal ip,. Thus, when using
keys regularly, and to assure smooth transition, two keysdefinition (3), the approval role contains every principatl s
may overlap. A user may also wish to have multiple keysin p = p; U ps such thatp; andp, are non-intersecting, and
the interest of privacy and/or key security. there exist®) andp), such thatp, = p}, p2 = p), pj is a
To address this problem, FB can declare a new role, em-member of FB’s auditor role (in which cagé must contain
ployeeNumber, with one parameter, “number”, and declare only one principal, since auditor is not a manifold role)dan
this role to be aridentity role This means each physi- pl is @ member of FB's managerAndTwoCashiers role.

Access rules of FB

twoCashiers—— cashier cashier D
managerAndTwoCashiers— manager> twoCashiers (2)
approval —— auditor® managerAndTwoCashiers 3)

Figure 3. Scenario 3: Identity-based Separation of Duty

We have seen that identity can be used in determininga permission. When' extendsr, then for each principal
that two principals are not equivalent when a definition in- K, K.r(f; =?Xq,..., fe =?X,) contains each member of
volves ®. ldentity also affects other kinds of definitions. K.r'(f1 =7X4,..., fe =?X,), in which fi,..., f, are all
For example, wherR is based on identity role’, and we the parameters of. Note thatr’ may contain additional
haveK 4.R «— K A.R1 N K 4.Rs, if auser holds two keys parameters, but that the containment holds no matter what
K, and K, so thatK; € K4.R; andKy € K 4.Rs, then values they take.
the user can get the permission encode&’in R when he Another approach is to first declare the employeelD role
can prove thaf{; = K, wrt K 4.7, In this case, we have and then declare the employeeNumber role psogection
K, € RandK, € R. Again, this approach can be general- of the employeelD role to the number parameter. The effect
ized to support applications of to manifold roles. is essentially the same as extending inheritance. Projecti

Our notion of identity role is somewhat similar to the no- is useful when one wants to extract an identity role from a
tion of primary keys in databases. It is declared to uniquely role that is already defined. Extending inheritance is use-
identify something. This notion of identity is differenbfn ful, for instance, if one wants to update an old student ID,
the traditional ones, in that it is not global. Not every user adding more parameters, but the new student ID credential
has to have an identity. Furthermore, different roles may be should still prove membership in the old student ID role,
based on different identity roles, just as different relasi since some applications may still use the old student 1D role
in a databases may have different primary keys. We do not
think that it is practical to have a globally unique idenfity 3.4 Summary of the Extensions
users at a global scale; however, it is often possible inside

one organization. We now summarize the key new features adde®1g

Our approach does not solve the difficult problem of cre- illustrated above by the scenarios. In Section 3.1, simple

ating an infrastructure that uniquely identifies_ the holdler delegation and linking delegation are new. As used there,
each principal. Ratht_ar we provide a mec_hgnlsm to tgk_e fid'they are convenient syntactic sugars, simplifying the ex-
vantage of such an infrastructure in policies when it is in pression of requirements that can be equivalently expdesse
place. by using simple containment and linking containment (See
Section 4.3). In Section 3.2, the tree types and the ability
to use ranges in the head of a rule are new. Also new is the
One final issue bears on the Separation of Duty scenario.ngtion of restrictive inheritance, which creates a context

In practice, it is unlikely that a credential contains onty a \yhich simple delegation and linking delegation are not mere
employee number. To avoid having to use multiple roles to syntactic sugars, but capture otherwise inexpressiblevmea

document information about one employee (these multiple jhgs. |n Section 3.3, the notion of identity role, identity-

roles can still be included in one credential, as one creden-pased role, extending inheritance, and projection are new.
tial can contain multiple definitions), one can do two things

One approach is to first declare the employeeNumber

Extending inheritance and projection

role, then declare an employeelD role égtendemploy- 4 RTML

eeNumber and add additional parameters. We callekis

tending inheritanceby way of contrast with the notion of RTML is defined using XML Schema. The
restrictive inheritance discussed in Section 3.2. Inthise¢ schema definition of RTML defines three top level
membership in the employeelD role implies membership in elements: Credential , AccessRule , and
the employeeNumber role. The intuition here is that every- ApplicationDomainSpecification . The schema

one that has an employee ID has an employee number, plufor RTML uses data types in the XML Schema standard [2];
some additional information carried in the new parameters. it also depends on the XML Signature standard [10], both
Thus, extending inheritance enables additional inforomati for credential signatures and for representing public keys
to be added about role members, while restrictive inheri- A Credential element can be divided into three parts:
tance enables additional requirements to be associathd wit prologue, definitions, and verification data.

4.1 Prologue of a Credential When the domain attribute is not present, the name attribute
identifies a role declared in the default domain of this cre-

The prologue part of a credential has the following format. dential. When the domain attribute is present, it should be
equal to the name attribute of one of timeportDomain

<Preamble> _ _ elements, and the name attribute identifies a role declared i
<Defaultbomain uri="..." /> the corresponding ADSD.
<ImportDomain uri="..." name=".."> * A RoleTerm element contains zero or more
<Principal> </Principal> * Parameter elements, each of which has two attributes:
</Preamble> name (required) and id (optional). The id parameter
<Issuer> </Issuer>

uniquely identify the parameter in the current credential,
so that it can be referred to elsewhere. PArameter
element optionally contains a constraint. A constraint may

The Preamble element contains reference information P€ @ value of one of the seven categories of data types

<Credentialldentifier>
</Credentialldentifier>

for the rest of the credential: BefaultDomain ele- (Which will be described in Section 4.6), a principal value,
ment, zero or morémportDomain elements, and zero & SpecialPrincipal , aninterval , a Set, or an
or more Principal elements. The “uri” attribute of Eduals element.

a DefaultDomain element specifies the location of an A constraint that is a value means that the pa-
ADSD that acts as the default domain of the credential. Role'a@meter should be equal to this value. Currently, a
names used in the credential are assumed to be declared iRPecialPrincipal element can take one of two val-
the default domain unless a domain is explicitly specified. Ues: ‘issuer’ (which refers to the issuer of the current cre-
An ImportDomain element has two attributes: a “uri” dential) and ‘this’. The ‘this’ special principal can onlg b
attribute that specifies the location of the ADSD to be im- Used when defining a singleton role; it refers to the priricipa
ported, and a “name” attribute that is used to refer to the im- P€ing evaluated to be the member of the role. The follow-
ported domain. Role names declared in imported domainsind example from [20] illustrates the use of this: A company
can also be used in the current credential. Alpha gives a pay raise to an employee if someone autho-
A Principal element gives the value of a princi- fZzed to evaluate the employee says that his performance
pal, it can be aKeyValue element as defined in the Was good. This can be encoded using “payRaiseeval-
XML Signature standard, amtegerValue element, or ~ UatorOf(this).goodPerformance”.
asStringvalue element. See Section 4.6 for more dis- ~ AnInterval element contains an optionatom ele-
cussion of this. To improve readability, principals, which ment and an optionalo element, each of which contains
could be quite long, are included in the preamble so that 2 value of an ordered data type. This represents an interval
they can be referred to in a compact way elsewhere in theSeét: TheFrom (To) element has an attribute “included”,

credential. indicating whether the bound in included in the interval.

may be aPrincipal element or @rincipalRef ele- the interval is unbounded. Set element includes one or

ment (which refers to &rincipal element appearing in ~ More values. Arquals element has o.n(.a.attnbute, _Nhlch

the preamble). refers to another parameter in the definition, meaning that
The Credentialldentifier element contains a this parameter should equal the other parameter.

string that is uniqgue among all credentials issued by the
same issuer having the same default domain. It could be4.3 Definitions
a serial number.

There are eight kinds of definitions, each containing a
4.2 Rolesin a Credential HeadRoleTerm element and a body part. Before going
into the definitions, we also need the notion of dimension.
After the prologue, a credential contains one or more Each role has dimension A single-element role (default)
definitions. Before introducing these definitions, we first has dimension 1. Manifold roles require that the dimension
explain the building blocks used in these definitions. be explicitly declared. For a principal set to be a member
A role can take the form of RoleTerm element (which of the role, its size must be no more than the role’s di-
is then assumed to be in the authority name space of themension. For example, iR has dimensior2, then{k;}
issuer) or arExternalRole element (which contains a and{K;, K>} may be members od.R, but{K;, Ko, K3}
principal value and &oleTerm). cannot be. The reason for requiring that the dimension be
A RoleTerm element has two attributes: name and do- given is to ensure efficient evaluation. (See [20] for furthe
main (optional), which together identify a declared role. details.)

Different kinds of definitions contain different elements Exclusive Product Containment R «— Q1 ® - - ® Q

as the body part.
we use an abstract syntax, in whidk represents the

HeadRoleTerm , R; and R, represents other role terms,

While describing these definitions, The body part consists of aBxclusiveProduct

ele-
ment, which contains two or more roles. The dimension
of R should be no less than the sum of the dimensions of

andq (often with subscripts) represents roles, and in which Q1,.... Q.

we assumex 4 is the issuer.

Simple Member R «— D

The body part consists of one principal value, dendfed
This defines the principaD to be the member of the role
K 4.R. More precisely, the rold{ 4. R contains any prin-
cipal that is equivalent t@. If R is principal-based, then
equivalency is the same as equality. Rfis based on an

This defines the rol& 4. R to contain every principal set
p that satisfies the following conditiop: = p; U- - -Upy, for
each: # j, p; N= p; = 0 (p; andp; are non-intersecting),
and for eachl < j < k, there exist®’; such thap; = p
andp); € Q;.

Simple Delegation R <= B[: Q]
The body part consists of@elegateTo element (which

identity /, then the equivalency may also be determined by contains a principal value) and $cope element (which

the identity.

Simple Containment R «— @

The body part consists of one role, denofgdThe dimen-
sion of R should be no less than that @f
This defines the rolé(,.R to contain (every principal

contains a role).

WhenqQ. is not presentK 4, delegates its authority over
R to Kp. In other words,K 4 trusts Kg's judgement on
assigning members tB. WhenQ.. is present/) 4 wants to
control its delegation such th@ z can only assign mem-
bers of(). to be members ok 4. R, in other words K 4. R
containsKg.R N Q..

set that is equivalent to some principal set that is a member

of) the roleQ.

Intersection Containment R+«— Q1N ---NQy

The body part consists of aimtersection element,
which contains two or more roles. The dimension f
should be no less than the maximum dimensiorQefN
N Qk-

This defineskK 4.R to contain the intersection of all the
roles@q, ..., Qk. More preciselyK 4.R contains any prin-
cipal setp that is equivalent to a member &f;, for every
j=1.k.

Linking Containment R «— R;.Rs

The body part consists oflankedRole element, which
contains twoRoleTerm elements. The dimension @t
should be no less than that Bf.

WhenR; is a singleton role, this defines the rdigy. R
to contain everyK g.R», in which Kg is a member of the
role K4.Ri. When R, is a manifold role, this defines,
for any principal se{Kp,,...,kp,} that is a member of
K 4.R1, K 4.R contains the intersection éf 5, .RoN--- N
Kp,.Rs.

Product Containment R+— Q1 ® - ® Qp

The body part consists ofRroduct element, which con-
tains two or more roles. The dimension Bfshould be no
less than the sum of the dimensionggf, . . ., Q.

This defines the rol& 4. R to contain every principal set
p such thap = p; U---Up; and for each < j < k, there
existsp’; such thap; = p} andp; € Q;.

Linking Delegation R <= R;[: Q]
The body part consists of[@elegateTo element (which
contains a role name) andontrol element (which con-
tains a role).

K 4 delegates its authority ovétto members of 4. R; .
The delegation is restricted to membergpf This implies
R+«— R1.RN Q..

4.4 \ferification Data

The verification data part contains\alidityTime
element, zero or moréalidityRule elements, and one
optional signature part.

The ValidityTime contains anlssueTime el-
ement, an optionaNotBefore element, an optional
NotAfter element, and an optionalfeTime element.
The first three elements each contain a specific time (using
the dateTime type in XML Schema), which we denote by
ti, tp, andt.. TheLifeTime element contains a duration
(using the duration type in XML Schema), we denotejby

A ValidityRule may specify a CRL location, an on-
line verification server, etc. The details of the format of
ValidityRule are still being worked out.

When a party receives a certificate, it must first check
whether the validity period of this certificate has begum, i.
whether the current time,, is later thant,. This allows
post-dated credentials, such as a student ID that becomes
valid only when the next academic year begins. The party
next determines the fresh tindg of the credential. Unless
the authorizer checks the credential’s validity, it asssime
ty = t;. Validity rules define how checks can be performed

to justify using a later fresh time. For example, whena CRL In an ImportDomain element, the “name” attribute
is checked and the credential is not revoked, one can up-serves as a short domain ID referring to the imported do-
datet; to the issue time of the CRL (which is presumably main. One can use a type declared in an imported domain
later thant;). The party then determines whether this cer- by using the domain ID together with the type name. Im-
tificate has expired. The expiration time is the earlier of porting is useful when one wants to use two types that are
t. andty + 6. Thus, by setting the life time, the issuer declared in two ADSDs and have the same name.
indicates that the credential should not be viewed as valid RTML has a system domain, which declares some
unless the party has checked for revocation sufficiently re-data types that are commonly used. Every ADSD au-
cently. Finally, the party determines whether the frestetim tomatically includes the system domain without using
is sufficiently recent for its own purposes. IncludeDomain , and so one can use these types freely.
The optional signature part isignature element as

specified in the XML Signature standard [10]. Type Declarations

Every type declaration has a “name” attribute, which must
4.5 Access Rule take a value that is unique among all the data type names in
a domain. One cannot declare a type if a type with the same
name is already declared (possibly in an included domain).
Types are organized into seven different categories; the de
tails of type declarations are left to Appendix A because of
space limitation.

An AccessRule elementis similar to &redential
element. The differences are as follows. AccessRule
does not have atssuer ; it has aRuleldentifier
instead of &Credentialldentifier , it does not have
ValidityRule or Signature . The rationale is that an
access rule is created and used locally; as such, the issu
is implicit; no signature is needed; and a revoked rule is
simply removed.

Principal Type Declaration

y default, principals in RTML are public keys. However,
one can override this by usingraincipalType element
to declare the principal type to be an integer type or a string
type. This makes it possible to use RTML to encode policies
that involve principals other than public keys and to use the
RT system to make authorization decisions.

Whenever a role is declared, one needs to know which
type of principal it contains. Every ADSD has at most one
principal type. We say that an ADSD has a principal type if
itincludes a domain that already has a principal type, itcon
tains aPrincipalType element, or it contains any role
<IncludeDomain uri="..." declargtions at all. If an ADSD gets its p.rin.cipall type from

includeAll="true"|"false"> declaring roles, the default p'ubllc-key'prlinmpal is assdm
<Type name=".."> * to be_usec_J. Roles that use different principal types must not
be mixed in one credential.

4.6 Application Domain Specification Documents
(ADSD’s)

An ADSD is represented by an
“ApplicationDomainSpecification " element,
which has a “uri” attribute, uniquely identifying this ADSD
An ADSD has the following structure.

<RoleDeclaration name="..."> *

</IncludeDomain> * The current RTML parser supports verification when
<ImportDomain uri="..." name="..."> * pr@nc?pals are public keys. CredenFigIs that are i.ssued by
(type declaration) * principals of other_types are not ve_r|f|ed. Appl|cat|onstth§ .
<PrincipalType>......</Principal Type> ? use these qredentlals are responsible to perform any verifi-
<RoleDeclaration ...> ... cation that is necessary.

</RoleDeclaration> * Role Declarations

A RoleDeclaration element has five attributes: name,

Using Other ADSDs issuerTraces (default rule), subjectTraces (fact), dsiven

In anincludeDomain element, the “uri” attribute iden- (1), and isldentity (false). The “name” attribute should be
tifies the ADSD being included. When the “includeAll” at- unique among all role names in the current domain. The
tribute is true (default value), all the types and roles ia th issuerTraces and subjectTraces attributes are relatag-to d
included domain are included in the current domain, i.e., tributed credential chain discovery, see [21] for more de-
they are considered to be as if declared in the current do-tails. If the dimension is over 1, then the role is a manifold
main. When the “includeAll” attribute is false, one can se- role. If the isldentity attribute is set to true, then thisais

lect the types and roles being included by specifying them in identity role. When one issues credentials about the iden-
the body of the element. One cannot include two types/rolestity role, one should assign each physical user at most one
that have the same name. unigue combination of parameter values. Of course, each

10

principal needs to determine which principal to trust about RTML has different purposes from SAML. SAML is

an identity role, just like every other role. used to convey results of authentication and authorization
A RoleDeclaration element may optionally con- but not credentials for doing so. RTML provides credential
tain one of the following three elementRestriction formats for documenting properties (expressed in the forms
(for restrictive inheritancextension (for extending in- of roles) of subjects and documenting mechanisms to derive
heritance), anddentity (for identity-based roles). these properties such as delegation.
Finally, a RoleDeclaration may contain zero or

moreParameter elements; each one has a name attribute 5.3 SPKI/SDSI and KeyNote
and contains dype element.
We compare RTML with SPKI/SDSI and KeyNote from
5 Related Work three aspects: delegation structures, encoding of permis-
sions, and support for separation of duty. The conclusions
In this section, we compare RTML with X.509, SAML, We draw are that RTML subsumes most of the expressive

SPKI/SDSI and KeyNote. power of SPKI/SDSI and KeyNote and provides a lot of ad-
ditional power. The places in which RTML is less expres-
5.1 X.509 sive result from design trade-offs made in favor of guaran-

teeing properties such as the tractability of analyzinbaut

The basic authorization-related meaning of an X.509 cer- fizations implied by RTML credentials and the interoper-
tificate is easily mapped into RTML. In an X.509 certificate, ability and predictability that accrue to strong typing.
the issuer attests to the association of a subject disshgdi .
. X Del
name (DN) and the subject key. If an X509 role is declared, elegation Structures))
then an X.509 certificate issued using k&y, to subject RTML has more expressive delegation structures than those

key K 1 and subject DNC="US’, O="StateU’, OU="CSD’, N SPKI/SDSI and KeyNote.
CN=Bob Smith} can be represented as the simple SPKI has name certs and auth certs. Name certs can be

member definition & 4.X509(dn=<{C="US’, O="StateU’ represented in RTML using simple member, simple contain-
OU="CSD’, CN="Bob Smith}) «—— K". If the certificate ment, and linked containment. An auth cert represents a del-

also has CA capabilities, then it also represents the simple€9ation of the authority from its issuer to its subject, vahic
containment & 4.X509(dn=?X)—— K 5.X509(dn=?X)". can be a principal, a SDSI name, and a threshold structure.
A X.509 certificate does not contain the issuer key: in- We will talk about threshold when discussing Separation of

stead, it contains the DN of the issuer. A certificate is only DUty later. _ o
useful when a certificate chain is obtained so that the issuer ASSume that we are given an auth cert with issifer,
public key is determined. Given an ADSD encoding X.509 authority 2, and subjectv. If the delegation flag is false,
distinguished names, a standard X.509 certificate chain carf"en this is essentiallyR’y. R «— Kp”. If the delegation
be interpreted as a chain of RTML definitions, enabling ex- flag is true, then this can be represented using two defini-
isting certificates to be meaningful within an RTML system, tons: K4.R «— Kp andK4.R <= Kp. If one wants
The above approach cannot capture additional purposed® Use & SDSI nameK'z's N1's ... NK” as a subject, one
of an X.509 certificate beyond that of binding a DN to a key, ¢&n define a new name’s’s M” to have the same mem-
nor purposes encoded in organization’s non-standard-extenPers as “Kp’s N1's ... Nk and useK4.R «— K,.M,
sions. However, an organization can enable others to trans@NdK 4.1 <= M. . . .
late implicit or explicit meanings of its X.509 certificateg Note that since names in SDSI are only simple strings,
providing an ADSD that describes the role information con- ON€ cannot represent “student(university=26- univer-
tained in them and a tool that extracts that role information Sity(name="2X)" or “discount— K acm-acmMember(since

from certificates. < 2091)” in SRKI/SDS_I. Fl_thhermore., SPKI/SD_SI does not
have intersection, which is needed in Scenario 1, or con-
52 SAML trolled delegation, which is needed in Scenario 2. When a

principal allows a subject to further delegate a permission

The Security Assertion Markup Language (SAML) [13] it cannot restrict to Wh_om the subjgct delegatgs. .
is an XML-based framework for exchanging security infor- A KeyNote requestis characterlzed by a list of f_|elds,
mation, expressed in the form of assertions about subjectsWhich are name/value pairs. In KeyNote, credentials and
Assertions can convey information about authenticatios ac Plicies (access rules) are called assertions. An assertio
performed by subjects, attributes of subjects, and authori has conditionswritten in an expression language, which
tion decisions about whether subjects are allowed to access 1his can be achieved by introducing new intermediate roleisci-

certain resources. nitions. See [21] for details.

11

refers to fields in requests. The intuitive meaning of an as- signed so that the implications of a set of RTML credentials
sertion is that, if the licensees support a request, and thecan be efficiently computed. We feel that the constraints
request satisfies the conditions, then the issuer supparts t in RTML provides sufficient expressive power for most ap-
request as well. plications, as all the examples in [3] can be expressed in
KeyNote's delegation structures in assertions are moreRTML.
restricted than those in SPKI/SDSI. Delegation in KeyNote
is always transitive, one cannot grant a permission to a prin _
cipal without enabling the principal to further grant the-pe Both SPKI and KeyNote allow delegation to k-out-of-n
mission. Furthermore, KeyNote assertions have to explic- threshold structures, in which one explicitly lists the mpr
itly list the principals involved in the delegation. There- cipals. It has been .argued before that such threshold struc-
fore, using KeyNote assertions, one cannot express a delelUres are inconvenient [17]. For example, to express the
gation “student(x= university()” (which is expressible in ~ aCC€sS r.ule ‘.‘t\NoCash|er—<':ash'|er® cashier”, one negds
SPKI/SDSI). See [18, 20] for more discussion of this limi- to explicitly list all the cashiers in the access rule, arid th

Support for Separation of Duty

tation. rule needs to be changed each time members in the cashier
role change.
Encoding of Permissions A threshold structure requires agreement of multiple

principals drawn from a single list. When the policy is to
require different principals drawn from the membership of
- . . different roles, it is not clear that threshold can help. It

In S.PKl’ authorities are encoded mfags,.whlch are Un- seems that the policy writer needs to enumerate all the prin-
typed lists, e.g., (ftp (ftp.stanfo.rd..edu) (* prefix /puest)). . cipal sets that are entitled to the permission and to dedegat
One cannot express the permission to connect all hosts in 30 each of them directly.

domain, since the root of a domain goes at the end of the When a user may hold more than one keys, thresholds
string, and SPKI does not have a (* suffix) operator. There (0 be useless. For example, ifsers each holzlkeys,
are also other limitations. For example, one cannot encodethen a policy that requiresout of n users would requirg”

a pernysgpn that requires two parameters being equal. different thresholds using the straightforward approdth.
_ While itis not clear that everything that can be expressed g petter to directly express all the pairs that are eligtble
in tags can be expressed using role terms, we do claim theaccess, as there ae(n — 1) such pairs.
following. First, all the examples we encountered in SPKI
literature can be expressed using role terms. Second, th
ability to flexibly refine permissions that is allowed by un-
typed lists in SPKI can be achieved by using restrictive .]]]
inheritance in RTML. Third, the untyped list approach in This paper describes the following advances in &
SPKI has been found to have certain problems. For exam-framework that broaden its applicability: new data types
ple, in [15], it has been shown that the intersection betweent0 €ncode permissions involving structured resources and
two tags may not be finitely representable using tags. ranges; restrictive inheritance of roles for flexible refine
In KeyNote, the permissions delegated in an assertion ard"€nt of permissions; and notions of identity roles and
represented by conditions on fields. These conditions areldentity-based roles to address issues when a physical user
very expressive, including formula constructed using-inte N0lds multiple keys. In addition to these extensions moti-
gers with function symbolé+, —, *, /, %, "} and predicates vated by specific applications, thIS paper (_je_scnbes RTML,
{=.#,<,>,<,>}. KeyNote conditions also include reg- an XML-based data representation 1" policies and cre-

ular expressions. We believe that this is more expressivedentials. RTML establishes a precise formatiaF creden-

than role terms in RTML. However, this expressiveness of tials and policies, help enabling the deployment of the RT
KeyNote comes at the cost of the ability to analyze KeyNote framework. _ ,

assertions. In [19], it has been shown that it is undecidable _compared with previous TM systems such as
to compute the set of all requests that a set of KeyNote as-SPKI/SDSI and KeyNote, RTML has the following
sertions authorizes. Note that whether any specific requesfliStinguishing features.

is authorized by a set of assertions can still be determined
efficiently. However, there does not exist an algorithm to
perform analysis of all the requests being authorized by a
set of assertions. In fact, it is undecidable even when there
is only one assertion delegating to a single entity, and the e RTML addresses the issue of vocabulary agree-
guestion is just whether the assertion authorizes any stque ment. Application Domain Specification Documents
at all. On the other hand, the constraints in RTML are de- in RTML ensure uniqueness of role names, and enable

Permissions are encoded in RTML by using role terms,
whose parameters are typed and can be constrained.

e6 Conclusion

e RTML supports more flexible delegation. In RTML,
one can delegate to principals who are members of cer-
tain roles, and can control the scope of a delegation.

12

credentials to be strongly-typed, further helping to en- References

sure interoperability and to reduce the possibility of er-

rors in ertlng pOIiCieS and credentials and unintended [1] Martin Abadi, Michael Burrows, Butler Lampson’ and

interaction of credentials.

RTML supports Separation of Duty policies in a way
that is more expressive than previous TM systems.
Furthermore, RTML addresses the situation when one
user holds more than one keys.

13

(2]

(3]

(4]

(5]

(6]

Gordon Plotkin. A calculus for access control in dis-
tributed systemsACM Transactions on Programming
Languages and Systems (TOPLA$)(4):706—-734,
October 1993.

Paul V. Biron and Ashok Malhotra. XML Schema Part
2: Datatypes. W3C Recommendation, May 2001.

Matt Blaze, Joan Feigenbaum, John loannidis,
and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. |IETF RFC 2704,
September 1999.

Matt Blaze, Joan Feigenbaum, John loannidis, and
Angelos D. Keromytis. The role of trust management
in distributed systems. I[Secure Internet Program-
ming, volume 1603 of_ecture Notes in Computer Sci-
ence pages 185-210. Springer, 1999.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. Rroceedings of the 1996
IEEE Symposium on Security and Privapgiges 164—
173. IEEE Computer Society Press, May 1996.

Matt Blaze, Joan Feigenbaum, and Martin Strauss.
Compliance-checking in the PolicyMaker trust man-
agement system. IProceedings of Second In-
ternational Conference on Financial Cryptography
(FC'98), volume 1465 of_ecture Notes in Computer
Sciencepages 254-274. Springer, 1998.

[7] Tim Bray, Dave Hollander, and Andrew Layman.

(8]

9]

(10]

(11]

Namespaces in XML. W3C Recommendation, Jan-
uary 1999.

David D. Clark and David R. Wilson. A comparision
of commercial and military computer security poli-
cies. InProceedings of the 1987 IEEE Symposium on
Security and Privacypages 184-194. IEEE Computer
Society Press, May 1987.

Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt
Fredette, Alexander Morcos, and Ronald L. Rivest.
Certificate chain discovery in SPKI/SDSJournal of
Computer Security9(4):285-322, 2001.

Donald Eastlake, Joseph Reagle, and David Solo.
XML-Signature Syntax and Processing. W3C Rec-
ommendation, February 2002.

Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. SPKI certificate the-
ory. IETF RFC 2693, September 1999.

[12] David C. Fallside. XML Schema Part 0: Primer. W3C [23] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Recommendation, May 2001.

Phillip Hallam-Baker and Eve Maler. Assertions and
protocol for the oasis security assertion markup lan-
guage (saml). OASIS Committee Specification, May
2002.

Russell Housley, Warwick Ford, Tim Polk, and David
Solo. Internet X.509 Public Key Infrastructure Certifi-
cate and CRL Profile. IETF RFC 2459, January 1999.

Jonathan R. Howell.Naming and sharing resources
acroos administrative boundariesPhD thesis, Dart-
mouth College, May 2000.

Butler Lampson, Marh Abadi, Michael Burrows, and
Edward Wobber. Authentication in distributed sys-
tems: Theory and practice ACM Transactions on
Computer System&0(4):265-310, November 1992.

Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. A practically implementable and tractable Del-
egation Logic. InProceedings of the 2000 IEEE Sym-
posium on Security and Privacpages 27-42. IEEE
Computer Society Press, May 2000.

Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. Delegation Logic: A logic-based approach to
distributed authorizationACM Transaction on Infor-
mation and System Security (TISSE&{L):128-171,
February 2003.

Ninghui Li and John C. Mitchell. Datalog with
constraints: A foundation for trust management lan-
guages. InProceedings of the Fifth International
Symposium on Practical Aspects of Declarative Lan-
guages (PADL 2003pages 58-73. Springer, January
2003.

Ninghui Li, John C. Mitchell, and William H. Wins-
borough. Design of a role-based trust management
framework. InProceedings of the 2002 IEEE Sympo-
sium on Security and Privacyages 114-130. |IEEE
Computer Society Press, May 2002.

Ninghui Li, William H. Winsborough, and John C.
Mitchell. Distributed credential chain discovery in
trust management. Journal of Computer Security
11(1):35-86, February 2003.

Ronald L. Rivest and Bulter Lampson.
SDSI — a simple distributed security in-
frastructure, October 1996. Available at

http://theory.lcs.mit.edu/rivest/sdsill.html.

14

(24]

(25]

(26]

(27]

(28]

(29]

and Charles E. Youman. Role-based access con-
trol models. IEEE Computer29(2):38-47, February
1996.

Kent E. Seamons, Marianne Winslett, and Ting Yu.
Limiting the disclosure of access control policies dur-
ing automated trust negotiation. Broceedings of the
Symposium on Network and Distributed System Secu-
rity (NDSS'01) February 2001.

Kent E. Seamons, Marianne Winslett, Ting Yu, Bryan
Smith, Evan Child, Jared Jacobsen, Hyrum Mills, and
Lina Yu. Requirements for policy languages for trust
negotiation. INProceedings of the Third International
Workshop on Policies for Distributed Systems and Net-
works (Policy 2002) pages 68-79. IEEE Computer
Society Press, June 2002.

Tichard T. Simon and Mary Ellen Zurko. Separation
of duty in role-based environments. Pioceedings of
The 10th Computer Security Foundations Workshop
pages 183-194. IEEE Computer Society Press, June
1997.

William H. Winsborough and Ninghui Li. Towards
practical automated trust negotiation. Rroceed-
ings of the Third International Workshop on Policies
for Distributed Systems and Networks (Policy 2002)
pages 92-103. IEEE Computer Society Press, June
2002.

William H. Winsborough, Kent E. Seamons, and
Vicki E. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and Ex-
position volume |, pages 88-102. IEEE Press, January
2000.

Ting Yu, Marianne Winslett, and Kent E. Seamons. In-
teroperable strategies in automated trust negotiation.
In Proceedings of the 8th ACM Conference on Com-
puter and Communications Security (CCS$-Bages
146-155. ACM Press, November 2001.

A Type Declarations in ADSDs Tree types

A TreeType element has two additional required at-
In the following, we present type declarations in ADSDs. tributes: separator and order. These two values determine
Every type declaration has a “name” attribute, which we what a tree value looks like. For example, a type for DNS
omit in the presentation below. Under each category, we names has “.” as separator and the order is “rootLast”, while
also describe how a constant value of a type in that categorya type for Unix file paths has “/” as separator and the order

is represented. is “rootFirst”.
A TreeValue element contains a string such as
Integer types “lusr/home” and three optional attributes: includeCutren

An IntegerType element has two additional required at- (default true), includeChildren (false), and includeDasc
tributes: max and min. It also has four optional attributes: dants (false). The default value means that only the current
step (default 1), base (0), includeMin (true), and include- node is included. One can set these attributes to refleat othe
Max (true). The legal values of this type include all integer choices. Note that children are considered to be a subset of
valuewv’s such thaty = base + k * step for some integek descendants, and so when includeDescendants is set to true,
and thatmin < v < max, where< (>) should be replaced all children are also included, no matter what the value of
by <(>) if includeMin (includeMax) is set to false. For ex- includeChildren is.
ample, one can declare a type to contain all the numbers The system declares two types of this category: dns and
such thaty mod 3 =1 and0 < v < 100. path.

A constant of an integer type is represented using an
IntegerValue element. The following integer types are R€cord types
declared in the system domain: long, int, short, byte, bit, A RecordType element contains one or moFéeld el-

unsigned int, unsigned short, and unsigned byte. ements; each has a name attribute and containga el-

_ ement. TheType element has two attributes: name (re-
Decimal types quired) and domain (optional); they refer to a type already
A DecimalType elementis similar to amtegerType declared, i.e., declared in an included domain or before the

element, in that it has the same attributes. However, thecurrent declaration. This guarantees that no recursion oc-

attributes min, max, base, and step now take decimal valuescurs with record types.

Valid values of this type are defined in the same way as are A Record element can be used to constrain a parameter

those of an integer type. A constant is represented using 20f a record type; it contains one or more fields, each having

DecimalValue element. No decimal type is declared in an optional constraint.

the system domain. Examples of record types include IP addresses, names,
and street addresses.

Enumeration Types

An EnumType element has three optional attributes: ig- Daté/Time types

noreCase (false), which specifies whether to ignore caseDate/Time types are treated differently from other data

when comparing two enumeration values; ordered (false),types. RTML borrows the following standard date/time

which specifies whether this type is ordered; and size, whichtypes defined in XML Schema [2]: date, time, dateTime,

specifies how many values this type has. If this type is or- gYear, gYearMonth, gMonth, gMonthDay, and gDay. These

dered, then one can use intervals to constrain parameter/Pes can be used as if they are declared in the system do-

of this type. TheEnumType element contains a list of ~Main. RTML does not support defining new data/time types.

EnumValue elements, which enumerates the legal values A TimeValue element can contain any value that is legal

of this type. for one of the above types .

A constant is represented using &mumValue ele-

ment. The system domain contains a boolean type, which

is declared as an EnumType. Other possible examples of

enumeration types include day of week, degree, etc.

String types

A StringType element has two optional attributes: ig-
noreCase (false) and ordered (false), which have the same
meanings as in the case of enumeration types. A constant
is represented using @&tringValue element. The sys-
tem domain declares two types of this category: string and
case-insensitive string.

15

B Sample ADSDs and Credentials in XML
B.1 The System ADSD

The system ADSD consists of the data types declared as ol date/times from XML Schema. It is automatically
included in every other ADSD.

<?xml version="1.0" encoding="UTF-8"?>
<ApplicationDomainSpecification uri=""
xmlns="http://crypto.stanford.edu/dc/RTMLv1.0"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xsi:schemal.ocation="http://crypto.stanford.edu/dc/R TMLv1.0
http://crypto.stanford.edu/ ninghui/rtml/RTMLv1.0q. xsd">
<IntegerType name="long" max="9223372036854775807" min ="-9223372036854775808"/>
<IntegerType name="int" max="2147483647" min="-2147483 648"/>

<IntegerType name="short" max="32767" min="-32768"/>
<IntegerType name="byte" max="127" min="-128"/>
<IntegerType name="bit" max="1" min="0"/>
<IntegerType name="unsigned int" max="4294967295" min=" 0"/>
<IntegerType name="unsigned short" max="65535" min="0"/ >
<IntegerType name="unsigned byte" max="255" min="0"/>
<EnumType name="boolean">
<EnumValue>false</EnumValue>
<EnumValue>true</EnumValue>

</EnumType>

<StringType name="string"/>

<StringType name="case-insensitive string" ignoreCase= "true"/>
<TreeType name="dns" separator="." order="rootLast"/>

<TreeType name="path" separator="/" order="rootFirst"/ >

<RecordType name="email address">
<Field name="user name"> <Type name="string"/> </Field>
<Field name="server"> <Type name="dns"/> </Field>
</RecordType>
<RecordType name="person name">
<Field name="first name"> <Type name="string"/> </Field>
<Field name="last name"> <Type name="string"/> </Field>
</RecordType>
<RecordType name="distinguished name">
<Field name="CN"> <Type name="string"/> </Field>
<Field name="OU"> <Type name="string"/> </Field>
<Field name="0"> <Type name="string"/> </Field>
<Field name="CN"> <Type name="string"/> </Field>
</RecordType>
</ApplicationDomainSpecification>

B.2 Sample XML Elements for Scenario 1

The following definition corresponding to EPub’s discoualigy in Scenario 1.

<IntersectionContainment>
<HeadRoleTerm name="Discount"/>
<Intersection>
<ExternalRole>
<PrincipalRef ref="K_ACM"/>
<RoleTerm name="ACM Member">
<Parameter name="name" id="memberName"/>
<Parameter name="since">

16

<Interval>
<To><TimeValue>2001</TimeValue></To>
</Interval>
</Parameter>
</RoleTerm>
</ExternalRole>
<RoleTerm name="student">
<Parameter name="name"> <Equals ref="memberName"/> </Pa rameter>
<Parameter name="program">
<Set>
<EnumValue>M.S.</EnumValue>
<EnumValue>Ph.D.</EnumValue>
</Set>
</Parameter>
</RoleTerm>
</Intersection>
</IntersectionContainment>

B.3 Sample XML Elements for Scenario 2

The following is the ADSD that declares the “hostPerm” role.

<ApplicationDomainSpecification

uri="http://crypto.stanford.edu/ ninghui/rtml/examp les/lFWADSD1.xml"
xmins="http://crypto.stanford.edu/dc/RTMLv1.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xsi:schemalocation="http://crypto.stanford.edu/dc/R TMLv1.0
http://crypto.stanford.edu/ninghui/rtml/RTMLv1.0q. xsd">

<RoleDeclaration name="hostPerm">
<Parameter name="host"> <Type name="dns"/> </Parameter>
</RoleDeclaration>
</ApplicationDomainSpecification>

The following is the ADSD that declares the “socketPermé&ravhich restrictively inherits “hostPerm”.

<ApplicationDomainSpecification

uri="http://crypto.stanford.edu/ninghui/rtml/examp les/IFWADSD2.xml"

xmins="http://crypto.stanford.edu/dc/RTMLv1.0"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"

xsi:schemalocation="http://crypto.stanford.edu/dc/R TMLv1.0

http://crypto.stanford.edu/ninghui/rtml/RTMLv1.0q. xsd">

<IncludeDomain uri="http://crypto.stanford.edu/"ning hui/rtml/examples/FWADSD1.xml"/>
<RoleDeclaration name="socketPerm">

<Restriction> <BaseRole name="hostPerm"/> </Restrictio n>

<Parameter name="port"> <Type name="unsigned short"/> </ Parameter>

</RoleDeclaration>
</ApplicationDomainSpecification>

The following is the definition element dfrw's delegation taiga .

<SimpleDelegation>
<HeadRoleTerm name="hostPerm">
<Parameter name="host">
<TreeValue includeCurrent="true" includeDescendents=" true">
cs.stanford.edu
</TreeValue>
</Parameter>
</HeadRoleTerm>

17

<DelegateTo>
<PrincipalRef ref="K_SA"/>
</DelegateTo>
<Control>
<ExternalRole>
<PrincipalRef ref="K_Stanford"/>
<RoleTerm name="StudentID" domain="Stanford"/>
</ExternalRole>
</Control>
</SimpleDelegation>

The following is the definition element dfsa’s delegation tai ajice-

<SimpleMember>
<HeadRoleTerm name="socketPerm">
<Parameter name="host">
<TreeValue includeDescendents="true" includeCurrent=" false">stanford.edu</TreeValue>
</Parameter>
<Parameter name="port">
<Interval>
<From><IntegerValue>8000</IntegerValue></From>
<To><IntegerValue>8443</IntegerValue></To>
</Interval>
</Parameter>
</HeadRoleTerm>
<PrincipalRef ref="K_Alice"/>
</SimpleMember>

B.4 A Complete, Signed Credential

We now give a complete credential. The signature is gersbregimg the Apache XML Security tool.

<Credential
xmins="http://crypto.stanford.edu/dc/RTMLv1.0"
xmins:ds="http://www.w3.0rg/2000/09/xmldsig#"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xsi:schemal.ocation="http://crypto.stanford.edu/dc/R TMLv1.0
http://crypto.stanford.edu/ ninghui/rtml/RTMLv1.0q. xsd
http://www.w3.0rg/2000/09/xmldsig#
http://www.w3.org/TR/xmldsig-core/xmldsig-core-sche ma.xsd">
<Preamble>
<DefaultDomain uri="http://crypto.stanford.edu/dc/rt ml/x509adsd.xml">

</Defaultbomain>
<Principal id="IssuerKey">
<ds:KeyValue>
<ds:DSAKeyValue>
<pP>
/X9TgR11EilS30qcLuzk5/YRt11870QAwx4/gLZRImIFXUAIUft ZPY1Y+r/F9bow9subVWzXgTuA
HTRv8mZgt2uZUKWkn5/0BHsQIsJPubnX/rfGG/g7V+HGqKYVDwT 7g/bTxR7DAjVUE1oWKTL2dfOu
K2HXKulylgMZndFIAcc=
</P>
<Q>12BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>
9+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCzOHgmMdRWVeOutRZT+ZxBxCBgLRJIFnNEj6EWOFhO3
zwkyjMim4TwWeotUfl0o4KOuHiuzpnWRbgN/C/ohNWLx+2J6ASQ 7zKTxvghRkimog9/hWuWfBpKL
ZI6Ae1UIZAFMO/7PSSo=
</G>
<Y>

18

vLpQwW30YKp/iAL8drwllteVtuSTGt8+1Z7YyUul/ztvdOittFVw /udC7HEYLF1A34saKGOES3X3V
wsrilpx6e1tHFSHHV087GsDXdNIIKUKkJhtysttrlOStBG7hcK cdVISdaw/Pvyfod50AhTAOTw1
9sAeigAelUO4qsyr/20=
</Y>
</ds:DSAKeyValue>
</ds:KeyValue>
</Principal>
<Principal id="SubjectKey">
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>
UiN6AFAP1GhzwiXIP2DwJod5ivWw7bnQA903bTQMMhN1kkPXcSE mMPW1f+yof3cza0Xz9WgeBc9+
XwM150t/J4KGYHoDrLlyrlA2uKnRtixJphpJGCbw09CoCAHEWC?2 5+93c7aG1j3kWoKBQqn9fCH3s
QO5dt1DxNog3ah0jg0c=
</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>
</ds:KeyValue>
</Principal>
</Preamble>
<lIssuer><PrincipalRef ref="IssuerKey"></PrincipalRef ></Issuer>
<SimpleMember>
<HeadRoleTerm name="DistinguishedName">
<Parameter name="subjectDN">
<Record>
<Field name="CN"><StringValue>Bob Smith</StringValue> </Field>
<Field name="0OU"><StringValue>CSD</StringValue></Fie Id>
<Field name="0"><StringValue>StateU</StringValue></F ield>
<Field name="C"><StringValue>US</StringValue></Field >
</Record>
</Parameter>
</HeadRoleTerm>
<PrincipalRef ref="SubjectKey"></PrincipalRef>
</SimpleMember>
<ValidityTime>
<IssueTime>2002-08-20T13:20:00Z</IssueTime>
<NotAfter>2003-08-20T13:20:00Z</NotAfter>
</ValidityTime>
<Signature xmins="http://www.w3.0rg/2000/09/xmldsig# ">
<Signedinfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg /TR/2001/REC-xml-c14n-20010315">
</CanonicalizationMethod>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/0 9/xmldsig#dsa-shal">
</SignatureMethod>
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09/xmld sig#enveloped-signature">
</Transform>
<Transform Algorithm="http://www.w3.0rg/TR/2001/REC- xml-c14n-20010315#WithComments">
</Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/x mldsig#shal"></DigestMethod>
<DigestValue>vgeAJujgY/eHjj0ReTKAywqgSPk8=</DigestVa lue>
</Reference>
</SignedInfo>
<SignatureValue>cCH3MJIMCY1Bb1MGn5HYfSAmHrApVhguBNFj AHjV+5MuCLdemhyC61Q==</SighatureValue>
<Keylnfo>
<KeyValue>

19

<DSAKeyValue>

<pP>

/X9TgR11EilS30qcLuzk5/YRt11870QAwx4/gLZRImIFXUAIUft ZPY1Y+r/F9bow9subVWzXgTuA
HTRv8mZgt2uZUKWkn5/0BHsQIsJPubnX/rfGG/g7V+HGqKYVDwT 7g/bTxR7DAjVUE1oWKTL2dfOu
K2HXKu/lylgMZndFIAcc=

</P>

<Q>12BQjxUjC8yykrmCouuEC/BYHPU=</Q>

<G>
9+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCzOHgmMdRWVeOutRZT+ZxBxCBgLRJIFnNEj6EWOFhO3
zwkyjMim4TwWeotUfl0o4KOuHiuzpnWRbgN/C/ohNWLx+2J6ASQ 7zKTxvghRkimog9/hWuWfBpKL
ZI6Ae1UIZAFMO/7PSSo=

</G>

<Y>

EIn5/htZP51p7Y/Y1+zZOSSmoi2fQS0deniScan3990xy33RrPf F50dgEVmMVYfTzFfKEz94aUXEY
qY2VGVRCKrAZThk1SwoOB+UyfNSVjoqadfpplQpTalK/JeR7uxQ UrOAeop68nr2u49GijYiLyvL3
x041Gaz8juYZL3gZTNI=

</Y>

</DSAKeyValue>
</KeyValue>
</KeylInfo>
</Signature>
</Credential>

20

