
CERIAS Tech Report 2006-13

A POLICY ENGINEERING FRAMEWORK FOR FEDERATED
ACCESS MANAGEMENT

by Rafae Bhatti

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis Acceptance

This is to certify that the thesis prepared

By

Entitled

Complies with University regulations and meets the standards of the Graduate School for originality

and quality

For the degree of

Final examining committee members

, Chair

Approved by Major Professor(s):

Approved by Head of Graduate Program:

Date of Graduate Program Head's Approval:

Rafae A. Bhatti

A Policy Engineering Framework for Federated Access Management

Doctor of Philosophy

A. Ghafoor

Charlie Hu

Elisa Bertino

Ninghui Li

04/04/06

A. Ghafoor

Mark J. T. Smith

A POLICY ENGINEERING FRAMEWORK FOR

FEDERATED ACCESS MANAGEMENT

A Thesis

Submitted to the Faculty

of

Purdue University

by

Rafae A. Bhatti

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2006

Purdue University

West Lafayette, Indiana

ii

To my family, who have believed in me and supported me in every way throughout

my journey of education which only culminates with this document but began

more than 2 decades ago.

iii

ACKNOWLEDGMENTS

Acknowledgement is due to my advisors Prof. Arif Ghafoor and Prof. Elisa

Bertino, both of whom have been a tremendous source of guidance and inspiration,

and their advice has been instrumental in the evolution of the work reported in

this thesis. Also to be acknowledged are my committee members, Prof. Ninghui Li

and Prof. Charlie Hu, for their valuable input and support in several phases of my

graduate career. Last but not the least, the research presented in this thesis has

been partially supported by the National Science Foundation under the NSF Grants

IIS-0209111 and IIS-0242419.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1 Policy-Based Access Management . 1

1.2 Contributions and Organization . 5

2 RELATED WORK . 6

3 POLICY ENGINEERING FRAMEWORK 11

3.1 Design Principles . 12

3.1.1 Security Management Perspective 12

3.1.2 Software Engineering Perspective 14

3.2 Policy Language . 15

3.3 Policy Components . 15

3.3.1 Credentials . 16

3.3.2 Constraints . 18

3.3.3 Assignment Rules . 21

3.4 Policy Composition . 25

3.5 Policy Meta-model . 26

3.5.1 UML Package . 27

3.5.2 UML to XML Schema . 29

3.6 Policy Engineering with X-Federate 29

3.6.1 Decentralized Administration 31

3.6.2 Credential Federation . 33

3.6.3 Constraint Specification . 34

v

Page

4 ADMINISTRATION MODEL . 36

4.1 Background . 36

4.1.1 RBAC and GTRBAC . 36

4.2 X-GTRBAC Admin . 40

4.2.1 Formal Model . 42

4.2.2 Administrative Features . 45

4.2.3 Administration Process . 52

5 FEDERATION ARCHITECTURE . 55

5.1 Federated Database Architecture . 55

5.2 SAML profile . 56

5.3 Federation Protocol . 63

6 DISTRIBUTED SYSTEM APPLICATION: HEALTHCARE INFORMA-
TION MANAGEMENT . 67

6.1 Policy Design . 67

6.2 Example Policy . 70

6.2.1 Formal Specification . 71

6.2.2 UML model creation . 73

6.3 Enforcement Architecture . 73

6.3.1 Subsystem Architecture . 74

6.3.2 Integrated Architecture . 76

6.4 Implementation . 78

6.4.1 Policy and Records Database 79

6.4.2 Policy Enforcement . 80

7 CONCLUSION AND FUTURE WORK 84

LIST OF REFERENCES . 87

APPENDICES

Appendix A: X-GTRBAC Grammar . 92

Appendix B: UML Meta Model for X-GTRBAC Policy 97

vi

Page

Appendix B: Example Policy . 99

VITA . 105

vii

LIST OF TABLES

Table Page

1.1 Issues that impact policy design . 3

2.1 Comparison of X-FEDERATE & related work 9

3.1 X-Grammar: User & Role Definition . 18

3.2 X-Grammar: Constraint Definitions . 21

3.3 X-Grammar: Permission & Assignment Rule 23

3.4 Summary of UPX profile . 27

4.1 Temporal constraint expressions of GTRBAC 40

4.2 X-GTRBAC Admin Functions . 46

4.3 X-GTRBAC Admin Relations . 47

4.4 X-GTRBAC Admin Operations . 50

4.5 X-GTRBAC Admin Restrictions . 51

5.1 Credential Configuration in SAML profile 58

5.2 Constraint Specification in X-GTRBAC 61

C.1 XML documents for the Example Policy Definitions 99

C.2 XML documents for the Example Policy Rules 103

viii

LIST OF FIGURES

Figure Page

3.1 The overall X-GTRBAC policy . 25

3.2 UML class diagrams of X-GTRBAC policy 30

4.1 An example of policy administration process 54

5.1 Design configuration of the SAML profile of X-GTRBAC. 57

5.2 Software architecture for the SAML profile of X-GTRBAC. 63

6.1 The integrated architecture for federated healthcare database prototype. 74

6.2 The subsystem architecture for federated healthcare database prototype. 75

6.3 XML-based EHR layout . 79

B.1 Top level UML model for XPolicy . 98

ix

ABSTRACT

Bhatti, Rafae A. Ph.D., Purdue University, May, 2006. A Policy Engineering Frame-
work for Federated Access Management. Major Professor: Arif Ghafoor.

Federated systems are an emerging paradigm for information sharing and inte-

gration. Such systems require access management policies that not only protect

user privacy and resource security but also allow scalable and seamless interopera-

tion. Current solutions to distributed access control generally fail to simultaneously

address both dimensions of the problem. This work describes the design of a policy-

engineering framework, called X-FEDERATE, for specification and enforcement of

access management policies in federated systems. It has been designed from the

perspectives of both security management and software engineering to not only al-

low specification of requirements for federated access management but also allow

development of standardized policy definitions and constructs that facilitate policy

deployment and enforcement in a federated system. The framework comprises of an

access control language specification that is an extension of the well-accepted Role

Based Access Control (RBAC) standard. The language extends RBAC to incorpo-

rate various essential features for federated access management. The framework also

includes the design of an administrative model targeted at access control policy ad-

ministration in a decentralized environment. The framework has been implemented

as a research prototype that illustrates the use of X-FEDERATE as an enabling

technology for secure Web-based federation with applications in federated digital

libraries and federated electronic healthcare management.

1

1. INTRODUCTION

Access management is a key component of all information management systems.

The recent evolution of information management architectures has resulted in the

shift from centralized to decentralized control as evident in modern grid and peer-

to-peer systems. These architectures have given rise to a collaborative landscape of

information integration and federation enabled by the federated database technology

connecting together heterogeneous information sources. Manifestations of such fed-

erated systems can be seen in the form of Web-services and multi-domain enterprise

systems. Many military and commercial organizations have adopted the federated

approach to online information management, be it for critical infrastructure protec-

tion such as the DoD NetCentric Directive [1] or wide dissemination of scholarly

work such as the Federated Digital Library initiative [2].

At the same time, this federated paradigm of collaboration has placed increasing

demands on the access management technologies to provide adequate support for

secure dissemination of information. The overarching theme of the work reported in

this thesis is to address the security requirements for federated information sharing,

and to design approaches for distributed access management capable of fulfilling

these requirements in modern day federated systems.

1.1 Policy-Based Access Management

The access management problem concerns itself with the design and administra-

tion of access management policies. Policies for distributed access management are

particularly challenging because of the heterogeneity introduced by multiple admin-

istrative domains, which impacts both the design and administration of policies. The

design of a policy-based management approach to satisfy the security requirements

2

for federated systems presents a two-fold challenge, where on the one hand the policy

must incorporate the access management needs of the individual systems, while on

the other hand the policies across multiple systems must be designed in a manner

that they can be uniformly developed, deployed and integrated within the federated

system.

An effective mechanism for access management in federated systems must take

into consideration the access control requirements of protected resources as stated

in the access control policies of each participating site. However, the requirements

for federated information sharing are not only significantly more complex but also

inherently heterogeneous across the multiple federated sites. The key challenges

here include specification of authentication and authorization rules, design of in-

teroperable federation protocols to allow Single Sign On (SSO), and specification

and enforcement of authorization constraints. These requirements have been tabu-

lated in Table 1.1. Addressing these challenges in the access control policies while

overcoming the complexity and heterogeneity calls for developing a sophisticated

policy engineering methodology that can be adopted for composing federated access

management policies that can not only adequately capture the access management

requirements but can also interoperate across the multiple federated sites. Addition-

ally, given the scale and depth of modern-day distributed systems, it is imperative

that the methodology be based on standardized constructs that can be readily in-

tegrated into existing systems. This requirement becomes increasingly significant

when the deployment environment is a federated system.

Toward this end, the work presented in this thesis involves the design of a policy

engineering framework for federated access management. We formulate a policy en-

gineering methodology that incorporates principles from security management and

software engineering. The methodology is based on the well-known Unified Modeling

Language (UML). From a security management perspective, the goal is to meet the

requirements for federated access management. From a software engineering per-

spective, the goal is to incorporate the well-known principles of software engineering

3

in the policy design to yield a specification that allows policies to be developed and

managed in a standardized manner. This policy engineering methodology not only

results in development of interoperable policies for federated information sharing

but also facilitates usability and integration of the proposed framework in existing

systems.

Table 1.1: Issues that impact policy design in federated
information sharing

Issues Description Impact on Policy Design

Decen-

tralized

Adminis-

tration

Federated systems are char-

acterized by the principle of

local autonomy which im-

plies that each participating

site retains local autonomy

(i.e. administrative control

over its resources). A cen-

tralized administration ap-

proach implies loss of auton-

omy for participating sites

[3]. A decentralized ap-

proach lets the participat-

ing sites retain the author-

ity for specifying authoriza-

tion policies for federated

users.

Decentralized administration requires

that the policy be specified for an un-

seen user pool requiring differentiated

access to a diverse set of resources lo-

cated anywhere across the federation.

This precludes the use of traditional ap-

proaches to distributed authorization

that assume knowledge of user iden-

tities and resource locations. Even

when this knowledge is available, the

requirement of fine-grained access con-

trol would lead to rule-explosion in the

policy given the size of federated pop-

ulation in open systems. To keep the

rule set from becoming prohibitively

large calls for a scalable approach.

Continued on next page

4

Issues Description Impact on Policy Design

Cred-

ential

Federati-

on

A federated access manage-

ment policy must support a

mechanism to transfer the

credentials of the federated

users across administrative

boundaries for them to ob-

tain federated resources ac-

cording to the applicable

authorization policies. This

requirement also includes

providing Single Sign On

(SSO) to enable persistent

authorization for federated

users.

Credential federation demands interop-

erable protocols that can allow partic-

ipating sites to communicate user cre-

dentials. Multiple policies may be nec-

essary to evaluate the request of a fed-

erated user, which requires the sup-

port for combining rules from multi-

ple policies. This entails that the pol-

icy be specified using a standardized

vocabulary to allow multiple policies

to seamlessly interoperate. The use of

a standardized meta-model is essential

for clear elicitation and integration of

interoperable policy specification.

Cons-

traint

Specifica-

tion

A federated system requires

the specification of semantic

and contextual constraints

to ensure adequate protec-

tion of federated resources.

Former includes high level

integrity principles, such as

Separation of Duty (SoD)

[4]. Latter includes tem-

poral or non-temporal at-

tributes that must be eval-

uated to allow an access re-

quest.

The existing PBM approaches have

tightly coupled constraints with policy

rules which is an inflexible approach.

Since the integrity requirements and

contractual obligations within a feder-

ation might change on-demand, an ac-

cess management mechanism must be

flexible enough to facilitate such adap-

tation. The policy design must there-

fore be based on principles of modular-

ity and reusability that allow indepen-

dent yet interoperable specification of

various components of the policy.

5

1.2 Contributions and Organization

To address the problem of policy-based management in federated systems, we

present X-FEDERATE, a policy engineering framework for federated access man-

agement. It consists of an XML-based policy specification language, its UML-based

meta-model, and an enforcement architecture. The UML modeling tool is an integral

part of our policy engineering methodology, as it facilitates modeling, development,

testing and integration of policies using standardized tools. The design of our policy

specification language builds upon the Role Based Access Control (RBAC) model [5],

and augments it with necessary extensions to support access management in a fed-

erated system.

Another contribution of this thesis is the design of an administration model for the

X-FEDERATE policy framework. Administration is a key requirement for policy-

based systems management, and becomes particularly important in the context of

policies incorporating rich constraint specification, such as those for federated in-

formation sharing highlighted in Table 1.1. To meet this requirement, we present

an administration model outlining the formal specifications of the administrative

concepts for access management in our framework.

The remainder of the thesis is organized as follows. Chapter 2 covers related

work and highlights the particular merits of our work with respect to the outlined

challenges. Chapter 3 presents the X-FEDERATE policy engineering framework and

the policy engineering methodology. The framework includes the details of the policy

specification language, and a meta-model for our language based on the well-known

UML specification. Chapter 4 presents the policy administration model for the X-

FEDERATE framework. Chapter 5 presents the design of a federated architecture

based on our framework. Chapter 6 presents a distributed systems application of the

framework. It illustrates the use of the policy engineering methodology for federated

healthcare information management. Chapter 7 concludes the thesis.

6

2. RELATED WORK

This chapter covers the related work in the policy-based access management ap-

proaches for distributed systems.

Policy-based approach to management of systems has been most widely reported

in the literature in the context of network systems management (for e.g. [6]). One

notable example of policy-based language for systems management is Ponder [7].

Ponder is a declarative policy language with the ability to support authorization and

delegation policies, as well as obligation policies. However, authorization policies in

Ponder are primarily aimed at allowing network users to manage network objects,

with known user groups and object locations, and are therefore inadequate for a

federated environment where users and resources are not identified in advance. It

therefore does not support credential specification and federation requirements for

access management in federated systems.

Ponder supports specification of contextual constraints, based on temporal and

non-temporal parameters. However, contextual constraint specification is tied into

the authorization policies, which reduces their modularity, and hence flexibility. Pon-

der also supports specification of SoD constraints through the use of meta-policies.

However, the specification is at user-level, and is more complicated to maintain in

a federated environment as opposed to a role-based SoD constraint. On the other

hand, Ponder is well suited to the task that it is designed for, i.e. network services

management. It has a management toolkit that allows policy specification, deploy-

ment, and dynamic adaptation, as well as support for off-line static analysis of policy

conflicts [8].

The access control model for federated systems presented in [3] is based on a

tightly coupled architecture. It concerns with defining principles for designing access

7

control policies in federated systems, and does not deal with policy-based manage-

ment issues. It therefore does not address the particular issues related to credential

specification, credential federation, or constraint specification highlighted in this the-

sis.

Various policy models have earlier been used for access control in centralized

and traditional distributed systems, but not many approaches have been designed

to meet the requirements for policy-based access management in federated systems

as described in this thesis. Akenti [9] and Permis [10] are access control systems

which use policies encoded in X.509 attribute certificates. Both assume authenti-

cating credentials to be used for issuance of authorization certificates, much like our

approach. Akenti supports discretionary access control (i.e. based on subject iden-

tities), leading to rule explosion in policy rule set. Permis uses role-based access

control; it, however, does not provide support for specification and enforcement of

user-to-role and role-to-permission assignment policies. Both these schemes do not

support specification of semantic or contextual constraints.

Shibboleth [11] and Liberty Alliance [12] define protocols for attribute-based au-

thentication in support of SSO in Web-based environments. The attributes of a user

in Shibboleth are always acquired from his/her home site by the resource provider,

whereas those in Liberty Alliance protocol can be provided by any identity provider

on the Internet. Liberty Alliance protocol therefore establishes a circle of trust be-

tween identity providers and resource providers. Both schemes provide particular

emphasis on user privacy, and the identity of the user is not known to the resource

provider. However, the role of these schemes is limited to distributed authentication,

and to providing attribute information for a user to be used in authorization deci-

sions. They do not include mechanisms for specifying and enforcing authorization

policies.

Security Assertions Markup Language (SAML) [13] and XML Access Control

Access Control Language (XACML) [14] are emerging specifications aimed at ad-

dressing different aspects of distributed access management. As noted earlier, SAML

8

primarily provides a mechanism for credential federation, but does not provide any

policies for use of those credentials. Also, SAML does not incorporate a way to

establish trust between business partners exchanging credentials. XACML can be

configured to support RBAC through its RBAC profile. XACML, however, does not

support some of the essential features in the RBAC standard, such as specification

of separation of duty, role hierarchy and cardinality constraints on the definition

of roles. Although it does support the semantics of hierarchical RBAC (through

permission aggregation), it does not allow hierarchies and hierarchical constraints

to be defined directly on roles. Additionally, it does not support the administrative

functions for session management as defined in the RBAC standard. Consequently,

XACML primarily acts only as a PDP (Policy Decision Point) and lacks the in-

frastructure to enforce the access control policy. The X-FEDERATE framework

presented in this thesis not only includes a specification language but also an en-

forcement architecture. It can therefore provide the functionality of both a PDP and

a PEP (Policy Enforcement Point).

A key feature of our framework in comparison with all other related approaches

is the policy engineering methodology that addresses the security management is-

sues relevant to the design of policies for federated access management using the

principles of software engineering. Based on this design methodology, we provide a

UML-based meta-model for the policy specification language that allows the policy

to be developed and managed in a standardized manner. While there exist UML-

based specifications related to secure software design [15–17], there is none that

captures the federated information sharing requirements outlined in this thesis. The

work presented in [17] is a UML profile designed to capture the requirements for

confidentiality, information flow, fair exchange, and secure communication in a dis-

tributed system, and also allows modeling of threat scenarios. It, however, cannot

be used to specify access control policies. The approaches presented in [16, 17] have

been designed to model access control policies, and both are based on RBAC model.

9

They, however, do not cater to the requirements of the federated paradigm, including

the advanced constraint specification beyond the basic RBAC model.

The Resource Access Decision specification [18] by the Object Management Group

is a very relevant effort in the area of providing a uniform policy specification for

application systems to enforce resource-oriented access control policies. It, however,

does not address the challenges outlined in this thesis with respect to federated

information sharing.

From amongst all related approaches, we provide in Table 2.1 a comparison

of X-FEDERATE with the two most closely related schemes, namely Ponder and

XACML. It provides a clear illustration of the distinctive features of X-FEDERATE

while contrasting them to these schemes based on the federated access management

requirements outlined in this thesis.

Table 2.1: Comparison of X-FEDERATE & related work

Feature Ponder X-FEDERATE XACML

Policy Modeling and

Specification

YES (through

an Interface

Definition

Language)

YES (through

standardized

UML-based meta

model)

NO (no

meta model-

specification)

Conflict

Resolut-

ion

Modality YES (Prece-

dence rela-

tionships)

YES (Rule com-

bining modes)

YES (Rule

combining

modes)

Seman-

tic

Static

SoD

YES (as con-

straint)

YES (as con-

straint)

NO

Dynam-

ic SoD

NO YES (as con-

straint)

NO

Continued on next page

10

Feature Ponder X-FEDERATE XACML

Support for RBAC 1 Level 1 Level 3 Level 1

Support for policy man-

agement

YES (through a

Management In-

terface)

YES (through an

Admin Model)

NO

Parser & Interpreter YES YES YES

Strong typing YES YES (through

XML schema)

YES (through

XML schema)

Constr-

aint

Specific-

ation

Seman-

tic

Static

SoD

YES (through

meta policies)

YES (through

SoD sets)

NO

Dynam-

ic SoD

NO YES (through

SoD sets)

NO

Conte-

xtual

Tempo-

ral

NO YES (through

periodic time ex-

pressions)

NO

Non -

Tem-

poral

YES(through

parameter-value

constraints)

YES (through

logical expres-

sions)

YES (through

rule conditions)

1The following levels are defined by the authors to categorize the work reported on RBAC based
on the RBAC standard [19] and its extensions reported in the literature.� Level 1: Supports the notion of roles, and allows permissions to be associated with roles.� Level 2: Level 1 + specification of constraints directly on the definition of roles.� Level 3: Level 2 + role management functions as defined per the RBAC standard.

11

3. POLICY ENGINEERING FRAMEWORK

This chapter presents the design of X-FEDERATE, our policy engineering frame-

work. The primary objective behind the development of X-FEDERATE is to outline

a policy engineering methodology to provide support for policy-based access man-

agement in federated systems.

While policies for distributed access management have been developed, current

approaches for policy-based management (PBM) do not transition well to the feder-

ated paradigm. Federated systems comprise of several distinct, potentially mutually

untrusted administrative domains with heterogeneous policy specifications. Feder-

ated access management is therefore thwarted by the inherent incompatibility of

multiple PBM approaches.

Additionally, designing policies for PBM in federated systems poses considerable

challenges, as has been highlighted in Chapter 1. An effective mechanism for access

management in federated systems must take into consideration the access control

requirements of protected resources as stated in the access control policies of each

participating site. However, the requirements for federated information sharing are

not only significantly more complex but also inherently heterogeneous across the

multiple federated sites. This complexity and heterogeneity of access control poli-

cies calls for developing a sophisticated policy engineering methodology that can be

adopted for composing federated access management policies that can not only ade-

quately capture the access management requirements but can also interoperate across

the multiple federated sites. Additionally, given the scale and depth of modern-day

distributed systems, it is imperative that the methodology be based on standardized

constructs that can be readily integrated into existing systems. This requirement

12

becomes increasingly significant when the deployment environment is a federated

system.

We shall first elaborate upon the design principles of our policy engineering

methodology, and then present the details of the policy specification language.

3.1 Design Principles

We formulate a policy engineering methodology that incorporates principles from

security management and software engineering. From a security management per-

spective, the goal is to meet the requirements for federated access management.

From a software engineering perspective, the goal is to incorporate the well-known

principles of software engineering in the policy design to yield a specification that

allows policies to be developed and managed in a standardized manner. This policy

engineering methodology not only results in development of interoperable policies

for federated information sharing but also facilitates usability and integration of the

proposed framework in existing systems.

As stated above, we formulate our policy engineering methodology for the X-

FEDERATE framework by incorporating principles from security management and

software engineering. We now elaborate upon the two principles involved in the

design of our methodology.

3.1.1 Security Management Perspective

Recently, there has been a growing recognition of security problems in federated

environments, and several emerging specifications in various stages of standardization

have emerged [13,14,20]. But standards alone won’t solve the problem. The answer

lies in combining standards with policies that govern how shared information can

be used. We believe that a PBM approach for access management provides a viable

solution since it is flexible and adaptable enough to meet the unique requirements

of a complex environment, such as a federated system. A key benefit of policies

13

for systems management is that policies are interpreted rather than compiled into

program code, so can be changed dynamically without changes to the application

code [6].

In Table 1.1, we have highlighted the key security management issues that impact

the policy design for federated information sharing, and subsequently discuss the

design goals of our framework. In response to these challenges, we have outlined a

set of design goals to adequately capture the access management requirements for

federated information sharing.

Among our design goals is to provide an interoperable specification for express-

ing access control policies that is compatible with emerging security standards for

information federation. All notable emerging standards for Web-based federation

are XML-based; we therefore use an XML-based policy specification language. As

a consequence, our policy-based framework facilitates interoperability with comple-

mentary security protocols for federated systems.

The design of an access management policy should in principle not be strongly

tied to any specific mechanism for provisioning of security attributes. Therefore,

another design goal is to allow modular specification of authenticating and autho-

rization credentials to provide support for pluggable authentication standards to be

incorporated in a policy by a federating site. Being neutral to the authentication

mechanism, we do not deal with the authentication system needed to generate the

authenticator. In other words, we assume that the authentication information sup-

plied to the system is already verified, and is encoded in an authenticating credential

usable in our framework.

Our design is focused on specification of policies, and therefore we do not consider

certain other auxiliary issues. For example, we do not deal with credential provi-

sioning issues, which include deployment of credentials across multiple applications,

typically through the use of directory services (such as LDAP). We also do not deal

with identity aggregation issues involving multiple LDAP repositories for manipu-

14

lating composite credentials. Additionally, we assume that the channels used for

network communication are secured by appropriate mechanisms (such as SSL/TLS).

3.1.2 Software Engineering Perspective

In addition to design issues relevant to security management, we also use soft-

ware engineering principles to guide us in the design of our framework. We em-

phasize that software engineering is a broad discipline, and encompasses the var-

ious stages involved in the software development life cycle (SDLC). Our effort is

primarily focused on the requirements specification (as related to federated access

management), design, and implementation phases in the SDLC. Toward this end, we

provide a UML-based meta-model of our language to facilitate policy specification.

It facilitates capturing the requirements of the target application by including the

appropriate UML components in the policy, and allows rapid translation of policy

specification into implementation code through the use of state-of-the-art translation

technologies [21].

The use of a standardized model to elicit policy specification has other advan-

tages. A standardized vocabulary facilitates specification of various security policies,

and allows them to be applied in an interoperable manner in a federated system since

the policies in the system will be instances of a single meta-model. This encourages

usage of our policy language for federated information sharing in an organization with

minimal change to existing policy configuration. Our approach complements similar

efforts in the industry, such as Common Information Model (CIM) specifications by

the Distributed Management Task Force [22]. Recent research has also reported the

use of UML for constructing middleware-aware system models to promote integration

and interoperability with heterogeneous middleware components [23].

We now turn to the policy specification language of our X-FEDERATE frame-

work.

15

3.2 Policy Language

This section describes the key features of X-GTRBAC (XML-based Generalized

Temporal Role Based Access Control), our XML-based policy specification language.

Our specification language is an extension of the RBAC model suitable for addressing

the access management challenges in federated systems discussed in this thesis.

X-GTRBAC language specification is captured through a context-free grammar

called X-Grammar, which follows the same notion of terminals and non-terminals

as in Backus-Naur Form (BNF), but supports the tagging notation of XML which

also allows expressing attributes within element tags. The use of attributes helps

maintain compatibility with XML schema syntax, which serves as the type definition

model for our language. The non-terminals are expressed as <!– �non terminal name�>
XML tags, and terminals as standard XML tags. Optional tags are placed within

square brackets �[]�. Group portions of a production are included in curly brackets�{}�, with the repeat count indicated by a subscript. The default count is one.

A �*�and a �+�indicates a count of �zero or more�and �one or more�respectively,

whereas a �-�is used to provide a range. A �|�indicates alternates within a produc-

tion set, and exactly one can be chosen. The data types of the values of elements or

attributes are indicated inside parenthesis �()�symbol. Since it follows BNF con-

vention, X-Grammar can be accepted by a well-defined automaton to allow formal

analysis (since existing compiler tools for BNF grammars can be applied). Another

reason that favors the use of X-Grammar syntax for policy specification instead of

directly working with XML schemas is better readability and presentation. Exam-

ples of X-Grammar policies are given in following sections. The complete syntax of

X-GTRBAC language specification appears in Appendix A.

3.3 Policy Components

We now describe the main components of our X-GTRBAC. While doing so, we

motivate our design decision by evaluating existing approaches against our stated

16

requirements, and pointing out the merits of our design with respect to our objec-

tives.

3.3.1 Credentials

Credentials are a key component of an access control language. A credential

encodes the authentication and authorization information for the users. We have

indicated in Table 1.1 that a heterogeneous and unfamiliar user and resource pool in

a federated system complicates credential specification, since it precludes the use of

traditional approaches to distributed authorization (such as X.509 based PKI) that

assume knowledge of user identities and resource locations.

The approached presented in [24, 25] are well-known examples of distributed

schemes that have used identity-based X.509 certificates for user authentication. The

authentication information (i.e. public keys) is then used to construct an authoriza-

tion credential that comprises of a set of resource-specific rules. The credentials are

bound to user identities and therefore this approach to credential specification is not

scalable. Even when knowledge of identities is available, the requirement of fine-

grained access control would lead to rule-explosion in the access control policy given

the size of federated population in open systems. Additionally, this approach tightly

couples authentication with authorization, and is therefore inflexible, and violates

one of our design principles.

X-GTRBAC addresses this problem through the use of attribute-based (as op-

posed to identity-based) credential specification. We adopt a modular approach

and allow independent specification of credentials used in authentication and au-

thorization. The authenticating credential comprises of authentication information

expressed in terms of user attributes which are used by the access control processor

for role assignment. This idea is similar to the one used in [26]. However, unlike the

work in [26], we do not require reliance on X.509 identity-based certificates to encode

user authentication information. Instead, the user attributes may be supplied in any

17

mutually agreed format, such as an Attribute Statement in the SAML standard [13].

This supports the requirement for credential federation (See Section 3.6.2).

An authorization credential comprises of information about role attributes, role

hierarchy, and role constraints. Examples of role attributes are time of day, system

load, etc. [27]. They are used by the access control processor for controlling assign-

ment of users and permissions to roles. Role hierarchy provides a means of privilege

inheritance, and hierarchical role definitions can be applied to extend or specialize

existing policies. Role constraints restrict the enabling, activation and delegation

(see Section 3.6.3) of roles to allow fine-grained access management.

The authenticating and authorization credentials used in X-GTRBAC are in-

cluded in an XML User Sheet (XUS) and an XML Role Sheet (XRS) respectively.

The definitions of the credential types used in the XUS are provided through the

use of an XML Credential Type Definition (XCredTypeDef) sheet. The top-level

X-Grammar syntax of XUS, XCredTypeDef, and XRS is shown in Table 3.1.

The credential specification in X-GTRBAC facilitates a combination of rule-based

role assignment and role-based authorization (See Section 3.3.3). Our approach

allows fine-grained access control while avoiding rule-explosion in the policy since

users are assigned to roles and access rules are specified at per-role rather than

per-user level.

18

Table 3.1: X-Grammar: User & Role Definition

<!-- XML User Sheet> ::=

<XUS xus_id = (xs:id) >

<User user_id = (xs:id) >

<CredType cred_type_id=(xs:idref)

cred_type_name= (xs:name) >

[<!Header>]

<!-- Credential Expression>

</CredType>

</User>

</XUS>

<!-- Credential Type Definitions > ::=

<XCredTypeDef xctd_id = (xs:id) >

<CredTypeDef cred_type_id = (xs:id)

cred_type_name= (xs:name) >

<!-- Attribute List>

</CredTypeDef >

</XCredTypeDef>

<!-- XML Role Sheet>::=

<XRS xrs_id = (xs:id) >

<Role role_id = (xs:id)

role_name = (xs:name)>

[<!-- Cred Type>]

[<!(En|Dis)abling Constraint>]

[<![De]Activation Constraint>]

[<!Delegation Constraint>]

[<JuniorRoleId> (xs:idref)

</JuniorRoleId>]

[<SeniorRoleId> (xs:idref)

</SeniorRoleId>]

{<SSDRoleSetId> (xs:idref)

</SSDRoleSetId>}*

{<DSDRoleSetId> (xs:idref)

</DSDRoleSetId>}*

{<!LinkedRoleID>}*

</Role>

</XRS>

3.3.2 Constraints

Constraints are essential to the expressiveness of an access control language.

Specification of semantic and contextual constraints is vital to support the enforce-

ment of integrity principles and resource provisioning contracts in a federated sys-

tem. As motivated earlier, enforcing expressive constraints in a decentralized manner

involves maintaining prohibitive amounts of state information and introduces signif-

icant complexity. Additionally, adapting the constraints according to on-demand

19

changes in integrity requirements and contractual obligations within a federation

requires a specification format that facilitates such adaptation.

Most well-known distributed authorization schemes [24–26, 28] do not cover the

requirements of constraint specification and enforcement as required for access man-

agement in federated systems. The approaches described in [24, 25] tightly cou-

ple resource-specific authorization constraints with the identity-information. This

method of constraint specification is clearly inflexible to allow on-demand adap-

tation of constraints; doing so would require issuance of a new credential for the

affected users since their identity is bound to the authorization. Additionally, con-

straints in the work presented in [24,25] are inadequate to capture semantic integrity

constraints, such as SoD, in a federated system since doing so at the user level would

require prohibitive amount of state information to be maintained. In comparison,

enforcing SoD at the granularity of role is more manageable and one has to include

in the constraint definition only the roles, as opposed to all permissions, that the

user may have access to. The support for contextual constraints based on temporal

or other environmental attributes is also limited in the work presented in [24, 25],

since these approaches do not have a formal temporal model, and rely on under-

lying operating system primitives to enforce temporal constraints. The approaches

presented in [26, 28] are based on basic RBAC and do not support specification of

contextual constraints.

X-GTRBAC supports a variety of temporal and non-temporal constraint cate-

gories to adequately capture the access management requirements in federated sys-

tems. The temporal constraint specification in X-GTRBAC is primarily based on

Generalized Temporal Role Based Access Control (GTRBAC) model [29]. GTR-

BAC is a mechanism using temporal logic to express a diverse set of fine-grained

temporal constraints in an RBAC environment. The temporal constraint categories

supported by GTRBAC include periodicity, interval, and duration constraints which

can be used to constrain the period, interval and duration, respectively, of user-to-

role and permission-to-role assignments. Another category is that of trigger-based

20

constraints, which can be thought of as condition-action rules. As the name im-

plies, trigger-based constraints are used to condition the occurrence of an event on

another. Moreover, X-GTRBAC also captures the SoD constraint among roles to

capture integrity requirements. Both static SoD (SSD) and dynamic SoD (DSD)

constraints are supported. Capturing these constraints at the role level helps reduce

state information needed to enforce the constraints. X-GTRBAC supports modular

specification of the SoD and temporal constraints on roles [30]. The modular ap-

proach allows independent specification of SoD and temporal constraint definitions

which can then be imported into the policy through the use of XML namespaces.

Specification of constraints separate from the policy allows reusable constraint defi-

nitions that can be used across multiple policies. Additionally, constraint definitions

may be changed at one place without requiring change to all dependent policies,

facilitating flexible adaptation.

X-GTRBAC additionally supports the specification of contextual constraints

based on non-temporal attributes, usually associated with a role [27]. Contextual

constraints on role attributes can be used in addition to temporal constraints to sup-

port finer granularity of control on user-to-role and permission-to-role assignments.

The top-level X-Grammar syntax of the SoD and the temporal constraint definitions

are shown in Table 3.2, respectively. The SoD constraints are captured through

the use of SSD and DSD role sets which include the roles in static and dynamic

SoD respectively, and references to these sets are included with the role definition in

XRS. The temporal constraints are captured through the use of temporal expressions

of GTRBAC and references to these expressions are included in assignment policy

(Table 3.3).

Temporal constraints are of particular relevance to federated resource provision-

ing because it requires a set of fine-grained temporal constraints to adequately ensure

resource protection while also ensuring its availability per the contractual require-

ments. This set includes constraints that control the periodicity, interval and dura-

tion of resource accesses (i.e. permission assignments) during and across provisioning

21

sessions, in addition to trigger-based constraints that allow provisioning actions to be

conditioned on related events. This represents a collection of stateful rules that can

be configured in permission-to-role assignment policies. Doing so allows specification

of usage-oriented resource protection policies to enforce usage control of federated

resources.

Table 3.2: X-Grammar: Constraint Definitions

<!-- Separation of Duty Definitions> ::=

<XSoDDef xsod_id = (xs:id) >

<!SSDRoleSets>

<!DSDRoleSets>

</XSoDDef>

<!-- Definitions of Temporal

Constraints>::=

<XTempConstDef xtcd_id = (xs:id) >

{<!Interval Expression>}*

{<!-- Periodic Time Expression>}*

{<!-- Duration Expression>}*

</XTempConstDef>

3.3.3 Assignment Rules

An integral component of RBAC polices expressed using X-GTRBAC is the spec-

ification of rules for user-to-role and permission-to-role assignments. Rule-based as-

signment in RBAC policies provides a succinct declarative specification that is both

scalable and flexible. It avoids the problem of rule-explosion since rules are spec-

ified at per-role (as opposed to per-user or per-resource) level. It is flexible since

a declarative syntax allows rules to be modified without changing the application

code.

As noted earlier, the authenticating credential contains user attributes which

are used by the access control processor for role assignment to users, whereas the

authorization credential contains role attributes which are used by the access control

processor for permission assignment to roles. (Role attributes may be used in user-to-

22

role assignment too.) Additionally, a permission-to-role assignment policy may also

include rules on resource attributes to allow specification of usage-oriented protection

policy. Resource attributes capture semantic information (or meta-data) about types

of resources, and avoid reliance on fixed resource locations. They also provide a

mechanism for fine-grained permission assignment to roles based on precise resource

characteristics.

The types and attributes of resources are defined through the use of an XML

Resource Type Definition (XResTypeDef) sheet. The resources types available in

the system are defined using XML Resource Type Sheet (XRTS). A permission in

the system comprises of a resource belonging to a given type specified in terms of

its attributes, and an associated operation, and is defined in an XML Permission

Sheet (XPS). The resource type and its definitions must be imported by a domain

(using XML namespaces) before using them in a permission definition. The top-level

X-Grammar syntax of an XPS, XResTypeDef and XRTS is shown in Table 3.3.

Our assignment policy schema specifies a logical expression syntax for rule spec-

ification. It does not, however, impose any restriction on the attributes that may be

used for composing these rules. The existence and type checking of the queried at-

tribute shall be done in an application-specific manner. For instance, user attributes

can be verified through appropriate attribute authorities stated in the authentication

credential.

The assignment policies are specified in X-GTRBAC in an XML User to Role As-

signment Sheet (XURAS) and XML Permission to Role Assignment Sheet (XPRAS).

The top-level X-Grammar syntax of XURAS is shown in Table 3.3 (XPRAS is analo-

gous). Note that these policies include references to temporal constraint definitions.

For example, pt expr id references a periodic time expression defined using XTemp-

ConstDef in Table 3.2.

23

Table 3.3: X-Grammar: Permission & Assignment Rule

<!XML Permission Sheet>::=

<XPS xps_id = (xs:id) >

<Permission perm_id = (xs:id)

[prop= (noprop|first_level|cascade)] >

<Object res_type_id=(xs:idref) >

{<!Attribute >}*

</Object>

<Operation> (saml:Action) </Operation>

</Permission>

</XPS>

<!-- XML Resource Type Definitions>::=

<XResTypeDef xrtd_id = (xs:id) >

<ResTypeDef res_type_id = (xs:id)

res_type_name = (xs:name)>

{<!Attribute List>}*

</ResTypeDef>

</XResTypeDef>

<!-- XML Resource Type Sheet>::=

<XRTS xrts_id = (xs:id) >

<ResType res_type_id = (xs:idref)

res_type_name = (xs:name)>

{<!Attribute>}*

</ResType>

</XRTS>

<!-- XML Predicate Function

Definitions>::=

<XPredFuncDef xpfd_id = (xs:id) >

<Function func_id = (xs:id)

func_name= (xs:name)

return_type= (xs:anyType)>

<!Parameter List>

</Function>

</XPredFuncDef>

<!-- XML User-Role Assignment Sheet>::=

<XURAS xuras_id = (xs:id) >

<URA ura_id=(xs:id) role_id=(xs:idref)>

<AssignUsers>

<AssignUser user_id=(xs:idref)>

<AssignConstraint[op =(AND|OR|NOT|XOR)]>

//no opcode defaults to AND

<AssignCondition cred_type_id=(xs:idref)

[pt_expr_id=(xs:idref)

| d_expr_id=(xs:idref)] >

<LogicalExpr [op = (AND|OR|NOT)]>

//no opcode defaults to AND

{<!-- Predicate>}+

</LogicalExpr>

</AssignCondition>

</AssignConstraint>

</AssignUser>

</AssignUsers>

</URA>

</XURAS>

24

A key feature of our rule specification format is that it allows combing rules

from multiple sources to facilitate evaluation of multiple credentials. An assignment

rule consists of an assignment constraint, which comprises of multiple assignment

conditions. Each assignment condition contains a set of logical expressions to encode

rules on a given credential type. The assignment rules consist of Boolean predicate

functions. A set of available predicate functions is defined through the use of an XML

Predicate Function Definition (XPredFuncDef). The predicate definitions must be

imported by a domain (using XML namespaces) before using a predicate function

in an assignment rule. The top-level X-Grammar syntax of an XPredFuncDef sheet

is shown in Table 3.3.

Our logical expression syntax allows multiple logical expressions to be combined

together in an appropriate rule combining mode using Boolean connectives. The

modes supported by the specification language are AND (all rules must be true),

OR (at least one rule must be true), and NOT (no rule must be true). Mutiple lev-

els of nesting are supported, each under a distinct mode, to allow a fine granularity

of rule specification. An assignment condition is satisfied if all of its included logical

expressions are satisfied according to the respective mode. The results of evaluating

multiple assignment conditions within an assignment constraint are combined sim-

ilarly. Role assignment occurs as a consequence of an assignment constraint being

satisfied.

We note that the AND mode essentially implements deny-overrides, whereas OR

mode implements permit-overrides. The NOT mode allows one to condition a role

assignment based on negation. This is useful in instances when it is easier to express

exclusion rather than inclusion criterion for membership in a role. Although negation

is allowed in the body, it is not allowed in the consequence of a rule. This prevents

contradictory rule sets to exist in the specification. This property is helpful when

combining rules aimed at a given consequence, since one can always be sure that

new rules will not clash with existing rules in the policy.

25

<!Policy Definition > ::=

<Policy policy id =(xs:id)

policy name = (xs:name) >

<!– XML Credential Type Definitions >

<!– XML Separation of Duty Definitions >

<!– XML Temporal Constraint Definitions >

<!– XML Resource Type Definitions >

<!– XML Predicate Function Definitions >

<!– XML Resource Type Sheet >

<!– XML User Sheet >

<!– XML Role Sheet >

<!– XML Permission Sheet >

<!– XML User-Role Assignment Sheet >

<!– XML Permission-Role Assignment Sheet >

</Policy >

Fig. 3.1. The overall X-GTRBAC policy

3.4 Policy Composition

An overall X-GTRBAC policy is composed from these individual policy compo-

nents as given in Figure 3.1. The complete policy grammar is provided in Appendix

A.

26

3.5 Policy Meta-model

In this section, we provide a UML-based meta-model of our policy language.

UML is a standardized modeling specification, and UML models for other types

of security policies (such as IPSec [31] for network communication) have also been

developed by the community [22]. A UML-based meta-model of our language thus

is an important aspect of our policy engineering approach. On the one hand, it

provides a set of standardized components to compose an access management policy

which can readily be translated into implementation code using well-known UML-

compatible tools [21]. On the other hand, it also allows the policy to be applied with

other types of security policies in an interoperable manner in a federated system,

since the policies in the system will be instances of a single meta-model.

Our meta-model is designed using a UML profile. A UML profile is an extension

of the UML to include specifications not captured directly by UML. It has three key

items: stereotypes, tags, and constraints. A profile provides the definition of these

items, and explains how they extend the UML in a particular domain. A stereotype

is assigned to a UML construct (class, attribute, association) that is modified by

the extension profile. The stereotype can be further specified by adding tags (or

properties) that refine its meaning or impact on the model within the domain of

the profile. Since our target domain is XML, we require a UML profile for XML

Schema that defines the stereotypes and tags needed for appropriate translation to

XML Schema representation of our policy language.

Our task is facilitated by adopting an existing UML profile for XML Schema

(UPX) [21]. The UPX allows the specification of stereotypes and tags for XML

Schema during the UML design process and the model thus developed can be trans-

lated into the XML Schema syntax through the use of the XML Metadata Inter-

change (XMI) technology [21]. The translation to the XML Schema syntax allows

support for validation of policy documents for type consistency. XML-based policy

27

documents can be validated against the XML Schema specification of our language

using well-known schema validation tools [21].

3.5.1 UML Package

The meta-model for our policy language is represented using a UML package

which consists of standard UML constructs including a set of extensions defined as

stereotypes and tags in the UPX. Table 3.4 summarizes and explains the meaning of

the UML constructs and extensions used to represent the various policy components

defined in the X-Grammar specification presented in this chapter (consistent with

the standard notation, we denote a UML stereotype in angled brackets <<>>).

The UML class diagrams for the top-level components of the X-GTRBAC policy

given in Figure 3.1 are shown in Figure 3.2. The complete UML-based meta-model

of the language is given in Appendix B.

Table 3.4: Summary and explanation of teh UML con-
structs and UPX stereotypes

Policy

Component

UML

Construct

UPX

Stereotype(s)

Meaning

Policy root UML Package <<XSDschema>-

>

The root of the policy is rep-

resented using a UML package

with a UPX stereotype.

X-Grammar

Non-Terminal

UML Class <<XSDcomplexT-

ype>>

An X-Grammar element that

exists as a non-terminal defines a

new XML Schema complex type.

It is represented in UML using a

class with a UPX stereotype de-

fined on it.

Continued on next page

28

Policy

Component

UML

Construct

UPX

Stereotype(s)

Meaning

X-Grammar

Terminal Only

UML attribute <<XSDelement>-

>

An X-Grammar element that

exists only as a terminal de-

fines an XML Schema element.

It is represented in UML using

a UML attribute with a UPX

stereotype defined on it to map

the UML attribute to an XML

Schema element.

X-Grammar

Attribute

UML attribute <<XSDattribute-

>>

An X-Grammar attribute is rep-

resented in UML using a UML

attribute with a UPX stereotype

defined on it.

Inclusion wit-

hin X-Grammar

Non-Terminal

UML associati-

on

<<XSDcomplex-

Type>>

<<XSDelement>-

>

The inclusion of non-terminals

and terminals within an X-

Grammar non-terminal is repre-

sented in UML using a UML as-

sociation with a UPX stereotype

defined on it. An included non-

terminal or terminal is mapped

in XML Schema as an included

complex type or element, respec-

tively.

Continued on next page

29

Policy

Component

UML

Construct

UPX

Stereotype(s)

Meaning

Constant list UML enumera-

tion

<<XSDsimpleTy-

pe>>

A list of constants indicating

valid values of an element defines

a new XML Schema simple type.

It is represented in UML using a

UML enumeration with a UPX

stereotype defined on it.

3.5.2 UML to XML Schema

The mapping of UML model (expressed through the UPX) to XML Schema sub-

sequently allows the policy specification to be translated into implementation code

using platform-specific binding mechanisms. In this context, the UML model serves

two key purposes: it provides a layer of abstraction to present a simple interface to

the system designer to construct policies, and it also encapsulates the implementa-

tion details from the system designer.

3.6 Policy Engineering with X-Federate

In this section, we discuss the application of our policy engineering methodology

for federated access management. The methodology suggests the use of UML Pack-

age (see Table 3.4) which comprises the definitions of the federated schema for the

various policy components that can be used by all federating sites to encode their

access management requirements. In other words, each federating site represents

an administrative domain (or domain for short), which is a unit of administrative

authority. A federated system is then a multi-domain environment where each do-

main is responsible for managing the users and resources under its administrative

30

Fig. 3.2. The UML class diagrams top-level components of the
X-GTRBAC policy (in a row major order): (a) XUS (b)XRS
(c)XPS (d)XURAS (e)XPRAS (f)XSoDDef (g)XTempConstDef
(h)XPredFuncDef

31

control [27]. Each domain adheres to the definitions provided by the UML Package,

and domains can therefore compose interoperable policies while also specifying their

own access control requirements on their resources.

Using the meta-model of our policy specification, we now highlight the salient

features of X-FEDERATE that enable the solution to access management challenges

in federated systems outlined in this thesis.

3.6.1 Decentralized Administration

The requirement for local autonomy, and hence decentralization of administrative

control, in federated systems complicates developing access control policies because

the policy needs to be specified in terms of a diverse, unseen user pool requiring

granular and differentiated access to a diverse set of resources located anywhere

across the federation. As discussed in Table 1.1, traditional approaches for policy

design are inadequate for this purpose because the federating sites have no knowledge

of user identities or resource locations. Additionally, the requirement for fine-grained

access control would cause scalability concerns.

The policy engineering methodology outlined in this chapter helps alleviate this

problem. In particular, the package contains the class CredType (see Figure 3.2(a))

which specifies the structure of authenticating and authorization credentials for users

and roles based on their attributes, as discussed in Section 3.3.1. A credential thus

defined is included in the definition of classes XUS or XRS (See Figure 3.2(a) and

(b)). Rules can therefore be defined on these credential attributes to allow role

assignment for users without knowledge of their identities. Additionally, the class

XPS (See Figure 3.2(c)) includes specification of resource attributes which allows

resource assignment rules to be defined in terms of attributes without knowledge

of resource locations. Shared definitions of credential and resource attributes can

thereby promote interoperability between multiple domains.

32

Delegation of responsibilities is essential to scalable decentralization. Delegation

in federated systems is captured through some form of trust relationships [24]. In

X-GTRBAC, the notion of delegation is elegantly captured through the use of role

hierarchies: a junior role inherits all privileges of a senior role. An optional Del-

egation Constraint may be used in the role definition (See Table 3.1) to limit the

extent of delegation (in terms of time and associated privileges); unrestricted dele-

gation is otherwise assumed. This role-based delegation serves as the basis of trust

in creating role mappings across multiple domains for federated information sharing.

(Each domain in the federation publishes its role definitions to a well-known reposi-

tory which may be imported for establishing appropriate role mappings using XML

namespaces.) For instance, an Employee role from domain B that is mapped as ju-

nior to a Manager role in domain A would be allowed to exercise the Manager-level

privileges in domain A per its delegation policy, without requiring explicit knowledge

of domain Bs access control policy. The UML package of our meta-model defines the

Junior Role ID, Senior Role ID, and Linked Role ID elements as part of class XRS

to indicate the role delegation relationship. The latter element is used to establish

delegation relationship between roles not related to each other through hierarchical

relationship.

Delegated administration requires access to a local compliance checker that can

compute correspondence between mapped roles with respect to the local domain

policies. The use of a compliance checker to ensure compliance of federated requests

with local policies is a recognized mechanism for preserving local autonomy in dis-

tributed systems [32]. In our X-FEDERATE prototype, the compliance checker is

incorporated into an authorization engine residing in each domain. It internally

maintains a domain-specific mapping from the foreign (i.e. federated) roles to local

roles according to the delegation policies of the local domain.

33

3.6.2 Credential Federation

The credential specification in a federated system must support federation re-

quirement, as outlined in Table 1.1. Many existing distributed authorization schemes

[24–26, 28] do not address this requirement due to inherent limitation of their cre-

dential specification formats, as discussed in Section 3.3.1.

The credential specification in the UML package of our meta-model allows cre-

dential federation through the use of interoperable protocols. In addition to the

attributes associated with a CredType, each credential also has an optional Header

element (See Appendix B) to capture the security relevant attributes necessary to

allow credential information to be exchanged between multiple federating sites. The

package currently allows one to specify the structure of the credentials using security

attributes defined as per the SAML standard [13] . SAML expresses authentication

information from various sources, such as X.509 Attribute Certificates, Kerberos

tickets or passwords, as assertions. We have developed a SAML profile of the X-

GTRBAC langauge to provide a SAML-compliant format for authenticating creden-

tials. We employ appropriate translation mechanisms for SAML assertions to be

used with X-GTRBAC language syntax. Since our rule specification supports comb-

ing rules from multiple sources, this allows use of our specification in situations when

multiple policies are necessary to evaluate the request of a federated user. Chapter 5

of this thesis is devoted to the detailed treatment of the SAML profile of X-GTRBAC

and its use in credential federation in our framework.

Credential federation includes support for single sign on (SSO). SSO enables per-

sistent authorization for federated users within a single login session. Our framework

supports SSO through the use of digitally signed SAML statements that capture an

authorization decision already issued by a domain corresponding to a user request.

This decision statement can subsequently be reused by the user at a domain within

the federation without getting re-authenticated, subject to the acceptance of the

digital signature.

34

3.6.3 Constraint Specification

A PBM approach designed for federated systems must be flexible and adapt-

able enough to meet the integrity requirements and contractual obligations within

a federation. This requires a modular mechanism for constraint specification that

allows constraint definitions to be updated without affecting the remaining policy.

Supporting semantic and contextual constraints in the access control policy speci-

fication is a daunting task. The UML package of our meta-model consists of two

distinct mechanisms for specification of constraints, including the use of class XSoD-

Def (See Figure 3.2(g)) for defining SoD role sets and class XTempConstDef (See

Figure 3.2(h)) for defining temporal constraint expressions. The SoD role sets are

included in the definition of XRS class to apply SoD constraints, whereas the tem-

poral constraint expressions may be associated with a set of constraint classes. The

classes of constraints available in the package are all derived from a base Constraint

class (See Appendix B). These classes include AssignConstraint (for constraint on

assignments), ActivConstraint (for constraint on role activations), EnabConstraint

(for constraint on role enabling), and DelegationConstraint (for constraint on role

delegation). In addition to temporal constraint expressions, non-temporal constraint

expressions can also be associated with a constraint by directly including an instance

of the class LogicalExpression (See Appendix B) in the definition of a constraint.

This mechanism of constraint specification allows modular construction of constraint

definitions, and promotes reusability and flexibility in their use during policy specifi-

cation. A LogicalExpression comprises of predicate functions defined as per the class

XPredFuncDef (See Figure 3.2(f)). The AssignConstraint is included in the defini-

tion of the classes XURAS and XPRAS (See Figure 3.2(d) and (e)) which specify the

rules for user-to-role and permission-to-role assignments respectively. The ActivCon-

straint, EnabConstraint, and DelegationConstraint are included with the definition

of roles in XRS.

35

In this chapter, we presented X-FEDERATE, our policy engineering framework.

We discussed the details of the policy specification language, the UML-based meta-

model, and the policy engineering methodology. The next section will discuss the

administrative model for the X-FEDERATE framework.

36

4. ADMINISTRATION MODEL

There has been a growing interest in administration models built on RBAC and

related schemes [33, 34]. However, existing models are inadequate for administering

policies for federated systems because they do not support the requirements for

federated information sharing outlined in Chapter 1. In particular, they do not allow

decentralizing administration tasks and specification of constraints during policy

administration.

In this chapter, we present an administration model for the X-FEDERATE frame-

work that is designed to address this need. The administration model, called X-

GTRBAC Admin, is designed to allow decentralized administration of X-GTRBAC

policies in the presence of constraints. We introduce the formal specifications of ad-

ministrative concepts and constraints needed to provide the administrative support

for the X-GTRBAC policies.

4.1 Background

In this section, we provide some background needed to discuss the administrative

concepts related to the X-GTRBAC Admin model.

4.1.1 RBAC and GTRBAC

In order to discuss the salient features of the X-GTRBAC framework, and its

administrative extension, we provide the formal definitions of the component models

of our framework, namely RBAC and GTRBAC.

Definition 4.1.1 (RBAC Model) [19] The RBAC model consists of the following

components:

37� Sets Users, Roles, Permissions and Sessions representing the set of users, roles,

permissions, and sessions, respectively;� UA ⊆ Users × Roles, the user assignment relation, that assigns users to roles;� assigned users: Roles → 2Users, the mapping of role r onto a set of users.

Formally: assigned users(r) = {u|(u, r) ∈ UA}� PA ⊆ Roles × Permissions, the permission assignment relation, that assigns

permissions to roles;� assigned permissions: Roles → 2Permissions, the mapping of role r onto a set of

permissions. Formally: assigned permissions(r) = {p|(p, r) ∈ PA}� Sessions ⊆ Users ×2Roles;� user: Sessions → Users, which maps each session to a single user;� role: Sessions → 2Roles that maps each session to a set of roles;� RH ⊆ Roles × Roles, a partially ordered role hierarchy (written ≥). �

A session si ∈ Sessions has the permission of all roles r′ junior to roles activated in

the session, i.e. {p|((p, r) ∈ PA ∨ (p, r′) ∈ PA) ∧ r ∈ role(si) ∧ r ≥ r′}

The RH relation is one of the most important aspects of RBAC for its use toward

simplifying authorization management. The original RBAC model supports only

inheritance or usage hierarchy, which allows the users of a senior role to inherit

all permissions of junior roles. In order to preserve the principle of least privilege,

RBAC model has been extended to include activation hierarchy which enables a

user to activate one or more junior roles without activating senior roles [35]. An

inheritance-activation hierarchy can be defined on roles by composing inheritance

and activation hierarchies [36]. In this thesis, we do not concern ourselves with the

advanced semantics of role hierarchies, and use the ≥ relation defined in the RBAC

standard.

38

The GTRBAC model [29] incorporates a set of language constructs for the spec-

ification of various temporal constraints on roles, including constraints on role en-

abling, role activation, user-to-role assignments, and permission-to-role assignments.

In particular, GTRBAC makes a clear distinction between role enabling and role

activation. An enabled role indicates that a user can activate it, whereas an acti-

vated role indicates that at least one subject has activated a role in a session. The

notion of separate activation conditions is particularly helpful in large enterprises,

with several hundred users belonging to the same role, to selectively manage role

activations at the individual user level.

As briefly noted in Chapter 3, the temporal framework in GTRBAC model allows

the specification of the following constraints, events, and expressions:

1. Temporal constraints on role enabling/disabling : These constraints allow one

to specify the time intervals during which a role is enabled. It is also possible

to specify a role duration.

2. Temporal constraints on user-to-role and permission-to-role assignments : These

are constructs to express either a specific interval or a duration in which a user

or a permission is assigned to a role.

3. Activation constraints: These allow one to specify how a user should be re-

stricted in activating a role. These include, for example, specifying the total

duration for which a user is allowed to activate a role, or the number of users

that can be allowed to activate a particular role.

4. Run-time events : A set of run-time events allows an administrator to dynam-

ically initiate GTRBAC events, or a user to issue activation requests.

5. Constraint enabling expressions: GTRBAC includes events that enable or dis-

able duration constraints and role activation constraints.

6. Triggers: Triggers allow one to express dependency among GTRBAC events

as well as capture the past events and define future events based on them.

39

7. Periodic Time Expression: A periodic expression (PTE) is represented by pairs

<[begin, end], P>, where P is a periodic expression denoting an infinite set of

periodic time instants, and [begin, end] is a time interval I denoting the lower

and upper bounds that are imposed on instants in P. Formally, P is expressed

as follows:

Definition 4.1.2 (Periodic Expression) [29] Given calendars Cd, C1, · ·

·, Cn, and time occurrences O1, · · ·, On , a periodic expression P is defined

as:

P =
n∑

i=1

Oi.Ci ⊲ x.Cd

where O1 = all, Oi ∈ 2N∪ {all}, Ci ⊆ Ci−1 for i = 2,.., n, Cd = Cn, and

x ∈ N . �

The formalism for periodic expressions is based on the notion of calendars. A calen-

dar is defined as a countable set of contiguous intervals, numbered by integers called

indexes of the intervals. Symbol ⊲ separates the first part of the periodic expression

that identifies the set of starting points of the intervals it represents, from the spec-

ification of the duration D of each interval in terms of calendar Cd. For example,

all.Y ears+ {3, 7}.Months⊲2.Months represents the set of intervals starting at the

same instant as the third and seventh month of every year, and having a duration of

2 months. In practice, Oi is omitted when its value is all, whereas it is represented

by its unique element when it is a singleton. x.Cd is omitted when it is equal to

1.Cn.

The temporal constraint expressions in GTRBAC are summarized in Table 4.1.

40

Table 4.1: Temporal constraint expressions of GTRBAC

Constraint

Categories

Events Expression

(E:event, C:constraint)

Enabling Role enabling (I, P, D, enable/disable r)

Activation Role activation <!– only occurs as a run time event >

Assignment
User-to-role assignment ([I, P, D], assignu/deassignu r to u)

Permission-to-role assign-

ment

([I, P, D], assignp/deassignp p to r)

Trigger <!– any triggering event

>

E1, · · ·, En, C1, · · ·, Ck → E after∆t

Run-time

User activation request (s : (de)activate r for u after∆t))

Administrator action (assignu/de − assignu r to u after∆t)

(enable/disable rafter∆t)

(assignp/de − assignp p to rafter∆t)

(enable/disable C after∆t)

4.2 X-GTRBAC Admin

We now introduce X-GTRBAC Admin, the administrative extension to the GTR-

BAC model, and present the formal specification for its components. A key feature of

model is that it is designed to handle not only the temporal constraints of the GTR-

BAC model, but also non-temporal constraints, which are represented in the model

as logical expressions over Boolean predicates. Additionally, the model supports

attribute-based user-to-role and permission-to-role assignments. These features of

the model make it suitable to meet the constraint specification and decentralized

policy administration requirements for federated information sharing, as outlined in

Table 1.1.

41

In order to include the administrative concept, the model is extended to include

the specification of an administrative domain (Admin Domain), an administrative

role (Admin Role), and an administrative permission (Admin Permission).

Admin Domain : Admin Domain is the most defining feature of the X-GTRBAC

Admin model. It represents an administrative domain of authority within an enter-

prise. In X-GTRBAC Admin, all instances of regular and administrative roles and

permissions are associated with an Admin Domain. The Admin Domains are related

according to a partial order, and this partially ordered set defines an administrative

domain hierarchy. This hierarchy reflects the organizational structure of the enter-

prise. Each Admin Domain is assigned an Admin Role, and an Admin Role may

have authority over multiple Admin Domains by virtue of dominance relationship

among domains as defined in the formal model.

Admin Role: An Admin Role is an administrative role authorized to manage policy

administration tasks within a given Admin Domain. This authority is given by a set

of associated Admin Permissions as defined in the model. A pool of administrative

users is selected by the security administrator for assignment to Admin Roles, where

such assignment may be based on evaluation of user attributes and applicable con-

straints, as in the case of regular roles, to allow fine-grained policy assignments. The

Admin Roles are related according to a partial order which defines an administrative

role hierarchy.

Admin Permission : An Admin Permission specifies an administrative permis-

sion that can be used by an Admin Role. Typically a set of available permissions

belonging to various Admin Domains within the enterprise would be created by

the respective security administrators. We use assign, deassign, assignp, deassignp,

enable, disable, map and unmap as the basic set of Admin Permissions. These per-

missions, however, are only a qualification and not an authorization. We define a

set of authorization relations in the formal model that must also be satisfied by the

Admin Role to carry out an administrative operation.

42

4.2.1 Formal Model

Based on these concepts, the formal definition of the X-GTRBAC Admin model

is now presented.

Definition 4.2.1 (Core Components): The X-GTRBAC Admin model consists

of the following core components:� AD, a set of Admin Domains� AU, a set of administrative users, AU ⊆ Users� RR, a set of regular roles, RR = Roles� ER, a set of enabled regular roles, ER ⊆ RR� RP, a set of regular permissions, RP = Permissions� AR, a set of Admin Roles� AP, a set of Admin Permissions� The association of regular roles with domains, called role instances1, is defined

as

RRD ⊆ AD × RR = {(ad, rr)|ad ∈ AD, rr ∈ RR}� The association of regular permissions with domains, called permission in-

stances, is defined as

RPD ⊆ AD × RP = {(ad, rp)|ad ∈ AD, rp ∈ RP}� The association of an Admin Domain with an Admin Role is defined as

ARD ⊆ AD × AR = {(ad, ar)|ad ∈ AD, ar ∈ AR}

1The terms role instance and permission instance are used to differentiate the instances of (possibly
the same) role or permission in different domains. Therefore, the model allows the instances in
different domains to share the same definition.

43� The association of Admin Permissions with Admin Domains is defined as

APD ⊆ AD × AP = {(ad, ap)|ad ∈ AD, ap ∈ AP}� The set ATTRx of attribute-value pairs for a regular user, role or permission

instance x; an attribute value pair AVP is defined as a tuple (name, value),

where both name and value are constants.� The set SOD of regular roles in Separation of Duty (SoD); a collection SODS

of SOD sets may exist to define fine-grained SoD constraints.� The set CR of constraints defined according to Definition 4.2.2. CR may be an

empty set.� The set CONST is a collection of constants of simple data types (as string,

integer, etc.).� AUA ⊆ AU × AR, the user assignment relation, that assigns administrative

users to Admin Roles� APA ⊆ AP × AR, the permission assignment relation, that assigns Admin

Permissions to Admin Roles� RM ⊆ RR × RR, the role mapping relation, that maps a regular role from one

domain to a regular role from another domain� A partially ordered regular role hierarchy RRH ⊆ RR × RR; RRH = RH� A partially ordered Admin Role hierarchy, ARH ⊆ AR × AR� A partially ordered Admin Domain hierarchy DH ⊆ AD × AD; (adx ≥ ady) ∈

DH implies that domain adx dominates domain ady in the hierarchy.�

A significant feature of our model is the use of constraints directly in the policy

administration process. The following definition formalizes the notion of a constraint

expression used in our framework.

44

Definition 4.2.2 (Constraint Expression): A constraint expression in X-GTR-

BAC Admin is one of the following two kinds:� A periodic time expression PTE defined as per the GTRBAC model (See Def-

inition 4.1.2).� A logical expression using the usual ∨ and ∧ operators on 3-tuples of the form

(y, ω, δ(p1, .., pn)) where δ is a parameterized administrative function (as defined

in Table 4.2), pi and y are a member of the set (RR ∪ AR ∪ RP ∪ AP ∪ AD

∪ Users ∪ CONST), and ω = {=, 6=,≥,≤,∈}�

Example 1 : PTEEX1 =< P, [2005.Y ears, 2005.Y ears] >, P = all.Y ears+1, 4, 7, 10-

.Months + 1.Weeks ⊲ 1.Weeks represents a periodic time expression that defines a

periodic time P which is a set of intervals starting at the same instant as the first

week of every quarter of every year, and having a duration of one week. Additionally,

the PTE is valid within the interval bounded by the start and end of year 2005.�

Example 2 : LEEX2 = (NewY ork, =, hasCredAttrV alue(PermittedPhysicianP -

x, location)) represents a logical expression that includes evaluation of a predicate

function hasCredAttrValue (hCAV) that compares the value of the location attribute

of the role PermittedPhysicianPx using the equality operator with the expected value

of NewYork.�

Based on these concepts, a PE and a policy rule are formally defined below.

Definition 4.2.3 (Predicate Expression): A predicate expression (PE) is a Bo-

olean expression involving a set P of predicates, such that every p ∈ P is defined to

evaluate a constraint expression, i.e., p: → CR true, false. A constraint associated

with a predicate evaluates to true in one of the following two ways:� It is a PTE, and the associated interval and periodicity conditions are satisfied,

or

45� It is a logical expression with clauses of the form (y, ω, δ(p1, .., pn)), and the

expression is satisfied over the set of clauses. A clause evaluates to true if y

compares with the return value of the function δ according to the comparison

operator ω.�

Example 3 : PEEX3 = p1 ∧ p2 represents a predicate expression which evaluates to

true if the constraint expression associated with p1 is true and the one associated

with p2 is true. If p1 is defined on PTEEX1 and p2 is defined on LEEX2, then PEEX3

is true if PTEEX1 evaluates to true and LEEX2 evaluates to true.�

4.2.2 Administrative Features

We now present the salient features of X-GTRBAC Admin based on the formal

model. The set of features supported by the model include administrative func-

tions (used for review), administrative relations (used to determine authorizations),

administrative operations (used to change the system state), and administrative re-

strictions (used to restrict membership in certain components of the model). Overall,

the set of administrative features we have identified provide a comprehensive cover-

age for all management tasks that are required to administer a multi-domain RBAC

system.

Table 4.2 summarizes the administrative functions provided by X-GTRBAC Ad-

min. These functions can be used by the security administrators to obtain infor-

mation about different components of the system, such as association of a role or

permission instance with a domain, authority of an Admin Role over Admin Do-

mains, association of an Admin Role with a regular role, values of role attributes,

roles in separation of duty, users and permissions assigned to roles, and users who

have activated certain roles. This information may be used as the basis of predicates

in constraint expressions to restrict any administrative operation. An example of

using review functions in constraints will be provided in Section 4.2.3.

46

Table 4.2: X-GTRBAC Admin Functions

Function Description Formal Semantics

domain : (RR ∪

AR ∪ AP) → AD

Returns the domain of a role or per-

mission instance.

domain(x) = {d|(d, x) ∈ RRD ∨

(d, x) ∈ ARD ∨ (d, x) ∈ APD}.

has authority -

over : AR → 2AD

Returns the set of all Admin Domains

that an Admin Role has authority over.

This set includes domains that are dom-

inated by the domain of the Admin

Role.

has authoriy over(ar) =

{d|domain(ar) = d ∨

domain(ar) ≥ d}.

administers :

AR → 2RR

Returns the set of all regular roles ad-

ministered by an Admin Role. An Ad-

min Role administers a regular role if

both belong to the same domain.

administers(ar) =

{rr|domain(ar) = domain(rr)}.

has attribute-

value-

: (Users ∪ RR ∪

RP) × CONST →

CONST

For the user, role, or permission x, re-

turns the value of the attribute identi-

fied by v.

has attribute value(x, v) =

{AV P.value|AV P.name = v ∧

AV P ∈ ATTRx}.

in separation-

of duty-

: RR → SODS

For the role rr, returns the SOD set. in separation of duty(rr) =

{SOD|rr ∈ SOD}.

assigned users-

: RR → 2Users

For the role rr, returns the set of users

assigned to the role.

assigned users(rr) =

{u|(u, rr) ∈ UA}2.

Continued on next page

2This function is modified to use qualified (i.e. regular) role instance. This definition supersedes
that in Definition 4.1.1

47

Function Description Formal Semantics

assigned -

permissions :

RR → 2Permissions

For the role rr, returns the set of per-

missions assigned to the role.

assigned permissions(rr) =

{rp|(rr, rp) ∈ PA}
2

.

activated users :

RR → 2Users

For the role rr, returns the set of users

active in the role.

activated users(rr) = {u|rr ∈

ER ∧ (∃si ∈ Sessions|rr ∈

role(si) ∧ u ∈ user(si))}
3

The administrative relations provided by X-GTRBAC Admin are given in Ta-

ble 4.3. They are used to represent association between various components of the

model, such as set of administrative users and Admin Roles, Admin Permissions

and Admin Roles, and Admin Roles and regular roles. The relations involve the

evaluation of a (possibly null) constraint expression that is used to determine the

validity of the associated administrative operation, such as role assignment, enabling,

or inter-domain role mapping.

Table 4.3: X-GTRBAC Admin Relations

Relation Description Formal Semantics

can assign-

admin-

⊆ AU ×ARD ×CR

The user assignment relation that a se-

curity administrator can use to assign

administrative users to Admin Roles

subject to the associated constraints.

can assign admin(au, ar, c) ↔

(c = null ∨ evaluate(c) = true).

can deassign-

admin-

⊆ AU ×ARD ×CR

analogous to can assign admin.

Continued on next page

3Note that the roles that may have been activated belong to the enabled regular role set, i.e. only
enabled roles can be activated

48

Relation Description Formal Semantics

can assignp-

admin-

⊆ ARD×APD×CR

The permission assignment relation

that that a security administrator can

use to assign Admin Permissions to Ad-

min Roles if the permission and the role

belong to the same domain, and subject

to the associated constraints.

can assignp admin(ar, ap, c) ↔

domain(ar) = domain(ap)∧(c =

null ∨ evaluate(c) = true).

can deassignp-

admin-

⊆ ARD×APD×CR

analogous to can assignp admin.

can assign ⊆

ARD × RRD × CR

The user assignment relation, that au-

thorizes an Admin Role (or its senior)

to assign a regular user to a regular role

(or its junior) if the Admin Role has the

assign Admin Permission, and subject

to the associated constraints.

can assign(ar, rr, c) ↔ (rr ∈

administers(ar)∧ (ar, assign) ∈

APA ∧ evaluate(c) = true) ∨

(∃ar′ ∈ AR|ar ≥ ar′ ∧

can assign(ar′, rr, c)) ∨ (∃rr′ ∈

RR|rr′ ≥ rr ∧ can assign(ar-

, rr′, c)).

can deassign ⊆

ARD × RRD × CR

analogous to can assign.

can enable ⊆

ARD × RRD × CR

The role enabling relation, that autho-

rizes an Admin Role (or its senior) to

enable a regular role (or its junior) if

the Admin Role has the enable Admin

Permission, and subject to the associ-

ated constraints.

can enable(ar, rr, c) ↔ (rr ∈

administers(ar) ∧ (ar, enable) ∈

APA ∧ evaluate(c) = true) ∨

(∃ar′ ∈ AR|ar ≥ ar′ ∧

can enable(ar′, rr, c)) ∨ (∃rr′ ∈

RR|rr′ ≥ rr∧can enable(ar, rr′-

, c)).

can disable ⊆

ARD × RRD × CR

analogous to can enable.

Continued on next page

49

Relation Description Formal Semantics

can assignp ⊆

ARD × RRD × CR

The permission assignment relation,

that authorizes an Admin Role (or its

senior) to assign a regular permission to

a regular role (or its junior) if the Ad-

min Role has the assignp Admin Per-

mission, and subject to the associated

constraints.

can assignp(ar, rr-

, c) ↔ (rr ∈ administers(ar) ∧

(ar, assignp) ∈ APA ∧

evaluate(c) = true) ∨ (∃ar′ ∈

AR|ar ≥ ar′ ∧ can assignp-

(ar′, rr, c)) ∨ (∃rr′ ∈ RR|rr′ ≥

rr ∧ can assignp(ar, rr′, c)).

can deassignp ⊆

ARD × RRD × CR

analogous to can assignp.

can map ⊆ ARD ×

RRD × RRD × CR

The role mapping relation, that allows

an Admin Role to map a regular role

from one domain to a regular role from

another domain if the Admin Role has

the map Admin Permission, and sub-

ject to the associated constraints

can map(ar, r1, r2, c) ↔

(r1, r2 ∈ administers(ar) ∧

domain(r1) 6= domain(r2) ∧

(ar, map) ∈ APA ∧

evaluate(c) = true) ∨ (∃ar′ ∈

AR|ar ≥ ar′ ∧ can map(ar′, r1-

, r2, c)) ∨ (∃r1′, r2′ ∈ RR|r1′ ≥

r1 ∨ r2′ ≥ r2 ∧ can map(ar, r1′-

, r2′, c)).

can unmap ⊆

ARD × RRD ×

RRD × CR

analogous to can map.

Table 4.4 summarizes the administrative operations provided by X-GTRBAC

Admin. These include operations for role assignment, enabling, and inter-domain

role mapping4.

4The reverse operations (such as deassign role) are obtained by using the corresponding predicate
(such as can deassign) from Table 4.3 and replacing with -.

50

Table 4.4: X-GTRBAC Admin Operations

Operation Description Formal Semantics

assign admin -

role(au ∈ AU, ar-

∈ AR, c ∈ CR)

The user assignment operation that

adds a new tuple to the AUA relation.

ifcan assign admin(au, ar, c)

thenAUA = AUA ∪ (au, ar).

assign admin -

permission(ar ∈-

AR, ap ∈ AP, c ∈-

CR)

The permission assignment operation

that adds a new tuple to the APA rela-

tion.

ifcan assign adminp(ar, ap, c)

thenAPA = APA ∪ (ar, ap).

assign role(ar ∈-

AR, rr ∈ RR, u ∈-

Users, c ∈ CR)

The user assignment operation that

adds a new tuple to the UA relation.

ifcan assign(ar, rr, c)

thenUA = UA ∪ (u, rr).

enable role(ar ∈-

AR, rr ∈ RR, c ∈-

CR)

The role enabling operation that adds

a new element to the ER set.

ifcan enable(ar, rr, c)

thenER = ER ∪ (rr).

assign -

permission(ar-

∈ AR, rr ∈ RR,-

rp ∈ RP, c ∈ CR)

The permission assignment operation

that adds a new tuple to the PA rela-

tion.

ifcan assignp(ar, rr, c)

thenPA = PA ∪ (rr, rp).

map role(ar ∈-

AR, r1 ∈ RR, r2 ∈-

RR, c ∈ CR)

The role mapping operation that adds

a new tuple to the RM relation.

ifcan map(ar, r1, r2, c)

thenRM = RM ∪ (r1, r2)

Definition 4.2.4 (Policy Rule): A policy rule is a statement involving an admin-

istrative operation as defined in Table 4.4), the execution of which is subject to a

predicate p ∈ P. �

51

Example 4 : Let pm = PBobCD, r = PermittedPhysicianPBob (with a valid role

credential), and let p be defined as the predicate expression PEEX3 in Example 3.

Then, the permission-to-role assignment policy is represented as

prassign(pm, r) iff p.

�

The set of administrative restrictions used in X-GTRBAC Admin are given in

Table 4.5. These restrictions are not a fundamental component of the model, and

have the status of recommendations. The use of these restrictions is not only intuitive

but also keeps the administration concept simple in practice.

Table 4.5: X-GTRBAC Admin Restrictions

Restriction Description Formal Semantics

RR-AR-Mutual

Exclusion

No role can be included in both the

regular and the administrative role sets.

RR ∩ AR = ∅.

AR-AD Unique-

ness

An Admin Role is associated uniquely

with an Admin Domain, i.e. an Admin

Domain cannot be assigned more than

one Admin Role, and an Admin Role

cannot be assigned to more than one

Admin Domain.

∀(ad, ar), (ad′, ar′) ∈

ARD, ad 6= ad′, ar 6=

ar′, (ad, ar) ∈ ARD ⇒

(ad, ar′) /∈ ARD ∧ (ad′, ar) /∈

ARD.

AUA Role cardi-

nality

The cardinality of Admin Roles associ-

ated with administrative users through

the AUA relation is 1, i.e. only a single

user can be assigned to an Admin Role

at any given time.

∀u, u′ ∈ Users, u 6= u′, (u, ar) ∈

AUA ⇒ (u′, ar) /∈ AUA.

Continued on next page

52

Restriction Description Formal Semantics

AUA User cardi-

nality

The cardinality of administrative users

associated with Admin Roles through

the AUA relation is 1, i.e. an adminis-

trative user can be assigned to only one

Admin Role at any given time.

∀ar, ar′ ∈ AR, ar 6=

ar′, (u, ar) ∈ AUA ⇒ (u, ar′) /∈

AUA.

4.2.3 Administration Process

To better illustrate the administration model and the use of various administra-

tive features, we outline the policy administration process in XGTRBAC-Admin:� Creation of core component sets: The first step in the administration

process is the one-time creation of the core component sets of the model by the

security administrator as defined in Definition 4.2.1. A key concept here is the

creation of set of role (permission) instances, which allows different instances

of the same role (permission) in different domains to adhere to the same role

(permission) definition. This allows enforcement of uniform administration

policies across the enterprise. Another significant feature is the introduction

of partial order on the administrative role and administrative domain sets

which captures the hierarchical organizational structure in the enterprise. We

recommend the use of membership constraints defined in Table 4.5 on creation

of RR, AD and ARD sets. These constraints imply that the association of

Admin Roles and Admin Domains should be unique, and any authority over

multiple Admin Domains can be transferred to an Admin Role only through

semantics of the administrative role and domain hierarchies.� Assignment of administrative users to Admin Roles, and that of

Admin Permissions to Admin Roles: This is done by the security admin-

istrator using the assign admin role and assign admin permission operations

53

defined in Table 4.4. We recommend the use of cardinality constraints defined

in Table 4.5 on these assignments. These constraints are natural to impose

given the distinction between administrative roles and regular roles; adminis-

trative tasks would typically not require multiple users to be assigned to them,

and vice versa.� Assignment of regular users to regular roles, and that of regular

permissions to regular roles: This is done by the Admin Roles using the

assign role and assign permission operations defined in Table 4.4.

An example of policy administration process involving the use of these operations

is presented in Figure 4.1; an administration process involving other administrative

operations will be similar.

The example begins by creation of the core components and the constraints used

in policy administration. This step is performed by the security administrator. Af-

ter this step, the Admin Roles and Admin Permissions in the system have been

designated through the AUA and APA relations. In the next step, assign role and

assign permission operations are requested, involving assignment of user u2 and per-

mission p2a to role r1a by ARa subject to the constraints c1 and c2 respectively. The

pre-condition of these operations involves evaluation of the authorization relations

and associated constraints, and, the post-condition (after a successful evaluation) is

the addition of new tuples in the UA and PA relations.

In this chapter, we presented the administration model for the X-FEDERATE

framework. The next chapter will discuss a federated architecture that allows the

use of X-FEDERATE for federated access management in Web-based distributed

systems.

54

Let

AD = {a, b};

Users = {u1, u2, u3, u4, u5}; AU = {u1, u2};

AR = {ARa, ARb}; ARD = {(a, ARa), (b, ARb)}

AUA = {(u1, ARa), (u2, ARb)};

APA = {(ARa, assign), (ARa, assignp)}

RR = {r1, r2, r3}; ATTRr1 = {(priority, low)}

RP = {p1, p2, p3, p4, p5}; ATTRp2 = {(propagate,true)}

RRD = {(a,r1a), (a,r2a), (b,r1b)};

RPD = {(a,p1a),(a,p2a),(b,p1b)}

UA = {(u1, r1a), (u2, r1b)};

PA = {(r1a, p1a), (r1b, p1b)}

CR = {c1 = (u1,∈, (assigned users(r1a)) ∧ (high, 6=

, has attribute value(r1a, priority))),

c2 = (p1a,∈, (assigned permissions(r1a)) ∧ (true, =

, has attribute value(p1a, propagate)))}

Do

O1: assign role(ARa, r1a, u2, c1)

O2: assign permission(ARa, r1a, p2a, c2)

Pre-condition:

O1: r1a ∈ administers(ARa) ∧ (ARa, assign) ∈ APA ∧ evaluate(c1) ↔

can assign(ARa, r1a, c1)

O2: r1a ∈ administers(ARa) ∧ (ARa, assignp) ∈ APA ∧ evaluate(c2) ↔

can assignp(ARa, r1a, c2)

Post-condition:

O1: UA = UA ∪ (u2, r1a)

O2: PA = PA ∪ (r1a, p1a)

Fig. 4.1. An example of policy administration process involving as-
sign role and assign permission operations

55

5. FEDERATION ARCHITECTURE

In this section, we present a federation architecture that allows the use of our X-

FEDERATE framework for federated access management in Web-based distributed

systems. The cornerstones of this architecture are the underlying federated database

schema, an interoperable profile of our language for Web-based federation, and a

federation protocol.

5.1 Federated Database Architecture

The X-FEDERATE framework is designed to be implemented in any distributed

architecture that supports uniform schema definition. In our current work, we have

based our federation architecture on the well-established Federated Database Sys-

tem (FDBS) described in literature [37–42]. To summarize, such an architecture

consists of a multi-level schema, consisting of a local schema, a component schema,

an export schema, and the overall federated schema. This schema architecture allows

the resulting database system to support distribution, heterogeneity and autonomy,

which are the three cardinal requirements of a federated database system. A local

schema is the conceptual schema of a component database system expressed in the

native data model of the component DBMS, and hence different local schemas may

be expressed in different data models. A component schema is derived by translating

local schemas into a data model called the canonical or common data model (CDM)

of the FDBS. Two reasons for defining component schemas in a CDM are (i) they

describe the divergent local schemas using a single representation and (ii) seman-

tics that are missing in a local schema can be added to its component schema. Thus

they facilitate negotiation and integration tasks performed when developing a tightly

coupled FDBS. Similarly, they facilitate negotiation and specification of views and

56

multi-database queries in a loosely coupled FDBS. The process of schema transla-

tion from a local schema to a component schema generates the mappings between

component schema objects and local schema objects. An export schema represents a

subset of a component schema that is available to the FDBS. The purpose of defining

export schemas is to facilitate control and management of association autonomy. A

federated schema is an integration of multiple export schemas. A federated schema

also includes the information on data distribution that is generated when integrating

export schemas.

Of particular relevance to us in the FDBS architecture are the concepts of CDM,

and the federated schema. The policy definitions in X-FEDERATE framework act as

the CDM throughout the federated system, and will be used by each participating

site to encode their export schemas. The integration of these schemas will then

constitute the federated schema. The policy framework that we have designed can

be adapted to work with any implementations of FDBS that abides by the FDBS

architecture. Notable among the implementations reported in the literature are the

Mermaid [41], IRO-DB [38], Disco [42], and MIRO-Web [37].

5.2 SAML profile

To adapt the X-FEDERATE framework for Web-based federation, we present a

profile of our X-GTRBAC policy language based on the SAML [13] federated identity

protocol. To develop the SAML profile of X-GTRBAC, we outline the configuration

shown in Figure 5.1.

The interface to the system has been designed so that it should support, and

not duplicate, the functionalities available in the SAML standard. SAML provides

a message exchange protocol between autonomous business entities, and can be

used to encode security attributes and decisions called assertions. However, SAML

is not a self-sufficient mechanism to support Web-based federation and SSO as it

does not provide any authentication or authorization support; it does the important

57

Fig. 5.1. Design configuration of the SAML profile of X-GTRBAC.

task of allowing the communicating entities to exchange security information in

a decentralized manner but does not establish, check or revoke any information

on its own. Therefore, a mechanism is needed that SAML can tie in to. Our

specification provides one such mechanism, and is designed so as to accept SAML-

encoded assertions as an acceptable form of credential. However, that alone is not

sufficient for our purposes- SAML assertions are inherently subject to the same name-

binding problem that exists in the protocols it is designed to work with, such as

Kerberos and X.509. Therefore, we have designed the SAML profile of X-GTRBAC

that works with attribute-based X-GTRBAC credentials. The SAML profile involves

the feature set from latest SAML specification (v2.0). The use of SAML profile in

X-GTRBAC system requires a translation from SAML encoding to X-GTRBAC

format, and vice versa, using XSLT.

We now focus on precise policy configuration semantics of our proposed spec-

ification. Table 5.1 provides the credential configuration using SAML profile for

X-GTRBAC in the context of this example. It uses features from SAML standard

v2.0 which allows this credential configuration to be adopted by all entities that are

already using SAML-compliant protocols.

58

Table 5.1: Credential Configuration in SAML profile

SAML

Credential

X-GTRBAC

Instance

Mapping

Rules

<Assertion

id= �XXX-MAA-001�>
<Issuer format= �entity�>
... </Issuer >

<AuthnStatement / >

<AttributeStatement >

<Subject >

<NameID

format= �persistent�>
Bobs public key </NameID >

</Subject >

<Conditions >

<NotBefore >

2005:01:30 </NotBefore >

<NotOnOrAfter >

2006:12:31 </NotOnOrAfter >

</Conditions >

<Attribute name = �DOB�>
<AttributeValue >

1978:05:21

</AttributeValue >

</Attribute >

<Attribute name = �DLN�>
<AttributeValue >

0991-09-0991

</AttributeValue >

</Attribute >

</AttributeStatement >

<ds:Signature / >

</Assertion >

<XUS

xus id= �LibElseXUS�>
<User user id = �any�>
<UserName/ >

<CredType

cred type id= �
LibElseResL2SAML�
cred type name= �
LibElseResL2SAML�>
<Header >

<Issuer >... </Issuer >

<Principal

format= �persistent�>
Bobs public key </Principal >

<Validity >

<NotBefore >

2005:01:30 </NotBefore >

<NotOnOrAfter >

2006:12:31 </NotOnOrAfter >

</Validity >

<DSig > </DSig >

</Header >

<CredExpr >

<Attribute name= �DOB�
value= �1978:05:21�/>

<Attribute name= �DLN�
value= �0991-09-0991�/>

</CredExpr >

</CredType>

</User >

</XUS >

� User@user id =

auto generated� NameID → User-

Name� CredType@cred-

type id = auto

generated� CredType@cred -

type name = auto

generated� Issuer → Issuer� NameID → Princi-

pal� NameID@format

→ Principal@form-

at� NotBefore → Not-

Before� NotOnOrAfter →

NotOnOrAfter� ds:Signature →

DSig� Attribute@name

→ Attribute@na-

me� AttributeValue →

Attribute@value

59

The credential in Table 5.1 is represented by a SAML assertion. We have only

included the attributes and elements relevant for this discussion, and also omitted the

namespace prefixes for compactness. The mapping rules used to translate a SAML

assertion to X-GTRBAC format have been provided in the table. The X-GTRBAC

credential is represented as an XUS document in our system. We now discuss the

noteworthy features of the credential configuration:� Attribute Based Credential: Of particular interest is the configuration

of TM credentials in attribute-based mode which allows authentication for

unknown users since identity is not assumed to be known. It can be observed

that if a user name is not provided in the SAML credential, the corresponding

credential in X-GTRBAC is constructed using the reserved word �any�which

represents anonymous users. In this case, the credential used is non-name-

bound, and defines the identity of the subject in terms of a public key (or hash

of it). This kind of binding is indicated by the value of �persistent�for the

format attribute of NameID element in SAML assertion. Persistent is a format

for NameIDs in SAML standard that allows opaque values (such as random

hashes) to be used in place of subject names in support of anonymity and

privacy. Note that name-binding credentials can still be used if desired, which

will be indicated by the appropriate value of the format attribute of NameID

element as per the SAML standard (for e.g. X.509 Subject Name or Kerberos

Principal Name).� Authenticating Attributes: The AuthnStatement element in the SAML

assertion contains the authentication context used to generate the authenti-

cator (i.e. credential) for the subject. The attribute information contained

in the credential is not necessarily owned by a centralized entity, and can be

collected from multiple attribute authorities. The authentication statement

for a subject can in practice be obtained by invoking the SAML Authentica-

tion Request protocol on an identity provider. The latter responds with the

60

authentication statement, and optionally also including attribute statements.

This protocol includes the specification of a metadata repository from where

required resource attributes may be learnt, and subsequently obtained using

the attribute authorities indicated in the resource metadata. We maintain that

our focus is not on attribute collection and credential generation. Instead, the

SAML profile is designed to work with SAML assertions that already include

such credentials generated through prior means.

In addition to attribute-based credential configuration as specified by SAML profile

for X-GTRBAC, there are additional requirements on the use of credentials within

the X-GTRBAC system to allow the access control capabilities of X-GTRBAC sys-

tem to be integrated with Web-based federation and SSO features of SAML.� Role Assignment: The attribute-based credentials from Table 5.1 are used

by X-GTRBAC for attribute-based role assignment for unknown users. An

appropriate X-GTRBAC policy configuration (see Table 5.2) allows a user

Bob at a library (LibBob) to access PUThesis Vol2006 No5 at a federated

site (LibElse) using only his certified attributes. The assignment policy is

represented as an XURAS document.� Delegation: The requirement for delegation of authority is the key to de-

centralization, and is captured elegantly through the use of role hierarchy in

our RBAC mechanism: a junior role inherits all privileges of a senior role. At

present, we only support delegation within the role hierarchy (i.e. delegation

always occurs from a senior role to a junior role). An optional Delegation Con-

straint may be used in the role definition (See Table 5.2) to limit the extent of

delegation (in terms of time and associated privileges); unrestricted delegation

is otherwise assumed. The role definition is given in an XRS document (see

Table 3.1).

61

Table 5.2: Constraint Specification in X-GTRBAC

Constraint X-GTRBAC Instance Mapping Rules

Role Assignment

<XURAS xuras id= �LibElseXURAS�>
<URA ura id= �uraBorrowerL2�
role name= �BorrowerL2�>
<AssignUser user id= �any�>
<AssignConstraint >

<AssignCondition

cred type id= �LibElseResL2SAML�
d expr id= �TwoDays�>
<LogicalExpr >

<Predicate >

<Operator >neq </Operator >

<FuncName >hasValue </FuncName >

<ParamName >DLN </ParamName >

<RetValue >null </RetValue >

</Predicate >

<Predicate >

<Operator >neq </Operator >

<FuncName >hasValue </FuncName >

<ParamName >DOB </ParamName >

<RetValue >null </RetValue >

</Predicate >

</LogicalExpr >

</AssignCondition >

</AssignConstraint >

</AssignUser >

</URA >

<XURAS >

The role BorrowerL2 can

only be assigned to a user

who possesses the creden-

tial LibElseResL2SAML.

This refers to the creden-

tial defined in XUS doc-

ument in Table 5.1. The

assignment condition in-

cludes rules on creden-

tial attributes. It as-

serts the existence of the

DLN and DOB attributes.

The assignment condition

also refers to a duration

expression which imple-

ments the restriction that

the resource can be bor-

rowed only for 2 days. The

duration expression is de-

fined in an XTempCon-

stDef document (see Ta-

ble 3.2).

Continued on next page

62

Constraint X-GTRBAC Instance Mapping Rules

Role Delegation

<XRS xrs id= �xrsBorrowL2�>
<Role role id= �rBorrowerL2�
role name= �BorrowerL2�>
<Junior >BorrowerL1 </Junior >

<DelegationConstraint >

<DelegationCondition

d expr id= �OneWeek�/ >

</DelegationConstraint >

</Role >

</XRS >

The role BorrowerL2 can

only be delegated if the

delegation constraint is

satisfied. The delegation

condition on the role refers

to a duration expression

which imposes a restric-

tion on the duration of the

delegation. The duration

expression is defined in

an XTempConstDef docu-

ment (see Table 3.2).� Digital Signatures: An effective SSO solution depends on the persistence

of the authentication and authorization assertions across enterprise domains.

Toward this end, the Header element of an X-GTRBAC credential includes

support for digital signatures. The support for digital signatures in SAML

allows signed assertions to be exchanged between all SAML-compliant entities.

The proposed mechanism for using the SAML profile of X-GTRBAC with the X-

FEDERATE framework is depicted in Figure 5.2. The authentication module is

responsible for generating the attribute and authentication statements included in

the SAML assertion. The use of standardized protocols allows us to leverage ex-

isting mechanisms for these tasks. The SAML Authentication Request protocol

discussed earlier is now implemented by stand-alone SAML-aware Web server soft-

ware (e.g.: http://www.pingidentity.com/products/pingfederate.html), and may be

deployed by SAML authorities to create and exchange SAML-compliant attribute

and authentication statements. The persistence management module is responsible

for creation of digitally signed authorization credentials. We outsource the creden-

63

Fig. 5.2. Software architecture for the SAML profile of X-GTRBAC.

tial management to the well-known XML Key Management Specification (XKMS

- http://www.w3.org/TR/xkms/). XKMS is a Web-based service that can be in-

voked from a client application, and supports PKI-based key generation, registra-

tion, revocation, and verification. SOAP binding is used for message exchange. XML

Encryption and XML Digital Signature standards are used to provide message confi-

dentiality and authenticity, respectively. The end-to-end communication is assumed

to be secured using mechanisms such as SSL/TLS.

5.3 Federation Protocol

Using the FDBS architecture and the SAML profile, we now describe a federation

protocol for information sharing in a federated system. The protocol guides the use

of the policy documents defined at each federating site, and assumes that the policy

definition sheets that govern the format of credentials, attributes and predicates used

in the policy are accessible to the federating sites at a well-known location. This

would typically be the federation administrator site which bootstraps the federation.

64

The following steps are included in the federation protocol (we continue the use

of the digital library example for illustration):

1. The protocol is initiated with a user Bob submitting an authorization query

from his home site (LibBob) for accessing a Web resource available at a fed-

erating site (LibElse). The request includes the requesting subject (Bob),

the requested resource (PUThesis Vol2006 No5) and the requested permissions

(http:GET) on the resource. It may optionally include an authentication or

authorization credential to assist in the authorization decision. The credentials

are collected and supplied by the home site (LibBob) of the requesting user.

We use a SAML-compliant format for all access requests.

2. Upon receiving an access request, the X-GTRBAC access control module at

the federating site (LibElse) extracts the policy information from the policy

base to enforce the authorization constraints on the release of the request

resource. The access request may either be from a local or a federated user

(Bob is a federated user from LibBob). If the requested resource is not available

within the system, the access control module simply returns (or appropriately

redirects) the request. Otherwise, it proceeds as follows.

3. As an initial step, the access control module processes the request (expressed

as a SAML Authorization Decision Query). This includes translating the cre-

dential included in the request from the SAML format to X-GTRBAC format.

Based on the kind of credential, it does the following.� If it is an authentication credential (expressed as a SAML Attribute State-

ment included in the query), the access control module assigns the user

(Bob) to an appropriate role (Borrower L2) within the system according

to the user-to-role assignment policy of the federating site (LibElse). This

process requires (successful) evaluation of temporal and non-temporal

contextual constraints before the role assignment takes place. The non-

temporal constraints not only involve rules on user attributes but may

65

also involve rules on attributes of the role for a fine-grained access con-

trol. Following a successful role assignment, the user (Bob) is issued an

authorization credential by the system.� If it is an authorization credential (expressed as a previously issued SAML

Authorization Decision Statement included in the query), the access con-

trol module inspects if the role information in the credential corresponds

to a local role. If it doesnt, it means that it is an SSO request and includes

the role of the federated user (Bob) in his original domain. In this case,

the access control module invokes a role mapping routine to map the user

to a local role according to the delegation policy of the system. After this

step, the user acquires the privileges of the assigned or mapped role in

the local system.

4. The next step after establishing the role (Borrower L2) of the user (Bob) is

to determine the authorization of the user to access the requested resource

(PUThesis Vol2006 No5). At this stage, the access control module evaluates

the authorization credential of the user (Bob) according to the permission-to-

role assignment policy of the federating site (LibElse). This process requires

(successful) evaluation of temporal and non-temporal contextual constraints

before the permission assignment takes place. The non-temporal constraints

may not only involve rules on role attributes but also on attributes of the

resource for a fine-grained access control.

5. The result of the evaluation is generated by the access control module (ex-

pressed as a SAML Authorization Decision Statement), including any applica-

ble resource provisioning constraints.

6. As a final step, the access control module forwards the authorization credential

(i.e. SAML Authorization Decision Statement) for the user (Bob) to a doc-

ument generating routine, which consults the access rights of the requesting

user on the requested XML document (PUThesis Vol2006 No5), and accord-

66

ingly generates XML views in response to the request. A session manage-

ment routine within the access control module is repsonsible for monitoring

the provisioning and de-provisioning constraints associated with the requested

document.

7. The SAML Authorization Decision Statement issued by the federating site

(LibElse) is digitally signed so that it can be subsequently reused at another

site that accepts this authorization credential. This will allow the user (Bob) to

be authorized at the latter site without having to go through an authentication

process. As mentioned earlier, such a mechanism effectively provides support

for Single Sign On (SSO).

A reference implementation of the federation architecture described in this chapter,

along with the related policy documents, can be accessed at http://web.ics.purdue.-

edu/ bhattir/project/sso. It involves the use of SAML decision queries and responses

to evaluate the requests for accessing Web resources, as described in the protocol.

This chapter described the federated architecture for the use of our X-FEDERATE

framework for federated access management in Web-based distributed systems. In

the next chapter, we will provide a distributed system application of the framework

in the healthcare domain.

67

6. DISTRIBUTED SYSTEM APPLICATION:

HEALTHCARE INFORMATION MANAGEMENT

In this chapter, we demonstrate the use of X-FEDERATE for federated healthcare

information management. This illustrates the application of our policy engineering

methodology for the design and administration of access management policies for

secure sharing of XML-based clinical documents in a federated healthcare system.

We consider a HealthCareFederation (HCF) clinical system. It is assumed in

the example that all role names, clinical document types, and patients are part of

the HCF database. The design of the HCF database will be based on the feder-

ated database architecture (FDBS) discussed in Chapter 5. The X-GTRBAC policy

language used in our framework comprises the definitions of the various policy com-

ponents used to encode the access management policies of all federating organizations

within the HCF. The policy definitions, therefore, serve as the Common Data Model

(CDM) for the HCF database and the policy documents are used to define an export

schema, which collectively form the federated schema of the system.

We will now focus on the policy design and the application of our policy engi-

neering methodology for federated healthcare information management.

6.1 Policy Design

To adequately capture the access management requirements of clinical resources

in a healthcare system, we use the well-known Clinical Document Architecture

(CDA) standard [43] issued by the HL7 organization to represent the protected clin-

ical resources. Consequently, we base the design of our policy on a set of use cases

proposed by the community for the CDA standard [44, 45]. We specifically focus

68

on the use cases involving the use of �layered constraints�within the CDA-encoded

clinical documents, which we will refer to as Electronic Health Records (EHRs). The

HL7 Template proposal [44] which is intended to provide a format for defining con-

straints against an HL7 specification is a recent effort in this direction. The proposal

allows for a template to be used to constrain the values of static assertions regarding

an EHR. This includes constraints on allowable attribute values, comparison of at-

tribute values, nesting of assertions, and logical evaluation of assertions. As the HL7

proposal suggests, the use of such a template will allow formulation of expressive

constraints on the document contents, which we believe can be used in the design of

disclosure and privacy policies for the EHRs.

Below we present the set of use cases based on which we design the policies used

in our framework.

Actors: The creators and readers of EHRs (such as physicians and healthcare

givers), patients associated with them who have access privileges, payers (insurance),

and institutions (HMOs, government bodies, enforcers of legislations such as HIPAA)

who have been permitted to access EHRs.� Use Case 1: Access policy for an EHR must have granularity at the level of

(i) the medical and administrative (such as address, phone no.) data, (ii) the

category of medical record as defined per the ClinicalDocument type system

in CDA, and (iii) the type of requestor within the actor populations.� Use Case 2: The portion of EHR retrieved by a permitted requestor depends

upon the requestor and the privacy conditions defined on the EHR.� Use Case 3: The restrictions on accessing an EHR extend beyond the origi-

nating organization.� Use Case 4: A user needs to get through the protections in case of emergen-

cies.

69� Use Case 5: A user may be denied access to certain sensitive and damaging

diagnosis information.

We now outline the design of our policy with respect to the use cases described

above. We consider a HealthCareFederation (HCF) clinical system. It is assumed

in the example that all role names, document types, and patients are part of the

HCF database. We do not concern ourselves with setting up the federated database,

and only describe the design and enforcement of policies. The rules in the example

policy, along with the use cases to which they relate, are given below.� Granularity of Access [UseCase1]

R1 A US board-certified physician can access medical data in any Clinical-

Document.

R2 Locally certified physicians can only access clinical documents of type

Discharge Summary.

R3 A billing clerk can access administrative data in any ClinicalDocument of

any patient.� Disclosure Rules [UseCase2]

R4 The disclosure policy for a billing clerk accessing an EHR of category�ClinicalDocument�requires the access to be restricted during the first

week of any quarter in year 2005 and for a duration of 1 week.

R5 For a ClinicalDocument of type Discharge Summary, the resource access

is restricted to only occur from within the state of NewYork.� Privacy Rules [UseCase2]

R6 The privacy policy of patient Bob allows a physician to access its records

only if they have attributes board certified id with value NY and fellow-

ship field cd with value GeneralMedicine in their CDA-encoded creden-

tial.

70� Emergency Defaults [UseCase4]

R7 The applicable privacy or disclosure policy for an EHR may be overridden

if the access has to occur from near or inside the EmergencyRoom.� Information Hiding [UseCase5]

R8 The patient may not be able to view a ClinicalDocument of type Psychi-

atry Report.

6.2 Example Policy

We shall now discuss an example policy involving the use of the constraint expres-

sions in our framework to capture the requirements use cases outlined in Section 6.1.

The rules in the example policy, along with the use cases to which they relate, are

given below:

We will use the following categories of resources as defined by CDA:

1. Clinical Document (CD): All EHRs belong to this category

2. Discharge Summary (DS): An EHR belonging to this specialized category

of CD.

3. Psychiatry Report (PR): An EHR belonging to this specialized category

of CD.

4. CDAD: The administrative portion of the CD. (All types except CDAD mean

medical portion.)

While we have already indicated the assignment rules that allow physicians to access

the EHRs of patients, it is also necessary to encode rules that allow patients to view

their EHRs. For this purpose, we use the convention that a user x is assigned to a

role Px in order to access its own EHRs. A role Px by default has the permissions to

access all its records, but manual overrides may be encoded by system administrator

in special circumstances.

71

6.2.1 Formal Specification

We now encode the policy rules using the administrative concepts discussed in

Chapter 4, and use where applicable the predicate expression formalism.� Rule 1: Let pmRule1 = PxCD, rRule1 = PermittedPhysicianPx (having a

valid role credential), and let pRule1 be defined on LERule1 = (US, =, hasCr-

edAttrV alue(PermittedPhysicianPx, board certified id)). Then, the policy

rule is represented as

prassignRule1(pmRule1, rRule1) iff pRule1.� Rule 2: Let pmRule2 = PxDS, rRule2 = PermittedPhysicianPx (having a

valid role credential), and let pRule2 be defined on LERule2 = (NY, =, hasCr-

edAttrV alue(PermittedPhysicianPx, board certified id)). Then, the policy

rule is represented as

prassignRule2(pmRule2, rRule2) iff (pRule2 ∨ pRule1).� Rule 3: Let pmRule3 = PxCDAD, rRule3 = BillingClerk (having a valid role

credential). Then, the policy rule is represented as

prassignRule3(pmRule3, rRule3).

Note that this policy rule has no associated constraint.� Rule 4: Let pmRule4 = PxCDAD, rRule4 = BillingClerk (having a valid

role credential), and let pRule4 be defined on PTERule4 = PTEEX1 =<

P, [2005.Y ears, 2005.Y ears] >, P = all.Y ears+1, 4, 7, 10.Months+1.Weeks⊲

1.Weeks. Then, the policy rule is represented as

prassignRule4(pmRule4, rRule4) iff pRule4.� Rule 5: Let pmRule5 = PxDS, rRule5 = PermittedPhysicianPx (having

a valid role credential), and let pRule5 be defined on LERule5 = LEEX2 =

72

(NewY ork, =, hasCredAttrV alue(PermittedPhysicianPx, location)). Then,

the policy rule is represented as

prassignRule5(pmRule5, rRule5) iff pRule5.� Rule 6: Let uRule6 = any, rRule6 = PermittedPhysicianPx (having a valid

user credential). Let pRule6a be defined on LERule6a = (NY, =, hasCredAttr-

V alue(Px, board certified id)) and let pRule6b be defined on LERule6b = (G-

eneralMedicine, =, hasCredAttrV alue(Px, fellowship field cd)). Then, the

policy rule is represented as

urassignRule6(uRule6, rRule6) iff (pRule6a ∧ pRule6b).� Rule 7: Let pmRule7 = PxCD, rRule7 = PermittedPhysicianPx (having a

valid role credential), and let pRule7 be defined on LERule7 = (EmergencyRoom, =

, hasCredAttrV alue(PermittedPhysicianPx, location)). Then, the policy rule

is represented as

prassignRule7(pmRule7, rRule7) iff pRule7.� Rule 8: Let pmRule8 = PxPR, rRule8 = Px (having a possibly null role

credential). Then, the policy rule is represented as

prdeassignRule8(pmRule8, rRule8).

We note that in practice, a combination of these rules may be needed in an as-

signment policy. We recall that our rule specification supports combing rules from

multiple sources, which allows combining multiple predicate expressions in a policy

rule (as shown in Example 4 in Chapter 4). For instance, Rule3 and Rule4 may be

combined in a permission-to-role assignment policy by using the AND rule-combing

mode to ensure that both rules are satisfied before the policy returns true, whereas

Rule 7 used for emergency defaults may be combined with any existing rule using

73

the OR rule-combing mode so that the policy always returns true when an emer-

gency context has been detected (See Section 3.3.3 for discussion on rule-combining

modes). Also, with particular reference to Rule 8, it is an example of manual over-

riding of default privileges of a patient to access its own records. We note that the

semantics of deassign are opposite to that of assign, and it removes the assignment

of a permission from a role. To resolve conflicts, we associate a higher priority with

deassign operation.

6.2.2 UML model creation

UML model for the specification is created by the system designer by following the

policy engineering methodology presented in the thesis. As indicated in Chapter 3,

the methodology suggests the use of UML Package (see Table 3.4) which comprises

the definitions of the federated schema for the various policy components to encode

the access management rules outlined in the example policy.

The UML model is then used by the system designer to integrate the policy with

the system. It may be mentioned that at no point does the system designer actually

have to deal with low-level X-Grammar syntax of the underlying policy language

because the semantics of the language have already been incorporated in the high-

level UML model. The mapping of UML model to XML Schema subsequently allows

the policy specification to be translated into implementation code without having

to deal with the complexity of the policy design. In our framework we use Java as

the implementation language, and translate the XML Schema elements into Java

classes using custom parsing and processing routines. This is the task of the policy

enforcement architecture.

6.3 Enforcement Architecture

In this section, we present the policy enforcement architecture of our HCF clinical

database system. The architecture comprises of two components: the integrated

74

Fig. 6.1. The integrated architecture for federated healthcare database prototype.

architecture (IA) is shown in Figure 6.1, whereas the subsystem architecture (SA)

for each individual domain is shown in Figure 6.2. The enforcement architecture has

been implemented within a research prototype that implements our example policy.

6.3.1 Subsystem Architecture

The SA is employed at all parties in the HCF, and each party uses the definitions

of the various policy components described in Section 3.3 to encode the disclosure

and privacy policies. As indicated earlier, the policy documents constructed using

these policy definitions form the federated schema of the system. We now provide

an overview of the key components of the SA.

The XML Document Composition Module (XDCM) is used by each participating

site to compose policy documents. Each site first creates the UML classes of its

policy definitions using the UML package described in Section 3.5. The UML classes

are then translated into XML schemas using a UML to XML Schema translation

75

Fig. 6.2. The subsystem architecture for federated healthcare database prototype.

mechanism and exported to XDCM. The policy documents are then composed in

XML inside the XDCM, and verified against the imported schema definitions.

The XML Policy Base (XPB) contains all policy related XML documents com-

posed through XDCM. These documents collectively form the federated schema

of the system. These include XML User Sheet (XUS), XML Role Sheet (XRS),

XML Permission Sheet (XPS), XML Resource Type Sheet (XRTS), XML User to

Role Assignment Sheet (XURAS), and XML Permission to Role Assignment Sheet

(XPRAS). Also stored in XPB are the policy definitions, including XCredTypeDef,

XResTypeDef, XSoDDef, XTempConstDef and XPredFuncDef.

Each individual resource (EHR) in the system belongs to a category (resource

type) as defined per the CDA standard which is captured through the use of a type

tag. Examples for the possible types are: Clinical Document, Discharge Summary,

Psychiatry Report, Diet, Disability, and Observation. Note that binary encoding

allows objects to be embedded within XML-based EHRs. Such objects may include

multimedia data, such as medical images, which can be accessed by users who have

76

authorization to view the containing document. These objects are stored in the

Referenced Object Base.

6.3.2 Integrated Architecture

The IA ties together the individual SAs together with externally available mod-

ules to provide support for federated access management. Examples of externally

available modules may be authentication services and context acquisition services

which may not be a part of the federated database. We now provide an overview of

the key components of the IA.� Authentication and Authorization: A user (any actor in our use cases)

wishing to request clinical data from the HCF needs to provide credentials

defined per the federated schema. To provide a scalable identity and autho-

rization management infrastructure, the architecture employs an Authentica-

tion Manager and an Authorization Manager. The Authentication Manager

is not directly a component of our authorization infrastructure, but is used

to issue an authenticating credential to the user (encoded as an XUS in our

framework). Subsequently, this authenticating credential is presented to the

Authorization Manager. The Authorization Manager is then responsible for

role assignment of the user request based on the attributes encoded in the user

credential. Following a successful role assignment, the Authorization Manager

issues an authorization credential to the user (encoded as an XRS in our frame-

work). Since the Authorization Manager issues the credential defined per the

federated schema, hence the authorization credential issued by it is accepted

at all federating sites within the HCF. The credential evaluation for both the

authenticating and authorization credentials is performed by the Credential

Evaluator component of the SA of the federating site (see Figure 6.2).� Context Acquisition: We have motivated that access to sensitive clinical

records can be based on contextual conditions. This includes the user context

77

(which is included in the credential attributes), and the environmental con-

text (such as location information). Both the user context and environmental

context needs to be appended to the access request before it is submitted

to the queried party. Based on our requirements for location-sensitive access

control in personal healthcare information management, we provide a loca-

tion capture mechanism which is part of the more general Context Acquisition

Module (CAM). We envision the following function of the location capture ser-

vice: It will capture location information through the IP address of the nearest

registered access point (AP) through which the device of the requesting user

communicates (we do not rely on the using the IP address of the device itself

because the devices in a pervasive computing environment will typically be

mobile devices having temporary IP addresses not sufficient to track location).

This mechanism will be used to satisfy the proximity requirement in our sys-

tem, and also to detect the loss of proximity to appropriately disengage the

resource provisioning session. The design of a CAM providing such a service

is outside the scope of our work, and is the subject of ongoing research [46].

We, however, for the purposes of our prototype system assume the existence

of a software routine that simulates its effect. The location data is received by

the system through a GUI which allows the location of a device to be entered

for the purposes of simulated testing. The context acquisition module works

in tandem with the Context Extractor component of the SA of the federating

site (see Figure 6.2).� Disclosure and Privacy Policies: The query embedded with the context

information is evaluated by the access control module of the queried party. The

query is checked against the policy documents for the federating site defined

per the federated schema. The query evaluation is performed by the XML ACP

component of the SA of the federating site (see Figure 6.2). It consists of two

phases: (i) first, the privacy policy of the patient is checked for the requisite

authorizations of the requesting user based on his/her supplied credentials, and

78

(ii) second, the disclosure policy of the queried party is checked for any restric-

tions on the release of the requested content based on the user authorization.

As we indicated earlier, it is possible that the possibly rules may be conflicting

(such as Rule 8 in the example policy of Section 6.2 conflicts with the default

access of patients to their own records), and a conflict resolution mechanism

is provided. The current strategy employed in our prototype is simply denial-

takes-precedence, which has been implemented by assigning higher priority to

de-assignment rules.� EHR Retrieval: Based on the privacy and disclosure policy, the information

violating user preferences or organizational rules can be omitted from the re-

turned view of the data. The requested EHR content is retrieved from the

HCF database (which essentially comprises of the individual data repositories

of the federating sites as shown in the SA). The retrieved content is then sent

to the Data Filtering Module, where appropriate view of the content is gener-

ated using the XML Instance Generator component of the SA (see Figure 6.2).

Finally, the resulting view of the requested EHR content together with appli-

cable resource provisioning constraints is returned to the querying party. The

Session Management Module component of the SA (see Figure 6.2) is repsonsi-

ble for monitoring the provisioning and de-provisioning constraints associated

with the requested EHR.

6.4 Implementation

In this section, we discuss the implementation of the example policy. The policy

has been implemented in our prototype system that has been designed based on the

architecture described in the previous section

79

Fig. 6.3. XML-based EHR layout

6.4.1 Policy and Records Database

The policy documents for the HCF clinical database are stored in an XML Pol-

icy Base (XPB) at each federating site. As indicated earlier, the XML schema for

the example policy is generated using the UPX and instance documents are com-

posed and validated against it. These documents provide information on users, roles,

and resources, and assignment rules needed for providing access management in our

federated healthcare database system. The set of XML policy documents for the

example policy implemented in our prototype are provided in Appendix C.

The actual resource type instances (i.e. the XML-based EHRs) at a participating

site to which the users of the HCF will be requesting access are stored in an XML

database shown by the XML Schemas and Instances component in the SA. Our

current implementation stores them as XML-type tables in Oracle DBMS.

In Figure 6.3, we give the layout of the EHRs. Based on the requirement for fine-

grained access based on the portion (administrative vs. medical) and type (Discharge

Summary, Psychiatry Report, etc.) of the Clinical Document, we have structured the

80

EHR in a manner that allows retrieval of only the authorized content. The Personal-

Information tag contains patients personal information, such as name, address, date

of birth, identification numbers, and phones. This tag is of type �administrative�and

hence an element having this tag name can be accessed only by a user who has been

authorized to access a resource of type CDAD (recall that this type has been defined

in Section 6.2 to refer to the administrative portion of the Clinical Document). All

the other tags in the document are of type �medical�and hence an element having

any of those tag names can be accessed only by a user who has been authorized to

access a resource of type CD or any sub-category of it (recall that all types other

than CDAD have been defined in Section 6.2 to refer to the medical portions of

a Clinical Document). These tags include MedicalServiceProvider tag, the Family-

MedicalHistory tag, and the PatientMedicalRecords tag.

6.4.2 Policy Enforcement

We now illustrate the enforcement of the example policy implemented in our

current prototype. The idea is as follows. Access requests to retrieve patients EHR

are composed using credentials obtained from the Authentication and Authorization

Manager. The Context Acquisition Module appends the contextual information to

the request, and it is then submitted to the queried party. At the latter end, they are

first checked against the disclosure and privacy rules maintained in the XPB of the

queried party. Based on these rules, queries are reformulated such that users can only

access what they have authorization to. The reformulated query stores information

about the patient and the authorized EHR types in a well-known format. The

reformulated query is then passed to a procedure that parses the query and retrieves

the required content from the EHR database. The answer to the query is stored in

an XML document that contains only the required text and multimedia data. This

result document is composed on the fly and is then returned to the querying party.

81

We now illustrate some scenarios of evaluation of access requests using our ex-

ample policy, where the requests are representative of the requirements use-cases

outlined earlier. In particular, we cover rules 1 thru 6 mentioned in Section 6.1.

The scenarios involving remaining rules will be similarly handled by making sim-

ple extensions to the example policy to handle exceptions and denial, as already

described.� Scenario 1: Physician Smith wishes to access Clinical Document of patient

Bob. Smith has a US board certification.

Smith presents to the system a CDAIndividualHealthCarePractitioner creden-

tial encoded as an XUS (See Table C.1(b)). The credential contains the at-

tributes board certified id having a value US and fellowship field cd having a

value GeneralMedicine for Smith. The privacy policy of patient Bob is encoded

as an XURAS (See Table C.2(a)) which requires that any physician having a

board certification of NY is permitted to view EHRs of Bob. Since Smith has

a US board certification, and assuming the US certification subsumes local

certification, he is assigned the PermittedPhysicianPBob role (which is defined

in XRS in Table C.1(e)). Following this role assignment, Smith is then evalu-

ated for permission assignments against the constraints defined on credential

attributes to enforce the disclosure policy. The assignment of CP PBob CPrC-

D GET permission (which is defined in XPS in Table C.1(f)) defined to access

any Clinical Document of patient Bob requires the user to have a board certi-

fied id having a value US (see Table C.2(b)), and hence Smith is eligible to be

assigned the requisite permission.� Scenario 2: Physician Carla wishes to access Clinical Document of patient

Bob. Carla has a NY-board certification. Carla is accessing from New York.

Carla presents to the system a CDAIndividualHealthCarePractitioner creden-

tial encoded as an XUS (See Table C.1(b)). The credential contains the at-

tributes board certified id having a value NY and fellowship field cd having a

82

value GeneralMedicine for Carla. The privacy policy of patient Bob is encoded

as an XURAS (See Table C.2(a)) which requires that any physician having a

board certification of NY is permitted to view EHRs of Bob. Since Carla has a

NY board certification, he is assigned the PermittedPhysicianPBob role (which

is defined in XRS in Table C.1(e)). Following this role assignment, Carla is

then evaluated for permission assignments against the constraints defined on

credential attributes to enforce the disclosure policy. The assignment of C-

P PBob CPrCD GET permission (which is defined in XPS in Table C.1(f))

defined to access any Clinical Document of patient Bob requires the user to

have a board certified id having a value US (see Table C.2(b)), and hence Carla

is not eligible to be assigned the requisite permission.� Scenario 3: Physician Carla wishes to access Discharge Summary of patient

Bob. Carla has a NY-board certification. Carla is accessing from New York.

Similar as above, except that now the permission requested is CP PBob C-

PrDS GET. The assignment of CP PBob CPrDS GET permission (which is

defined in XPS in Table C.1(f)) defined to access Discharge Summary of patient

Bob requires the user to have a board certified id having a value of either

US or NY, and the role to have a location having a value of NewYork (see

Table C.2(b)). Since these conditions are satisfied in this instance, Carla is

eligible to be assigned the requisite permission.� Scenario 4: Billing clerk John wishes to access Clinical Document of patient

Bob. John is accessing in second week of February in 2005.

John presents to the system a ClinicPurdueBillingClerk credential encoded

as an XUS (See Table C.1(b)). The assignment policy for BillingClerk role

(which is defined in XRS in Table C.1(e)) is encoded as an XURAS (See Ta-

ble C.2(a)) which does not require any user credential to be presented, but has

an associated temporal constraint PTQuarterWeekOne (which is defined in

XTempConstDef in Table C.1(c)). This constraint states that the assignment

83

is only allowed beginning the first week of every quarter of year 2005. Since

John is accessing in second week of February, which is not the first week of any

quarter in 2005, hence John is not eligible to be assigned the requisite role.� Scenario 5: Billing clerk John wishes to access Clinical Document of patient

Bob. John is accessing in first week of April in 2005.

Similar as above, except that now the time of access is within the range of the

temporal constraint. Since John is accessing in first week of April, which is

the first week of the second quarter of year 2005, hence John is eligible to be

assigned the requisite role.

The implementation of the above scenarios, along with the related policy documents,

can be accessed at http://web.ics.purdue.edu/ bhattir/project/hcf. Our current pro-

totype uses SAML to encode the access requests as SAML decision queries, and to

encode the authorization decision as SAML decision statements.

This chapter provided a distributed system application of X-FEDERATE, and

demonstrated the use of our policy engineering methodology for federated healthcare

information management. The next chapter will conclude the thesis.

84

7. CONCLUSION AND FUTURE WORK

In this thesis, we have presented X-FEDERATE, a policy engineering framework for

federated access management. It has been developed to manage the task of designing

policies for federated information sharing, and to address the inherent incompatibil-

ity of multiple policy-based management approaches when applied to a federated

system. We have analyzed the impact of security management challenges on policy

design, and formulated a policy engineering methodology based on principles of soft-

ware engineering to develop X-FEDERATE as a policy-based access management

solution for federated systems. It consists of an XML-based policy specification lan-

guage, its UML-based meta-model, and an enforcement architecture. The policy

language is designed to meet the requirements for federated access management,

while the use of UML-based meta-model allows policies to be developed and man-

aged in a standardized manner. The framework also consists of an administration

model targeted at decentralized policy administration in the presence of constraints.

Our model provides a formal specification of administrative concepts and constraints

to facilitate the administration of context-aware RBAC policies. We have provided a

comprehensive comparison of our approach with related approaches, and highlighted

its significance for federated access management. We have also presented a federation

architecture and protocol. We have also discussed a distributed systems application

of our framework in the area of healthcare information management.

The UML support for policy engineering provided in our framework can be en-

hanced to provide many more useful features from software engineering discipline.

In addition to the use of a UML profile in the meta-model, other constructs such

as use cases, activity diagrams, and sequence diagram in UML can also be used to

model security relevant behavior of the system by allowing one to express appropri-

85

ate security constraints using well-known modeling notations. Recent research has

also shown that UML classes and sequence diagrams can be analyzed using tech-

niques based on typed graphs [47]. The specification of policy using UML notations

can therefore provide support for consistency and verification analysis. These can

be promising extensions to the UML-based meta-model developed in this work.

The use of UML model in our framework can also be leveraged to provide sup-

port for model-based security testing of RBAC policies. We have conducted some

preliminary work in this regard [48] that deals with model-based strategy for testing

implementation of an access control system that employs the RBAC policy specifica-

tion. The approach has been based on the construction of a structural and behavioral

model of the corresponding RBAC specification. The model is then used to generate

static and dynamic test suites for the corresponding implementation. We plan to ex-

tend this work to incorporate security testing of access control systems that employ

the complete X-GTRBAC policy specification language.

With regards to security management, there are several future directions that

this work can be extended in, including both potential applications and design en-

hancements. We have already investigated the use of X-GTRBAC policy specifica-

tion in Web-services acccess control, and have also proposed a WS-Policy profile of

X-GTRBAC [49]. WS-Policy [50] is an emerging specification for expressing Web-

services usage policies. The WS-Policy profile would allow the use of X-GTRBAC

policies for access control in Web services using policies expressed in WSPolicy syn-

tax. Other application areas include pervasive and mobile computing applications,

where location-sensitive context-aware access control is absolutely a critical require-

ment. We have recently proposed a GEO-RBAC profile of X-GTRBAC policy [51] to

address the requirement for spatial access control in such systems. GEO-RBAC [52]

is a spatially-aware extension of RBAC designed to allow fine-garined and expres-

sive location-based access control. We plan to continue work in this direction and

integrate our system with practical mobile and wireless applications.

86

In terms of design enhancements, it is desirable to incorporate many additional

aspects in our policy framework. Our current approach for role mapping abides

by the local autonomy principle, and hence no form of external access mediation is

needed. In a more general case, this may on one hand be overly-restrictive, and on the

other hand lead to security breaches due to transitive establishment of undesirable

delegation links. Therefore, a mediation mechanism is necessary to fairly regulate

federated information sharing while ensuring security of federated resources. Com-

posing an access mediation policy in a federated system poses considerable challenge

since participating sites do not have a-priori knowledge of each others access control

polices. We envision a decentralized mediation mechanism, where user attributes

combined with declarative rules can form a criterion for automated trust establish-

ment. This mechanism would require developing an ontological vocabulary (such as

OWL-DL [53] or RDF [54]) for our policy definitions to allow automated reasoning of

policies. We view this as a promising direction for the future of policy-based access

control on the emerging policy-aware Web [55].

LIST OF REFERENCES

87

LIST OF REFERENCES

[1] P. Wolfowritz, “Data sharing in a net-centric department of defense,” Tech.
Rep. d8320.2, Department of Defense (DoD), DEC 2004.

[2] D. Seamon, “Deep sharing: A case for federated digital library,” Tech. Rep.
erm0348, EDUCAUSE, AUG 2003.

[3] S. D. C. di Vimercati and P. Samarati, “Access control in federated systems,”
in Proceedings of the ACM New Security Paradigm Workshop, Lake Arrowhead,
CA, pp. 87–99, ACM Press, 1996.

[4] D. D. Clark and D. R. Wilson, “A comparison of commercial and military
computer security policies,” in Proceedings of the Symposium on Security and
Privacy, Oakland, CA, pp. 184–194, IEEE Press, APR 1987.

[5] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based
access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

[6] L. Lymberopoulos, E. C. Lupu, and M. Sloman, “An adaptive policy based
management framework for network services management,” Journal of Networks
and Systems Management, vol. 11, no. 3, pp. 277–303, 2003.

[7] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder specification
language,” in Proceedings of the Workshop on Policies for Distributed Systems
and Networks (Policy), LNCS 1995, Bristol, UK, pp. 18–39, Springer, JAN
2001.

[8] E. C. Lupu and M. Sloman, “Conflicts in policy-based distributed systems man-
agement,” IEEE Transactions on Software Engineering, vol. 25, no. 6, pp. 852–
869, 1999.

[9] M. Thompson, A. Essiari, and S. Mudumbai, “Certificate-based authorization
policy in a pki environment,” ACM Transactions on Information and System
Security, vol. 6, no. 4, pp. 566–588, 2003.

[10] D. Chadwick and A. Otenko, “The permis x.509 role based privilege manage-
ment infrastructure,” in Proceedings of the 7th ACM Symposium on Access Con-
trol Models and Technologies (SACMAT), Monterey, CA, pp. 135–140, ACM
Press, JUN 2002.

[11] “Shibboleth - specification - draft v1.0.” http://shibboleth.internet2.edu/docs/-
draft-internet2-shibboleth-specification-00.html, 2001.

[12] “Liberty alliance project specifications.” http://www.projectliberty.org/resour-
ces/specifications.php, 2005.

88

[13] “Security assertion markup language (saml).”
http://xml.coverpages.org/saml.html, 2004.

[14] “extensible access control markup language (xacml).” http://www.oasis-
open.org/committees/tc home.php?wg abbrev=xacml, 2005.

[15] T. Fink, M. Koch, and K. Pauls, “An mda approach to access control specifica-
tions using mof and profiles,” in Proceedings of the 1st International Workshop
on Views On Designing Complex Architectures (VODCA), Electronic Notes in
Theoretical Computer Science 142, Bertinoro, Italy, pp. 161–179, Elsevier, SEP
2004.

[16] J. Jurjens, “Umlsec: Extending uml for secure systems development,” in Pro-
ceedings of the 5th International Conference on The Unified Modeling Language,
London, UK, pp. 412–425, Springer, OCT 2002.

[17] T. Lodderstedt, D. A. Basin, and J. Doser, “Secureuml: A umlbased model-
ing language for model-driven security,” in Proceedings of the 5th International
Conference on The Unified Modeling Language, London, UK, pp. 426–4441,
Springer, OCT 2002.

[18] “Resource access decision (rad), version 1.0.”
http://www.omg.org/technology/documents/formal/resource access decisi-
on.htm, 2001.

[19] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli,
“Proposed nist standard for role-based access control,” ACM Transactions on
Information and System Security, vol. 4, no. 3, pp. 224–274, 2001.

[20] “Security in a web services world: A proposed architecture and
roadmap.” http://www-128.ibm.com/developerworks/library/specification/ws-
secmap/, 2002.

[21] D. Carlson, Modeling XML Applications with UML: Practical e-Business Appli-
cations. Boston, MA: Addison-Wesley, 2001.

[22] “Common information model (cim) schema: Version 2.11.”
http://www.dmtf.org/standards/cim/cim schema v211, 2005.

[23] T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester, “Automatic inclusion
of middleware performance attributes into architectural uml software models,”
IEEE Transactions on Software Engineering, vol. 31, no. 8, pp. 695–711, 2005.

[24] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “Keynote: Trust management
for public-key infrastructures,” in Proceedings of the 6th International Workshop
on Security Protocols, LNCS 1550, Cambridge, UK, pp. 59–63, Springer, APR
1998.

[25] C. Ellison, “Spki requirements,” Tech. Rep. RFC 2692, Internet Engineering
Task Force Draft (IETF), SEP 1999.

[26] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access control meets
public key infrastructure, or: Assigning roles to strangers,” in Proceedings of the
Symposium on Security and Privacy, Oakland, CA, pp. 2–14, IEEE Press, MAY
2000.

89

[27] J. B. D. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor, “Access control language
for multidomain environments,” IEEE Internet Computing, vol. 8, no. 6, pp. 40–
50, 2004.

[28] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based trust
management framework,” in Proceedings of the Symposium on Security and
Privacy, Oakland, CA, pp. 114–130, IEEE Press, MAY 2002.

[29] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal
role based access control model,” IEEE Transaction on Knowledge and Data
Engineering, vol. 17, no. 1, pp. 4–23, 2005.

[30] R. Bhatti, J. B. D. Joshi, E. Bertino, and A. Ghafoor, “X-gtrbac: An xml-
based policy specification framework and architecture for enterprise-wide access
control,” ACM Transactions on Information and System Security, vol. 8, no. 2,
pp. 187–227, 2005.

[31] S. Kent and R. Atkinson, “Security architecture for the internet protocol,” Tech.
Rep. RFC 2401, Internet Engineering Task Force Draft (IETF), NOV 1998.

[32] A. D. Keromytis, S. Ioannidis, M. B. Greenwald, and J. M. Smith, “The strong-
man architecture,” in Proceedings of the 3rd DARPA Information Survivability
Conference and Exposition (DISCEX), Washington D.C., p. 178, IEEE Press,
APR 2003.

[33] R. Sandhu and Q. Munawer, “The arbac99 model for administration of roles,”
in Proceedings of the 15th Annual Computer Security Applications Conference
(ACSAC), Scottsdale, AZ, pp. 229–240, ACM Press, DEC 1999.

[34] J. Crampton and G. Loizou, “Administrative scope and role hierarchy opera-
tions,” in Proceedings of the 7th ACM Symposium on Access Control Models
and Technologies (SACMAT), Monterey, CA, pp. 145–154, ACM Press, JUN
2002.

[35] R. Sandhu, “Role activation hierarchies,” in Proceedings of the 3rd ACM Work-
shop on Role Based Access Control, Fairfax, VA, pp. 33–40, ACM Press, OCT
1998.

[36] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Temporal hierarchies and inher-
itance semantics for gtrbac,” in Proceedings of the 7th ACM Symposium on
Access Control Models and Technologies (SACMAT), Monterey, CA, pp. 74–83,
ACM Press, JUN 2002.

[37] P. Fankhauser, G. Gardarin, M. Lopez, J. Munoz, and A. Tomasic, “Experiences
in federated databases: From iro-db to miro-web,” in Proceedings of the 24th
International Conf. on Very Large Databases (VLDB), New York, NY, pp. 655–
658, Morgan Kaufmann, AUG 1998.

[38] G. Gardarin, S. Gannouni, and B. Finance, “Iro-db: A distributed system fed-
erating object and relational databases,” in Object-Oriented Multi-database sys-
tem: A solution for advanced applications, Englewood Cliffs, NJ: Prentice Hall,
1995.

90

[39] D. Heimbigner and D. McLeod, “A federated architecture for information man-
agement,” ACM Transactions on Information Systems (TOIS), vol. 3, no. 3,
pp. 253–278, 1985.

[40] M. R. andBandreddi E. Prasad andP.G.Reddy andAmar Gupta, “A methodol-
ogy for integration of heterogeneous databases,” IEEE Transaction on Knowl-
edge and Data Engineering, vol. 6, no. 6, pp. 920–933, 1994.

[41] M. Tempelton, D. Brill, A. Chen, S. Dao, and E. Lund, “Mermaid: Experiences
with network operation,” in Proceedings of the 2nd International Conference on
Data Engineering (ICDE), Los Angeles, CA, pp. 292–300, IEEE Press, FEB
1986.

[42] A. Tomasic, L. Raschid, and P. Valduriez, “Scaling access to heterogeneous data
sources with disco,” IEEE Transaction on Knowledge and Data Engineering,
vol. 10, no. 5, pp. 808–823, 1998.

[43] R. H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. M. Behlen, and P. V. Biron,
“Hl7 clinical document architecture, release 2.0,” Tech. Rep. CDA-20040830v3,
CDA, AUG 2004.

[44] L. Alschuler, R. H. Dolin, S. Boyer, C. Mead, and P. Elkin, “Layered constraints:
The proposal for hl7 healthcare templates,” in Proceedings of the XML Confer-
ence and Exposition, Baltimore, MD, DEC 2002.

[45] F. Moss, “Clinical record use cases, v0.1,” Tech. Rep. draft-xacml-usecase-01a,
OASIS XACML Technical Committee, SEP 2001.

[46] V. Kumar and S. Zidonik, “Workshop report,” in NSF Workshop on Context
Aware Mobile and Sensor Information Management, Providence, RI, JAN 2002.

[47] A. Tsiolakis and H. Ehrig, “Consistency analysis of uml class and sequence
diagrams based on attributed typed graphs and their transformation,” in Pro-
ceedings of the Joint APPLIGRAPH/GETGRATS Workshop on Graph Trans-
formation Systems (GRATRA), Berlin, Germany, MAR 2000.

[48] A. Masood, R. Bhatti, A. Ghafoor, and A. Mathur, “Model-based testing of
access control systems that employ rbac policies,” Tech. Rep. 2005-62, Center
for Education and Research in Information Assurance and Security (CERIAS),
2005.

[49] R. Bhatti, D. Sanz, E. Bertino, and A. Ghafoor, “A policy-based authorization
system for web services:integrating x-gtrbac and ws-policy,” Tech. Rep. 2006-
03, Center for Education and Research in Information Assurance and Security
(CERIAS), 2006.

[50] “Web services policy framework web services policy framework.” http://www-
128.ibm.com/developerworks/library/specification/ws-polfram/, 2006.

[51] R. Bhatti, M. Damiani, D. W. Bettis, E. Bertino, and A. Ghafoor, “A modular
framework for administering spatial constraints in context-aware rbac,” Tech.
Rep. 2006-04, Center for Education and Research in Information Assurance and
Security (CERIAS), 2006.

91

[52] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca, “Geo-rbac: a spa-
tially aware rbac,” in Proceedings of the 10th ACM Symposium on Access Con-
trol Models and Technologies (SACMAT), Stockholm, Sweden, pp. 29–37, ACM
Press, JUN 2005.

[53] “Owl web ontology language.” http://www.w3.org/TR/owl-features/, 2004.

[54] “Resource description framework (rdf).” http://www.w3.org/TR/rdf-
concepts/, 2004.

[55] D. Weitzner, J. Hendler, T. Berners-Lee, and D. Connolly, “Creating a policy-
aware web: Discretionary, rule-based access for the world wide web,” in Web
and Information Security, Hershey, PA: Idea Group, (forthcoming).

APPENDICES

92

Appendix A: X-GTRBAC Grammar

[Basic Definitions]

<!-- Policy Definition>::=

<Policy policy_id=(xs:id)

policy_name=(xs:name)>

<!-- XML Credential Type Definitions>

<!-- XML Separation of Duty Definitions>

<!-- XML Temporal Constraint Definitions>

<!-- XML Predicate Function Definitions>

<!-- XML Resource Type Definitions>

<!-- XML Resource Type Sheet>

<!-- XML User Sheet>

<!-- XML Role Sheet>

<!-- XML Permission Sheet>

<!-- XML User-Role Assignment Sheet>

<!-- XML Permission-Role Assignment Sheet>

</Policy>

<!-- XML Credential Type Definitions >

::= <XCredTypeDef xctd_id = (xs:id) >

{<!-- Credential Type Definition>}*

</XCredTypeDef>

<!-- Credential Type Definition> ::=

<CredTypeDef cred_type_id = (xs:id)

cred_type_name= (xs:name) >

<!Attribute List>

</CredTypeDef>

<!Attribute List > ::= <AttributeList>

{<!-- Attribute Definition>}*

</AttributeList >

<!-- Attribute Definition>::

<AttributeDef name=(xs: name) usage= mand | opt

type = xs:dateTime | xs:string | xs:integer />

<!-- XML User Sheet> ::=

<XUS xus_id = (xs:id) >

{<!-- User Definition>}*

</XUS>

<!-- User Definition> ::=

<User user_id = (xs:id)>

[<UserName><!-- NameID></UserName>]

<!CredType>

<MaxRoles>(xs:integer)</MaxRoles>

</User>

<!CredType > ::=

<CredType cred_type_id = (xs:idref)

cred_type_name= (xs:name) >

[<!Header>]

<!-- Credential Expression>

</CredType>

<!-- Credential Expression > ::= <CredExpr>

{<!-- Attribute >}*

</CredExpr>

<!-- Attribute>::= <Attribute name= (xs:name)>

value= (xs:dateTime | xs:string | xs:integer) />

<!-- XML Role Sheet>::=

<XRS xrs_id = (xs:id)>

{<!-- Role Definition>}*

</XRS>

<!-- Role Definition>::=

<Role role_id = (xs:id)

role_name = (xs:name)>

[<!-- Cred Type>]

[<!(En|Dis)abling Constraint>]

[<![De]Activation Constraint>]

{<SSDRoleSetId> (xs:idref)

</SSDRoleSetId>}*

{<DSDRoleSetId> (xs:idref)

93

</DSDRoleSetId>}*

[<JuniorRoleId>(xs:idref)

</JuniorRoleId>]

[<SeniorRoleId>(xs:idref)

</SeniorRoleId>]

{<!Linked Role ID>}*

[<!Delegation Constraint>]

[<Cardinality> (xs:integer)

</Cardinality>]

</Role>

<!Linked Role ID> ::=

<LinkedRoleId

id= (xs:idref)

type=delegator | delegatee />

<!-- XML Separation of Duty Definitions>

::= <XSoDDef xsod_id = (xs:id) >

[<!SSDRoleSets>]

[<!DSDRoleSets>]

</XSoDDef>

<!-- SSDRoleSets > ::=

<SSDRoleSets>

{<!SSDRoleSet>}+

</SSDRoleSets>

<!SSDRoleSet> ::=

<SSDRoleSet

ssd_role_set_id = (xs:id)

ssd_cardinality = (xs:integer)>

{<SSDRoleId>(xs:idref)

</SSDRoleId>}+

</SSDRoleSet>

<!-- DSDRoleSets > ::=

<DSDRoleSets>

{<!DSDRoleSet>}+

</DSDRoleSets>

<!DSDRoleSet>::=

<DSDRoleSet

dsd_role_set_id =(xs:id)

dsd_cardinality = (xs:integer)>

{<DSDRoleId>(xs:idref)

</DSDRoleId>}+

</DSDRoleSet>

<!-- XML Permission Sheet>::=

<XPS xps_id = (xs:id) >

{<!-- Permission Definition>}+

</XPS>

<!-- Permission Definition>::=

<Permission

perm_id =(xs:id)

[prop= noprop|first_level|cascade] >

<Object

res_type_id=(xs:idref) />

{<!Attribute >}*

</Object>

<!-- Operation>

</Permission>

<!-- Resource Type Definitions > ::=

<XResTypeDef

xrtd_id = (xs:id) >

{<!Resource Type Definition>}*

</XResTypeDef>

<!-- Resource Type Definition> ::=

<ResTypeDef res_type_id = (xs:id)

res_type_name= (xs:name) >

<!-- Attribute List>

</ResTypeDef >

<!-- XML Resource Type Sheet>::=

<XRTS xrts_id = (xs:id) >

{<!-- Resource Type>}*

</XRTS>

<!-- Resource Type>::=

94

<ResType res_type_id = (xs:idref)

res_type_name = (xs:name)>

{<!Attribute>}*

</ResType>

<!-- Operation> ::= <Operation>

(saml:Action)</Operation>

<!-- XML User-Role Assignment Sheet>::=

<XURAS xuras_id = (xs:id) >

{<!-- User-role Assignment>}*

</XURAS>

<!-- User-role Assignment>::=

<URA ura_id=(xs:id) role_id=(xs:idref)>

{< ![De]Assign User>}+

</URA>

< ![De]Assign User> ::=

<[De]AssignUser user_id=(xs:idref)>

[<![De]Assign Constraint >]

</[De]AssignUser>

<!-- XML Permission-Role Assignment Sheet>::=

<XPRAS xpras_id = (xs:id) >

{<!-- Permission-Role Assignment>}*

</XPRAS>

<!-- Permission-Role Assignment>::=

<PRA pra_id=(xs:id) role_id=(xs:idref)>

{< ![De]Assign Permission>}+

</PRA>

< ![De]Assign Permission> ::=

<[De]AssignPermission

perm_id=(xs:idref)>

[<![De]Assign Constraint >]

</[De]AssignPermission>

<![De]Assign Constraint>::=

<[De]AssignConstraint

[op = AND|OR|NOT]>

// no opcode defaults to AND

{<![De] Assign Condition>}+

</[De]AssignConstraint>

<![De]Assign Condition>::=

<[De]AssignCondition

cred_type_id=(xs:idref)

[pt_expr_id=(xs:idref)|

d_expr_id=(xs:idref)]>

[<!-- Logical Expression>]

</[De]AssignCondition>

<!(En|Dis)abling Constraint> ::=

<(En|Dis)abConstraint

[op = AND|OR|NOT]>

// no opcode defaults to AND

{<!-- (En|Dis)abling Condition>}+

</(En|Dis)abConstraint>

<!(En|Dis)abling Condition>::=

<(En|Dis)abCondition

[pt_expr_id=(xs:idref) |

d_expr_id=(xs:idref)] >

[<!-- Logical Expression>]

</(En|Dis)abCondition>

<![De]Activation Constraint> ::=

<[De] ActivConstraint

[op = AND|OR|NOT]>

// no opcode defaults to AND

{<![De]ActivationCondition>}+

</[De]ActivConstraint>

<![De]Activation Condition>::=

<[De]ActivCondition

[d_expr_id=(xs:idref)]>

<!-- Logical Expression>]

</[De]ActivCondition >

<!-- Logical Expression>::=

<LogicalExpr [op = AND|OR|NOT]>

// no opcode defaults to AND

95

{<!-- Predicate>}+

</LogicalExpr>

<!-- Predicate>::=

<Predicate>

<!-- PredicateBlock> |

< !--LogicalExpression>

</Predicate>

<!-- PredicateBlock>::=

<PredicateBlock>

<Operator> gt|lt|eq|neq </Operator>

[<FuncId>(xs:idref)</FuncId>]

{<ParamName>(xs:name)</ParamName>}+

<RetValue>(xs:anyType)</RetValue>

</PredicateBlock>

<!-- XML Predicate Function Definitions>::=

<XPredFuncDef xpfd_id = (xs:id) >

{<!-- Function Definition>}*

</XPredFuncDef>

<!Function Definition>::=

<Function func_id = (xs:id)

func_name= (xs:name)

return_type= xs:anyType>

<!Parameter List>

</Function>

<!Parameter List>::=

<ParameterList>

{<!-- Parameter>}*

</ParameterList >

<!-- Parameter>::=

<Parameter order= (xs:int)

type = xs:string|xs:int|xs:date / >

[Temporal Definitions]

<!-- XML Temporal Constraint Definitions >::=

<XTempConstDef xtcd_id = (xs:id) >

{<!Interval Expression>}*

{<!-- Periodic Time Expression>}*

{<!-- Duration Expression>}*

</XTempConstDef>

<!-- Periodic Time Expression> ::=

<PeriodicTimeExpr pt_expr_id = (xs:id)

[d_expr_id = (xs:id)]

i_expr_id = (xs:id)] >

[d_expr_id = (xs:idref)]

[i_expr_id = (xs:idref)] >

<!-- Start Time Expression>

</PeriodicTimeExpr>

<!Interval Expression>::=

<IntervalExpr i_expr_id = (xs:id)>

<begin> (xs:dateTime)</begin>

<end>(xs:dateTime)</end>

</IntervalExpr>

<!-- Start Time Expression>::=

<StartTimeExpr

[pt_expr_id_ref = (xs:idref)]>

[<Year>all|odd|even</Year>]

[<!--MonthSet>]

[<!--WeekSet>]

[<!--DaySet>]

</StartTimeExpr>

<!--MonthSet>::=<MonthSet>

{<Month>1|..|12</Month>}1-12

(represents # of months from

the start of current Year)

</MonthSet >

<!--WeekSet>::=

<WeekSet>

{<Week>1|..|5</Week>}1-5

(represents # of weeks from

the start of current Month)

</WeekSet >

96

<!--DaySet>::=

<DaySet>

{<Day>1|..|7</Day>}1-7

(represents # of days from

the start of current Week)

</DaySet >

<!-- Duration Expression>::=

<DurationExpr d_expr_id = (xs:id)>

<cal>(Years|Months|Weeks|Days)</cal>

<len> (xs:integer)</len>

</DurationExpr>

[Credential Definitions]

<!--Header> ::=

<Header>

<Principal><!-- NameID></Principal>

<Issuer><!-- NameID></Issuer>

<!-- Validity>

[<DSig> <!-- Signature ></DSig>]

</Header>

<!-- NameID>::= (saml:NameID)

<!-- Validity> ::=

<Validity>

<IssueTime>(xs:dateTime)</IssueTime>

[<NotBefore>(xs:dateTime)</NotBefore>]

[<NotOnOrAfter>(xs:dateTime)

</NotOnOrAfter>]

</Validity>

<!-- Signature > ::= (ds:Signature)

<!Delegation Constraint> ::=

<DelegationConstraint [op = AND|OR|NOT]>

// no opcode defaults to AND

{<!-- Delegation Condition>}+

</DelegationConstraint>

<!Delegation Condition> ::=

<DelegationCondition [pt_expr_id=(xs:idref) |

d_expr_id=(xs:idref)] >

[<!-- Logical Expression>]

</DelegationCondition>

97

Appendix B: UML Meta Model for X-GTRBAC Policy

98

Fig. B.1. Top level UML model for XPolicy

99

Appendix C: Example Policy

Table C.1: XML documents for example policy defi-
nitions (in row major order): (a)XCredTypeDef (b)XUS
(c)XTempConstDef(d)XPredFuncDef (e)XRS (f)XPS
(g)XRedTypeDef (h)XReS

<?xml version="1.0" encoding="UTF-8"?>

<XCredTypeDef xctd_id = HCF_XCTD >

<CredTypeDef cred_type_id = CDA_IHP

cred_type_name=

CDAIndividualHealthCarePractitioner >

<AttributeList>

<Attribute

name="board_certified_id" type="string" />

<Attribute

name="fellowship_field_cd" type="string" />

</AttributeList>

</CredTypeDef >

<CredTypeDef cred_type_id = CP_PP

cred_type_name=

ClinicPurduePermittedPhysician >

<AttributeList>

<Attribute

name="location" type="string" />

</AttributeList>

</CredTypeDef >

<CredTypeDef cred_type_id = CP_BC

cred_type_name=

ClinicPurdueBillingClerk />

</XCredTypeDef>

(a) The definition of the credentials CDAIndividual-

HealthCarePractitioner, ClinicPurduePermittedPhysi-

cian and ClinicPurdueBillingClerk.

<?xml version="1.0" encoding="UTF-8"?>

<XUS xus_id=HCF_XUS>

<User user_id =any>

<UserName/>

<CredType cred_type_id=CDA_IHP

cred_type_name=

CDAIndividualHealthCarePractitioner>

<CredExpr >

<Attribute

name=board_certified_id

value= />

<Attribute

name=fellowship_field_cd

value=/>

</CredExpr>

</CredType>

</User>

<User user_id =any>

<UserName/>

<CredType cred_type_id=CD_BC

cred_type_name=

ClinicPurdueBillingClerk />

</User>

</XUS>

(b) The definition of a particular instance of the creden-

tials defined in (a).

Continued on next page

100

<?xml version="1.0" encoding="UTF-8"?>

<XTempConstDef xtcd_id="HCF_XTCD">

<IntervalExpr i_expr_id="Year2005">

<begin>1/1/2005</begin>

<end>12/31/2005</end>

</IntervalExpr>

<DurationExpr d_expr_id="OneWeek">

<cal>Weeks</cal>

<len>1</len>

</DurationExpr>

<PeriodicTimeExpr

pt_expr_id="PTQuarterWeekOne"

i_expr_id="Year2005" d_expr_id="OneWeek">

<StartTimeExpr>

<Year>all</Year>

<MonthSet>

<Month>1</Month>

<Month>4</Month>

<Month>7</Month>

<Month>10</Month>

</MonthSet>

<WeekSet>

<Week>1</Week>

</WeekSet>

</StartTimeExpr>

</PeriodicTimeExpr>

</XTempConstDef>

(c) This temporal constraint definition includes a peri-

odic time expression (PTE) which states that the access

is allowed beginning the first week of every quarter of

year 2005. Note that duration expression and/or inter-

val expression are referenced inside a PTE.

<?xml version="1.0" encoding="UTF-8"?>

<XPredFuncDef xpfd_id="HCF_XPFD">

<Function func_id="fhCAV"

func_name="hasCredAttributeValue"

return_type="xs:AnyType">

<ParameterList>

<Parameter order="1" type="xs:string" />

</ParameterList>

</Function>

</XPredFuncDef >

(d) This is the definition of predicate function hasCre-

dAttributeValue. It has one parameter of type xs:string,

and a return type of xs:anyType.

Continued on next page

101

<?xml version="1.0" encoding="UTF-8"?>

<XRS xrs_id="HCF_XRS">

<Role role_id="rPhysicianPBob"

role_name="PermittedPhysicianPBob" >

<CredType

cred_type_id="CP_PP"

cred_type_name=

"ClinicPurduePermittedPhysician">

<CredExpr >

<Attribute name="name" value="" />

<Attribute name="location" value="" />

</CredExpr>

</CredType>

</Role>

<Role role_id="rBillingClerk"

role_name="BillingClerk" />

</XRS>

(e) The definition of the role PermittedPhysicianPbob

and BillingClerk. The credential contains authorization

attributes for the role that are used in the assignment

policy of (j) for permission-role-assignment. Note that

the value of role attributes is captured dynamically by

the system and hence is not explicitly stated in the role

definition.

<?xml version="1.0" encoding="UTF-8"?>

<XPS xps_id="HCF_XPS">

<Permission perm_id="CP_PBob_CPrCD_GET">

<Object res_type_id = "CPrCD" />

<Operation namespace="saml:ghpp">

GET</Operation>

</Permission>

<Permission perm_id="CP_PBob_CPrDS_GET">

<Object res_type_id = "CPrDS" />

<Operation namespace="saml:ghpp">

GET</Operation>

</Permission>

<Permission perm_id="CP_CPrCD_GET">

<Object res_type_id = "CPrCD" />

<Operation namespace="saml:ghpp">

GET</Operation>

</Permission>

</XPS>

(f) The definition of the permissions

CP PBob CPrCD GET, CP PBob CPrDS GET

and CP CPrCD GET. They define the permissions to

perform GET action belonging to the saml:ghpp names-

pace on an EHR belonging to the categories CPrCD

and CPrDS defined in (f). The first two permissions

are specific to EHRs of patient Bob whereas the last

one applies to EHR of any patient.

Continued on next page

102

<?xml version="1.0" encoding="UTF-8"?>

<XResTypeDef xrtd_id = "HCF_XRTD" >

<ResTypeDef res_type_id = "CPrCD"

res_type_name =

"ClinicPurdueResClinicalDocument">

<AttributeList>

<Attribute name="id" type="anyURI"/>

<Attribute

name="change_reason_cd" type="string" />

<Attribute

name="completion_cd" type="string" />

<Attribute

name="confidentiality_cd" type="string" />

<Attribute

name="version_number" type="string" />

</AttributeList>

</ResTypeDef>

</XResTypeDef>

(g) The definition of a resource type ClinicalDocument.

It declares a mandatory id attribute of the type anyURI,

and a set of other ttributes of type string.

<?xml version="1.0" encoding="UTF-8"?>

<XReS xres_id = "HCF_XRES" >

<Resource res_type_id = "CPrCD"

res_type_name =

ClinicPurdueResClinicalDocument>

<Attribute

name="id" value= "CD_PBob_01.xml" />

</Resource>

</XReS>

(h): The definition of an instance of the resource

type ClinicPurdueResClinicalDocument. The resource

is identified using the url value of the id attribute, which

points to a resource instance belonging to patient Bob.

103

Table C.2: XML documents for example policy rules: (a)XURAS
(b)XPRAS

<?xml version="1.0" encoding="UTF-8"?>

<XURAS xuras_id="HCF_XURAS">

<URA ura_id="uraCDPatientPBob" role_id="rPhysicianCDPBob">

<AssignUsers>

<AssignUser user_id="any">

<AssignConstraint>

<AssignCondition cred_type_id= "CDA_IHP">

<LogicalExpr op="AND">

<Predicate>

<Operator>eq</Operator>

<FuncID>fhCAV</FuncID>

<ParamName>board_certified_id</ParamName>

<RetValue>NY</RetValue>

</Predicate>

<Predicate>

<Operator>eq</Operator>

<FuncID>fhCAV</FuncID>

<ParamName>fellowship_field_cd

</ParamName>

<RetValue>GeneralMedicine</RetValue>

</Predicate>

</LogicalExpr>

</AssignCondition>

</AssignConstraint>

</AssignUser>

</AssignUsers>

</URA>

<URA ura_id="uraBillingClerk" role_id="rBillingClerk">

<AssignUsers>

<AssignUser user_id="any">

<AssignConstraint>

<AssignCondition cred_type_id= "nill"

pt_expr_id="PTQuarterWeekOne" />

</AssignConstraint>

</AssignUser>

</AssignUsers>

</URA>

</XURAS>

<?xml version="1.0" encoding="UTF-8"?>

<XPRAS xpras_id="HCF_XPRAS">

<PRA pra_id="praPermittedPhysicianPBob" role_id="rPhysicianPBob">

<AssignPermissions>

<AssignPermission perm_id="CP_PBob_CPrCD_GET">

<AssignConstraint>

<AssignCondition cred_type_id= "CDA_IHP">

<LogicalExpr>

<Predicate>

<Operator>eq</Operator>

<FuncID>fhCAV</FuncID>

<ParamName>board_certified_id</ParamName>

<RetValue>US</RetValue>

</Predicate>

</LogicalExpr>

</AssignCondition>

</AssignConstraint>

</AssignPermission>

<AssignPermission perm_id="CP_PBob_CPrDS_GET">

<AssignConstraint>

<AssignCondition cred_type_id= "ClinicPurduePermittedPhysician">

<LogicalExpr op="AND">

<Predicate>

<LogicalExpr op="OR">

<Predicate>

<Operator>eq</Operator>

<FuncID>fhCAV</FuncID>

<ParamName>board_certified_id</ParamName>

<RetValue>US</RetValue>

</Predicate>

<Predicate>

<Operator>eq</Operator>

<FuncID>fhCAV</FuncID>

<ParamName>board_certified_id</ParamName>

<RetValue>NY</RetValue>

</Predicate>

</LogicalExpr>

<Predicate>

<Predicate>

<Operator>eq</Operator>

<FuncID>fhCAV</FuncID>

<ParamName>location</ParamName>

<RetValue>NewYork</RetValue>

</Predicate>

</LogicalExpr>

</AssignCondition>

</AssignConstraint>

</AssignPermission>

</AssignPermissions>

</PRA>

<PRA pra_id="praBillingClerk" role_id="rBillingClerk">

<AssignPermissions>

<AssignPermission perm_id="CP_CPrCD_GET" />

</AssignPermissions>

</PRA>

</XPRAS>

Continued on next page

104

(i) This is a role assignment policy for the PermittedPhysi-

cianPBob and BillingClerk roles defined in (e). The policy for

PermittedPhysicianPBob role states that any user can be as-

signed to this role if he/she supplies a CDA-encoded credential

CDA IHP. The predicate function defined in (d) is used to define

conditions on credential attributes which correspond to Rule 6 in

Section 5.3. The policy for BillingClerk role states that any user

can be assigned to this role if he/she supplies a credential Clin-

icPurdueBillingClerk, and subject to the temporal constraint as

defined in (c) which corresponds to Rule 3 in Section 5.3.

(j) This is a permission assignment policy for the roles defined in

(e). It gives the conditions under which the permissions defined

in (f) can be assigned to these roles. The respective constraints

are defined on the credential for the role. The constraints corre-

spond to Rules 1, 2, and 5 in Section 5.3.

VITA

105

VITA

Rafae Bhatti is a PhD candidate in the Department of Electrical and Computer

Engineering and affiliated with the Center for Education and Reserach in Information

Assurance and Security (CERIAS) at Purdue University. He received his B.S. degree

in Electronics Engineering from GIK Institute, Pakistan in 1999 and his M.S. degree

in Computer Engineering from Purdue University in 2003. His research interests

include information systems security, with emphasis on design and administration

of access management policies in distributed systems. In his M.S. thesis research at

Purdue, he developed an XML-based policy specification framework for distributed

access control. His PhD research focuses on the access management problems posed

by the emerging federated paradigm of information sharing and collaboration, and

on specification of XML-based security protocols for Web-based information systems.

His work on XML-based access control framework for the Role Based Access Control

(RBAC) model has recently been cited by the OASIS consortium in their official

announcement of the RBAC standard.

Rafae will assume a position as an Assistant Professor at Florida International

University effective Fall 2006. He is a student member of the ACM, IEEE and the

IEEE Computer Society.

