
The ActiveRBAC Manual

Manuel Holtgrewe
April 21, 2006

For ActiveRBAC 0.3.1

Please note that this manual is work in progress. We try to
keep it up to date but we cannot guarantee on correctness
in all cases.



2



Contents

1 Foreword 5

2 Tutorial 7
2.1 Creating Our Sample Application . . . . . . . . . . . . . . . . . . . 7

2.1.1 Creating the Rails project . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Creating the Controllers . . . . . . . . . . . . . . . . . . . . . 8

2.2 ActiveRBAC enters the scene . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Installing Engines and ActiveRBAC . . . . . . . . . . . . . . 10
2.2.2 Creating initial Role and User . . . . . . . . . . . . . . . . . 11

2.3 Protecting with Roles . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Protecting the ArticlesController with Roles . . . . . . . . . 13
2.3.2 Protecting ActiveRBAC itself with Roles . . . . . . . . . . . . 15
2.3.3 Improving the templates . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Protecting the ArticlesController with Permission . . . . . . 17

3 The Concepts Behind RBAC 19
3.1 Users, Groups, Permissions . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Role Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Protection Patterns 25
4.1 Using before filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Check that the user is logged in . . . . . . . . . . . . . . . . . . . . 26
4.3 Checking for specific roles . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Protecting only selected actions . . . . . . . . . . . . . . . . . . . . 26
4.5 Using a common authentication failure handler . . . . . . . . . . . 28
4.6 Protection inside the methods . . . . . . . . . . . . . . . . . . . . . 29

5 Permissions Schema Patterns 31
5.1 Logged in Users only . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Administrator, Editor . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Administrator, Editor, Supervisor . . . . . . . . . . . . . . . . . . . 32
5.4 Administrator, Editor, Subscriber . . . . . . . . . . . . . . . . . . . 32

3



Contents

6 Reference 35
6.0.1 How ActiveRBAC uses the flash . . . . . . . . . . . . . . . . 35

6.1 The ActiveRBAC Model Classes . . . . . . . . . . . . . . . . . . . . 35
6.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.1 How to set configuration settings. . . . . . . . . . . . . . . . 35
6.2.2 Configuration Settings . . . . . . . . . . . . . . . . . . . . . . 35

7 Howtos 37
7.1 How to create an initial RBAC schema elegantly . . . . . . . . . . 37
7.2 How to make ActiveRBAC’s URLs prettier . . . . . . . . . . . . . . 37

7.2.1 How to set the controller layout for each controller . . . . . 40
7.2.2 How to redirect to a URL after login . . . . . . . . . . . . . . 40
7.2.3 How To Change ActiveRBAC’s Views/Templates . . . . . . . 41
7.2.4 How To Change ActiveRBAC’s Controllers . . . . . . . . . . 42
7.2.5 How To Change ActiveRBAC’s Models . . . . . . . . . . . . . 42

4



1 Foreword

Ruby on Rails (RoR) has whirled some things up in the web development com-
munity: It strikes a balance between easy but unstructured programming as
many people do with PHP and structured but hard programming as Java is
considered to be. It propagated the Convention over Configuration (CoC) along
with its parent Don’t Repeat Yourself (DRY) paradigm. And it shipped with the
(I would sometimes call it excentric) opinion of its creator David Heinemeier
Hansson or DHH as he is called by the community.

While all people using RoR came to love the DRY and CoC, some disagree
with some of David’s opinions. I include me in this. For example, according
to David it is easier to create components anew from scratch than to configure
existing components to fit your requirements. His idea of components includes
things like ActiveRBAC.

This effectively means that the creator of Ruby on Rails is against a compo-
nent (or engine) like ActiveRBAC and will never use it. However, there are still
those people who consider software reuse A Good Thing. I include me here,
too. There are dangers, of course. The more high level your components be-
come, the harder it is to intergrate them into your software: Flexibility, amount
of problems solved (power), ease of usage - pick two. Configuration easily be-
comes hard to unmaintainable.

However, I still believe that a common authentication layer is A Good Thing:

• Access Control is a problem that has been solved in many good ways.
Each of these ways is well tested and widely used. Reconsidering solved
problems is only feasible in education and research. Rails is all about
pragmatism. Why should you waste time thinking about new way to solve
a problem as authentication?

• Face it: We don’t write perfect code (this lies in the nature of humans). If
we roll our own authentication code, it should have the quality of Knuth’s
TEX(he sends you a cheque if you find an error and has not send one
for many years). If you used a common authentication layer that is well
tested then the time you invest in checking that it is really so is added
to the time others looked at it. Thus more time in checking that it works
well has been invested into it than you could with your own time.

• If you use a copy and paste approach to using software, applying patches
becomes hard. If you add a feature (or squash a bug) to the code used
in your latest application that you want your other applications to have

5



1 Foreword

(or not to have in the case of a bug) then you have to apply the patch
manually to all other applications. A central, seperated component is
upgraded much more easily.

Additionally, with the advent of Rails Engine, the Rails community now has
a good foundation for building reuseable components. And with the Ruby pro-
gramming language, not everything must be configureable: You can overwrite
everything and everything. Why not change the behaviour of a component’s
class? On updates, you might still have to adjust your overrides to internal
changes but these are in a different location and you can upgrade the compo-
nent’s code seperated from it.

Okay, so much for arguing that components make sense in some cases. I
promise the rest of the manual is all about understanding ActiveRBAC and
getting things done with it.

Manuel Holtgrewe

6



2 Tutorial

Attention, Windows users. In this guide, we use Unix syntax for
commands executed at the command line (or shell as Unix people
say). You only have to do the following things to run this tutorial as
a Windows user: First, replace every occurance of a slash (/) into a
backslash (\). Second, replace every call to a script in the script direc-
tory that looks like ./script/some_name by ruby script\some_-
name. That’s it.

In this tutorial, we walk through writing a small demo application and se-
curing it using ActiveRBAC using roles. We try to motivate and explain each
step and will also explain some things that are more related to Ruby On Rails
than to ActiveRBAC. We all know how frustrating learning new things through
failure can be (arguably it is a good way, though) and thus we will try to take
all the stones out of our way.

We will assume that you already have Ruby On Rails 1.1 installed. Any later
or previous version might work, but do not blame us if they do not. This means,
specificially, that EdgeRails/Trunk Rails might not work.

This tutorial will also keep theoretical explanations to a minimum. If you
want to have detailed information about how the RBAC model is implemented
in ActiveRBAC then read chapter 3 and the API reference.

2.1 Creating Our Sample Application

We will first create the small application we want to protect later. We call it
MiniCMS. The creation of the applicatioin is not very interesting since we will
only use scaffolding for a very simple Article class. You might want to skip
this section and go to section 2.2 instead.

In our application, we will have only the model class Article and the ArticlesController.
Article objects represent articles - who would have thought so? Articles have
an id, time stamps for when they were created and last updated, a title and a
body. The SQL schema in figure 2.1 sums all this up. The schema is in Post-
greSQL dialect but you should be able to translate it into any database vendor
dialect.

7



2 Tutorial

CREATE TABLE articles (
id BIGSERIAL NOT NULL,
created at TIMESTAMP NOT NULL,
updated at TIMESTAMP NOT NULL,

title CHARACTER VARYING(200) NOT NULL,
body TEXT NOT NULL,

PRIMARY KEY (id),
UNIQUE (title)

);

Figure 2.1: SQL schema for our Article model

2.1.1 Creating the Rails project

So, let us create the Rails minicms project by rails minicms. As we would
do in every Rails project, the first thing is to remove the file public/index.html so
we can actually let our controllers display something: rm public/index.html.

Then, we have to configure our database in config/database.yml. Documen-
tation about how to configure this file can be found in the comments inside
the file. After this configuration, create at least the development database in
your database server so we import our schema from figure 2.1. You can find a
file with this content and a translation into the MySQL dialect in the finished
minicms demo which is located the downloadable tarball archive of ActiveR-
BAC.

2.1.2 Creating the Controllers

Now that we have set up the database with our schema we can go ahead and
perform scaffolding for our Article model class. Scaffolding will create a con-
troller for administrating articles. Execute the following on your command line:
./script/generate scaffold Article.

We could now go ahead and make the page pretty but that is out of the
scope of this tutorial. We will merely add a link list to the layout template in
app/views/layouts/articles.rhtml. The lines we added are shown in figure 2.2.

If we point our browser at http://127.0.0.1:3000/articles, we should
get something like shown in figure 2.3.

Now we have a very basic application to manage articles. We will use it to
demonstrate how we can protect applications with ActiveRBAC. Though it is
a toy application, you should easily be able to transfer the methods below to
your certainly bigger and more complex application.

8

http://127.0.0.1:3000/articles


2.1 Creating Our Sample Application

<ul>
<li><%= link_to ’New Article’, :action => ’new’ %></li>
<li><%= link_to ’List Articles’, :action => ’new’ %></li>
<li><%= link_to ’View Article #1’, :action => ’show’, :id => 1 %></li>

</ul>

Figure 2.2: Our minimal navigation

Figure 2.3: The article list from our minimal CMS.

9



2 Tutorial

2.2 ActiveRBAC enters the scene

2.2.1 Installing Engines and ActiveRBAC

ActiveRBAC is a Rails Engine. This means it is a rails plugin that has a very
similar structure as normal projects that use Ruby On Rails. We will, however,
need to install the engines plugin to be able to do this. As of Rails 1.0 we can
use Rail’s built in plugin manager script.

First, we have to get a list of all plugins available through the plugin man-
ager. Enter ./script/plugin discover at your shell in your Rails project’s
directory. Then, you can install Rails Engines by typing ./script/plugin
install engines1.

After you have installed the engines plugin, you can go ahead and install
ActiveRBAC. The easiest way is - again - to use Rails’s plugin manager. Type
./script/plugin install active_rbac at your shell and ActiveRBAC will
be installed in vendor/plugins2.

Then, you have to make your Rails application aware of the fact that you
have installed the ActiveRBAC engine. You have to add the line Engines.start
:active_rbac to your config/environment.rb.

ActiveRBAC needs some database tables which can be created with the mi-
grations inside the ActiveRBAC engine 3. You can execute the engine’s migra-
tion and let it create the necessary tables by executing rake db:migrate:engines
at the shell in your project’s directory.

Note that we currently only have schema definition files for MySQL, Post-
greSQL and MS SQL Server. If your database server system is not supported
then you can create a schema file for your database server with the following
steps:

• Choose a one of the files create.*.sql vendor/plugins/active rbac/db you
want to base your schema on.

• Create a schema with the same tables, fields and corresponding field
types.

• Save it as create.your database name.sql in vendor/plugins/active rbac/db
where your database name is the name of your database as you would
enter it in config/database.yml.

1This is the simplest way to install the plugin. You could use subversion
to check out the latest engines version from the SVN repository: svn co
http://svn.rails-engines.org/plugins/engines. You can learn more at http://
rails-engines.org/download

2Again, you could check out the most current ActiveRBAC from our subversion repository. The
URL for this is https://activerbac.turingstudio.com/source/active_rbac/trunk/
active_rbac/

3See http://wiki.rubyonrails.org/rails/pages/UsingMigrations and http://wiki.
rubyonrails.org/rails/pages/UnderstandingMigrations for more information about
migrations

10

http://rails-engines.org/download
http://rails-engines.org/download
https://activerbac.turingstudio.com/source/active_rbac/trunk/active_rbac/
https://activerbac.turingstudio.com/source/active_rbac/trunk/active_rbac/
http://wiki.rubyonrails.org/rails/pages/UsingMigrations
http://wiki.rubyonrails.org/rails/pages/UnderstandingMigrations
http://wiki.rubyonrails.org/rails/pages/UnderstandingMigrations


2.2 ActiveRBAC enters the scene

• Send the migration file to our mailing list at mailto:rbac-dev@lists.
cloudcore.com.

The next thing to do is to do some configuration. First, we have to adapt our
config/routes.rb. We add the lines from figure 2.4 to our config/routes.rb right
at the beginning right after the do |map|.

# ActiveRbac’s RegistrationController confirmation action needs
a special route
map.connect ’/active rbac/registration/confirm/:user/:token’,

:controller => ’active rbac/registration’,
:action => ’confirm’

Figure 2.4: We need a special route for the RegistrationController

Now, we have to configure ActiveRBAC a bit and tell it which layout to use.
The layout file app/views/layouts/articles.rhtml was created when performing
scaffolding for the Article model. We set the layout to use to this file as
shown in figure 6.2.2. In a real application you might want to have a admin
layout with a special admin menu. Note that changes to environment.rb only
take effect if you restart your server.

Add the lines from 2.5 to your config/environment.rb (you added the line
Engines.start :active_rbac already above). You can find a complete list of
configuration options in section 6.2.2.

module ActiveRbacConfig
# controller and layout configuration
config :controller layout, "articles"

end

Engines.start :active rbac

Figure 2.5: Configure ActiveRBAC and start it.

After this, we have ActiveRBAC up and running. We have yet to protect
something but if you point your browser at http://127.0.0.1:3000/active_
rbac/user then you should see an administration screen as in figure 2.6.

2.2.2 Creating initial Role and User

We are going to protect our ArticlesController and the controllers of Ac-
tiveRBAC in the next steps so it is a good idea not to lock ourselves out
of the application. We have to create a role that is allowed to access the

11

mailto:rbac-dev@lists.cloudcore.com
mailto:rbac-dev@lists.cloudcore.com
http://127.0.0.1:3000/active_rbac/user
http://127.0.0.1:3000/active_rbac/user


2 Tutorial

Figure 2.6: An empty ActiveRBAC user list.

ArticlesController as well as the ActiveRBAC controllers and a user that
this role is assigned to.

There are multiple ways to do this:

• We could write some SQL code to create the user and role directly in the
database. Obviously this is error prone and not elegant.

• We could use the ActiveRBAC web interface as long as it is unprotected.

• We could create a migration that creates the user and role programmati-
cally.

• We could fire up a console with ./script/console and create the user
and role there programmatically.

We will use the last option but we hould keep in mind that there are many
ways to edit users and roles (though using plain SQL should be our last resort).
Migrations are a very nice thing in real world applications.

Start a console with ./script/console at the shell in your project’s direc-
tory and execute the commands shown in figure 2.7.

This will create a user with the login Admin and the password password. The
user has a role with the title Admin.

2.3 Protecting with Roles

With the steps above, we have set up a minimal CMS application and con-
figured it to use Rails Engines ActiveRBAC. We can now protect this CMS in
different ways. The following sections demonstrate two possible ways.

Create a backup copy of this minimal project so we can explore multiple
different ways of protecting it with ActiveRBAC.

12



2.3 Protecting with Roles

role = Role.new
role.title = ’Admin’
role.save

user = User.new
user.login = ’Admin’
user.update password ’password’
user.email = ’root@localhost’
# the next line is essential
user.state = User.states[’confirmed’]
user.save

user.roles << role
user.save

Figure 2.7: Create the initial user and role.

2.3.1 Protecting the ArticlesController with Roles

The first way to protect your controllers with ActiveRBAC is checking that the
user has the necessary role he needs to access a controller and/or action. We
call this protection by roles. Protection with roles can be extended by protection
with permissions which is explained in section 2.3.4.

We can find the currently logged in user’s data in session[:rbac_user]
after the user has logged in. We can then use the User object’s has_role
method to check whether he has the necessary role. has_role expects one or
more strings and returns true if the user has a role whose title equals one of
the strings given to the method in the call as parameters. We could call this
method like session[:rbac_user].has_role("Admin"), for example.

The very first thing that comes into our mind is to protect our ArticlesController.
We want to make sure that no user that does not have the Admin role can ac-
cess any but the show and list actions.

We could now go ahead and simply add checks for the user having the Admin
role in all actions we want to protect but that would add redundancy to our
code and make it harder to maintain. It is much cleaner to add our access
control code into a before_filter.
before_filters are methods of controller objects that are called before any

action is invoked when the user tries to access the action via a URL. If a
before_filter returns false then the action method is not executed and
if it returns true then it is. It is pretty straightforward to add our access con-
trol code here. We add the lines from figure 2.8 after the last method definition
in our articles controller.rb.

We put the before filter into the protected context of the class so it cannot

13



2 Tutorial

protected

before filter :protect controller, :except => [ :list, :index,
:show ]

def protect controller
if !session[:rbac user].nil? and session[:rbac user].has role("Admin")
return true

else
redirect to "/articles/list"
flash[:notice] = "You are not allowed to access this

page"
return false

end
end

Figure 2.8: Protecting ArticlesController using a before_filter.

be invoked as an action by requesting a URI from our application. In line 3, we
register our method with before_filter as a before filter method. By using
the :except option of before_filter4 we can skip our authorization filter.

Our before filter works the following way: When we are satisfied with the
user’s role, i.e. we actually have a registered user and the user has the Admin
role then we return true in the before filter and let the action execute. Oth-
erwise, we set a notification about the missing permissions into the flash and
redirect to the article list.

If we wanted to be fancy and redirect the user to the login screen and back
there to the current location if he has logged in successfully then we could also
do this easily with ActiveRBAC. See section 7.2.2 for detailed instructions.

You can see the result output from a request to our protected ArticlesController
in figure 2.9. If you want to log in, you have to point your browser at http:
//127.0.0.1:3000/active_rbac/login/login and you can do so there with
the login created above5.

That is all you have to do to protect your ArticlesController. You can
learn more about good ways to protect your controllers in chapter 4. However,
there is one thing we have yet to do: Protect ActiveRBAC itself.

4As documented in http://api.rubyonrails.org/classes/ActionController/Filters/
ClassMethods.html, Filter chain skipping.

5Yes, this URL is ugly but we could change by customizing routes.rb it if we wanted to. See
section 7.2 for more information

14

http://127.0.0.1:3000/active_rbac/login/login
http://127.0.0.1:3000/active_rbac/login/login
http://api.rubyonrails.org/classes/ActionController/Filters/ClassMethods.html
http://api.rubyonrails.org/classes/ActionController/Filters/ClassMethods.html


2.3 Protecting with Roles

Figure 2.9: Thou shall not pass - our ArticlesController is protected now.

2.3.2 Protecting ActiveRBAC itself with Roles

When it is installed, ActiveRBAC is not protected in any way. Let us repeat
that ActiveRBAC does not protect itself and we have to do it manually. The
developers of ActiveRBAC decided that this is better than to force an access
controll schema on us.

Our first impulse is just to edit every controller in vendor/plugins/active -
rbac and add a before filter as we learned above in section 2.3.1. Though this
would work, we would have to do this every time we upgrade our ActiveRBAC
engine. So, on second thought this does not seem to be the best way.

However, the Rails Engines plugins comes to help us out. Since ActiveRBAC
is an Engine, we can use all the goodness the Engines plugin offers us. In
this case, we can add or override methods in the ActiveRBAC plugin by writing
code inside our own application. We just have to make sure we create the files
at the same path with the same name as we would place it in the ActiveRBAC
plugin.6.

We will add a before filter to the ActiveRBAC::ComponentController which
is the parent class of all of ActiveRBAC’s controllers. You can see the necessary
code in figure 2.10. Place it into app/controllers/active rbac/component con-
troller.rb. Since we only want to protect the administration controllers and not
RegistrationController or LoginController we have an additional line of
code compared to the code in figure 2.8 but otherwise the two code pieces are
pretty much the same. Also note that the :except option of before_filter
can only exclude actions from being filtered and not specific controllers.

6If you want to learn more about Rails Engines and what it can do for you, read the documen-
tation at http://api.rails-engines.org/engines/files/vendor/plugins/engines/
README.html.

15

http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html
http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html


2 Tutorial

# Mix in the a before filter into ActiveRbac::ComponentController
to secure
# all ActiveRbac controllers.
class ActiveRbac::ComponentController
before filter :protect with active rbac

protected

def protect with active rbac
# only protect certain controllers
return true if [ActiveRbac::LoginController,

ActiveRbac::RegistrationController].include?(self.class)

# protect!
return true if not session[:rbac user].nil? and

session[:rbac user].has role ’Admin’

flash[:notice] = ’You have insufficient permissions!’
redirect to ’/articles/list’
return false

end

def protect me
end

end

Figure 2.10: Protecting ActiveRBAC::ComponentController.

16



2.3 Protecting with Roles

After adding this file we have also protected the administration controllers of
ActiveRBAC. That was not that hard, was it? Now we have a simple but well
protected application and that is all you have to know to start using ActiveR-
BAC.

2.3.3 Improving the templates

Now we have authentication built into our application controllers, it might be
nice to make the views to be aware of this, too. We should hide all links to the
actions that could be used to edit the database’s contents and display a link
for the user to log in or log out, depending on whether he is authenticated.

However, this is not hard at all and we can see an example of how to do
this in figure 2.11. The code is from the articles.rhtml layout file we already
mentioned above.

<ul>
<% if !session[:rbac user].nil? and

session[:rbac user].has role("Admin") %>
<li><%= link to ’Log Out’, :controller =>’/active rbac/login’,

:action => ’logout’ %></li>
<li><%= link to ’New Article’, :controller =>’/articles’,

:action => ’new’ %></li>
<% else %>
<li><%= link to ’Log In’, :controller =>’/active rbac/login’,

:action => ’login’ %></li>
<% end %>
<li><%= link to ’List Articles’, :controller =>’/articles’,

:action => ’new’ %></li>
<li><%= link to ’View Article #1’, :controller

=>’/articles’,
:action => ’show’, :id => 1 %></li>

</ul>

Figure 2.11: An authentication aware navigation.

2.3.4 Protecting the ArticlesController with Permission

TODO

17



2 Tutorial

18



3 The Concepts Behind RBAC

ActiveRBAC is a RBAC (Role Based Access Control) implementation. Thus, it
makes sense to understand what RBAC is and how ActiveRBAC implements it.

3.1 Users, Groups, Permissions

RBAC is a way of organizing permissions in a computer system. Instead of
assigning permissions to a resource based on ownership (i.e. assigning per-
missions to users), permissions are granted to roles. Roles are then assigned
to users.

For example, we could have the three users Alice, Bob and Ceasar on our file
server. We have two roles: Administrators and Users. The User role is assigned
to Alice and Bob and Ceasar has the Administrator role. We would now grant
permissions to read files to the User role and permissions to read, write and
delete files to the Administrator role. Thus, Alice and Bob can read files and
Ceasar can also write and delete those files. This use case is show in figure
3.1.

Alice

Bob

Ceasar

Editor

Administrator

Articles

create

delete

edit any

edit own

Figure 3.1: A simple RBAC use case.

This is conceptually the same as organizing users into groups and only as-

19



3 The Concepts Behind RBAC

signing permissions to these groups and not directly to users. However, there
is a bit more to roles than to - say Unix - groups as we will see below.

Note, that permissions could be more complex like may edit the files if he is
the creator of the file or may edit the file if he is in the contributor list for this
file. This way, you can create hybrid systems that also include ACL (Access
Control Lists) or any other thing you that fits your requirements.

Additionally, you can choose freely how you store the permissions. Let us
consider how you could protect articles ob jects in your database.

• Store all permissions in the database. You could have a table storing the
ID of your article, the action that can be performed on it (edit, delete, re-
name) and a role id. This way, all permissions are stored in the database.
While this is very flexible, it is also very complex.

• Maybe your permission schema for the articles is very simple: Users with
the Administrator role can edit all articles and users with the Editor role
can only edit the articles they have created. You can then hardcode this
information in your code and check for the condition like to be true: The
user has the Administrator role or is the creator of this article.

The second point is important, so let us stress it once again: Sometimes it
is better to use only a part of the ActiveRBAC library because we can simplify
our access control schema. This reduces complexity in our application, in the
user interface and possible security flaws because of too great complexity or
wrong usage on the user’s side.

We can formalize the things we said about users, roles and permissions a
bit: A RBAC system contains users, roles, permissions and objects. Ob jects
provide actions, permissions to execute an action on a given ob ject can be
granted to roles. Roles can then be assigned to users. Users are granted
permissions to perform actions on ob jects through the roles assigned to them.

3.2 Role Inheritance

The description of RBAC up to this point describes something often called Core
RBAC, which means the most simple RBAC set that is interesting. In bigger
access control setups, we might require some more power.

Let us consider a more complex permission setup: We extend our CMS
(where the articles were managed with) a bit and sell it to a company who
want to manage their web site through it (yes, yet another CMS - the world has
just waited for that). Our simple access control setup does not work for them
since they want to audit all articles by some users who have the Supervisor
role but they do not want to give their supervisors the full administration role.
Supervisors should be able to do exactly the same as editors but they can also
mark an article as published.

20



3.3 Groups

We could now go simply ahead and copy the editor role to a new supervisor
role and assign the additional permission to publish an article to it. But what
happens if we add images to our CMS and editors should be able to upload
images? We would have to perform the changes to the editor role’s permissions
to the supervisor’s, too. As we realize, this is not perfect since it complicates
things greatly.

Another way would be to create a Supervisor role and assign this role to
supervisor users besides their editor role. This is not the best way to do it, too,
since we would need a lot of roles that are granted one or two permissions for
users that can do almost the same thing as those with an existing role but one
or two things more. Maybe we could also try to convince our customer that
they want a simple piece of software since it is so much easier to use and it is
less likely to cause problems.

However, as Einstein said, things should be as simple as possible but not
simpler and for some big software pro jects, you might eventually just need
a complex permission schema that raises problems as described above. But
don’t despair, role inheritance is there to help you.

You can specify a role to extend another role and thus to inherit their par-
ent role’s permissions. This works just like one class extending another one
in most ob ject oriented languages like Ruby or Java. One advantage is that
we circumvent to introduce redundancy by the copy-and-extend approach de-
scribed above. The second advantage is that since all users who are assigned
the supervisor role are automatically also assigned the editor role through in-
heritance: Since supervisor extends editor, all supervisors are editors.

So, if we have the same setup above with Alice, Bob and Ceasar and intro-
duce a new supervisor user Daedalus, our permission setup would look like in
figure 3.2.

The concepts described up to this point are called Hierarchial RBAC. There
are further extensions to Hierarchial RBAC that are less interesting in web
development and thus not implemented in ActiveRBAC.

3.3 Groups

However, ActiveRBAC extends Hierarchial RBAC by a concept parallel to roles:
Groups. Groups can be assigned to users but roles can also be assigned to
groups. This way, users can be granted permissions through roles assigned to
groups which are again assigned to them. Groups can also be arranged in a
tree structure. Roles assigned to a group are inherited by the group’s children.
When a group is assigned to a user, the user automatically gets all permissions
of the group’s parents, too.

It is pretty complex to describe this structure and in fact it makes many
permission schemas more complex. However, if your overall access control re-
quirements are complex the power added by this complexity might even reduce

21



3 The Concepts Behind RBAC

Alice

Bob

Ceasar

Editor

Administrator

Articles

create

edit own

delete

edit any

Daedalus

Supervisor

«extends»
publish

Figure 3.2: A use case with role inheritance.

22



3.3 Groups

the number of roles and role assignments. You can think about groups as role
macros.

Additionally, groups let you manage your users without necessarily assign-
ing permis- sions to them: Groups can have no roles assigned to them.

In many cases, you will not need groups in your permission setup and roles
will be sufficient. If your pro ject, however, reaches the critical complexity,
ActiveRBAC’s groups are there, waiting for you.

23



3 The Concepts Behind RBAC

24



4 Protection Patterns

This chapter describes common patterns to protect your controllers. If you
want to redirect your users after logging in then look at section 7.2.2 for more
information.

4.1 Using before filter

The ActionController::Base class allows for declaring before_filters. These
filters can be methods that are executed before the action method is called.
If these filters return true then the action method is rendered correctly. If
they return false then the action method is not invoked and a blank page is
rendered.

Most of the time we want to tell the user that he does not have the necessary
permissions to access the requested controller action and thus redirect him to
the front page and set the flash’s :error entry to notice the user.

We can accomplish this by the code in figure 4.1.

class MyController < ApplicationController
before filter :protect controller

protected
def protect controller
if [USER IS ALLOWED? CONDITION]
return true

else
redirect to "/"
flash[:error] = "You are not allowed to access this

page"
return false

end
end

end

Figure 4.1: Using before filter to protect controllers.

25



4 Protection Patterns

4.2 Check that the user is logged in

The simplest thing that could possibly work is checking whether the user is
logged in or not. We can accomplish this by looking in the session hash.

The current user is stored in the session hash as session[:rbac_user].
You can access the session hash in all your controllers. If the entry with the
key :rbac user is nil then the user is logged in.

We can perform this check by modifying the code in figure 4.1 as show in
figure 4.2.

def protect controller
if !session[:rbac user].nil?
return true

else
redirect to "/"
flash[:error] = "You are not allowed to access this page"
return false

end
end

Figure 4.2: Using before filter to protect controllers.

4.3 Checking for specific roles

Sometimes it is simply enough to check that the currently logged in user (if any)
has a given role. To do this, the User class provides the has_role method. You
pass this methods one or more strings and the method will return true if the
user ob ject has one of the given roles.

Our protection could would look as in figure 4.3.

4.4 Protecting only selected actions

What should you do if you want to use a before filter to protect only some
of your actions in a controller? Well, the most elegant way is to the either the
:only or :except parameter of the before_filter macro of ActionController::Base1.

You can see an example of that in figure 4.4.

1As documented in http://api.rubyonrails.org/classes/ActionController/Filters/
ClassMethods.html, Filter chain skipping.

26

http://api.rubyonrails.org/classes/ActionController/Filters/ClassMethods.html
http://api.rubyonrails.org/classes/ActionController/Filters/ClassMethods.html


4.4 Protecting only selected actions

def protect controller
if !session[:rbac user].nil? and

session[:rbac user].has role("Admin", "Editor")
return true

else
redirect to ’/’
flash[:error] = "You are not allowed to access this page"
return false

end
end

Figure 4.3: Checking for roles

before filter :protect controller, :only => :delete

def protect controller
if !session[:rbac user].nil? and

session[:rbac user].has role("Admin", "Editor")
return true

else
redirect to ’/’
flash[:error] = "You are not allowed to access this page"
return false

end
end

Figure 4.4: Protecting only selected actions.

27



4 Protection Patterns

4.5 Using a common authentication failure handler

It might be convenient to write a common authentication failure handler method
in your ApplicationController. If you want to change what will happen on au-
thentication failure (redirect to a specific failure URL or to the log in page, for
example), you can do this in one common place. You can see this pattern
applied in figure 4.5.

You must not forget, however, to return false in your filter. The auth failed
method will only change the state of the controller. redirect to does not imme-
tiately redirect the user but only tells the controller that it should redirect to
the speficic URL after performing the action selected in the URL.

class ApplicationController

protected
def auth failed(message)
# do extra logging
# maybe send email to admin
flash[:error] = message
redirect to ’/’

end
end

class MyController < ApplicationController
before filter :protect controller

protected

def protect controller
return true if params[:action].to s != "delete"

if !session[:rbac user].nil? and
session[:rbac user].has role("Admin", "Editor")
return true

else
auth failed("You are not allowed to access this page")
return false # make sure you still return false here!

end
end

end

Figure 4.5: Using a common auth failure handler.

28



4.6 Protection inside the methods

4.6 Protection inside the methods

Sometimes you might want really fine grained control about what is allowed
inside one of your controller’s methods (or in rails speak: actions). For exam-
ple, in a CMS the update action of the Admin::ArticleController might be
accessible by Users with the Administrator and Editor role. However, you only
want to allow changes to the state property of the article by Administrators.

Again, this is not difficult. Figure 4.6 shows how this works.

class MyController < ApplicationController
def update
@article = Article.find(params[:id])

# delete the submitted article state
if session[:rbac user].nil? or !session[:rbac user].has role("Admin")
params[:article].delete(:state)

end

if @article.update attributes(params[:article])
flash[:notice] = ’Article was successfully updated.’
redirect to :action => ’show’, :id => @article

else
render :action => ’edit’

end
end

end

Figure 4.6: RBAC protection from within methods.

29



4 Protection Patterns

30



5 Permissions Schema Patterns

This chapter contains common permission schema patterns with examples.
A permission schema is the way you organize your users, roles, groups and
permissions.

5.1 Logged in Users only

The simplest thing that could possibly work is checking whether the current
user has logged in. You do not need any roles to do this.

You can check whether the user has logged in using session[:rbac_-
user].nil? both in your templates and in your controller code.

5.2 Administrator, Editor

A simple content management system could require editors who are allowed to
create articles and edit their own articles and administrators who are allowed
to create, edit and delete all articles. The schema is visualized in figure 5.1.

Editor

Administrator

Articles

create

delete

edit any

edit own

Figure 5.1: A RBAC schema for a simple CMS.

31



5 Permissions Schema Patterns

5.3 Administrator, Editor, Supervisor

A slightly more complex content management syste could require a Supervisor
role besides administrators and editors. The supervisors are allowed to pub-
lish or unpublish an article. This could be done by setting a property of the
Article object, for example state.

The supervisor role extends the editor role so all supervisors are also edi-
tors. This works like class inheritance in Ruby and Java. This way we reduce
redundancy in the assignment of roles to users and permissions to roles as
described in section 3.2.

The schema is visualized in figure 5.2.

Editor

Administrator

Articles

create

edit own

delete

edit any

Supervisor

«extends»

publish

Figure 5.2: A RBAC schema for a CMS with supervisors.

5.4 Administrator, Editor, Subscriber

A variation of the simple CMS schema is to add a Subscriber role. This role is
assigned only to users who subscribed to your web page and pay a monthly
rate for some articles. For example, many newspapers and magazine publish
some articles for free on their web site but for the more interesting (not to say:
better) articles are only available to users who subscribed to their site.

So we introduce a subscriber role and add a premium_content property to
our Article class that stores whether this content is only available to sub-
scribers in a boolean value. We can then check if an article is visible to the
current user by the protection pattern described in section 4.6.

32



5.4 Administrator, Editor, Subscriber

See figure 5.3 for a diagram of this schema.

Editor

Administrator

Articles

create

delete

edit any

edit own

view if 
premium

SubscribeUser

Figure 5.3: A RBAC schema for a CMS with subscribers

33



5 Permissions Schema Patterns

34



6 Reference

6.0.1 How ActiveRBAC uses the flash

ActiveRBAC will use Rail’s flash to tell the user things things like You have
been logged in successfully. or This user could not be found. It will either use
the :notice or the :error entry of the flash.

Your layout should display these two flash entries as you think appropriate
(i.e. display the notices in a green and the errors in a red box). If you do not
show the flash’s content to your users, they might miss important information.

6.1 The ActiveRBAC Model Classes

6.2 Configuration

6.2.1 How to set configuration settings.

You can change ActiveRBAC’s configuration by placing a ActiveRbacConfig
module definition in your environment.rb and performing config calls in it.
You can see an example in figure 6.1.

module ActiveRbacConfig
# controller and layout configuration
config :controller layout, "articles"

end

Engines.start :active rbac

Figure 6.1: Configure ActiveRBAC and start it.

6.2.2 Configuration Settings

You can find an explanation of all configuration settings in table 6.1. If you ever
want to have have a look at where they are defined then active rbac/lib/active -
rbac config.rb is what you are searching for.

35



6 Reference

setting name explanation default value

:mailer_from The Sender: field of emails
sent by ActiveRBAC

ActiveRbac <activer-
bac@localhost>

:mailer_subject_-
confirm_registration

The subject used for reg-
istration confirmation
emails.

‘Please confirm your regis-
tration’

:mailer_subject_-
lost_password

The subject used for pass-
word retrieval emails.

ActiveRbac ‘Your new
password’

:mailer_headers A hash with additional
headers

Hash.new

:controller_layout The layout to use for Ac-
tiveRBAC controllers

‘application’

:controller_-
registration_signup_-
fields

Additional signup fields Array.new

:model_default_hash_-
type

The default hash type to
use for passwords

‘md5’

Table 6.1: ActiveRBAC’s configuration settings

36



7 Howtos

7.1 How to create an initial RBAC schema elegantly

When deploying your application, you might want to set up the same initial
user and role set on every installation. Rail’s migrations1 come in handy for
recording such database evolution.

You can create a migration by executing ./script/generate migration
InitialRbacSchema at the shell in your project’s directory. This will create a
new, empty migration in db/migrate. You can create your initial users, roles
and permissions programmatically. Figure 7.1 shows an example of such a
migration.

7.2 How to make ActiveRBAC’s URLs prettier

By default, ActiveRBAC’s controllers will be accessible as /active rbac/controller -
name. Of course, this is absolutely not acceptable for an application to be
deployed. We have to change these URLs but Rails makes it very easy for us.

Figure 7.2 gives an example of prettified routes:

• The controllers ActiveRbac::UserController, ActiveRbac::RoleController,
ActiveRbac::GroupController, ActiveRbac::StaticPermissionController
are mapped so they are available under /admin/arbac/controller name.

• The ActiveRbac::LoginController’s actions login and logout are mapped
directly to the root URLs /login and /logout

• The ActiveRbac::RegistrationController is mapped to /path.

• All URLs below /active rbac are mapped to a ErrorController which
would display an error page

The nice thing of Rail’s routes feature is that when you redirect with the code
redirect_to :controller => ’/active_rbac/login’, :action => ’login’
then the user will be redirected to /login now that we have set up ActiveRbac::LoginController’s
routes with as in figure 7.2.

1See the documentation at http://api.rubyonrails.org/classes/ActiveRecord/
Migration.html

37

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://api.rubyonrails.org/classes/ActiveRecord/Migration.html


7 Howtos

class InitRbacSchema < ActiveRecord::Migration
def self.up
role = Role.new
role.title = ’Admin’
role.save

user = User.new
user.login = ’Admin’
user.update password ’password’
user.email = ’root@localhost’
# the following line is essential!
user.state = User.states[’confirmed’]
user.save

user.roles << role
user.save

end

def self.down
User.find by login(’Admin’).destroy
Role.find by title(’Admin’).destroy

end
end

Figure 7.1: A migration to create an initial role and use.

38



7.2 How to make ActiveRBAC’s URLs prettier

# map the admin stuff into ’/admin/’
map.connect ’/admin/arbac/group/:action/:id’,

:controller => ’active rbac/group’
map.connect ’/admin/arbac/role/:action/:id’,

:controller => ’active rbac/role’
map.connect ’/admin/arbac/static permission/:action/:id’,

:controller => ’active rbac/static permission’
map.connect ’/admin/arbac/user/:action/:id’,

:controller => ’active rbac/user’

# map the login and registration controller somewhere prettier
map.connect ’/login’, :controller => ’active rbac/login’,

:action => ’login’
map.connect ’/logout’, :controller => ’active rbac/login’,

:action => ’logout’
map.connect ’/register/confirm/:user/:token’,

:controller => ’active rbac/registration’,
:action => ’confirm’

map.connect ’/register/:action/:id’,
:controller => ’active rbac/registration’

# hide ’/active rbac/*’
map.connect ’/active rbac/*foo’,

:controller => ’error’

Figure 7.2: Prettifying ActiveRBAC’s routes.

39



7 Howtos

7.2.1 How to set the controller layout for each controller

By default, the ActiveRBAC controllers use the layout template as set in con-
figuration value :controller_layout when rendered (see section 6.2.1 and
6.2.2 for more information).

However, in some cases we want to change this so the administration classes
(ActiveRbac::UserController and so on) have a different layout than the
LoginControllers. We can do this by creating a class file in your app/controllers
directory. Its name and path must be the same as the file defining this con-
troller in the ActiveRBAC engine.

For example, to override things in ActiveRbac::UserController, we create a file
defining this class having the name and path app/controllers/active rbac/user -
controller.rb. In this class definition, we call the class method layout with the
name of the layout we want this controller to use - just as we would if we would
define this controller yourself. See figure 7.3 for an example.

class ActiveRbac::UserController < ActiveRbac::ComponentController
layout ’admin’

end

Figure 7.3: Configure ActiveRBAC and start it.

7.2.2 How to redirect to a URL after login

When we redirect the user to the login page as described in chapter 4 and the
user logs in then he will see the Congratulations, you have logged in success-
fully page. After this, he has to find his way to the page he wanted to see
originally again.

This is not optimal. It would be much better to redirect the user back to the
page he wanted to see the first place. LoginController’s login can do this
for us if we tell it where it should redirect to. It will also set the :notice entry
of flash that login has been successful before redirecting.

How can we tell LoginController that it should redirect somewhere? There
are two options:

• We can pass LoginController the URL to redirect to in the return_to
parameter.

• We can set the :return_to session value to specify the location to redirect
to.

If we set the :return_to parameter to the target URL or path when redi-
recting to the login with the redirect_to method then this URL/path will be

40



7.2 How to make ActiveRBAC’s URLs prettier

passed to the LoginController as a query parameter. This means that ?re-
turn to=TARGET URL will be appended to the URL redirected to. Thus we do
not have to add an additional route for this.

If we use the :return_to session field then we can either pass in a URL or
path to redirect to or we can set this field to a Hash with a controller and action
name (and parameters) as we would when using return_to.

Figure 7.4 shows some examples of lines that you could write into your pro-
tection before filters.

# How to LoginController to redirect after logging in.

# redirect to server root
redirect :controller => ’/active rbac/login’, :action =>
’login’,
:return to => ’/’

# redirect to absolute URL
redirect :controller => ’/active rbac/login’, :action =>
’login’,
:return to => ’http://www.example.com/foo/bar’

# one of these lines could be in our code before redirecting

# redirect to current controller, action and id
session[:return to] = { :controller => params[:controller],
:action => params[:action],
:id => params[:id] }

# another way to redirect to server root
session[:return to] = ’/’

Figure 7.4: Telling LoginController to redirect after login.

7.2.3 How To Change ActiveRBAC’s Views/Templates

It’s easy to change the views provided by ActiveRBAC: Simply locate the file you
want to change in ActiveRBAC’s engine directory. Let’s assume you want to
provide an updated version of vendor/plugins/active rbac/app/views/active -
rbac/user/show.rhtml.

Create a new file in your app directory with the name and path app/views/active -
rbac/user/show.rhtml. Now place the code of your view in this file. The next
time when you access the show action of you UserController will use your
customized show.rhtml.

41



7 Howtos

You can do this with any other template file2.

7.2.4 How To Change ActiveRBAC’s Controllers

Sometimes you will want to change the behaviour of ActiveRBAC’s controllers
beyond the scope of ActiveRBAC’s configuration. This is easy since ActiveRBAC
is a Rails Engine3.

First, locate the controller and action you want to change in ActiveRBAC’s
engine directory. Let’s assume you want to chang the show action of the
UserController. This controller is defined in the file user controller.rb in ven-
dor/plugins/active rbac/app/controllers/active rbac.

Now, create a new file called user controller.rb in the directory app/controllers/active -
rbac (relative from your Rails Project’s root). In this file, you define the ActiveRbac::UserController
class and its show action as you can see in figure 7.5.

class ActiveRbac::UserController < ActiveRbac::ComponentController
def show
# we can place our own implementation here, now
render text ’We are to lazy to implement "show".’

end
end

Figure 7.5: Overriding the action show in UserController

All additions and overwrites done in this file will be mixed into the base
ActiveRbac::UserController provided by the Engine. This way, you can
completely change and tweak any aspect of ActiveRBAC’s controllers without
too much configuration.

7.2.5 How To Change ActiveRBAC’s Models

Modifying models defined in Engines is a bit less straightforward - but only a
bit 4. The problem is that Rails’ custom include mechanism does not expect a
file to be there twice where the second is to override some part of what the first
file defines.

Thus, you have to reimplement the a whole model file if you want to change
an spect of it. But don’t be afraid: This can be done very elegantly.

2You can find out more about tweaking Engines at http://api.rails-engines.org/
engines/files/vendor/plugins/engines/README.html.

3You can find out more about tweaking Engines at http://api.rails-engines.org/
engines/files/vendor/plugins/engines/README.html again.

4See http://api.rails-engines.org/engines/files/vendor/plugins/engines/
README.html for more information.

42

http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html
http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html
http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html
http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html
http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html
http://api.rails-engines.org/engines/files/vendor/plugins/engines/README.html


7.2 How to make ActiveRBAC’s URLs prettier

If you look at the model files in ActiveRBAC’s engine directory then you will
notice that they are very short and only define the model classes and include a
module ending on Mixin. These mixin modules provide the real functionality.
By including a mixin modules, the including classes become the fully fledged
User, Role etc. classes.

So we have to reimplement the model in our application if we want to change
an aspect of a model? Why don’t we do this by importing the mixin module.
This only takes a line and after this line we can put anything we want.

Defining an already existing method will override the old one and validates_-

*, has_one etc. macros will be executed and work as they would if you had
copied and pasted all the lines from engine’s directories (the mixin modules’
lines).

So let’s go ahead and extend the User class a bit. Look at figure ?? and see
how easy this is.

class User < ActiveRecord::Base
include ActiveRbacMixins::UserMixin

has one :accounting data
has one :contact information

def welcome message
"Welcome #{self.login}"

end

def self.foo
"BAR!"

end
end

Figure 7.6: An example of tweaking the User model class

43


	1 Foreword
	2 Tutorial
	2.1 Creating Our Sample Application
	2.1.1 Creating the Rails project
	2.1.2 Creating the Controllers

	2.2 ActiveRBAC enters the scene
	2.2.1 Installing Engines and ActiveRBAC
	2.2.2 Creating initial Role and User

	2.3 Protecting with Roles
	2.3.1 Protecting the ArticlesController with Roles
	2.3.2 Protecting ActiveRBAC itself with Roles
	2.3.3 Improving the templates
	2.3.4 Protecting the ArticlesController with Permission


	3 The Concepts Behind RBAC
	3.1 Users, Groups, Permissions
	3.2 Role Inheritance
	3.3 Groups

	4 Protection Patterns
	4.1 Using before_filter
	4.2 Check that the user is logged in
	4.3 Checking for specific roles
	4.4 Protecting only selected actions
	4.5 Using a common authentication failure handler
	4.6 Protection inside the methods

	5 Permissions Schema Patterns
	5.1 Logged in Users only
	5.2 Administrator, Editor
	5.3 Administrator, Editor, Supervisor
	5.4 Administrator, Editor, Subscriber

	6 Reference
	6.0.1 How ActiveRBAC uses the flash
	6.1 The ActiveRBAC Model Classes
	6.2 Configuration
	6.2.1 How to set configuration settings.
	6.2.2 Configuration Settings


	7 Howtos
	7.1 How to create an initial RBAC schema elegantly
	7.2 How to make ActiveRBAC's URLs prettier
	7.2.1 How to set the controller layout for each controller
	7.2.2 How to redirect to a URL after login
	7.2.3 How To Change ActiveRBAC's Views/Templates
	7.2.4 How To Change ActiveRBAC's Controllers
	7.2.5 How To Change ActiveRBAC's Models



