
In Proceedings of the 6th International Conference on Advanced Communication Technology (ICACT2004), Feb,
2004, Korea, Volume 1, P. 536-541.

Implement role based access control with attribute certificates

Wei Zhou
Computer Science Department

University of Trier
D-54286 Trier, Germany
zhouwei48@hotmail.com

Christoph Meinel
Computer Science Department

University of Trier
D-54286 Trier, Germany

meinel@ti.uni-trier.de

Abstract

Nowadays more and more activities are performed

over the Internet. But as more people are involved in
the transaction circle, security and authorization
control becomes one of the biggest concerns. Hence,
We are motivated by the need to manage and to
enforce a strong authorization mechanism in large-
scale web-environment. Role based access control
(RBAC) provides some flexibility to security
management. Public key infrastructure (PKI) can
provide a strong authentication. Privilege
management infrastructure (PMI) as a new technology
can provide strong authorization. In order to satisfy
mentioned security requirements, we have established
a role based access control infrastructure and
developed a prototype that uses X.509 public key
certificates (PKCs) and attribute certificates (ACs).
Access control is performed by access control policies
that are written in XML. Policies and roles are stored
in ACs. PKCs and ACs are all stored in LDAP
servers. A new solution for policy management is
described. The main components of the prototype are
administration tool and access control engine. The
access control engine provides a service that mediates
the data between the users and the resources, which is
also responsible for authentication and authorization.
The administration tool can create key pairs, PKCs
and ACs, manage users’ information, and so on.

Keywords

Role based access control, X.509, public key
infrastructure, public key certificates, privilege
management infrastructure, attribute certificates,
authentication, authorization, XML.

1. Introduction

Nowadays more and more activities are performed

over the Internet. This trend creates new business
opportunities and posts new technical challenges. One
of the most challenging problems in managing large
networked systems is the complexity of security
administration, particularly access control. The
traditional access control list (ACL) can not always
provide satisfied quality of security management when
there are many subjects and objects. So new access
control mechanisms are needed in order to cater for
various applications in Internet.

Role based access control (RBAC) emerged rapidly
in the 1990s as a proven technology for managing and
enforcing security in large-scale enterprise wide
systems [1, 2, 3]. It can provide more flexibility to
security management over the traditional approach of
using user and group identifiers.

Another important technology that can be used for
access control is privilege management infrastructure
(PMI) [10]. The main function of PMI is providing a
strong authorization after the authentication has taken
place. Some research and development efforts have
been done in this area [5, 7, 8, 9], but these efforts are
still in primary phase, and no authorization
mechanism is widely accepted.

We were motivated by the need of using PKI, PMI
and RBAC concepts to construct an authorization
mechanism. After assessing several works that have
been done in this area [5, 7, 8, 19, 20, 21, 22], we
decided to adopt a model that is similar to the
PERMIS [5]. The main idea of the PERMIS model is
that user’s roles are stored in ACs, access control
decisions are driven by an authorization policy, and
the authorization policy is also stored in an AC. The
main difference between them is that our model

supports multi-policy. A prototype has been
developed.

This paper is organized as follows. Section 2
overviews RBAC and PMI technologies. Section 3
describes our approach. Section 4 compares our work
to some related works. Finally, section 5 mentions
some future works.

2. Main related technologies introduction

2.1. Role based access control

The central notion of RBAC is that permissions are
associated with roles, and users are assigned to
appropriate roles. A general RBAC model as depicted
in Figure 1 was defined by Sandhu [1]. The model is
based on three sets of entities called users (U), roles
(R) and permissions (P). The user assignment (UA)
and permission assignment (PA) relations are both
many-to-many relationships. Role hierarchy (RH) in
RBAC is a natural way of organizing roles to reflect
the organization’s lines of authority and responsibility.
A senior role can inherit permissions from junior
roles. A user establishes a session during which he
activates some subset of roles that he is a member of.
Constrains are an effective mechanism to establish
higher-level organization policy, they can apply to any
of the proceeding components. RBAC also supports
three important security principles: least privilege,
separation of duties, and data abstraction.

UA
USER

ASSIGNMENT

PA
PERMISSION

ASSIGNEMENTU

USERS

R

ROLES

P
PERMI-
SSIONS

RH
ROLE

HIERARCHY

S
SESSIONS

.

.

.

CONSTRAINTS

Figure 1. Basic RBAC model

With RBAC, system administrators can create roles

for the various job functions in an organization, grant

permissions to those roles, and then assign users to the
roles on the basis of their specific job responsibilities
and policy. Users can be easily reassigned from one
role to another. Roles can be granted by new
permissions, as new applications and systems are
incorporated, and permissions can be revoked from
roles as needed. Moreover, the access control policy
can evolve incrementally over the system life cycle.
The ability to modify policy to meet the changing
needs of an organization is an important benefit of
RBAC.

More information about RBAC may consult [2, 3].

2.2. Privilege management infrastructure

PMI was specified by the ITU-T and ISO/IEC [10].
The main function of PMI is providing a strong
authorization after the authentication has taken place.
It has a number of similarities with PKI [12]. The
basic data structure in a PMI is a X.509 attribute
certificate (AC) [11]. Like public key certificate (PKC)
strongly binds a public key to its subject, AC strongly
binds a set of attributes to its holder. PMI and PKI
infrastructures are linked by information contained in
the attribute and identity certificates. For example the
field holder in an AC contains the serial number and
issuer of a PKC. The attribute certificate, identity
certificate and their relation are depicted in Figure 2.

Version
Serial Number

Issuer
Validity Period

Subject
Public Key

Issuer Unique ID
Subject Unique ID

Extensions
Signature Algorithm

Signature Value

Version
Holder
Issuer

Serial Number
Validity Period

Attributes
Issuer Unique ID

Extensions
Signature Algorithm

Signature Value

Figure 2. Relation between attribute and

identity certificate

In PMI the ACs’ issuer is called attribute authority
(AA). ACs are digitally signed by the AA, so they are
tamper-resistant. The trusted root is called source of
authority (SOA). When a user’s authorization
permissions need to be revoked, AA will issue an
attribute certificate revocation list (ACRL) containing
the list of ACs no long to be trusted.

There are two primary models for distribution of
attribute certificates: the “push” or “pull” model. The
“push” model is suitable when the client’s rights
should be assigned within the client’s “home” domain,
whereas the “pull” model is suitable when the client’s
rights should be assigned within the server’s domain.

More information about PMI may consult [10, 11].

3. Implementation

3.1. System overview

Our access control system is designed to support
RBAC using X.509 PKCs and ACs. The
authentication is implemented by PKI, and the
authorization is implemented by PMI. Role
information is stored in role ACs. All the access
control decisions are made based on authorization
policies, they are written in XML and stored in policy
ACs. ACs and their corresponding PKCs are all stored
in LDAP servers [16]. In our prototype there are two
kinds of policy: root policy and authorization policy.
We use the PERMIS X.500 PMI RBAC policy [6] as
our RBAC policy. Its Data Type Definition (DTD) has
been published at http://www.xml.org. A policy
management strategy makes it easy to add or remove a
policy without influence to the software and other
policies. The basic components of the access control
system as depicted in Figure 3 are described as follows.

Access
Control
Engine

User Data
Resources

Administration
Tool Support

Database

Role
ACs

PKI

Authenticate

Authorize

Policy
ACs

Figure 3. The overview of the access control

system

• Administration Tool – is used for creating key
pair, PKCs, policy and role ACs, manage users’
information and so on.

• Support Database – stores the information that is
used by the administration tool, e.g. the users’
information [17].

• Access Control Engine – executes the functions of
authentication and authorization, then accesses
the target on behalf of the user.

• Access Control Policies – specify which roles
have which rights on which targets. Each access
control decision is made based on them.

• Data Resources – they may be web servers, data
servers, file systems or other format data
resources.

3.2. Administration Tool

The administration tool can complete three main
functions: creating key pair and its PKC, creating
policy and role ACs, managing PKCs and ACs. The
key pair tool can create key pair and its self-signed
PKC for CA or AA, or non self-signed PKC for
normal users. When Trusted Third Party services
(TTPs) are needed, users must provide their PKCs to
the AA for creating their role ACs. The AC tool can
create policy and role ACs. The policy AC’s attribute
value is gotten from a XML file. Policy AC is bound
to an AA’s PKC and signed by the AA. The role AC’s
attribute value consists of one or several role names,
e.g. “Manager”, “Clerk”, etc. Role AC is bound to a
user’s PKC and signed by the AA. In our prototype we
adopt AC “pull” model, so the role ACs are not given
to users and does not need the ACRL. The policy and
role ACs are all stored in LDAP servers. Since they
have been signed by the AA, so they are tamper-
resistant and no modification risk from allowing them
to be stored in a publicly accessible repository. The
certificate tool is used for managing PKCs and ACs,
for example, imports or exports PKCs or ACs from
LDAP servers. The administration tool also has some
other useful functions, for example, manages key
store, manages users’ information, and so on.

3.3. Access control engine

The access control engine is implemented by a Java
servlet [15]. It is responsible for authentication and
authorization and provides a service that mediates the
data between the users and the targets. Its structure is
depicted in Figure 4. Our access control framework
conforms to the basic principle of ISO 10181-3 Access
Control Framework that is defined by the Open Group
[13]. This framework separates authentication from
authorization, and comprises four components:

Initiator (e.g. a browser), Target (e.g. a database),
Access Control Enforcement Function (AEF) and
Access Control Decision Function (ADF). The
initiator submits access request that specifies an
operation to be performed on a target. The AEF
mediates access requests, it submits decision request to
ADF through the authorization API (aznAPI) [14], a
decision request asks whether a particular access
request should be granted or denied. AEF uses the
aznAPI to presents Access Control Information (ACI)
that is a set of the information that might be relevant
to an access control decision to ADF. ADF decides
whether access requests should be granted or denied, it
makes access control decisions based on access control
policies and Access Control Decision Information
(ADI) that describes security-relevant properties of the
initiator, the target, the access request, and the system
and its environment. The aznAPI is responsible for
deriving ADI from the ACI and presenting the ADI to
the ADF. At last AEF enforces access control
decisions made by ADF.

Initiator Target

Access Enforcement
Function (AEF)

aznAPI

Access Decision
Function (ADF)

Authentication

LDAP
Server

Submit
Access
Request

Present
Access
Request

Decision
Request Decision

Policy ACs
Role ACs and

their PKCs

Figure 4. The access control engine

In our model, a user accesses resources via an

access control engine. First he uses his private key to
sign some information, then uploads this signature file
with a browser. On the server side, the AEF yields his
LDAP distinguished name (DN) from the file, and
gets the user’s PKC from a LDAP server using the
LDAP DN. The AEF authenticates the user through
verifying his signature with his PKC, if he is a valid
user, the AEF passes his LDAP DN to ADF through
calling aznAPI in order to get the user’s roles,
otherwise refuses his connection request. The ADF
uses the LDAP DN to retrieve the user’s role ACs and
checks whether they are issued by a trusted AAs and
still valid, the invalid ACs are discarded. From the
valid ACs the user’s roles and their validity time will

be extracted. These roles and their validity time,
together with refresh time and session time are
returned to the AEF. The AEF keeps the information
that comes from user’s signature, PKC and ADF, then
establishes a session for him. If the refresh times out,
AEF recall the aznAPI to get the user’s roles again. If
the session times out, the AEF either closes the user’s
connection or informs the user to reconnect. Refresh
time provides a compromised solution between
reading ACs every time and never reading ACs in the
whole session time. Too often reads user’s role ACs
will lead to obvious inefficiency, whereas too rarely
renews user’s role list will lead to unexpected roles
still in action when they have been revoked, in the
same time, it can also lead to new rights inactivity
when they have been assigned. The session time can
avoid that a user keeps the connection open for an
infinite amount time until his ACs expires. How long
the refresh time and the session time should be set
depend on the application requirements. They have to
be configured into the system at start up.

- Get the root policy AC
- Construct the policy hierarchies
and policy control schemes
- Get subordinate policy ACs
- Initialize subordinate policies

- Yield user’s LDAP DN
- Get user’s PKC
- Verify user’s signature
- Get user’s role ACs and extract
the roles
- Set a session for the user

CLIENT SERVER

Start a browser
Upload signature file

Connect request

Connect answer

Service request

Service answer

- Get the user’s role list
- Remove expired roles
- Construct an ACI for ADF
- ADF make a decision based on
policy control scheme and policy
hierarchies
- The AEF access target on behalf
of the user

Select a service

T
I

M
E

Figure 5. Authentication, authorization and

service sequence

Secondly, after passing the authentication, the user
can select a service and submit the request to the
access control engine. The AEF constructs ACI using
the access request information, e.g. action information
and target information, and roles information that has
been kept for the user in the connection request phase.
But before constructing the role information, the AEF
will check every role’s validity time, and remove the
expired roles from the role list. After that the ACI is
submitted to ADF through the aznAPI. The ADF get

the roles, action and target information from the ACI,
then checks if the roles are allowed to perform the
action to the target according to the corresponding
access control policies. If the action is allowed,
“PERMIT” is return, otherwise “NO PERMIT” is
returned. In the case of permission, the AEF will
access the target on behalf of the user and return the
result to the user, if no permission the user’s request is
refused. The authentication, authorization, and the
service sequence are depicted in Figure 5.

3.4. Policy management

In big organizations, for example the government
or enterprises, it is difficult to assume that all the
resources are controlled under one authorization
policy. Otherwise it means that the policy is either too
complex to maintain, or too simple to provide fine-
grained access control. We bring forward a new
solution for policy management to solve this problem.
In our model, every domain comprises a root policy
and some subordinate policies. The root policy
specifies which policies are used in a domain, where
to find them, how to verify them and their validity
time. It also specifies the policy hierarchies and the
policy control schemes that describe which access
request should be checked by which policies.
Subordinate policies specify which roles have which
rights on which targets, they can be centralized or
distributed. All policies are stored in ACs, thus
guaranteeing their integrity. The root policy is stored
in a self signed AC. In a domain there maybe are lots
of self-signed policy ACs, but only one keeps the root
policy, the information about this AC is stored in a
configuration file that must be kept in a security place.
When the access control engine starts up, the system
gets the information about the root policy AC from the
configuration file, and reads the root policy AC in. If
the AC passing the audit process, the root policy is
extracted, then the policy control schemes and the
policy hierarchies are constructed. According to the
information in the root policy, the system reads in
other policy ACs, verifies them and extracts the
policies from them, then initializes these policies.

An example about policy control scheme and policy
hierarchy is depicted in Figure 6. In the policy control
scheme there comprises five policies (P1, P2, P3, P4
and P5). The meaning of the scheme is that a request
must either satisfy P1, P3, P4 and P5, or satisfy P1, P2
and P5. In the policy hierarchy there comprises five
policies (P0, P2, P6, P7 and P8). The P0 is root policy
in the tree, and the others are subordinate policies that

inherit from the root policy and superior policies. In
the runtime, when P2 is checked in the policy control
scheme and the result is “PERMIT”, the system finds
it is included in a policy tree and inherits from P0,
then P0 will be checked and the result will be the final
result of P2 in the scheme.
A refresh time is set for the root policy, if it times out,
the system reads the root policy and initializes every
thing again. The refresh time can assure to renew the
access control information in a tolerable time. How
long the refresh time should be set depends on the
application requirements. It has to be configured into
the system at start up

P1

P2

P3 P4

P5
Request Decision

(a) Policy control scheme

P0

P7

P2

P6

P8

(b) Policy hierarchy

Figure 6. Examples of policy control scheme

and policy hierarchy

Each policy control scheme is set a validity time, if

it is expired, this scheme will not be used, and all the
access requests relate to this scheme will be refused.
Similarly, each policy is also set a validity time. When
a policy in a policy scheme or a policy hierarchy is
expired, how to deal with this situation depends on
which kind of tag has been added to a policy, i.e.
“critical” or “non-critical”. In the case of “critical”
checking this policy must return “NO PERMIT”,
otherwise ignore this policy and return “PERMIT”.

In conclusion, in our opinion the concepts of policy
control scheme and policy hierarchy can provide more

flexibility to policy management and accommodate the
complicated application.

4. Related works

There are two important analogous systems,

namely the PERMIS [5] and Akenti [7].
There are two major differences between PERMIS

and our model. The first is that in PERMIS one policy
governs all aspects of access to the targets in the local
domain, so it does not support the policy hierarchies.
On the contrary, in our model every domain has a root
policy that specifies which policies are used, how to
get them and their validity periods. These subordinate
policies can be distributed and hierarchical, several
policies can form a policy control scheme and in a
domain can have lots of policy control schemes. The
second is that PERMIS is authentication agnostic and
leaves it up to the application to determine what type
of authentication to use, whereas our model requires
the user to be PKI enabled and to present an X.509
PKC at authentication time.

There are three major differences between Akenti
and our model. The first is that in Akenti the ACs are
in a non-standard format. The second is that in Akenti
the access control essentially is a classical access
control list (ACL) model, whereas our model has
implemented role based access control. The third is
that their policy hierarchies are not specified in a
secure way, because these policies must be stored in
secure directory hierarchies, and the directory
hierarchy determines the policy hierarchy [18]. On the
contrary, we specify the policy hierarchies in the root
policy.

5. Future works

Our future research work includes two parts, one is
that improves our model so that it can be used in
distributed environment, the other is that extends
RBAC in order to support the dynamic aspects of
many modern information systems like the workflow.

References

[1] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman,
Role based access control models, IEEE Computer, 29
February 1996.
[2] David F. Ferraiolo, R.S. Sandhu, Serban Gavrila, D.
Richard Kuhn and Ramaswamy Chandramouli, Proposed
NIST Standard for Role-Based Access Control, ACM
Transactions on Information and Systems Security
(TISSEC), Volume 4, Number 3, August 2001.

[3] R.S. Sandhu, Bhamidipati and Qamar Munawer The
ARBAC97 Model for Role-Based Administration of Roles,
ACM Transactions on Information and Systems Security
(TISSEC), Volume 2, Number 1, Februrary 1999.
[4] J.S. Park, R. Sandhu, G. Ahn, Role-based access control
on the web, ACM Transactions on Information and System
Security, Volume 4, Number 1, February 2001.
[5] D.W. Chadwick, A. Otenko, The PERMIS X.509 role
based privilege management infrastructure, Future
Generation Computer Systems, Volume 19, Issue 2,
February 2003, Pages 277-289.
[6] D.W. Chadwick, A. Otenko, RBAC Policies in XML for
X.509 Based Privilege Management, to be presented at SEC
2002, Egypt, May 2002.
[7] M. Thompson, A. Essiari, S. Mudumbai, Certificate-
based Authorization Policy in a PKI Environment,
Submitted to a special issue of ACM Transactions on
Information and System Security, August 2003.
 [8] B. Blobel, P. Hoepner, R. Joop, S. Karnouskos, G.
Kleinhuis and G. Stassinopoulos, Using a privilege
management infrastructure for secure web-based e-health
applications, Computer Communications, Volume 26, Issue
16, 15 October 2003, Pages 1863-1872.
[9] Javier Lopez, Antonio Mana, Juan J. Ortega, Jose M.
Troya and Manemma I. Yague, Integrating PMI services in
CORBA applications, Computer Standards & Interfaces,
Volume 25, Issue 4, August 2003, Pages 391-409.
[10] ITU-T Rec. X.509 ISO/IEC 9594-8, The Directory:
Public-key and Attribute Certificate Frameworks, May 3,
2001.
[11] S. Farrell, R. Housley, An Internet Attribute Certificate
Profile for Authorization, Internet-draft April 2002,
http://www.ietf.org/rfc/rfc3281.txt.
[12] R. Housley, W. Ford, W. Polk, D. Solo, Internet X.509
Public Key Infrastructure Certificate and CRL Profile,
http://www.ietf.org/rfc/rfc2459.txt.
[13] ITU-T Rec. X.812(1995)|ISO/IEC 10181-3:1996,
Security frameworks in open systems: Access control
framework.
[14] The Open Group, Authorization (AZN) API, ISBN: 1-
85912-266-3, January 2000.
[15] Jakarta Tomcat servlet container,
http://jakarta.apache.org/tomcat/.
[16] OpenLDAP, the Open Source Lightweight Directory
Access Protocol (LDAP), http://www.openldap.org/.
[17] MySQL, the Open Source SQL database,
http://www.mysql.com/.
[18] A. Otenko, D.W. Chadwick, A Comparsion of the
Akenti and PERMIS Authorization Infrastructures,
http://sec.isi.salford.ac.uk/.
[19] M. Blaze, J. Feigenbaum, J. Ioannidis, The KeyNote
Trust-Management System, Version 2, RFC 2074,
September 1999.
[20] L. Pearlman, V. Welch, I. Foster, K. Kesselman and S.
Tuecke, A Community Authorization Service for Group
Collaboration, IEEE Workshop on Policies for Distributed
Systems and Networks (2002).

[21] The Virtual Organization Membership Service
(VOMS), http://grid-auth.infn.it/.
[22] M. Erdos, S. Cantor, Shibboleth-Architecture DRAFT
v05, http://shibboleth.internet2.edu/.

