
Journal of Network and Computer Applications(2001)25, 000–000

doi:10.1006/jnca.2000.0125, available online at http://www.idealibrary.com on

CONUGA: Constrained User Group Assignment

Gail-Joon AhnŁ and Kwangjo Kim †

ŁComputer Science Department, University of North Carolina at Charlotte, 9201
University City Blvd., Charlotte, NC 28223, U.S.A. E-mail: gahn@uncc.edu
School of Engineering, Information and Communications University, 58-4 Hwaam-dong,
Yusong-ku, Taejon, 305–348, Korea (ROK) E-mail: kkj@icu.ac.kr

(Received 16 November 1999; accepted 9 February 2000)

In role-based access control (RBAC), permissions are associated with roles and users
are made members of appropriate roles, thereby acquiring the roles’ permissions. The
principal motivation behind RBAC is to simplify administration. In this paper, we
investigate one aspect of RBAC administration concerning assignment of users to roles.
We introduce a constrained user-role assignment model, called CONUGA (CONstrained
User-Group Assignment) and describe its implementation in the Windows NT system.
Rather than set user and file rights individually for each and every user, the administrator
can give rights to various groups, then place users within those groups in Windows NT.
Each user within a group inherits the rights associated with that group. We demonstrate
how to extend the Windows NT group mechanism supporting our model that is useful in
managing group-based access control. 2001 Academic Press

1. Introduction

Role-based access control (RBAC) has recently received considerable attention
as a promising alternative to traditional discretionary and mandatory access
controls (see, for example, [1–8]). In RBAC, permissions are associated with
roles, and users are made members of appropriate roles, thereby acquiring the
roles’ permissions. This greatly simplifies management of permissions. Roles are
created for the various job functions in an organization and users are assigned
to roles based on their responsibilities and qualifications. Users can be easily
reassigned from one role to another. Roles can be granted new permissions as
new applications and systems are incorporated, and permissions can be revoked
from roles as needed.

In large enterprise-wide systems the number of roles can be in the hun-
dreds or thousands, and users can be in the tens or hundreds of thousands,
may be even millions. Managing these roles and users, and their interrelation-
ships is a formidable task that often is highly centralized and delegated to a
small team of security administrators. User-role assignment is likely to be the
first administrative function that is decentralized and delegated to users rather
than system administrators. Assigning people to tasks is a normal manage-
rial function. Assigning users to roles should be a natural part of assigning

1084–8045/01/000000C000 $35.00/0 2001 Academic Press

2 G.-J. Ahn and K. Kim

users to tasks. Empowering managers to do this routinely is one way of mak-
ing security an enabling user-friendly technology rather than an intrusive and
cumbersome nuisance as it all too often turns out to be. A manager who can
assign a user to perform certain tasks should not have to ask someone else
to enroll this user in appropriate roles. This should happen transparently and
conveniently.

Sandhu and Bhamidipati [9] recently introduced the URA97 model for decen-
tralized administration of user-role membership (URA97 stands for user-role
assignment 1997). They simply focused on user-role assignment without consid-
eration of the important constraints such as separation of duty (SOD) constraints.
An example of such a policy may be ‘the patent submitted to a patent authoriza-
tion agency can be reviewed only by a member of its patent review committee.’
This simple role-based access control may not be adequate for expressing many
business policies. An example of such policy is ‘none of the applicants of the
patent is eligible to review a patent, even though the applicant is a patent review
committee member.’ These policies, also known as SOD constraints should be
dealt with user-role assignment.

Constraints are an important aspect of RBAC and are often regarded as one of
the principal motivations behind RBAC. Although the importance of constraints
in RBAC has been recognized for a long time, they have not received much
attention. Ahn and Sandhu [10] recently showed that role-based authorization
constraints such as separation of duty (SOD) can be expressed by the specification
language called RCL 2000. We use the concept of static separation of duty
(SSOD) borrowed from their work. The central contribution of this article
is to describe how we can achieve this kind of constraints during user-role
assignment named constrained user-role assignment (CONURA), as an extension
of URA97.

A user-role assignment model can also be used for managing user-group
assignment and therefore has applicability beyond RBAC. The notion of a role is
similar to that of a group, particularly when we focus on the issue of user-role or
user-group membership. For our purpose in this paper we can treat the concepts
of roles and groups as essentially identical. The difference between roles and
groups was hotly debated at the ACM Workshop. There exists the consensus that
a group is a named collection of users (and possibly other groups). Groups serve
as a convenient shorthand notation for collections of users and that is the main
motivation for introducing them. Roles are similar to groups in that they can
serve as a shorthand for collections of users, but they go beyond groups in also
serving as a shorthand for a collection of permissions. Assigning users to roles
or users to groups are therefore essentially the same function.

The rest of the paper is organized as follows. In section 2, we review
the URA97 grant model. Section 3 describes constrained user-group assign-
ments. In section 4 we discuss implementation details. Section 5 concludes the
paper.

CONUGA: Constrained user Group Assignment 3

2. Overview of the URA97 model

This section reviews URA97. We often use the term group as an identical notion
of role. Our description of URA97 is informal and intuitive, but a formal statement
of URA97 is given in [9]. In this section we simply give a quick overview of the
grant model which is dealing with granting a user membership in a group.

2.1 User-group grant model

URA97 imposes restrictions on which users can be added to a group by whom.
URA97 requires a hierarchy of groups (such as in Figure 1) and a hierarchy of
administrative groups (such as in Figure 2). The set of groups and administrative
groups are required to be disjoint. Senior groups are shown toward the top and
junior ones toward the bottom. Senior groups inherit permissions from junior
groups. We writex>y to denotex is senior toy with obvious extension to

Employee (E)

Engineering Department (ED)
Project 1 Project 2

Engineer 1 (E1) Engineer 2 (E2)

Project lead 1 (PJ1) Project lead 2 (PJ2)

Director (DIR)

Production
Engineer 2

(PE2)

Quality
Engineer 2

(QE2)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Figure 1. An example group hierarchy.

Department Security Officer (DSO)

Senior Security Officer (SSO)

Project Security
Officer 1 (PSO1)

Project Security
Officer 2 (DSO2)

Figure 2. An example administrative group hierarchy.

4 G.-J. Ahn and K. Kim

x½y. The notion of prerequisite condition is a key part of URA97. User-group
assignment is authorized in URA97 by thecan-assignrelation.

Definition 1: A prerequisite conditionis a boolean expression using the usual
^ and_ operators on terms of the formx and x wherex is a regular role (i.e.,
x2R). A prerequisite condition is evaluated for a useru by interpretingx to be
true if .9x0½x/.u, x0/2UA and x to be true if.8x0½x/.u, x0/ /2UA. For a given
set of rolesR let C P R denote all possible prerequisite conditions that can be
formed using the roles inR. �

Definition 2: The URA97 model controls user-role assignment by means of
the relationcan�assign�ARðCPRð2R. �

The meaning ofcan-assign(x, y, fa, b, cg) is that a member of the administra-
tive role x (or a member of an administrative role that is senior tox) can assign
a user whose current membership, or non-membership, in regular roles satisfies
the prerequisite conditiony to be a member of regular rolesa, b or c.

2.1.1 Range notation. URA97 also definescan-assignby identifying a range
within the role hierarchy by means of the familiar closed and open interval
notation.

Definition 3: Role sets are specified in the URA97 model by the notation
below:

[x, y]Dfr2Rjx½r^r½yg
[x, y]Dfr2Rjx>r^r½yg
[x, y]Dfr2Rjx½r^r>yg
.x, y/Dfr2Rjx>r^r>yg.

�

2.1.2 Prerequisite conditions.
Let us consider the PSO1 tuples (analysis for PSO2 is exactly similar). The

first tuple authorizes PSO1 to assign users with prerequisite role ED into E1. The
second one authorizes PSO1 to assign users with prerequisite condition ED^QE1
to PE1. Similarly, the third tuple authorizes PSO1 to assign users with prerequisite
condition ED̂ PE1 to QE1. Taken together the second and third tuples authorize
PSO1 to put a user who is a member of ED into one but not both of PE1 and QE1.
This illustrates how mutually exclusive roles can be enforced by URA97. PE1
and QE1 are mutually exclusive with respect to the power of PSO1. However, for
the DSO and SSO these are not mutually exclusive. Hence, the notion of mutual
exclusion is a relative one in URA97. The fourth tuple authorizes PSO1 to put a
user who is a member of both PE1 and QE1 into PL1. Of course, a user could
have become a member of both PE1 and QE1 only by actions of a more powerful
administrator than PSO1. Table 1 is an example of acan-assignrelation table.

CONUGA: Constrained user Group Assignment 5

Table 1. Example of can-assign

Admin. role Prereq. condition Role range

PSO1 ED [E1, E1]
PSO1 ED̂ QE1 [PE1, PE1]
PSO1 ED̂ PE1 [QE1, QE1]
PSO1 PE1̂ QE1 [PL1, PL1]
PSO2 ED [E2, E2]
PSO2 ED̂ QE2 [PE2, PE2]
PSO2 ED̂ PE2 [QE2, QE2]
PSO2 PE2̂ QE2 [PL2, PL2]
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED [ED, DIR]

3. Constrained user-group assignment

RBAC regulates the access of users to information and system resources on the
basis of activities that users need to execute in the system. Instead of specifying
all the access each user is allowed to execute, access authorizations on objects
are specified for roles. RBAC provides a powerful mechanism for reducing the
complexity, cost, and potential for error of assigning users permissions within
the organization. Because roles within an organization typically have overlapping
permissions, RBAC models include features to establish role hierarchies, where a
given role can include all of the permissions of another role. Another fundamental
aspect of RBAC is authorization constraints (also simply called constraints).
This issue has not received much attention in the research literature, while role
hierarchies have been practiced and discussed at considerable length. Constraints
(also simply called constraints) are an important aspect of role-based access
control and are a powerful mechanism for laying out higher level organizational
policy. Most of role-based constraints work has focused on separation of duty
constraints which is a foundational principle in computer security.

As a security principle, separation of duty (SOD) is a fundamental technique
for prevention of fraud and errors, known and practiced long before the existence
of computers. It is used to formulate multi-user control policies, requiring that
two or more different users be responsible for the completion of a transaction
or set of related transactions. The purpose of this principle is to minimize fraud
by spreading the responsibility and authority for an action or task over multiple
users, thereby raising the risk involved in committing a fraudulent act by requiring
the involvement of more than one individual. A frequently used example is
the process of preparing and approving purchase orders. If a single individual
prepares and approves purchase orders, it is easy and tempting to prepare and
approve a false order and pocket the money. If different users must prepare and
approve orders, then committing fraud requires a conspiracy of at least two, which
significantly raises the risk of disclosure and capture.

6 G.-J. Ahn and K. Kim

Although separation of duty is easy to motivate and understand intuitively, so
far there is no formal basis for expressing this principle in computer security
systems. Several definitions of SOD have been given in the literature. We have
the following definition for interpreting SOD in role-based environments:

Role-Based separation of dutyensures SOD requirements in role-based systems by
controlling membership in, activation of, and use of roles as well as permission
assignment.

Separation of duty constraints can be determined by the assignment of individuals
to roles at user-assignment time. Consider the case of initiating and authorizing
payments. The separation of duty constraints could require that no individual who
can serve as payment initiator could also serve as payment authorizer. This could
be implemented by ensuring that no one who can perform the initiator role could
also be assigned to the authorizer role. This static separation of duty can apply to
the user-role assignment. Therefore, we adapt the grant model in URA97. User
u can be explicitly assigned to roleri where .u, ri/2UA. Also, useru can be
implicitly assigned to rolerj where .9ri¼rj/[.u, rj/2UA]. Let CR be a set of
roles which are needed to be in static SOD.CR is said to be a conflicting role set.
The static SOD requirement is that the same user cannot be assigned explicitly
or implicitly to more than one role inCR.

We can enforce static SOD as we check each assignment task with a givenCR.
This enforcement framework is based on the basic conceptual structure illustrated
in Figure 3. We have AT-SET (assignment time set) table which includes SOD
sets used to enforce SOD requirements at assignment time. The example of AT-
SET table withCR is described below. This table tells us that rolespay-initiator
and pay-authorizerare conflicting each other so a user cannot be assigned to

Users Roles Permissions

SSO

AT-SET

Permission
assignment

User
assignment

Figure 3. Constrained user assignment.

CONUGA: Constrained user Group Assignment 7

both roles.

SET-NAME ELEMENT

CR1 fpay�initiator, pay�authorizerg
Whenever System Security Officer (SSO) does assignment tasks, each assignment
task should be checked with AT-SET table and satisfy the constraints in the table.
Figure 4 describes an algorithm which achieves desired behavior of CONUGA.
There are two procedures called Membership and JuniorList. Membership pro-
cedure allows us to have all assigned roles to a user and JuniorList procedure
returns all junior roles to a specified role by walking down the hierarchy. This
grant algorithm checkscan-assigntable and AT-SET table to enforce constrained
user assignment.

4. Implementation of CONUGA

Every account in Windows NT’s user database contains a group membership
list indicating which groups the account belongs to [11].Ł Users belonging to a
group are explicitly displayed with the administrative tool. Windows NT notably
lacks a facility for including one group in another. Many commercial database
management systems, such as Informix, Oracle and Sybase, provide facilities for
hierarchical groups (or roles). Commercial operating systems, however, provide
limited facilities at best for this purpose.

Let x>y signify that groupx is senior to y, in the sense that a member ofx is
also automatically a member ofy but not vice versa. Note that a member ofx has
the power of a member ofy and may have additional power, hence a member of
x is considered senior to a member ofy. It is natural to require that seniority is
a partial ordering, i.e.,>is irreflexive, transitive and asymmetric. The irreflexive
property is obviously required since every member ofx is already a member ofx.
Transitivity is certainly an intuitive assumption and perhaps even inevitable. After
all, if x>y andy>z then a member ofx is a member ofy and so should also be
a member ofz. The asymmetric requirement eliminates redundancy by excluding
groups which would otherwise be equivalent. We writex>y to meanx>y or
xDy. If x is senior toy we also say thaty is junior to x. For convenience we
use the term hierarchy to mean a partial order. As we have mentioned, Windows
NT does not have the notion of hierarchy between groups.2 To maintain the
group hierarchy we use the filegrouphr.txt to store the children and parents

Ł For simplicity, we just focused on global groups in Windows NT.
2 Like Windows NT, group policy in Windows 2000 permits administrators to define customized
rules about virtually every facet of a user’s computer environment such as security, user rights,
desktop settings, applications, and resources, minimizing the likelihood of misconfiguration. Group
policy in Windows 2000, however, works in conjunction with the Active Directory service which
might be able to construct relationships between groups.

8 G.-J. Ahn and K. Kim

Grant algorithm

Let invoker be an initiator of user-role assignment and letassignDB have
three attributes such asassignDB. admin, assignDB. cond and assignDB.
range to construct a table as shown in Table 1.

invoker role set Membership.invoker/
target role role to be assigned
user user to whichtarget role is assigned
assignDB can-assignrelation table
CR set AT SET table
grant Flag false

assignrole setDf

While.assignDB 6D EOF)
if invokerrole setexists in assignDB. admin then
if target role exists in assignDB. range then
user role set Membership.user/;
if userrole setexists in assignDB. cond then
grant FlagD true;
return;
endif
endif
endif

End

if grant FlagD true then
assignrole set JuniorList.target role/;
if assignrole set\CR setDfthen
do the assignment of role inassignrole set;

else
exit;

endif
endif

Procedure Membership (user)
Take all assigned roles to a user

Procedure JuniorList (role)
Take all junior roles to a specified role in role-hierarchies

Figure 4.

CONUGA: Constrained user Group Assignment 9

Table 2. The example group hierarchy of Figure 1

Group name Parent group(s) Child group(s)

DIR — PL1, PL2
PL1 DIR PE1, QE1
PL2 DIR PE2, QE2
PE1 PL1 E1
QE1 PL1 E1
PE2 PL2 E2
QE2 PL2 E2
E1 PE1, QE1 ED
E2 PE2, QE2 ED
ED E1, E2 E
E ED —

of each group. The group hierarchy of Figure 1 is represented ingrouphr.txt

as shown in Table 2. The first column gives the group name, the second column
gives the (immediate) parent groups of that group, and the third column gives the
(immediate) children. The null symbol ‘�’ means that the group has no parent
or child as the case may be. Usinggrouphr.txt, we can find all seniors and
juniors for a group by respectively chasing the parents and children.

We say a user is anexplicit member of a group if the user is explicitly
designated as a member of the group. A user is animplicit member of a group if
the user is an explicit member of some senior group. To simulate a group hierarchy
we use information about explicit and implicit membership inaccountDB.3 If
Alice belongs explicitly or implicitly to a group she will be added to that group’s
member list inaccountDB. However,accountDB is not sufficient to distinguish
the case where Alice is both an explicit and implicit member of some group from
the case where she is only an implicit member of the group. For this purpose
we introduce another fileexplicit.txt that keeps information about explicit
membership only.

Another limitation of Windows NT groups is that membership is exclusively
controlled by built-in administrator groups which does not scale gracefully
to systems with large numbers of groups and users. More generally, it is
possible to decentralize user-group assignment by allowing administrators to
selectively delegate authority to assign certain users to certain groups. Effective
decentralization of user-group assignment is one step towards making security
more acceptable to end users as an enabling and empowering technology, rather
than as the general nuisance it is often perceived to be [12].

We use Microsoft RPC to enforce desired behavior of CONUGA with respect
to different administrative groups. The RPC mechanism uses the Windows NT

3 For ease of reference, we call Windows NT’s user account databaseaccountDB. Windows
NT’s user account database is managed via User Manager Tool only by a user with administrative
powers. Through this tool, new user or group can be created and security policies can be specified.

10 G.-J. Ahn and K. Kim

NO
File: explicit.txt

 Permission: [Alice] RW
 Ownership: [Alice]
assign.exe
 Permission: [Alice] X
 Ownership [Alice]

YES

File: RPCserver
 Permission: [everyone] X
 Ownership: [Alice]

 User: [Bob]
 Group: domain guest

File: RPCclient
 Permission: [everyone] X

Figure 5. RPC Mechanism.

security built in as part of the operating system. The main mechanism is illustrated
in Figure 5. In Figure 5, let’s assume that Alice owns the RPC server program and
two files assign.exe andexplicit.txt. Alice can execute the executable file
assign.exe which should referexplicit.txt file to accomplish its function.
Alice also can read and write the text fileexplicit.txt. And Alice allows
everyone to execute RPC server program by assigning such permission set to RPC
server program. According to this configuration, a user (say Bob) cannot access
Alice’s two files. That is, no one can accessassign.exe and explicit.txt,
except for Alice. However, by means of using Microsoft RPC named pipes,
Bob can executeassign.exe and accessexplicit.txt. The execution of RPC
server program allows us to provide users access toexplicit.txt but only
by way of assign.exe. In other wordsassign.exe is a protected subsystem
which runs with different permissions than the user who invokes it. When the
RPC server program is executed, the effective user of the process is the owner
(Alice) of the file, acquiring that user’s access rights for duration of the program
contained in this file. Therefore, a user who is executing RPC server program
through RPC client program can invoke assign.exe and accessexplicit.txt.
Thereby, a user who is working as an administrative group can read and write
reference files:explicit.txt, grouphr.txt andcan-assign.txt.4 Using this
feature, we can enforce desired behaviour of URA97 with constrained conditions.

Our implementation follows the basic steps shown in Figure 6. The diagram
shows the data flow and the relationship between assignment processes. There is
a procedure for assigning a user to a group. The procedure call is as follows.

ž assign (user, tgroup)

4 This is a table as described in Table 1.

CONUGA: Constrained user Group Assignment 11

URA database

Account databases

5. Update account
database

4. Check hierarchy
information and

assign range

2. Check client's
privileges based on

his group
memberships

3. Check
prerequisite

condition and
constrained

condition

1. Find assigned
groups to

this invoker

Assign

Username, group

Figure 6. Data flow and its relationship diagram.

The parameters user and tgroup (target group) specify which user is to be assigned
to tgroup. This procedure is called at the Windows NT command line prompt
(which is actually DOS prompt) as follows.

C:n> assign username target-group

There is a built-in Windows NT command line utilitynet.exe. To assign a user
to group(s) theassign function generates batch files which include this command
line utility with several parameters based on its syntax. Thenet.exe function
enables us to check whether or not a user is assigned to a specified group. The
assign function also has a module that calls this system call and uses the results
from it. Basic syntax and an example of this system call are as follows.

C:n> net

The syntax of this command is:

NET [ACCOUNTS |COMPUTER |CONFIG |CONTINUE |FILE |GROUP |HELP |

HELPMSG |LOCALGROUP |NAME |PAUSE |PRINT |SEND |SESSION |

SHARE |START |STATISTICS |STOP |TIME |USE |USER |VIEW]

C:n> net user

User accounts for n n gahn

. .

Administrator Guest

The command completed successfully.

Theassign function has five main modules. Each module accesses URA database
or Windows NT’s user account database for its purpose. URA database maintains

12 G.-J. Ahn and K. Kim

12:16 PM Constrained User Group Assignment

CONUGA

ASSIGN

CANCEL

Constrained
Assignment

Enter Username and Groupname

User Name: alice

Group Name: engindept

Constrained Assignment is running...
Valid admin Group: SSO

Prerequisite Condition Checking... Done.
Constrained Condition Checking... Done.

Figure 7. CONUGA interface.

group hierarchy information, explicit membership,can-assignrelation table and
AT-SET table. Thisassign function is based on grant algorithm described in
Figure 4.

In order to make our implementation more convenient we developed a graphical
user interface which interacts with this procedure to do user-group assignment.
The graphical user interface is illustrated in Figure 7. This interface was developed
using Visual Basic programming and is used to initiate user-group assignment
instead of typing the above as command line procedure call. This implementation
is convenient for administrative groups since they only need to define the group
hierarchy and the relationscan-assign.

5. Conclusion

In this paper we have described our experiment to provide constrained user-group
assignment. When a user is assigned to a group the system checks constraints
including prerequisite conditions and conflicting role set, andautomaticallyadds
the user to all junior groups to the group. We have extended the URA97 model
and implemented it in Windows NT by means of Microsoft RPC programs. Our
result indicates that (static) separation of duty constraints can be determined by
the assignment of individuals to groups at user-group assignment time and this

CONUGA: Constrained user Group Assignment 13

behaviour can be achieved by accommodating sophisticated access control model
to some extent.

References

1. S. H. von Solms and I. van der Merwe 1994. The management of computer security profiles
using a role-oriented approach.Computers & Security, 13(8):673–680.

2. M. Y. Hu, S. A. Demurjian and T. C. Ting. User-role based security in the ADAM object-
oriented design and analyses environment. In (J. Biskup, M. Morgernstern and C. Landwehr,
eds)Database Security VIII: Status and Prospects. North-Holland.

3. M. Nyanchama and S. Osborn 1995. Access rights administration in role-based security
systems. In (J. Biskup, M. Morgernstern and C. Landwehr, eds)Database Security VIII: Status
and Prospects. North-Holland 1998.

4. D. Ferraiolo, J. Cugini and R. Kuhn 1995. Role-based access control (RBAC): Features and
motivations. InProceedings of 11th Annual Computer Security Application Conference, New
Orleans, LA, U.S.A., December 11–15 1995, 241–248.

5. L. Giuri 1995. A new model for role-based access control. InProceedings of 11th Annual
Computer Security Application Conference, New Orleans, LA, U.S.A., December 11–15 1995,
249–255.

6. L. Giuri and P. Iglio 1996. A formal model for role-based access control with constraints.
In Proceedings of IEEE Computer Security Foundations Workshop 9, Kenmare, Ireland, June
1996, 136–145.

7. R. S. Sandhu, E. J. Coyne, H. I. Feinstein and C. E. Youman 1996. Role-based access control
models.IEEE Computer29(2):38–47.

8. C. Youman, E. Coyne and R. Sandhu, eds 1997.Proceedings of the 1st ACM Workshop on
Role-Based Access Control, Nov 31-Dec. 1, 1995. ACM.

9. R. Sandhu and V. Bhamidipati 1997. The URA97 model for role-based administration of user-
role assignment. In (T. Y. Lin and X. Qian) eds,Database Security XI: Status and Prospects.
North-Holland.

10. G. -J. Ahn and R. Sandhu 1999. The RSL99 language for role-based separation of duty
constraints. InProceedings of 4th ACM Workshop on Role-Based Access Control, Fairfax, VA,
U.S.A., October 28–29, 43–54. ACM.

11. S. A. Sutton 1997.Windows NT Security Guide. Addison Wesley Developers Press.
12. R. Sandhu and G. -J. Ahn 1998. Decentralized group hierarchies in unix: An experiment and

lessons learned. InProceedings of 21st NIST-NCSC National Information Systems Security
Conference, Arlington, VA, U.S.A., October 5–8 1998.

Gail-Joon Ahn is an assistant professor of the Computer Science Department
at the University of North Carolina at Charlotte. His principal research and
teaching interests are in information and systems security. He received PhD and
MS degrees from George Mason University, Fairfax, Virginia, and a BS degree
in Computer Science from SoongSil University, Seoul, Korea. He was a research
associate at the Laboratory for Information Security Technology, George Mason
University. His research interests include access control, security architecture for
distributed objects, and secure e-commerce systems. Gail-Joon Ahn is a member
of ACM and the IEEE Computer Society.

14 G.-J. Ahn and K. Kim

Kwangjo Kim is an associate professor of the School of Engineering at the
Information and Communications University, Korea. He received BS and MS
degrees in Electronic Engineering from Yonsei University, Seoul, Korea in 1980
and 1983 respectively. In 1991, he received a PhD degree in Electrical and
Information Engineering from Yokohama National University, Japan. He worked
in cryptographic technology for the Electronics and Telecommunications Research
Institute prior to joining ICU from 1979–1998. His research interests include all
fields of cryptography and information security. Kwangjo Kim is a director of the
International Association for Cryptologic Research and is a member of KIISC,
IEICE and IEEE.

