
On the Role of Roles:
from Role-Based to Role-Sensitive Access Control

Xuhui Ao
Department of Computer Science

Rutgers University
Piscataway, NJ 08854, USA

ao@cs.rutgers.edu

Naftaly H. Minsky
Department of Computer Science

Rutgers University
Piscataway, NJ 08854, USA

minsky@cs.rutgers.edu

ABSTRACT
This paper maintains that for an access-control mechanism
to support a wide range of policies, it is best to dispense
with any built-in semantics for roles in the mechanism itself,
leaving such semantics to be defined by particular policies.

The validity of this assertion is demonstrated by showing
that a mechanism called Law-governed interaction (LGI),
which has no built-in concept of roles, can support a wide
range of policies that take roles into account. These include
RBAC itself, its various generalizations, as well as concepts
like budgetary controls, which seems to be quite inconsistent
with RBAC. All such policies can be formulated, deployed,
and enforced, via a single scalable, and fully implemented
LGI mechanism.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls; C.2.4
[Distributed Systems]: Distributed applications

General Terms
Security

Keywords
role-based access control, security, access control policy spec-
ification and decentralized enforcement, law-governed inter-
action

1. INTRODUCTION
In current access-control (AC) literature, the term role

is often being used for the representation of the position a
given individual holds in a given organization, say as a doc-
tor, or a nurse, in a hospital. The importance of such roles
for the formulation of access-control (AC) policies has been
put forward by Sandhu and his colleagues in their seminal
work on “role-based access control” (RBAC) model [17, 16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’04,June 2–4, 2004, Yorktown Heights, New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006 ...$5.00.

This model views roles as sets of permissions, and defines an
AC-policy essentially as a pair of mappings: a mapping of
users to sets of roles, and a mapping of roles to sets of per-
missions. The RBAC model also provides for a hierarchical
organization of roles, and includes certain constraints on the
combinations of roles that a given individual can possess at
one time.

The RBAC model has been widely adopted by the indus-
try and been broadly accepted by the research community—
not as the last word on access control, but mostly as a foun-
dation on which more sophisticated AC models are to be
built. Consequently, we have seen a host of RBAC-based
models that generalized RBAC in various ways. These gen-
eralizations include, but are not limited to: (1) parameter-
ization of the roles of a subject by its other attributes [8];
(2) making authorization dependent on some dynamic re-
lationship between the subject, and the object on which it
operates [4]; (3) making the right associated with the role
dependent on the context, such as time and location [13];
and (4) providing for dynamic, and temporal, control over
role-permission activation and deactivation, and over user-
role assignment and activation (TRBAC [5] and GTRBAC
[10]). Similar generalizations have also been proposed in
[14], and in [19].

Yet, in spite of the success of each of these RBAC-based
models, no unified model emerged from this body of work,
only a collection of distinct models, each covering it own
range of application, in its own way. The reason for this, we
believe, is that RBAC, used as the foundation by all these
models, is based too rigidly on roles—requiring every per-
mission granted to a subject to emanate from some role it
possesses—and it employs an overly narrow interpretation
of roles, simply as collections of permissions. Indeed, each
of the above cited papers identifies an important authoriza-
tion pattern that does not fit the RBAC model, and each
attempted to adjust RBAC so it would fit this pattern. But
such adjustments are often overly complex, and sometime
not possible, as is exemplified by the two common patterns
of authorization: delegation and budgetary control, discussed
briefly below.

Delegation is the act of giving a right one has for himself
to somebody else. It is a very important element of access
control, as it provides policies with a critical of dynamism.
The mechanism for doing delegation is usually quite sim-
ple, as befits such an important and commonly used oper-
ation. Under the traditional capability-based AC, in par-
ticular, delegation is done simply by passing a capability to

the delegatee. Under many distributed access control mech-
anism, delegation is done by issuing a delegation certificate
[3].

Under RBAC, on the other hand, since a permission must
be mediated via a role, a delegation of a permission requires,
according to [20], the creation of a temporary delegation role,
which needs to be assigned to the delegatee, and then acti-
vated by him. Besides the artificiality of creating a role just
for the purpose of delegation, this makes the management
of roles more complex. This may have a seriously adverse
impact on efficiency, if delegations are done frequently, and
if they are done in a distributed manner.

Budgetary control is an age-old mechanism for regulating
activities, common in the real world as well as in computer
systems. As a simple example, one may be given a “query
budget” which specifies the maximal number of queries one
can make to a given database. We do not see how such
dynamically changing permissions can be made to fit into
the RBAC framework. Indeed, to our knowledge, none of
the published RBAC-based models attempted to support
budgetary control.

It is our thesis, that for an access-control mechanism to
support a wide range of policies, it is best to dispense with
any built-in semantics for roles in the mechanism itself—be
it the semantics of RBAC, or any other—leaving such se-
mantics to be defined by particular policies. In other words,
an AC mechanism should be sensitive to roles but not based
on them. The effect that roles should have on the granting
of permissions to a subject should be left entirely to specific
policies, and not be hard-wired into the mechanism itself.

We will attempt to demonstrate the validity of this thesis
by showing how a mechanism called law-governed interac-
tion (LGI), which has no built-in concept of roles, can sup-
port RBAC itself—all four “reference models” of it [17]—as
well as its various published generalization. Moreover, we
show how budgetary controls, which seems to be quite in-
consistent with RBAC, can be handled under LGI. All this,
simply by formulating suitable policies (called “laws” under
LGI), which can be easily deployed and enforced via a single
efficient, scalable, and fully implemented LGI mechanism.

The rest of this paper is organized as follows: We start, in
Section 2, with a brief overview of LGI, in order to make this
paper as self contained as possible. In Section 3 we demon-
strate how miscellaneous semantics of roles can coexist in
a single policy, and how such policy can be established via
a very simple LGI law. In Section 4 we show how a policy
that mixes roles with budgetary controls can be supported
under LGI, and how it can be enforced in a scalable manner
in a distributed context. In the above two section we em-
ploy no RBAC features. So, in Section 5 we show how the
RBAC model itself can be formulated as a law under LGI,
and how it can be implemented in a manner that has some
advantages over its conventional implementations. Finally,
in Section 6 we cite two other mechanisms, quite different
from LGI in many ways, but which also validate our thesis
by their ability to implement a wide range of role-sensitive
policies, without recourse to the strict RBAC model. We
will briefly point out some of the differences between these
mechanisms and LGI. We conclude in Section 7.

2. LAW-GOVERNED INTERACTION (LGI)–
A BRIEF OVERVIEW

Operations on the control-state
t@CS returns true if term t is present

in the control state, and fails
otherwise

+t adds term t to the control state;
-t removes term t from the

control state;
t1 ← t2 replaces term t1 from the control

state with term t2;

Operations on messages
forward(x,m,y) sends message m from x to y;

triggers at y an
arrived(x,m,y) event

deliver(x,m,y) delivers the message m from
x to y

Miscellaneous
t@L returns true if term t is

present in list L, and fails
otherwise

imposeObligation(oType,dt) causes the triggering of an
obligationDue(oType)
event after time interval dt.

Figure 1: Some primitive operations in LGI.

LGI is a message-exchange mechanism that allows an open
group of distributed agents to engage in a mode of interac-
tion governed by an explicitly specified policy, called the law
of the group. The messages thus exchanged under a given
law L are called L-messages, and the group of agents in-
teracting via L-messages is called an L-community, denoted
by CL, or simply by C. This mechanism has been originally
proposed by one of the authors in 1991 [11], and then imple-
mented, as described more completely than here in various
publications, including [12, 1, 2].

By the phrase “open group” we mean (a) that the mem-
bership of this group (or, community) can change dynami-
cally, and can be very large; and (b) that the members of
a given community can be heterogeneous. In fact, we make
here no assumptions about the structure and behavior of the
agents that are members of a given community CL, which
might be software processes, written in arbitrary languages,
or human beings. Both the clients and the servers of the
traditional distributed system terminology are viewed here
as agents. All the members are treated as black boxes by
LGI, which deals only with the interaction between them via
L-messages, ensuring conformance to the law of the commu-
nity. (Note that members of a community are not prohibited
from non-LGI communication across the Internet, or from
participation in other LGI-communities.)

For each agent x in a given L-community, LGI maintains,
what is called, the control-state CSx of this agent. These
control-states, which can change dynamically, subject to law
L, enable the law to make distinctions between agents, and
to be sensitive to dynamic changes in their state. The se-
mantics of control-states for a given community is defined
by its law, could represent such things as the role of an agent
in this community, and privileges and tokens it carries. For
example, under law PR to be introduced in next section, the
term role(doctor) in the control-state of an agent denotes
that this agent has the role of doctor.

2.1 The nature of LGI laws:
An LGI law is defined over a certain types of events occur-

ring at members of a community C subject to it, mandating

the effect that any such event should have. Such a mandate
is called the ruling of the law for the given event. The events
subject to laws, called regulated events, include (among oth-
ers): the sending and the arrival of an L-message, the com-
ing due of an obligation previously imposed on a given ob-
ject, and the submission of a digital certificate. The oper-
ations that can be included in the ruling for a given reg-
ulated event, called primitive operations, are all local with
respect to the agent in which the event occurred (called, the
“home agent”). They include, operations on the control-
state of the home agent and operations on messages, such
as forward and deliver. Our middleware currently pro-
vides two languages for writing laws: Java, and a somewhat
restricted version of Prolog. We employ prolog in this pa-
per. In this case, the law is defined by means of a Prolog-like
program L which, when presented with a goal e, represent-
ing a regulated-event at a given agent x, is evaluated in the
context of the control-state of this agent cs, producing the
list of primitive-operations r representing the ruling of the
law for this event. In addition to the standard types of Pro-
log goals, the body of a rule may contain two distinguished
types of goals that have special roles to play in the interpre-
tation of the law. These are the sensor-goals (in the form
t@CS), which allow the law to “sense” the control-state of
the home agent, and the do-goals (in the form do(p)) that
contribute to the ruling of the law. A sample of primitive
operations is presented in Figure 1.

2.2 The Concept of Enforced Obligation:
Informally speaking, an obligation under LGI is a kind of

motive force. Once an obligation is imposed on an agent—
generally, as part of the ruling of the law for some event at
it—it ensures that a certain action (called sanction) is car-
ried out at this agent, at a specified time in the future, when
the obligation is said to come due, and provided that certain
conditions on the control state of the agent are satisfied at
that time. The circumstances under which an agent may
incur an obligation, the treatment of pending obligations,
and the nature of the sanctions, are all governed by the law
of the community.

Specifically, an obligation can be imposed on a given agent
x at time t0 by the execution at x of a primitive operation

imposeObligation(oType,dt)

where dt is the time period, after which the obligation is to
come due, and oType—the obligation type—is a term that
identifies this obligation (not necessarily in a unique way).
The main effect of this operation is that unless the speci-
fied obligation is repealed before its due time t=t0+dt, the
regulated event

obligationDue(oType)

would occur at agent x at time t. The occurrence of this
event would cause the controller to carry out the ruling of
the law for this event; this ruling is, thus, the sanction for
this obligation. Note that a pending obligation incurred by
agent x can be repealed before its due time by means of the
primitive operation

repealObligation(oType)

carried out at x, as part of a ruling of some event.
For example, under law PR in Figure 3, when a doctor

or nurse y is appointed by the manager to be on duty, an

arrived

communication
network

Legend:

a regulated event----------------------

a primitive operation ------ --------

sent

x

forward

CS
x

controller

L

CS

controller

L

y

agent

y

deliver
agent

Tx Ty

Figure 2: Enforcement of the law.

obligation dutyExpired is imposed on y, to come due at 12
hours after that appointment. When this obligation comes
due, it will cause y’s duty to be dismissed.

2.3 Distributed Law-Enforcement:
Broadly speaking, the law L of community C is enforced

by a set of trusted agents called controllers, that mediate the
exchange of L-messages between members of C. Every mem-
ber x of C has a controller Tx assigned to it (T here stands
for “trusted agent”) which maintains the control-state CSx

of its client x. And all these controllers, which are logically
placed between the members of C and the communications
medium (as illustrated in Figure 2) carry the same law L.
Every exchange between a pair of agents x and y is thus me-
diated by their controllers Tx and Ty, so that this enforce-
ment is inherently decentralized. Although several agents
can share a single controller, if such sharing is desired.

Controllers are generic, and can interpret and enforce any
well formed law. A controller operates as an independent
process, and it may be placed on any machine, anywhere
in the network. We have implemented a controller-service,
which maintains a set of active controllers. To be effective in
a widely distributed enterprise, this set of controllers need
to be well dispersed geographically, so that it would be pos-
sible to find controllers that are reasonably close to their
prospective clients.

Finally, we point out that under the current implementa-
tion of LGI, a controller takes about 100 microseconds for
every evaluation of a law of the size and complexity of laws
such as the one introduced in Section 3.

2.4 On the basis for trust between members of
a community:

For a member of an L-community to trust its interlocutors
to observe the same law, one needs the following assurances:
(a) that the exchange of L-messages is mediated by correctly
implemented controllers; (b) that these controllers are inter-
preting the same law L; and (c) that L-messages are securely
transmitted over the network. If these conditions are sat-
isfied, then it follows that if x receives an L-message from
some y, this message must have been sent as an L-message;
in other words, that L-messages cannot be forged.

These assurances are provided, broadly speaking, as fol-
lows: Controllers used for mediating the exchange of L-
messages authenticate themselves to each other via certifi-
cates signed by a certification authority specified by the
value of the ca attribute in the law clause of law L (see,
for example, Figure 3, in the case of law PR). Note that

different laws may, thus, require different certification lev-
els for the controllers used for its enforcement. Messages
sent across the network are digitally signed by the sending
controller, and the signature is verified by the receiving con-
troller. To ensure that a message forwarded by a controller
Tx under law L would be handled by another controller Ty

operating under the same law, Tx appends a one-way hash
[18] H of law L to the message it forwards to Ty. Ty would
accept this as a valid L-message under L if and only if H is
identical to the hash of its own law.

2.5 The deployment of LGI:
All one needs for the deployment of LGI is the availability

of a set of trustworthy controllers, and a way for a prospec-
tive client to locate an available controller. This can be ac-
complished via one or more controller-services, each of which
maintains a set of controllers, and one or more certification
authorities that certifies the correctness of controllers. For
an agent x to engage in LGI communication under a law L,
it needs to locate a controller, via a controller-service, and
supply this controller with the law L it wants to employ.
Once x is operating under law L it may need to distinguish
itself as playing a certain role, or having a certain unique
name, which would provide it with some distinct privileges
under law L. One can do this by presenting certain digital
certificates to the controller. For the details of how to deal
with the certificate, including its expiration and revocation
in LGI, the reader is referred to [1].

2.6 The treatment of roles under LGI:
As we have pointed out, LGI has no built-in concept of

role. But an LGI law may provide for the representation of
roles, and may define their semantics. For instance under a
given law L a term role(doctor) in the control-state of an
agent x may signify that x is a doctor. It is important to re-
alize that the LGI mechanism itself attaches no significance
to this, or any other term. But law L may define how this
term is acquired, and how it effects what its holder can do.

In this paper, for example, we use two techniques for an
agent x to acquire its roles: First, by presenting a digital
certificate with certain attributes, which the law in question
accepts as a proof that x holds the specified role. This is
the way roles are acquired under law PR introduced in Sec-
tion 3. Second, by having another agent, operating under
the same law, send a message to x appointing it to a certain
role. This is the way roles are acquired under law RB of
Section 5, where all users are assigned roles by the distin-
guished agent r-admin. In general, since the law defines the
dynamic behavior of the control-state of an agent, under its
interaction with other members of its community, it follows
the law can define the dynamic behavior of those terms in
the control-state that represent roles.

Moreover, as we have seen, the law of a community defines
what an agent can, or must1 do, depending, in part, on its
control state. It follows, then that the law can determine
the effect that role should have on the right, and even on
the obligations, of an agent, in arbitrary way.

In summary, the law can define the process of acquiring
roles, the dynamic behavior of these roles, and their effect
on the ability of agents to operate. In other words, the law
can define the semantics of roles, as we shall demonstrate in
the following two sections.

1The “must” come from the concept of obligation in LGI .

3. SUPPORTING A MISCELLANY OF ROLE-
SEMANTICS

We will show here how miscellaneous semantics of roles
can coexist in a single policy, and how such policy can be es-
tablished via a single mechanism—LGI, in this case—which
does not have any built-in concept of role. For this end,
we will formulate an example policy, called PR, that gov-
erns access to patient records in a hospital, and employs five
roles: doctor, nurse, manager, screening-nurse and pr-server
(for patient record server).

The PR policy is specified informally below. It will be
restated later as an LGI-law, which can be readily deployed
and enforced.

1. An agent can acquire any of the above mentioned roles
by presenting a digital certificate issued by a specific
certification authority called admin, asserting that this
agent has been appointed to the specified role. However,
no agent can acquire more than one such role in one
session.

2. A screening-nurse can appoint a doctor to be a pa-
tient’s attending-physician.

3. A manager can appoint any doctor or nurse to be on
duty, and this duty cannot last for more than 12 hours.

4. A doctor who is the attending-physician of patient y
can delegate her/his access right to y’s medical record
to at most two nurses, who thus become the attending-
nurses of y.

5. A subject x, who is a doctor or nurse, can access a
patient y’s medical record only if x is on duty and is
the attending-physician or attending-nurse of y. And
such access request can only be received by one who
holds the role of a pr-server.

A role, under this policy, is clearly not simply a collection
of permissions. In particular, for a physician x to be able to
access the record of a patient p stored on a server s, it is not
enough for x to have a doctor role. He (or she) must also
be appointed, by somebody playing the role of screening-
nurse, as an attending-physician of p2; in addition, he must
have been assigned for duty by somebody playing the role
of manager ; and he must not be on this duty for more than
12 hours. Moreover, the server s needs to have the pr-server
role. This is quite a complex web of requirements that must
be satisfied for one permission to be given.

In fact, we have designed this policy to feature a vari-
ety of role-semantics, gleaned from several different research
papers, as follows: Point 1 of this policy is an example of dy-
namic separation of duties, as proposed by the RBAC model
itself; Point 2 is an example of appointment, described in
[19], and of relationship, described in [4]; Point 3 is an ex-
ample of temporal constraints, as in TRBAC [5]; Point 4 is
an example of delegation [20], and of cardinality control [7];
and Point 5 is an example of context constraint [14], and
of role of object [13]. Note that we do not employ here the
RBAC features of hierarchy of roles, nor do we distinguish

2Note that an attending-physician can be viewed as a rela-
tionship between the a doctor and a patient, although it can
as easily be viewed as a role in its own right.

between the assignment of roles and their activation. But
these features will be addressed in Section 5, when we im-
plement the RBAC model itself under LGI.

This policy is formalized, in its entirety, as an LGI law
PR displayed in Figure 3. Like all LGI laws, PR has two
parts: First, is the preamble of the law, which, in this case,
gives a name to this law, and the public key of the certifi-
cation authority (CA) that is to be used for certifying the
controllers interpreting this law. Its authority clause also
specifies the public key of a CA—called admin—whose cer-
tification would be acceptable to it. The second is the body
of the law, which is an ordered set of rules that defines a rul-
ing for any regulated event that might occur at any agent.
Each rule in this law is followed with an informal comments
in italics. These comments, and the discussion below, should
be sufficient to explain our technique, even for a reader not
well versed with LGI laws.

By Rule R1, an agent can claim a role R, getting the term
role(R) into its control-state, by presenting a certificate,
issued by admin, with this role as its attribute. And, as
required by Point 1 of policy PR, only one such role can
be claimed by an agent. Note, then, that the possession of
any such role is represented here simply as a term in the
control-state of agents.

Rules R2 and R3 allow the screening nurse to assign the
patient identified by Pid to the doctor, who thus becomes
the attending-physician of Pid.

By RulesR4 and R5, a manager can appoint other agents
(specifically, doctors and nurses) to be on duty. However, by
Rule R5, by starting such a duty, one incurs an obligation to
end this duty automatically, after 12 hours, as specified by
Rule R6. (obligation is an important proactive mechanism
of LGI).

By Rules R7 and R8, a doctor x who is the attending-
physician of patient Pid can delegate its access right to the
medical records of Pid, to a nurse by appointing him/her as
an attending-nurse of Pid; and he can thus appoint no more
than two nurses, for any patient.

Note that ease and simplicity of delegation under this pol-
icy, compared to the way delegation is to be done in RBAC
[20]. Note, also, that the cardinality-control over delega-
tion, illustrated by this policy, can’t be enforced efficiently
via RBAC model in the distributed environment. This is
because, it requires one to maintain the state of the dele-
gator, which may change dynamically. This is, in fact, just
one example of a wide range of dynamic and stateful poli-
cies, which are hard to enforce efficiently over distributed
systems, unless the enforcement mechanism itself is decen-
tralized, as it is under LGI. We will see a clearer example of
such a dynamic policy in the following section.

Finally, by Rules R9 and R10, an agent x can send the
access request for the record of patient Pid to a server s,
only if: (1) x has the role of doctor or nurse (represented
via the term role(doctor) or role(nurse) in its control
state); (2) x is the attending-physician or attending-nurse
of y (represented via the term attending-physician(Pid)

or attending-nurse(Pid) in its CS); (3) x is on-duty (rep-
resented via the term onDuty in its CS); and (4) the server
s has the role of pr-server (represented via the term

role(pr-server)

in its CS).

Preamble:

law(name(PR),ca(publicKey1)).
authority(admin, publicKey2).

R1. certified(issuer(admin),subject(Self),
attributes([role(R)])) :-
not(role(R1)@CS),do(+role(R)).

Allow an agent to claim and activate its role by presenting
a certificate issued by the admin, only if it hasn’t activated
any other roles in this session.

R2. sent(X,assign-patient(Pid),Y)
:- role(screening-nurse)@CS, do(forward).

Only the screening nurse can assign the patient to the
doctors.

R3. arrived(X,assign-patient(Pid),Y)
:- role(doctor)@CS,

do(+attending-physician(Pid)), do(deliver).

The arrivial of the patient assignment will be recorded
into the doctor’s control state.

R4. sent(X,onDuty,Y)
:- role(manager)@CS, do(forward).

The manager can appoint any agent to be on-duty.

R5. arrived(X,onDuty,Y) :- do(+onDuty),
do(imposeObligation(dutyExpired,[12,hour])).

The duty will expire after 12 hours.

R6. obligationDue(dutyExpired) :- do(-onDuty).

After the obligation dutyExpired fires, the onDuty term
will be removed from the agent’s CS.

R7. sent(X,delegate(Pid),Y) :- role(doctor)@CS,
attending-physician(Pid)@CS,
if (not(deleNo(Pid,N)@CS)) then
(do(+deleNo(Pid,1)), do(forward))
else (N<2, do(deleNo(Pid,N)<-deleNo(Pid,
N+1)), do(forward)).

The attending doctor X can delegate its access right on
its patients to the nurse, and for each patient, the doctor
can’t delegate its access right to more than 2 nurses.

R8. arrived(X,delegate(Pid),Y) :- role(nurse)@CS,
do(+attending-nurse(Pid)), do(deliver).

The nurse Y becomes the attending nurse of patient Pid
after delegated by the attending doctor X of Pid.

R9. sent(C,access(Op,m-record(Pid)),S)
:- ((role(doctor)@CS,

attending-physician(Pid)@CS);
(role(nurse)@CS,attending-nurse(Pid)@CS)),
onDuty@CS, do(forward).

The sending of the access request to the medical record
of patient Pid will be authorized if it is from its on-duty
attending-physician doctor or attending-nurse.

R10.
arrived(C,access(Op,m-record(Pid)),S)
:- role(pr-server)@CS,do(deliver).

The access request to patient’s medical records can only
be delivered to pr-servers.

Figure 3: Law PR

4. DEALING WITH HIGHLY DYNAMIC AU-
THORIZATION

Consider a hospital, whose management decided that some
of its internal services–such as drug acquisition (from in-
ternal pharmacies), printing, file-services, databases, etc.–
be paid with internal service currency (called S-currency),
made available to various agents, in what we call their bud-
gets. More specifically such services are to be governed by
the following, informally stated, policy (called BC, for “bud-
getary control”).

4.1 The Budgetary Control (BC) Policy:
We employ here three roles, allowing a single agent to

hold no more than one of them at a time. These roles are:
(a) budget-officer who would be allowed to grant S-currency
budgets to agents; (b) pharmacy, who would be allowed to
sell drugs; and (c) doctors, who would be allowed to purchase
drugs. More specifically, this policy can be defined by the
following four points:

1. Roles are to be acquired by presenting appropriates cer-
tificates, signed by a specified certification authority
(CA)—called admin.

2. S-currency can be granted by the budget-officer, into
the budgets of various agents; and it can be moved from
the budget of one agent to that of another.

3. Each service request must be paid off from the budget
of the requester.

4. Drugs can be purchased, with S-currency, only by doc-
tors, and only from servers playing the role of phar-
macy.

4.2 The Budgetary Control Law BC:
Policy BC is implemented as law BC displayed in Figure 4.

Rule R1 of this law allows an agent operating under this law
to acquire one role, by presenting an appropriate certificate.
But once one role is thus acquired, the agent would be pre-
vented from acquiring another one. This is identical to what
we have done under law PR.

By Rule R2, a budget officer x can send a message

grantBudget(B)

to any agent y, which by Rule R3, will be added the term
budget(B) of the CS of y, upon its arrival.

Note that the term budget(B) in the CS of agents repre-
sents, under this law, what we have called S-currency, i.e.,
currency that can be used for paying servers for their ser-
vices. Rules R4 and Rule R5 allow such currencies to be
moved from one agent to another, via the

giveCurrency(B)

message. And note that this law provides no other means
for effecting budgets, which means that S-currencies cannot
be forged.

By Rule R6, an agent can issue a service request

request(S,P)

for a service S, including payment P . This request will
be forwarded only if payment P doesn’t exceed the current
budget of that sender; and, in case that the request is for

purchasing a drug, if the sender has the role of a doctor.
If the request is forwarded, then the corresponding pay-
ment will be deducted from the sender’s budget. Finally,
by Rule R7, if the request is a drug purchase request, then
only the agents playing the role of pharmacies is allowed
to receive it. Other service requests received will be deliv-
ered to the receiver and the payment will be added into the
budget of that receiver.

Preamble:

law(name(BC),ca(publicKey1)).
authority(admin, publicKey2).

R1. certified(issuer(admin),subject(Self),
attributes([role(R)])) :-
not(role(R1)@CS),do(+role(R)).

Allow an agent to claim and activate its role by presenting
a certificate issued by the admin, only if it hasn’t activated
any other roles in this session.

R2. sent(X,grantBudget(B),Y)
:- role(budgetOfficer)@CS, do(forward).

Only the budget officer can assign the inital budget to the
agents.

R3. arrived(X,grantBudget(B),Y) :- do(+budget(B)).

The assigned budget will be recorded as term budget(B)
in the control state of the receiver.

R4. sent(X,giveCurrency(B1),Y)
:- budget(B)@CS, B>=B1, do(decr(budget(B),B1)),

do(forward).

Any one can give part of its S-currency to others.

R5. arrived(X,giveCurrency(B1),Y) :- budget(B)@CS,
do(incr(budget(B),B1)), do(deliver).

The S-currency given by others will be added into the the
receiver’s account.

R6. sent(X,request(Service,Payment),Y) :- (if
(Service==drugPurchase) then role(doctor)@CS
else true), budget(B)@CS, B>=Payment,
do(decr(budget(B),Payment)), do(forward).

The service request must carry a payment in the form of
S-currency, which is deducted from the sender’s budget.
Furthermore, the drug purchase requests can only be is-
sued by the doctors.

R7. arrived(X,request(Service,Payment),Y)
:- (if (Service==drugPurchase) then

role(pharmacy)@CS else true), budget(B)@CS,
do(incr(budget(B),Payment)), do(deliver).

The arrival of a service request increases the budget of the
server by the payment. Furthermore, the drug purchase
requests can only be received by the pharmacies.

Figure 4: Law BC

4.3 Discussion:
Note that this policy is sensitive to roles, but it is also

sensitive to the dynamically changing budget of whoever
requests a service. We do not know of any reasonable way
for modeling such a budgetary control via roles.

Moreover, as we have explained in [2], such a dynamic
policy cannot be implemented scalably under an AC mech-
anism that employs a centralized, even if replicated, refer-

ence monitor. The implementation of this policy under LGI
is efficient and scalable, precisely because LGI is inherently
decentralized.

5. SUPPORTING STANDARD RBAC IN LGI
Here we show how LGI can support the standard RBAC

model, including: the user-role assignment, user-role activa-
tion constraints that establish static and dynamic separation
of duties, and the role hierarchy—all these via a single LGI
law.

Both Ferraiolo et al. [7] and Park et al. [15] present the
implementation of RBAC in distributed systems, e.g., in
enterprise web servers. [7] assumes that the web server can
get the user-role mapping information from its local RBAC
database. In contrast, [15] assumes that the role server
which hosts the user-role assignment information may be dif-
ferent from the web server, so one needs to solve the problem
of how to secure the distribution of the user-role assignment
information from the role server to the Web server. [15] pro-
poses user-pull and server-pull modes, and implements them
by integrating and extending cookies, X.509 certificate, SSL
and LDAP techniques.

Like the RBAC implementation by Ferraiolo et al. [7]
and Park et al. [15], we assume the existence of several
servers (such as web-servers) operating within a single ad-
ministrative domain, such as an enterprise. We also assume
that each server specifies the role-permission mapping for
its own objects; and that the role-hierarchy, the separation
of duty constraints, and the user-role assignments are to be
defined globally for the entire administrative domain. As
to the user-role assignment information, similar to Park et
al. [15], we assume the server (say, Web server) can’t get it
locally and those information needs to be pulled by the user
from the centralized role administrator agent called r-admin.
The secure distribution of those information is ensured by
LGI’s secure communication among agents and controllers.

We point out, however, that in one sense our implemen-
tation of RBAC is stronger than both [7] and [15]. The
implementation of RBAC in [7] and [15], cannot enforce dy-
namic separation of duty constraints over users of several
different servers. Here is how this limitation is explained in
[7]:

”Note that because the RBAC/Web implemen-
tation applies only to a single server, dynamic
separation of duties is not implemented relative
to users across multiple servers (e.g., in an envi-
ronment where a collection of servers constitutes
an administrative security domain), but only rel-
ative to a user on a single web server.”

As we shall see later, our implementation of RBAC does not
have this limitation.

5.1 The LGI Law that Implements RBAC
All the provisions of RBAC can be defined under LGI by

law RB, displayed in Figure 5 and 6 in its entirety. Before
we get to a detailed discussion of this law, here are some
broad comments about it. First, we use two central compo-
nents: (a) a CA called idCA that issues identity-certificates
for the various users, and which does not, itself, operate un-
der LGI; and (b) an agent called r-admin, that maintains
the global user-role mapping, and which would provide the
various users (clients) with their static role assignment (this

agent does operate under our law RB). Second, the role
hierarchy, and the static and dynamic constraints on role
assignment and activation, are defined by law RB itself, and
would thus be present in the control state of every client and
server operating under this law. We are now in a position
for taking a closer look at law RB itself.

Preamble:

law(name(RB),ca(publicKey1)).
authority(idCA,publicKey2).
alias(r-admin,”r-admin@enterprise.com”).
initialCS([static-conflict([conflict(sr1,sr2),...])]).
initialCS([dynamic-conflict([conflict(dr1,dr2),...])]).
initialCS([role-hierarchy([senior(r3,r1),...])]).

R1. certified(issuer(idCA),subject(Self),
attributes([myId(Id)])) :- do(+myId(Id))

Allow a client to establish its ID by presenting a certificate issued
by idCA with the attribute of myId.

R2. sent(r-admin,assigned-roles(Roles,Id),C)
:- static-conflict(SC-roles)@CS,

not(is-conflict(SC-roles,Roles)), do(forward).

Make sure the role assignment conforms to the SSoD requirement.

R3. arrived(r-admin,assigned-roles(Roles,Id),C)
:- myId(Id)@CS, do(+assigned-roles(Roles)),

do(+activated-roles([])), do(deliver).

The arrivial of the role assignment.

R4. sent(C,activate-role(R),Self)
:- assigned-roles(Roles)@CS,

junior-member(R,Roles),activated-roles(ARS)@CS,
dynamic-conflict(DC-roles)@CS,
not(is-conflict(DC-roles,[R|ARS])),
do(activated-roles(ARS) <-
activated-roles([R|ARS])).

A client can choose to activate the role R, which has been assigned
to it or is junior to any assigned ones, under the restriction of the
DSoD constraint.

R5. sent(S,permission(R,OP,Obj),Self)
:- do(+permission(R,OP,Obj)).

A server can assign the permissions of accessing its objects to
different roles.

Figure 5: Law RB

The Preamble of this law has the following clauses: The
law clause specifies the name of this law, and the public
key of the CA that is to be used for certifying the con-
trollers interpreting this law. The authority clause speci-
fies the public key of a CA—called idCA—whose certifica-
tion would be accepted by this law for the authentication of
the identities of the clients. The alias clause specifies the
LGI-address of the r-admin agent, who is responsible for
assigning roles to the clients (this is just for notational con-
venience). Finally, there are three initialCS clauses that
contain terms to be included in the initial control state of ev-
ery agent that adopts this law. These terms define the struc-
ture of the role ensemble at hand, as follows: (1) the term
static-conflict([...]) contains the list of role pairs that
conflict statically; (2) the term dynamic-conflict([...])

contains the list of role pairs that conflict dynamically; and
(3) the term role-hierarchy([...]), contains the list of
role pairs which has the direct senior-junior relations in the
role hierarchy.

We discuss the body of the law by describing its treatment
of the following issues: (a) authentication of the identity of
clients (or subjects); (b) role assignment; (c) role activation;

(d) the specification, by individual servers, of their mapping
of roles to permissions (i.e., their ACL); and (e) access re-
quest authorization.

5.1.1 Identity authentication:
Rule R1 of this law allows a client to establish its iden-

tity by presenting an identity certificate issued by the CA
called idCA in the preamble. The certified identifier would
be recorded by the term myId in the control-state of this
agent. This identity would be required for the client to be
assigned roles, and thus to access any server.

5.1.2 Role Assignment:
By Rule R2, the distinguished agent r-admin can send to

a client c identified by Id, his role assignment Roles, subject
to the static separation of duty constraint. This constraint
is checked by the predicate is-conflict(SC-roles,Roles),
where SC-roles is the list of static conflict role pairs, main-
tained in the control-state of every agent under this law. The
is-conflict predicate is defined, recursively, by Rules R9
and R8. It returns true if any two roles in the role list Roles
conflict with regard of conflict role pair list SC-roles, taking
into account the role hierarchy defined by role-hierarchy

terms in the control state of every agent.
By RuleR3, the arrival of the assigned roles to the client c

with identity Id, will add two terms assigned-roles(Roles))
and activated-roles([]) into its control state, which rep-
resent the assigned roles of c, and its currently empty list of
activated roles, respectively.

5.1.3 Role Activation:
By Rule R4 a client c can activate any of its assigned

role R, if the following two conditions are satisfied. First,
if R is one of the assigned roles of c, as recorded in its
assigned-roles(Roles) term, or if R is junior to one of
the assigned roles in Roles, as checked by the predicate
junior-member(R,Roles) defined by Rules R10 and R11.
Second, if activation of R will not violate the constraint of
the dynamic separation of duty. This constraint is checked
by the predicate is-conflict(DC-roles,[R|ARS]), defined
by Rules R9 and R8, where DC-roles is the list of dy-
namically conflict role pairs, and ARS is the list of roles
that c have already activated in this session. Predicate
is-conflict(DC-roles,[R|ARS]) returns true if there exist
any conflict roles in the list [R|ARS], with respect to the con-
flict role pairs defined by DC-roles and the role hierarchy de-
fined by role-hierarchy terms in c’s control state. If both
conditions above are satisfied, the R will be activated by be-
ing added into the argument of the term activated-roles

in c’s control state.

5.1.4 Mapping Roles to Permissions:
Each server can decide which kind of permissions it wants

to associate with different roles. This it can do by send-
ing the message permission(Role,Op,Obj) to itself. By
Rule R5, this message would be inserted as a term in the
control-state of this server, indicating that the role Role has
the permission of action Op on object Obj of that server.

5.1.5 Access Request Authorization:
By Rule R6, a client c can send the access request

access(Op,Obj)

to any server. This rule would attach the term myRoles(ARS)

to that message, where ARS is the list of activated roles of
the sender. When the access request arrives at the server
side, it will, by Rule R7, be authorized only if any of the
activated roles of the sender has the permission of that op-
eration on that object. This is determined by the predicate
has-permission(ARS,Op,Obj), whose evaluation is carried
out by Rules R12, R13 and R14, which evaluates to true if
any role in role list ARS or any role junior to the role in ARS

has been assigned the permission (Op,Obj).

R6. sent(C,access(Op,Obj),S) :- activated-roles(ARS)@CS,
do(forward(C,access(Op,Obj,myRoles(ARS)),S)).

The access request sent from a client will carry its current acti-
vated roles ARS.

R7. arrived(C,access(Op,Obj,myRoles(ARS)),S)
:- has-permission(ARS,Op,Obj),

do(deliver(C,access(Op,Obj),S)).

The access request carrying the client’s activated roles will be
authorized, if that access permission is included in the privileges
of its activated roles.

R8. is-conflict(conflict(C-role1,C-role2),Roles)
:- junior-member(C-role1,Roles),

junior-member(C-role2,Roles).

R9. is-conflict([H|T],Roles)
:- is-conflict(H,Roles); is-conflict(T,Roles).

The above two rules check whether the role list Roles violates
the separation of duty constraint specified by the first argument
conflict role pair list.

R10. junior-member(Role,[H-role|T-roles])
:- junior-equal(Role,H-role);junior-member(Role,

T-roles).

R11. junior-equal(Role,H-role)
:- Role==H-role; role-hierarchy(SList)@CS,

senior(H-role,Role)@SList.

The above two rules check whether the Role is a member of, or is
junior to any member of the second argument role list.

R12. has-permission([H-role|T-roles],Op,Obj)
:- has-permisssion(H-role,Op,

Obj);has-permission(T-roles,Op,Obj).

R13. has-permission(Role,Op,Obj)
:- permission(Role,Op,Obj)@CS.

R14. has-permission(Role,Op,Obj) :- role-hierarchy(SList)@CS,
senior(Role,Junior-Role)@SList,
has-permission(Junior-Role,Op,Obj).

The above three rules check whether the permission (Op,Obj)
is assigned to the first argument role list, considering the role
hierarchy relations.

Figure 6: Law RB–continue

5.2 Discussion
Let us explain now why our implementation of RBAC sup-

ports dynamic separation of duties even in a multi-server
context—which the traditional implementation of RBAC in
[7] and [15] was not able to do. This is basically because this
constraint is enforced locally at the client side, via Rule R4,
by the controller associated with it. Specifically, once a
client c activated one of its assigned role, say r1, and used
that role to access the objects in server s1, c can’t activate
any other roles that dynamically conflicts with r1, no matter
which other server it tries to access.

6. RELATED WORK
We have already cited several papers about the RBAC

model, and about its various extensions. Here we cite two
papers—by Bertino et al. [6] and by Jajodia et al. [9]—
that introduce wide spectrum access control mechanisms
that provide for the implementation of a wide range of role-
sensitive policies, without recourse to the strict RBAC model.
We view these papers as providing further validation of our
thesis that the semantics of roles should not be hard wired
into the AC mechanism.

There are numerous differences between the above two
mechanism and LGI. We will mention here just one. The
mechanisms introduced in [6, 9] have been designed to be
enforced in centralized manner. And as we have argued in
[2], such an enforcement cannot be done scalably for highly
dynamic policies, like our budgetary control policy presented
in Section 4. LGI, on the other hand, has been designed
for decentralized enforcement, and it does support scalable
implementation of such policies.

7. CONCLUSION
The thesis of this paper has been that although an access

control mechanism should be sensitive to roles, it should not
be based on them. This, for two reasons. First, roles can
effect authorization in too many ways to be captured by
any particular semantics, such as that of RBAC. We have
suggested, therefore, that the semantics of roles in any par-
ticular application is best left to the policy governing it.
The second reason for an access control mechanism not to
be role-based, is that there are aspects of access control poli-
cies that have nothing to do with roles. Budgetary controls
are a case in point.

We have demonstrated the validity of this view by showing
that LGI, which has no built-in concept of roles, can support
a wide range of policies that take roles into account. These
include RBAC itself, its various generalizations, as well as
concepts like budgetary controls, which seems to be quite in-
consistent with RBAC. All such policies can be formulated,
deployed, and enforced, via a single scalable, and fully im-
plemented LGI mechanism. Moreover, we believe that our
thesis is equally well validated by the work of Bertino et al.
[6] and Jajodia et al. [9].

8. REFERENCES
[1] X. Ao, N. Minsky, and V. Ungureanu. Formal

treatment of certificate revocation under communal
access control. In Proc. of the 2001 IEEE Symposium
on Security and Privacy, May 2001, Oakland
California, pages 116–127, May 2001.

[2] X. Ao and N. H. Minsky. Flexible regulation of
distributed coalitions. In LNCS 2808: the Proc. of the
8th European Symposium on Research in Computer
Security (ESORICS) 2003, pages 39–60, October 2003.

[3] T. Aura. Distributed access-rights management with
delegation certificates. In J. Vitek and C. Jensen,
editors, Secure Internet Programming: Security Issues
for Distributed and Mobile Objects, volume 1603 of
LNCS, pages 211–235. Springer, 1999.

[4] J. Barkley, K. Beznosov, and J. Uppal. Supporting
relationships in access control using role based access
control. In Proceedings of the Fourth ACM Workshop

on Role-Based Access Control, pages 55–65, October
1999.

[5] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A
temporal role-based access control model. ACM
Transactions on Information and System Security,
4(3):191–233, 2001.

[6] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A
system to specify and manage multipolicy access
control models. In Proc. of the IEEE 3rd International
Workshop on Policies for Distributed Systems and
Networks, Monterey, California, pages 116–127, June
2002.

[7] D. Ferraiolo, J. Barkley, and R. Kuhn. A role based
access control model and reference implementation
within a corporate intranets. ACM Transactions on
Information and System Security, 2(1), February 1999.

[8] L. Giuri and P. Iglio. Role templates for content-based
access control. In Proceedings of the Second ACM
Workshop on Role-Based Access Control (RBAC’97),
pages 153–159, 1997.

[9] S. jajodia, P. Samarati, M. L. Sapino, and V. S.
Subramanian. Flexible support for multiple access
control policies. ACM Trans. on Database Systems,
26(2):214–260, June 2001.

[10] J. Joshi, E. Bertino, B. Sahfiq, and A. Ghafoor.
Dependencies and separation of duty constraints in
gtrbac. In Proceedings of the 8th ACM Symposium on
Access Control Models and Technologies (SACMAT
2003), 2003.

[11] N. Minsky. The imposition of protocols over open
distributed systems. IEEE Transactions on Software
Engineering, Feb. 1991.

[12] N. Minsky and V. Ungureanu. Law-governed
interaction: a coordination and control mechanism for
heterogeneous distributed systems. TOSEM, ACM
Transactions on Software Engineering and
Methodology, 9(3):273–305, July 2000.

[13] M. Moyer and M. Abamad. Generalized role-based
access control. In Proceedings of the 21st International
Conference on Distributed Computing Systems, pages
391–398, 2001.

[14] G. Neumann and M. Strembeck. An approach to
engineer and enforce context constraints in an rbac
environment. In Proceedings of the 8th ACM
Symposium on Access Control Models and
Technologies (SACMAT 2003), 2003.

[15] J. S. Park, R. Sandhu, and G.-J. Ahn. Role-based
access control on the web. ACM Transactions on
Information and System Security, 4(1):37–71, 2001.

[16] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model
for role-based access control: Towards a unified
standard. In Proceedings of ACM Workshop on
Role-Based Access Control. ACM, July 2000.

[17] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[18] B. Schneier. Applied Cryptography. John Wiley and
Sons, 1996.

[19] W. Yao, K. Moody, and J. Bacon. A model of oasis
role-based access control and its support of active
security. ACM Transactions on Information and
System Security, 5(4):492–540, 2002.

[20] X. Zhang, S. Oh, and R. Sandhu. Pbdm: A flexible
delegation model in rbac. In Proceedings of the 8th
ACM Symposium on Access Control Models and
Technologies (SACMAT 2003), 2003.

