
ADMINISTRATIVE MODELS FOR
ROLE-BASED ACCESS CONTROL

by

Qamar Munawer

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Ful�llment of

the Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

Dr. Ravi Sandhu, Dissertation Director

Dr. Larry Kerschberg

Dr. Xiaoyang Wang

Dr. Richard Carver

Dr. Stephen G. Nash, Associate Dean for

Graduate Studies and Research

Dr. Lloyd J. Gri�ths, Dean, School of

Information Technology and Engineering

Date: Spring Semester 2000

George Mason University

Fairfax, Virginia

Administrative Models for Role-Based Access Control

A dissertation submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy at George Mason University.

By

Qamar Munawer

B.S., University of the Punjab, Pakistan, August 1969

M.S. (Physics), University of the Punjab, Pakistan, August 1971

M.S. (Computer Science), George Mason University, Fairfax, VA, May 1993

Director: Dr. Ravi S. Sandhu, Professor

Information and Software Engineering

Spring Semester 2000

George Mason University

Fairfax, Virginia

ii

Copyright

by

Qamar Munawer

2000

iii

DEDICATION

First of all I dedicate this dissertation to Allah for giving me knowledge and strength

to accomplish this greatly desired dream of my life. Secondly, I dedicate this disser-

tation to my late parents Abdul Sattar Rajput and Aziz-ul-Nisa for bringing me up

to the level that I ful�lled their dream but they could not see me accomplishing it.

Finally, I dedicate this dissertation to my family for their support during these years

with preserverance for the accomplishment of my greatly desired dream and goal of

completing my PhD.

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to my PhD advisor

Professor Ravi Sandhu, for all his valuable guidance, teaching and encouragements

during the realization of this research. It is Professor Ravi Sandhu's love for his

students and dedication to research that made him available whenever we needed

during all these years. I would like to let him know that if it was not for him I would

not be getting my PhD.

I sincerely thank Professor Larry Kerschberg to be the chairman of my advisory

committee and for his valuable guidelines and suggestions during research. Thanks

also goes to Professor Xiaoyang (Sean) Wang for his general guidance and comments.

I thank Professor Richard Carver for his teaching, motivation and guidance in my

early years at George Mason.

I thank to my wife Nusrat, son Masud and daughters Rabia and Sobia for their love

and a�ection. Thanks also goes to my friends and students both at George Mason

and abroad for their friendship, valuable advice and encouragements that made my

stay a memorable one.

v

TABLE OF CONTENTS

Page

ABSTRACT x

Chapter 1. MOTIVATION AND PROBLEM STATEMENT 1

1.1 Brief History of Access Control Models : : : : : : : : : : : : : : : : : : : 5

1.2 Problem Statement : 7

1.3 Summary of Contributions : 8

1.4 Organization of Thesis : 9

Chapter 2. AN OVERVIEWOF ADMINISTRATIVEMODELS FOR
ACCESS CONTROL 10

2.1 Model for Role Based Access Control (RBAC96) : : : : : : : : : : : : : : 10

2.2 Model for Administration of RBAC (ARBAC97) : : : : : : : : : : : : : : 13

2.2.1 URA97: A model for User-Role Assignments : : : : : : : : : : : : 13

2.2.2 URA97 Grant Model : 14

2.2.3 URA97 Revoke Model : 16

2.2.4 PRA97 Model for Permission-Role Assignment: : : : : : : : : : : 19

2.3 Augmented Typed Access Model (ATAM): : : : : : : : : : : : : : : : : : 20

Chapter 3. RRA97 - ADMINISTRATIVE MODEL FOR
ROLE-ROLE RELATIONSHIPS 25

3.1 Kinds of Roles in RBAC : 26

3.2 RRA97 - Model for Role-Role Assignments : : : : : : : : : : : : : : : : : 28

3.2.1 Restrictions on can-modify : 31

3.3 Restriction on Authority of Administrative Roles : : : : : : : : : : : : : : 31

3.3.1 Concept of Range : 31

3.3.2 Authority Range and Encapsulated Authority Range : : : : : : : : 32

3.4 Restriction on Role Creation : 34

3.5 Restriction on Role Deletion : 36

3.6 Restriction on Edge Insertion : 38

3.7 Restriction on Edge Deletion : 40

3.8 Summary : 40

vi

Chapter 4. ARBAC99 - ADMINISTRATIVE MODELS FOR RBAC 42

4.1 Motivation for enhancements: 43

4.2 URA99 Grant Model : 43

4.3 URA99 Revoke Model : 48

4.3.1 Motivation for �xing lack of symmetry : : : : : : : : : : : : : : : : 49

4.4 PRA99 - Model for permission-role assignments : : : : : : : : : : : : : : 51

4.4.1 Motivation for mobile and immobile permission : : : : : : : : : : : 51

4.4.2 Formal De�nition of PRA99 : 51

4.5 Discussion : 53

4.6 Simulating mobility in URA97 : 54

4.6.1 URA97 with �xed mobility : 54

4.6.2 URA97 with dynamic mobility : 55

Chapter 5. DISCRETIONARY ACCESS CONTROL IN RBAC96 59

5.1 DAC variations : 60

5.2 Creation of Object in RBAC : 62

5.3 Destroy an Object in RBAC : 65

5.4 Simulation of Strict DAC : 66

5.5 Simulation of Liberal DAC : 68

5.5.1 One Level Grant : 68

5.5.2 Two Level Grant : 68

5.5.3 Multilevel Grant : 69

5.6 DAC with change of Ownership : 70

5.7 Revocation of access : 70

5.7.1 Revocation is independent of granter. : : : : : : : : : : : : : : : : 70

5.7.2 Revocation only by granter of access : : : : : : : : : : : : : : : : : 71

Chapter 6. AUGMENTED TYPED ACCESS MATRIX MODEL
AND RBAC96 73

6.1 Overview : 73

6.2 Formal description of the simulation : 75

6.2.1 Administrative role ADMN ROLE : : : : : : : : : : : : : : : : : : 75

6.2.2 ATAM types are RBAC roles : 75

6.2.3 Mapping of ATAM rights and ATAM Objects : : : : : : : : : : : : 75

6.2.4 The ATAM commands: 77

6.3 Summary: 80

6.3.1 De�nition of RBAC components : : : : : : : : : : : : : : : : : : : 80

vii

6.4 Example : 81

6.4.1 Multi-level DAC policy and its simulation : : : : : : : : : : : : : : 81

6.4.2 RBAC simulation of ATAM solution : : : : : : : : : : : : : : : : : 82

6.5 Simulation of RBAC in ATAM : 84

6.6 Summary : 89

Chapter 7. CONCLUSION 90

7.1 Contributions : 90

7.2 Future Research : 91

BIBLIOGRAPHY 94

viii

LIST OF TABLES

Table Page

2.1 Example of can-assign with Prerequisite Roles : : : : : : : : : : : : : 15

2.2 Example of can-assign with Prerequisite Conditions : : : : : : : : : : 16

2.3 Example of can-revoke : 18

2.4 Example of can-assignp and can-revokep : : : : : : : : : : : : : : : : 20

3.1 Example of can-modify : 29

4.1 Example of can-assign-M with Prerequisite Conditions : : : : : : : : 47

4.2 Example of can-assign-IM with Prerequisite Conditions : : : : : : : : 47

4.3 Example of can-revoke-M with Prerequisite Conditions : : : : : : : : 49

4.4 Example of can-revoke-IM with Prerequisite Conditions : : : : : : : : 50

4.5 Example of can-assign With mobility : : : : : : : : : : : : : : : : : : 55

4.6 Example of can-assign for URA97 with dynamic mobility : : : : : : : 57

6.1 Access matrix for ATAM simulation of RBAC : : : : : : : : : : : : : 85

6.2 Access matrix for ATAM simulation of role hierarchies : : : : : : : : 87

7.1 can-assign with contradicting tuples : : : : : : : : : : : : : : : : : : : 92

ix

LIST OF FIGURES

Figure Page

1.1 Example Role and Administrative Role Hierarchies : : : : : : : : : : 3

1.2 Out of Range Impact : 4

2.1 Summary of the RBAC96 Model : 12

3.1 Encapsulated Range (x, y) : 35

3.2 Non-Encapsulated Range (x, y) : 35

3.3 Create Range : 36

3.4 Before Deletion of edge from SQE1 to JQE1 : : : : : : : : : : : : : : 39

3.5 After Edge Deletion : 39

4.1 Inheritance of mobility and immobility : : : : : : : : : : : : : : : : : 45

4.2 Relationship among groups and abilities for role X : : : : : : : : : : : 58

5.1 (a)Administration of roles associated with an object (b) Administrative
role hierarchy : 67

5.2 Read O Roles associated with members of PARENT O : : : : : : : : 71

ABSTRACT

THE ADMINISTRATIVE MODELS FOR ROLE-BASED ACCESS
CONTROL

Qamar Munawer, Ph.D.

George Mason University, 2000

Dissertation Director: Dr. Ravi S. Sandhu

Role-Based Access Control (RBAC) is a exible and policy-neutral access control

technology. For large systems, with hundreds of roles, thousands of users and mil-

lions of permissions, managing roles, users, permissions and their interrelationships

is a formidable task that cannot realistically be centralized in a small team of se-

curity administrators. An appealing possibility is to use RBAC itself to facilitate

decentralized administration of RBAC.

In this thesis, we �rst complete the Administrative RBAC model (ARBAC), that

started as ARBAC97 introduced by Sandhu and Bhamidipati, by formally de�ning

the component for role-role administration (RRA97). RRA97 is very di�erent from

user-role assignments (URA97) and permission-role assignments (PRA97) compo-

nents of ARBAC97. RRA97 provides a framework for decentralized administration

of role hierarchies. The desire is to give administrative roles autonomy within a range

but only so far as the side e�ects of the resulting actions are acceptable. We introduce

the concept of authority range for administrative roles so as to give them autonomous

authority with respect to insertion and deletion of roles within the range and modi�-

cation to their hierarchical relationships. In order to maintain overall global integrity

of the role hierarchy, we need to temper this outonomy by disallowing some operations

authorized by the authority range. RRA97 provides formal de�nition and motivation

for these restrictions.

We then formally de�ne the notion of mobile and immobile users and permissions

in context of RBAC. Mobile users are members of a role and thereby can use the

permissions associated with the role. Moreover their membership in the role quali�es

them to be put into other roles by appropriate administrators. Whereas immobile

users can use the permissions associated with the role but this membership does not

qualify them to be put into other roles. We de�ne extensions in URA97 and PRA97

to accommodate this concept.

Finally we demonstrate that RBAC is su�ciently powerful to simulate Discretionary

Access Control (DAC). Simulation of Mandatory Access Control (MAC) has already

been demonstrated by Nyanchama, Osborn and Sandhu. This raises an important

question as to whether or not it can accommodate the Access Control Models based

on propagation of rights such as Harrison, Ruzzo and Ullman's model (HRU), Typed

Access Matrix Model (TAM) or Augmented Types Access Matrix Model (ATAM).

Amongest these ATAM is the most general model. We show that RBAC can easily

accommodate ATAM.

Chapter 1

MOTIVATION AND PROBLEM STATEMENT

The need for controlled sharing of information and other resources among multiple

users has led to the development of access control models [AELO90, Lam71, McL94,

MMN90, San92b, FK92, Mur93, SS94]. Access control models provide a formal-

ism and framework for specifying, analyzing and implementing security policies in

multi-user systems. The models are desired to be exible enough to easily accommo-

date diverse security policies. Numerous access control models have been published.

Some are de�ned in terms of well known abstractions of subjects, objects and access

rights (see for example [LM82, HRU76, San88, San89] and some in terms of roles,

permissions and users (See for example [SCFY96, San97]). The important issues con-

cerned with access control models are exibility, policy neutrality, and simplicity of

administration. The administrative RBAC model (ARBAC) de�ned by Sandhu et.

al [SBC+97] has these features, but it is not complete. The components for user-role

assignments and permission-role assignments are de�ned as URA97 and PRA97. The

component for role-role assignments is not developed. In role-role assignments we

want to give exibility to the administrative roles to do administration of roles (such

as changing role-role relationships or addition/deletion of roles) under their authority

but we do not want these actions to interfere with the authority of other adminis-

trative roles. The following example illustrates the need for this exibility in access

control models.

1

2

Consider the example of Role-Based Access Control (RBAC) where roles are created

according to the job functions in the organization. Permissions are associated with

roles and users are made members according to their quali�cations and experience,

thereby acquiring the associated permissions. Role hierarchies can be created where

senior roles inherit permissions from junior roles. The user-role, permission-role and

role-role assignments are controlled by administrative roles. One such example is that

of an engineering department with the regular role hierarchy shown in �gure 1.1(a)

and administrative role hierarchy of �gure 1.1(b). There is a junior most role E

and every employee of the organization is a member of this role. Within the engi-

neering department there is junior-most role ED and senior-most role DIR. Within

the department there are two projects, project 1 and project 2. Each project has a

senior-most project lead (PL1 and PL2) and junior most engineer role (E1 and E2).

In between each project has two incomparable roles, production engineer (PE1 and

PE2) and quality engineer (QE1 and QE2). This structure can be extended to dozens

or hundreds of projects within the engineering department. Moreover each project

could have di�erent structure of its roles.

The administrative hierarchy (�gure 1.1(b)) coexists with the regular role hierarchy

(�gure 1.1(a)). There is a senior security o�cer role (SSO). The simplicity of admin-

istration requires the decentralization of responsibilities. Therefore our interest is in

the administrative roles that are junior to SSO. There are two project security o�cers

(PSO1 and PSO2) and a department security o�cer (DSO) role. The relationship

of these roles is shown in �gure 1.1(b). PSO1 and PSO2 have partial responsibilities

over project 1 and project 2 respectively. The authority of PSO1 and PSO2 over a

part of the role hierarchy implies autonomy in modifying the internal role structure of

that part. That includes the creation and deletion of roles as well as the alteration of

role-role relationships by adding and deleting edges. For example, we might authorize

3

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

(a) Roles

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

(b) Administrative Roles

Figure 1.1: Example Role and Administrative Role Hierarchies

4

PE1

DIR

PL1

E1

QE1

PL2

QE2

ED

E2

PE2

X

Y

E

Figure 1.2: Out of Range Impact

the DSO to con�gure changes in the role hierarchy between DIR and ED. The PSO1

would manage the hierarchy between PL1 and E1, whereas PSO2 would manage the

parts between PL2 and E2.

Consider the example of �gure 1.2 that is identical to �gure 1.1(a) except for addi-

tional edges shown in dashed lines which also brings in additional roles. Now if PSO1,

who has authority over range between PL1 and E1, introduces an edge to make PE1

junior to QE1 the e�ect is to indirectly make Y junior to X. The PSO1 does not have

authority to create this relationship, so this is an anomalous side e�ect. We should

either restrict the authority of administrative role to create X and Y in the �rst place,

or should prevent PSO1 from introducing the edge that makes PE1 junior to QE1.

The administrative roles should be given autonomy within a range but only so far as

the global side e�ects are acceptable. Access control models are needed to be exible

and policy neutral to accommodate the diverse policies of the organization but at the

5

same time should not complicate administration due to such side e�ects.

In this thesis we pursue this goal by formulating new decentralized administrative

models for RBAC, and by showing how existing decentralized administrative models

(notably ATAM [AS92b]) can be simulated in RBAC.

1.1 Brief History of Access Control Models

In 1971 Lampson [Lam71] proposed the Access Matrix model based on a particular

set of rules to control the propagation of access rights. The rules give the owner of

the object complete discretion regarding the rights to the object. In 1972 Graham

and Denning [GD72] proposed various rules by which the discretionary ability of the

owner could be granted to other subjects. Although they proposed several set of

rules, it was evident that additional alternatives could be proposed and it was not

feasible to enumerate all policies.

These issues lead Harrison, Ruzzo and Ullman to develop the so called HRU model

[HRU76]. This model does not incorporate a �xed set of rules for propagation of

access rights. Instead a language is provided for a security policy designer to specify

appropriate rules to the desired policy enforcement. The model could easily accom-

modate a rich variety of policies. It had good expressive power but extremely weak

safety properties (that is, the determination of whether or not given subject can ever

acquire access to an object). Safety was undecidable for most of the policies of practi-

cal interest, even for the monotonic case that does not allow deletion of access rights.

Lipton and Snyder developed the take-grant model [LS77] in which they deliber-

ately designed limited expressive power to eliminate the negative safety of HRU. This

model was analyzed by many authors [LM82, Bis88]. The gap between the expressive

power of take-grant and HRU was �lled by Sandhu's Schematic Protection Model

(SPM) [San88]. SPM has strong safety properties but has less expressive power than

6

monotonic HRU [ALS92]. It allows a single parent creation operation. Extended

Schematic Protection Model (ESPM) proposed by Amman and Sandhu [AS92a] al-

lows multiple parents of a child. ESPM has expressive power that is equivalent to

monotonic HRU and does not sacri�ce the safety of SPM [San92a]. SPM and ESPM

are both monotonic and therefore do not have the expressive power of HRU.

The positive safety results of SPM and ESPM and the expressive power of HRU is

accommodated in Sandhu's Typed Access Matrix Model (TAM) [San92b] and Am-

man and Sandhu's Augmented Typed Access Matrix Model (ATAM) [AS92b]. TAM

is de�ned by introducing strong typing into HRU. Strong typing means that each

subject and object is created of a particular type that cannot be changed there-

after. ATAM is same as TAM but has the ability to check for the absence of access

rights [SG93, SS92]. ATAM is considered as the current state of art with respect to

formal models for generalized access control [HRU76, San88, AS92b, San92b].

The other paradigm of access control models is Role Based Access Control (RBAC)

which originated with multi-user and multi-application on-line systems pioneered in

1970s. The central notion of RBAC is that permissions are associated with roles

(the building block of RBAC) and users are assigned to appropriate roles thereby

acquiring permissions. This greatly simpli�es the management of permissions. Roles

are created according to the job functions in an organization and users are assigned

roles based on their quali�cations, experience or responsibilities. Users can be easily

reassigned from one role to another. Roles can be granted new permissions as new

applications and systems are incorporated. Permissions can be revoked from roles as

needed. Role hierarchies can be created according to the organizational setup and

can be changed thereafter.

There are di�erent aspects of RBAC that are dealt with in di�erent ways in di�erent

systems. Sandhu et al [SCFY96, San98] introduced the well-known RBAC96 family

7

which provides the general framework within which variations of RBAC can be accom-

modated. RBAC is policy neutral. It provides support for several important security

principles like least privilege, privilege abstraction and separation of duties, but does

not specify how to achieve these goals. The precise policy enforcement in RBAC is a

consequence of detailed con�guration of various components of RBAC, such as role

hierarchies or role-role assignment (RRA), constraints, and administration of user-

role assignments (URA) and permission-role assignments (PRA). RBAC can enforce

traditional mandatory access control (MAC) [NO96, San96]. The formalization and

implementation of RBAC is currently underway [GI96, SB97].

1.2 Problem Statement

RBAC has received considerable attention as a promising alternative to traditional

discretionary and mandatory access control. RBAC is policy neutral and exible.

The policy that is enforced is a consequence of the detailed con�guration of various

components of RBAC. The exibility of RBAC allows a wide range of policies to

be implemented. The administration of RBAC is very important and must be care-

fully controlled to ensure the policy does not drift away from its original objectives.

For large system, managing roles, users, permissions and their interrelationships is a

formidable task that cannot be centralized in a small team of security o�cers. De-

centralizing the details of RBAC administration without loosing central control over

broad policy is a challenging goal for system designers. The administrative RBAC

model (ARBAC97) de�ned by Sandhu et al. [SBC+97] provides a signi�cant advance

towards this goal.

Three components are identi�ed in ARBAC97. URA97 and PRA97 are de�ned

whereas the component for role-role assignments (RRA97) is not developed [SBC+97].

In this thesis, we would like to formulate highly decentralized administrative model

8

for role-role relationships thereby completing the ARBAC97 model.

URA97 is concerned with user-role assignments. There are two consequences of as-

signing a user to a role. Firstly the user is authorized to use the permissions associated

with that role and its juniors. Secondly, the user becomes eligible for assignment to

other roles by appropriate administrative roles. These two aspects of role membership

are tightly coupled in URA97. Consider the example of a visitor. Assignment of a

visitor to a role should allow the visitor to use role's permissions but this member-

ship should not be used by administrators to assign the visitor to other roles. (We

consider visitor an immobile user.) Therefore, there is a need to decouple these two

aspects. The distinction between mobile and immobile users can be very useful in

practice. The concept of mobile and immobile users is needed to be get formally

de�ned and incorporated in ARBAC. We would like to see how this concept a�ects

user-role assignments and permission-role assignments.

RBAC is a promising alternative to traditional discretionary and mandatory access

control. It has been shown that MAC can be accommodated in RBAC. Is DAC

within the purview of RBAC? In this thesis we would be looking for an answer to

this question. We would like to simulate DAC using roles to show the exibility of

RBAC. RBAC can accommodate both classical form of access control. This raises an

important question as to whether or not it can accommodate other generalized access

control models.

1.3 Summary of Contributions

1. The �rst contribution in this thesis is to complete the ARBAC97 model [SBC+97]

by formally de�ning the RRA97 component to control role-role assignments.

The e�ect of role-role assignments is to construct a role hierarchy in which

senior roles inherit permissions from junior roles. Modi�cations to the role

9

hierarchy can have drastic impact on the e�ective distribution of permissions

to roles. Formally introducing the concept of authority range and its encap-

sulation, we are e�ectively able to decentralize the administration of role-role

assignments. For example, this makes it possible for a project security o�cer

to rearrange roles within a project without impacting other role relationships

within the department.

2. The second contribution of this thesis is that we have formally de�ned the

concept of mobile users and permissions and accommodated it in administra-

tive models for RBAC. The URA99 and PRA99 components are extensions

to URA97 and PRA97 developed as a result of incorporation of mobile and

immobile users and permissions in ARBAC.

3. Our �nal contribution in this thesis is that we provide a formal way of doing

discretionary Access Control (DAC) in RBAC. We de�ne several variations of

DAC and demonstrate that RBAC is su�ciently powerful to encompass them.

We have also shown the exibility of RBAC to accommodate ATAM.

1.4 Organization of Thesis

Chapter 2 gives the brief background on Role Based Access Control Models, in par-

ticular the User-Role Assignment (URA97), Permission-Role Assignment (PRA97)

Models, and Augmented Typed Access Matrix (ATAM) Model. Chapter 3 provides a

formal de�nition of role-based administration of role hierarchies. Chapter 4 describes

the evolution of URA97 and PRA97 into URA99 and PRA99 respectively. Chapter 5

covers Discretionary Access Control in RBAC. Chapter 6 theoretically compares the

ATAM model and RBAC. Finally, the contributions of this thesis are summarized

and discussion on the future research directions given in chapter 7.

Chapter 2

AN OVERVIEW OF ADMINISTRATIVE

MODELS FOR ACCESS CONTROL

In this chapter we give a brief background on access control models. In particular,

we review the Administrative Role Based Access Control (ARBAC97) and its compo-

nents URA97 and PRA97 developed for role based administration of User-Role and

Permission-Role Assignments respectively. Augmented Typed Access Matrix Model

(ATAM) that is recognized as the current state of art with respect to models of

generalized access control policies is reviewed in the last section of this chapter.

The chapter is organization is as follows. Section 2.1 describes the RBAC96. Sec-

tion 2.2 discusses ARBAC97 with its components URA97 described in section 2.2.1

whereas URA97 grant and URA97 revoke models are de�ned in sections 2.2.2 and

2.2.3 respectively. Section 2.2.4 de�nes model for Permission-Role Assignments (PRA97).

Finally section 2.3 describes the Augmented Typed Access Matrix (ATAM) model.

2.1 Model for Role Based Access Control (RBAC96)

Role Based Access Control (RBAC) is considered as a promising alternative to tradi-

tional discretionary and mandatory access controls (MAC and DAC). In RBAC per-

missions are associated with the roles, and users are made members of appropriate

roles thereby acquiring the roles' permissions. This greatly simpli�es the manage-

ment of permissions. Roles are created for various job functions in an organization

10

11

and users are made members of the roles based on their responsibilities and quali�ca-

tions. Users can easily be reassigned from one role to another. Roles can be granted

new permissions as new applications or systems are incorporated. Permissions can

be revoked from roles as needed. Role-role relationships can be established to layout

broad policy objectives.

A general family of RBAC models called RBAC96 was de�ned by Sandhu et al [SCFY96,

San97]. Figure 2.1 illustrates the most general model in this family. For simplicity

we use the term RBAC96 to refer to the family of models as well as its most general

member.

The top half of �gure 2.1 shows (regular) roles and permissions that regulate access

to data and resources. The bottom half shows administrative roles and permissions.

Intuitively, a user is a human being or an autonomous agent, a role is a job function

or job title within the organization with some associated semantics regarding the

authority and responsibility conferred on a member of the role, and a permission is

an approval of a particular mode of access to one or more objects in the system or

some privilege to carry out speci�ed actions.

Roles are organized in a partial order, so that if x > y then role x inherits the

permissions of role y, but not vice versa. In such cases, we say x is senior to y. By

obvious extension we write x � y to mean x > y or x = y.

Each session relates one user to possibly many roles. The idea is that a user establishes

a session (e.g., by signing on to the system) and activates some subset of roles that

he or she is a member of.

12

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

� U , a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP , disjoint sets of (regular) permissions and administrative permissions
S, a set of sessions

� UA � U � R, user to role assignment relation
AUA � U � AR, user to administrative role assignment relation

� PA � P �R, permission to role assignment relation
APA � AP � AR, permission to administrative role assignment relation

� RH � R� R, partially ordered role hierarchy
ARH � AR � AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set of roles and administrative
roles roles(si) � fr j (9r0 � r)[(user(si); r

0) 2 UA [AUA]g (which can change
with time)

session si has the permissions [r2roles(si)fp j (9r
00 � r)[(p; r00) 2 PA [APA]g

� there is a collection of constraints stipulating which values of the various com-
ponents enumerated above are allowed or forbidden.

Figure 2.1: Summary of the RBAC96 Model

13

2.2 Model for Administration of RBAC (ARBAC97)

In a large system the number of roles can be in hundreds or thousands, and users

can be in tens or hundreds of thousands. Managing these roles and users, and their

relationships is a formidable task that often is highly centralized in a small team

of security administrators. An appealing possibility is to use RBAC itself to facili-

tate decentralized administration of RBAC. Sandhu et al [SBC+97] has introduced

a model for role-based administration of RBAC. This model is called Administra-

tive RBAC97 (ARBAC97). It consists of three components. URA97 and PRA97

for the administration of user-role and permission-role assignments are described in

detail [SB97, SB98]. The model is not complete because the role-role assignments

(RRA97) are not formulated, Although some of the requirements and intuitive goals

are described for RRA97 there are many open issues. The following sections describe

URA97 and PRA97 components of ARBAC97.

2.2.1 URA97: A model for User-Role Assignments

In this section we de�ne the URA97 model for the management of user-role assign-

ments. For small systems user-role assignment can be controlled by a single system

security o�cer role. This simple approach does not scale to large systems that require

decentralization of user-role assignments to some degree.

In classical discretionary thinking an administrative role can be made owner of some

regular roles and thereby given authority to add and delete users and permissions to

these roles. This owner-based approach allows administrative roles to do whatever

they want with the roles under their control. In URA97 we impose restrictions on

which users can be added to a role by whom, as well as to clearly separate the ability

to add and remove users from other operations on the role. The notion of prerequisite

condition is introduced in URA97 as a key concept.

14

De�nition 1 A prerequisite condition is a boolean expression using the usual ^ and

_ operators on terms of the form x and x where x is a regular role (i.e., x 2 R).

A prerequisite condition is evaluated for a user u by interpreting x to be true if

(9x0 � x)(u; x0) 2 UA and x to be true if (8x0 � x)(u; x0) 62 UA. For a given set of

roles R let CR denotes all possible prerequisite conditions that can be formed using

the roles in R. 2

The simplest non-trivial case of a prerequisite condition is test for membership in a

single role, in which case that single role is called a prerequisite role. In the trivial

case a prerequisite condition can be a tautology.

User-role membership is controlled in two di�erent ways, namely the granting, URA97

Grant Model and revoking, URA97 Revoke Model.

2.2.2 URA97 Grant Model

URA97 authorizes user-role assignments by the following relation.

De�nition 2 In URA97 the user-role assignments are controlled by the relation:

can-assign � AR � CR� 2R

The meaning of can-assign(x ; y ; fa; b; cg) is that a member of administrative role x

(or a member of administrative role that is senior to x) can assign a user whose current

membership, or non membership in regular roles satisfy the prerequisite condition y

to be a member of regular roles a; b or c.

Consider the role hierarchy of �gure 1.1(a) and administrative role hierarchy of �g-

ure 1.1(b) showing the regular roles in engineering department and administrative

role hierarchy which coexists with �gure 1.1(a). The can-assign relation is de�ned

15

Table 2.1: Example of can-assign with Prerequisite Roles

Administrative Role Prerequisite Role Role Set

PSO1 ED fE1, PE1, QE1g
PSO2 ED fE2, PE2, QE2g
DSO ED fPL1, PL2g
SSO E fEDg
SSO ED fDIRg

(a) Subset Notation

Administrative Role Prerequisite Role Role Range

PSO1 ED [E1, PL1)
PSO2 ED [E2, PL2)
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

(b) Range Notation

in table 2.1(a) using role set and table 2.1(b) using range notation for the sake of

illustration purposes.

Role sets are speci�ed in URA97 and in this thesis by the following range notation.

[x; y] = fr 2 R j x � r ^ r � yg
(x; y] = fr 2 R j x > r ^ r � yg
[x; y) = fr 2 R j x � r ^ r > yg
(x; y) = fr 2 R j x > r ^ r > yg

Each tuple in this example has a simplest prerequisite condition of testing the mem-

bership in a single role known as the prerequisite role. The PSO1 role has partial

responsibility over project 1 roles. Members of PSO1 can assign members of role ED

to any of the E1, PE1, and QE1 roles, but not to PL1. Hence members of PSO1 have

authority to enroll users to E1, PE1 and QE1 provided they are already members of

ED. PSO2 has similar authority with respect to project 2. DSO inherits authority of

PSO1 and PSO2 roles but can further add users who are members of ED to PL1 and

16

Table 2.2: Example of can-assign with Prerequisite Conditions

Administrative Role Prerequisite Condition Role Range

PSO1 ED [E1, E1]
PSO1 ED ^ QE1 [PE1, PE1]
PSO1 ED ^ PE1 [QE1, QE1]
PSO1 PE1 ^ QE1 [PL1, PL1]
PSO2 ED [E2, E2]
PSO2 ED ^ QE2 [PE2, PE2]
PSO2 ED ^ PE2 [QE2, QE2]
PSO2 PE2 ^ QE2 [PL2, PL2]
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

PL2 roles. SSO can add users who are members of ED role to DIR role.

The can-assign relationship can use prerequisite condition as illustrated in table 2.2.

The �rst tuple authorizes PSO1 to assign users with prerequisite role ED into E1.

The second tuple authorizes PSO1 to assign users with prerequisite condition ED ^

QE1 to PE1. Similar explanation is given for third tuple. Taken together the second

and third tuples authorize PSO1 to put a user who is a member of ED into one not

both of PE1 and QE1. This is how the mutually exclusive roles can be enforced by

URA97. PE1 and QE1 are mutually exclusive with respect of the powers of PSO1.

This may not be true for DSO or SSO.

2.2.3 URA97 Revoke Model

In this section we de�ne a model for the revocation of users from roles. The model is

consistent with RBAC philosophy but deviates from traditional discretionary access

control approaches. In RBAC users are made members of the roles because of the

responsibilities or task assignments in the interest of organization. The membership

is not based solely on the discretion of the grantor. For example, suppose Alice

17

makes Bob a member of role X. In URA97 it happens because Alice is assigned

administrative authority over X via can-assign relation. Now if Alice is removed from

the administrative role that has authorized her to grant Bob the membership of X then

there is no reason to remove Bob from X. In other words it is not necessary to undo

her previous grants. Take another example, suppose Bob is granted membership in

X by Charles and Alice. Now if Alice revokes Bob's membership from X, Bob should

still continue to have membership because of getting it from Charles. There is an issue

of cascaded revokes. Suppose Charles got grant from Alice then the membership of

Bob should be revoked by the action of Alice. Or perhaps should not because Alice

only revoked her direct grant. URA97 does not couple revocation to the grantor

in this manner. The URA97 philosophy is that grant and revocation are done for

organizational reasons, and therefore should be treated as independent operations.

Following approach is used to incorporate URA97 philosophy.

De�nition 3 URA97 controls user-role revocations by means of the relation:

can-revoke � AR � 2R

The meaning of can-revoke(x ; fa; b; cg) is that a member of administrative role x (or

a member of administrative role that is senior to x) can revoke membership of user

in role a; b or c.

Revocation in URA97 is said to be weak because it applies only to the roles that are

directly revoked.

De�nition 4 A user u is said to be an explicit member of a role x if (u, x) 2 UA,

and an implicit member of role x if for some x' > x, (u, x') 2 UA. 2

18

Table 2.3: Example of can-revoke

Administrative Role Role Range

PSO1 [E1, PL1)
PSO2 [E2, PL2)
DSO (ED, DIR)
SSO [ED, DIR]

RBAC96 allows a user to be an implicit as well as an explicit member of a role.

Weak revocation has impact only on the explicit membership of a user. The user

may continue to be an implicit member due to membership in a senior role.

Weak revocation has impact only on explicit memberships and has a downward cas-

cading impact. For example, let us consider the role hierarchy of �gure 1.1(a) and

administrative role hierarchy of �gure 1.1(b) where Dave is an explicit member of PE1

and thereby an implicit member of E1. If Dave's membership is explicitly revoked

from PE1 then the implicit membership in E1 is automatically revoked.

Strong revocation of user's membership in role x requires that its membership should

be explicitly revoked from x as well as its explicit or implicit membership must also

be revoked from all roles senior to x. The e�ect is upward cascading revocation. In

URA97 it takes e�ect only if all implied revocations are within the revocation range

of administrative roles that are active in that session. For example, let us consider an

example of can-revoke relation of table 2.3 and the role hierarchy of �gure 1.1(a) and

administrative role hierarchy of �gure 1.1 (b) where Dave is an explicit member of

roles E1 and PL1 and Eve is an explicit member of E1 and DIR roles. The members

of role DSO can strongly revoke Dave from E1 but cannot revoke Eve from E1. In

order to strongly revoke Eve from E1 the administrator must have SSO role.

19

In the formal model strong revocation is de�ned to be exactly equivalent to a series

of weak revocations. Thus, formally it is a redundant operation. Actual system can

provide strong revocation for convenience. Implementations can be optimized to do

strong revocation directly rather than as a series of weak revocations.

2.2.4 PRA97 Model for Permission-Role Assignment:

PRA97 is concerned with permission-role assignment and revocation. Roles bring

users and permissions together and have similar character with respect to users or

permissions. Therefore PRA97 is proposed to be the dual of URA97. The notion of

prerequisite condition is identical to that in URA97 except the boolean expression is

now evaluated for membership and non-membership of a permission in the role.

De�nition 5 In PRA97 the permission-role assignments and revocation is controlled

by the following relations,

can-assignp � AR � CR � 2R

can-revokep � AR � 2R

The meaning of the can-assignp(x ; y ;Z) is that a member of administrative role x

(or a member of administrative role that is senior to x) can assign a permission

whose current membership, or non membership in regular roles satisfy the prerequisite

condition y to regular roles in range Z . The meaning of can-revokep(x ;Y) is that

a member of administrative role x (or a member of an administrative role that is

senior to x) can revoke membership of a permissions from any regular role y 2 Y .

For example, in table 2.4(a), the role DSO is authorized to take any permission

assigned to DIR and make it available for roles PL1 and PL2 whereas PSO1 can

assign permissions assigned to PL1 to either PE1 or QE1 but not to both. According

20

Table 2.4: Example of can-assignp and can-revokep

Administrative Role Prerequisite Condition Role Range

DSO DIR [PL1, PL1]
DSO DIR [PL2, PL2]
PSO1 PL1 ^ QE1 [PE1, PE1]
PSO1 PL1 ^ PE1 [QE1, QE1]
PSO2 PL2 ^ QE2 [PE2, PE2]
PSO2 PL2 ^ PE2 [QE2, QE2]

(a) can-assignp

Administrative Role Role Range

DSO (ED, DIR)
PSO1 [QE1, QE1]
PSO1 [PE1, PE1]
PSO2 [QE2, QE2]
PSO2 [PE2, PE1]

(b) can-revokep

to the table 2.4(b), DSO is authorized to revoke permissions from any role between

ED and DIR. PSO1 can revoke permissions from PE1 and QE1. Revocation in PRA97

is weak so permissions may still be inherited after revocation. Strong revocation of

the permission cascades down the role hierarchy, in contrast to cascading up the user

membership. Like URA97 strong revocation is formally de�ned in terms of weak

revocation.

2.3 Augmented Typed Access Model (ATAM):

In this section we briey review the Augmented Typed Access Matrix model (ATAM)

[AS92b]. The access matrix model was �rst formalized by Harrison, Ruzzo and Ull-

man and called HRU [HRU76]. The model had broad expressive power, but weak

safety property (i.e., the determination of whether or not a given subject can ever

21

acquire access to a given object). In take-grant model Lipton and Snyder [LS77]

have deliberately limited expressive power to eliminate negative safety of HRU. The

gap between expressive power of HRU and take-grant model was �lled by Sandhu's

Schematic Protection Model (SPM) [San88]. SPM has strong safety but less expres-

sive power than monotonic HRU. Extended Schematic Protection Model (ESPM)

de�ned by Sandhu [AS92a] has expressive power that is equivalent to HRU and does

not sacri�ce safety of SPM. SPM and ESPM are both monotonic and are not as

expressive as HRU. Sandhu [San92b] proposed TAM to incorporate the good safety

results and at the same time have the general expressive power of HRU. The prin-

cipal innovation of TAM is to introduce strong typing of subjects and objects into

the access matrix model of HRU. Each subject or object is created of speci�c type,

which thereafter cannot be changed. The types and rights are speci�ed as part of the

system de�nition and are not prede�ned in the model. This adds up some exibility

in term of the implementation of the security policy of the organization. The exten-

sion of TAM proposed by Sandhu is ATAM, which allows checking for the absence of

rights in the commands. TAM and ATAM are equivalent in expressive power [SG93],

however from practical point of view it is bene�cial to allow testing for absence of

rights.

ATAM represents the distribution of rights by the access matrix. The matrix has

a row and column for each subject and a row for each object. Subjects are also

considered as objects. The rights a subject X possess for object Y are entered in cell

[X, Y] of the access matrix. The security o�cer speci�es the following sets as the

part of de�nition of the system:

1. Finite set of access rights denoted by Rright.

2. The �nite set of object types T. There is a set of subject types TS; TS � T

22

For example T = fuser, so, �leg speci�es there are three types, user, security o�cer,

and �le, with TS = fuser, sog. The set of rights is Rright = fr; w; og where r stands

for read, w for write and o for owner.

The rights in the access matrix serve two purposes. First is the authorization of the

subject to perform some operation on the object or to perform some operation that

changes the access matrix. For example right o in [X, Y] authorizes X to change the

matrix so that subject Z can read Y. The focus of ATAM is on the second purpose of

rights i.e., the authorization by which access matrix gets changed. The changes are

made by means of commands of following formats:

Command �(X1 : t1; X2 : t2; X3 : t3; :::; Xk : tk)

begin

if r1 2 [Xs1; Xo1] ^ r2 2 [Xs2; Xo2] ^ ::: ^ rk 2 [Xsm; Xom] and

Rk+1 =2 [Xs1; Xo1] ^ rk+2 =2 [Xs2; Xo2] ^ :::: ^ rm =2 [Xsm; Xom]

then

op1; op2; :::::; opn

end

Or

Command �(X1 : t1; X2 : t2; X3 : t3; :::; Xk : tk)

begin

Op1; op2; :::::; opn

end

Here � is name of the command X1; X2; X3; :::; Xk are formal parameters whose types

are t1; t2; t3; :::; tk whereas r1; r2; r3; :::; rn are rights and s1; s2; ::::sm, and o1; o2; :::; om

23

are integers between 1 and k. The predicate following the if part is called the condi-

tion and sequence of operations op1; op2; :::::; opn is called the body of the command.

The ATAM command is invoked by substituting actual parameters of the appropriate

types for the formal parameters. The usual interpretation is that the ATAM com-

mand is initiated by the �rst subject in the parameters list. The condition part is

evaluated with respect to its actual parameters. The body of the conditional com-

mand is executed only if the condition evaluates to be true. Each op1 is one of the

primitive operations from

enter r into [X, Y]

create subject X of type ts

create object O of type to

delete r from [X, Y]

destroy subject X

destroy object O

Enter operation enters a right r 2 Rright into an existing cell of access matrix. If

the right is already present then the contents are not changed. The delete operation

removes a right from the cell. The cell is treated as a set, thus there will not be any

e�ect if the cell does not have the right.

The create subject operation introduces an empty row and column in the access

matrix. It is required that the subject being created must have a unique identity.

Operation destroy subject removes the row and column corresponding to the subject.

The create object operation adds an empty row in the access matrix and destroy

object remove the corresponding row.

The protection state of the ATAM system, is de�ned as a set fSUB, OBJ, t, AMg

where

� SUB is a set of subjects.

24

� OBJ is a set of objects.

� (SUB is a subset of OBJ)

� t is a type function that maps every subject to a subject type and every object

to an object type.

� AM is an access matrix, with a row for every subject in SUB and column for

every object in OBJ.

The protection state is changed by means of ATAM commands. The security o�cer

de�nes a �nite set of ATAM commands when the system is speci�ed.

Chapter 3

RRA97 - ADMINISTRATIVE MODEL FOR

ROLE-ROLE RELATIONSHIPS

As mentioned in chapter 1, access control models are desired to be simple and ex-

ible to accommodate diverse security policies. Role-Based Access Control (RBAC

has received a lot of attention due to its exibility and simplicity in administra-

tion. Centralized management of RBAC in large systems is a tedious and costly

task. An appealing possibility is to use RBAC itself to facilitate decentralized ad-

ministration of RBAC. The administrative RBAC model (ARBAC97) identi�es three

components, URA, PRA and RRA for administration of user-role, permission-role

and role-role assignments respectively. URA97 and PRA97 are already de�ned in

literature [SB96, SBC+97, SBM99].

In this chapter we formally de�ne RRA97, a model for the decentralized administra-

tion of role-role relationships. The e�ect of role-role assignments is to create a role

hierarchy in which senior roles inherit permissions from junior roles. Modi�cations

to a role hierarchy can have drastic impact on the e�ective distribution of permis-

sions. RRA97 formally de�ned in this chapter allows administrative roles to modify

role-role relationships in a portion of role hierarchy without impacting other role-role

relationships.

The organization of chapter is as follows. Section 3.1 discusses di�erent kinds of roles

distinguished in ARBAC97 and their assignments. In section 3.2, we formally de�ne

25

26

RRA97, model for decentralized administration of role-role relationships, thereby

completing the Administrative model for RBAC (that is, ARBAC97).

3.1 Kinds of Roles in RBAC

For role-role assignment we distinguish three kinds of roles, roughly speaking as fol-

lows.

� Abilities are roles that can only have permissions and other abilities as mem-

bers.

� Groups are roles that can only have users and other groups as members.

� UP-Roles are roles that have no restriction on membership, i.e., their mem-

bership can include users, permissions, groups, abilities and other UP-roles.

The term UP-roles signi�es user and permission roles. We use the term role to mean

all three kinds of roles or to mean UP-roles only, as determined by context. The three

kinds of roles are mutually disjoint and are identi�ed respectively as A, G, and UPR.

The main reason to distinguish these three kinds of roles is that di�erent adminis-

trative models apply to establishing relationships between them. The distinction was

motivated in the �rst place by abilities. An ability is a collection of permissions that

should be assigned as a single unit to a role. For example the ability to open an ac-

count in a banking application will encompass many di�erent individual permissions.

It does not make sense to assign only some of these permissions to a role because the

entire set is needed to do the task properly. The idea is that application developers

package permissions into collections called abilities which must be assigned together

as a unit to a role. The function of an ability is to collect permissions together so

that administrators can treat these as a single unit. Assigning abilities to roles is

27

therefore very much like assigning permissions to roles. For convenience it is useful

to organize abilities into a hierarchy (i.e., partial order). Hence the PRA97 model

can be adapted to produce the very similar ARA97 model for ability-role assignment.

Once the notion of abilities is introduced, by analogy there should be a similar con-

cept on the user side. A group is a collection of users who are assigned as a single

unit to a role. Such a group can be viewed as a team which is a unit even though its

membership may change over time. Groups can also be organized in a hierarchy. For

group-role assignment we adapt the URA97 model to produce the GRA97 model for

group-role assignment.

This leads to the following models.

De�nition 6 Ability-role assignment and revocation are respectively authorized in

ARA97 by can-assigna � AR� CR� 2A and can-revokea � AR � 2A. 2

De�nition 7 Group-role assignment and revocation are respectively authorized in

GRA97 by can-assigng � AR� CR� 2G and can-revokeg � AR� 2G. 2

For these models CR is interpreted as the collection of prerequisite conditions formed

using roles in UPR, and the prerequisite conditions are interpreted with respect to

abilities and groups respectively. Membership of an ability in a UP-role is true if the

UP-role dominates the ability and false otherwise. Conversely, membership of a group

in a UP-role is true if the UP-role is dominated by the group and false otherwise.

Assigning an ability to an UP-role is mathematically equivalent to making the UP-

role an immediate senior of the ability in the role-role hierarchy. Abilities can only

have UP-roles or abilities as immediate seniors and can only have abilities as imme-

diate juniors. In a dual manner, assigning a group to an UP-role is mathematically

28

equivalent to making the UP-role an immediate junior of the group in the role-role hi-

erarchy. Groups can only have UP-roles or groups as immediate juniors and can only

have groups as immediate seniors. With these constraints the ARA97 and GRA97

models are essentially identical to the PRA97 and URA97 models respectively. This

leaves us with the problem of managing relationships between UP-roles. We use the

term role to mean UP-roles in the rest of the thesis.

3.2 RRA97 - Model for Role-Role Assignments

This section formally de�nes the ARBAC97 component for the administration of role

hierarchies.

Decentralization of administrative authority requires that members of di�erent ad-

ministrative roles should have authority over di�erent parts of the hierarchy. Author-

ity over a part of the role hierarchy implies autonomy in modifying the internal role

structure of that part. That includes the creation and deletion of roles as well as

the alteration of role-role relationships by adding or deleting edges. For example in

�gure 1.1 we would like the DSO to con�gure changes in the role hierarchy between

DIR and ED. The PSO1 would manage the hierarchy between PL1 and E1, whereas

PSO2 would manage the part between PL2 and E2. This leads to the following notion

of a can-modify relation.

De�nition 8 Role creation, role deletion, edge insertion and edge deletion are all

authorized by the relation, can-modify � AR� 2UPR (with subsets of R identi�ed by

the range notation but limited to open ranges that do not include the endpoints). 2

Table 3.1 illustrates an example of can-modify relative to the hierarchies of �gure 1.1.

The meaning of can-modify(x, Y) is that a member of the administrative role x (or

a member of an administrative role that is senior to x) can create and delete roles in

29

Table 3.1: Example of can-modify

Administrative Role UP-Role Range

DSO (ED, DIR)
PSO1 (E1, PL1)
PSO1 (E2, PL2)

the range Y and can modify relationships between roles in a range Y. The examples

in the rest of the chapter are all in context of �gure 1.1 and table 3.1. For purpose of

our example we have ignored PSO2 in this table and have instead authorized PSO1

to manage the roles of both projects. This illustrates how a single administrative role

can be authorized to control multiple pieces of the role hierarchy.

The semantics of the four operations|create role, delete role, insert edge and delete

edge|are described in subsequent subsections. Some of the important intuitive ideas

are mentioned here in anticipation. In particular none of these operations is allowed

to introduce a cycle in the hierarchy.

Creation of a new role requires the speci�cation of its immediate parent and child in

the existing hierarchy. Thus PSO1 can create a new role with immediate parent PL1

and immediate child E1, or a new role with immediate parent PL1 and immediate

child PE1. Generally the immediate parent and immediate child must fall within the

range or be one of the endpoints as speci�ed in can-modify. Since creation of a role

also introduces two edges in the hierarchy, it is not possible to use any two roles as

the immediate parent and immediate child. Clearly we do not want this operation to

introduce a cycle in this manner. As we will see we also impose additional restrictions

to prevent undesirable side e�ects of role creation.

Deletion of a role leaves relationships between the parents and children of the deleted

role unchanged. So if DSO deletes E1, PE1 and QE1 continue to be senior to ED

30

after deletion of E1. As such deletion does not pose a problem. However, deletion

of E1 will leave dangling references in table 3.1, since the range (E1, PL1) no longer

exists. In general, some roles are referenced in various relations in URA97, PRA97

and RRA97. If these roles are actually deleted we will have dangling references. Our

approach is to prohibit deletion that would cause a dangling reference. Roles that

cannot be deleted due to this reason can be deactivated so that they can be phased

out later by adjusting the references that prevent deletion. Furthermore, when a role

is deleted we need to do something about the users and permissions that are directly

assigned to this role.

Insertion of an edge is meaningful only between incomparable nodes. Thus insertion

of an edge from PL1 to E1 has no meaning, whereas insertion of an edge from PE1

to QE1 does. As well see there are edges that should not be inserted because they

can lead to anomalous side e�ects later.

Likewise deletion of an edge is meaningful only if that edge is not transitively implied

by other edges. For example, deletion of the edge PL1 to E1 is meaningless and

has no impact on the hierarchy. Deletion of the edge QE1 to E1 will change the

hierarchy. Edge deletion only applies to a single edge and does not carry over to

implied transitive edges. For example, deletion of the edge QE1 to E1 makes QE1

and E1 incomparable, but QE1 continues to be senior to ED.

More sophisticated forms of these operations can be constructed out of the basic ones

de�ned here. In these basic operations roles and edges are created and destroyed

one at a time. This approach is analogous to the de�nition of weak revocation in

URA97 and PRA97 [SBC+97] from which various forms of strong revocation can be

constructed. Similarly, in RRA97 more complex operations can be constructed in

terms of these basic ones.

31

3.2.1 Restrictions on can-modify

The relation can-modify confers authority to administrative roles to change the role

hierarchy. We would like to restrict this authority so as to maintain global consistency

of authorization. The issue of dangling references has already been raised and RRA97

will not allow dangling references to occur. But this is not enough.

Consider the example of �gure 1.2. Now if PSO1 who has authority over the range

(E1, PL1) makes PE1 junior to QE1 by introducing an edge the e�ect is to indirectly

introduce a relationship between X and Y roles. The role PSO1 does not have the

authority to create this relationship, so this is an anomalous side e�ect. We should

either restrict the authority of the administrative role (in our example DSO) that

introduced X and Y roles in the �rst place, or PSO1 should be prevented from in-

troducing relationships that makes PE1 junior to QE1 (and indirectly Y junior to

X).

3.3 Restriction on Authority of Administrative Roles

In general administrative roles are given autonomy within a range but only so far

as global side e�ects are acceptable. They should be restricted so as not to have

unacceptable impact on authority of other administrative roles.

To formally state these restrictions on the authority of the administrative roles we

introduce the concepts of authority range, encapsulated authority range and create

range.

3.3.1 Concept of Range

The concept of range is very important in RRA97. It is formally de�ned as follows.

32

De�nition 9 A range of roles is de�ned by giving lower bound x and upper bound

y , where y > x. Formally (x; y) = fz : Roles j x < z < yg. We say x and y are

the end points of the range. 2

Note that a range, as de�ned here, does not include the end points. In �gure 1.1, (E1,

PL1), (E2, PL2) and (ED, DIR) are di�erent ranges. The range (ED, DIR) contains

the roles which constitute ranges (E1, PL1) and (E2, PL2). We say ranges (E1, PL1)

and (E2, PL2) are junior to range (ED, DIR).

De�nition 10 For two ranges Y and Y' if Y � Y', then Y is a junior range to Y'

and Y' is a senior range to Y. 2

Here Y is a proper subset of Y'. This eliminates the possibility of a range to be junior

or senior to itself. This makes later de�nitions more simple.

If two ranges Y and Y' in the role hierarchy are such that one is not junior to the

other then they are either incomparable or partially overlapping. Formal de�nitions

of partially overlapping and incomparable ranges are as follows.

De�nition 11 Ranges Y and Y' partially overlap if Y \ Y' 6= � and Y 6� Y' and Y'

6� Y. Ranges Y1 and Y2 are said to be incomparable if Y1 \ Y2 = �. 2

Note that incomparable ranges may have one common end point.

3.3.2 Authority Range and Encapsulated Authority Range

The members of an administrative role are authorized to modify certain range of roles

in role hierarchy. These ranges are called authority ranges.

De�nition 12 Any range referenced in the can-modify relation is called an authority

range. 2

33

To ensure that administrative authority over authority ranges does not overlap, we

introduce the following restriction.

De�nition 13 In RRA97 authority ranges do not partially overlap. 2

Note that an administrative role may have more than one authority range. Table 3.1

shows that DSO has authority over the range (ED, DIR). In �gure 1.1 the authority

range (ED, DIR) has two junior authority ranges, (E1, PL1) and (E2, PL2). Since

these junior authority ranges are completely contained within the authority range for

DSO, DSO has authority over these junior authority ranges as well. In other words

DSO has inherited the authority over the ranges (E1, PL1) and (E2, PL2).

Our model allows an administrative role to have authority over more than one in-

comparable authority range. Table 3.1 shows that PSO1 has authority over two

incomparable authority ranges namely (E1, PL1) and (E2, PL2).

Let us consider �gure 1.2 again. To maintain consistency we observed that either DSO

should not be allowed to create roles X or Y in the role hierarchy or PSO1 should not

be allowed to make PE1 junior to QE1. In the latter case the autonomy of PSO1 to

manage its authority range is interfered by DSO's actions. While this is a possibility

we pursue the former case here. Decentralization of authority and autonomy requires

that all inward and outgoing edges from an authority range should only be directed

to and from the end points of the authority range. The concept of encapsulation of

authority range serves this purpose.

De�nition 14 A range (x; y) is said to be encapsulated if 8r1 2 (x; y)^8r2 62 (x; y)

we have r2 > r1, r2 > y and r2 < r1, r2 < x. 2

Intuitively an encapsulated range is one in which all roles have identical relation to

roles outside of the range. The intuition in RRA97 is that an encapsulated range

34

is the correct unit for autonomous management of role-role relationships within the

range. All authority ranges in RRA97 are required to be encapsulated. Figure 3.1 and

3.2 respectively show examples of encapsulated and non-encapsulated range (x; y).

The addition/deletion of a role or an edge in hierarchy may change authority range

from encapsulated to non-encapsulated one. Therefore we put restriction on cre-

ation/deletion of roles and edges.

3.4 Restriction on Role Creation

As discussed earlier creation of a role requires speci�cation of the new role's immediate

parent and child. If the immediate parent and child are the end points of an authority

range, there is no di�culty. More generally we wish to allow creation of a new role

such that its immediate parent and child are within the authority range rather than

being at the end points. Thus PSO1 can create a new role with parent PL1 and

child PE1. However if DSO exercises this power we can end up with the undesirable

situation illustrated in �gure 1.2. To prevent this from happening we introduce the

following notions.

De�nition 15 The immediate authority range of role r written ARimmediate(r) is the

authority range (x; y) such that r 2 (x; y) and for all authority ranges (x0; y0) junior

to (x, y) we have r 62 (x0; y0). 2

De�nition 16 The range (x; y) is a create range if ARimmediate(x) = ARimmediate(y)

or x is an end point of ARimmediate(y) or y is an end point of ARimmediate(x). 2

Note that only comparable roles constitute a create-range.

Consider �gure 3.3. Let (B, A) and (x, y) be authority ranges whereas (x', y') is not

an authority range. The ranges marked by the dotted lines, i.e., (r3, A), (x, A) and

35

r2
r3

y

x

y’

x’

A

B

r1

r4

Figure 3.1: Encapsulated Range (x, y)

r2
r3

r4

y

x

y’

x’

A

B

r1

Figure 3.2: Non-Encapsulated Range (x, y)

36

r1

y

A

r2

x

B

r3

y’

r4

x’

Figure 3.3: Create Range

(B, y) are create ranges. However (r1, A) or (r2, A) do not satisfy the conditions and

thereby are not create ranges.

In RRA97 we require that the immediate parent and child of a new role must be a

create range in the hierarchy prior to creation of the new role.

Roles can be created outside the authority ranges or without a parent or child only

by the chief security o�cer. In general the chief security o�cer can do arbitrary

modi�cations still subject to constraints of RBAC96. In some cases we may not have

such a powerful administrator, but it is a reasonable working assumption for our

purpose.

3.5 Restriction on Role Deletion

Deletion of roles in a hierarchy is a complicated process. Our assumption is that role

in the authority range can be deleted by the administrator of that range. It does not

matter how this role got there.

ARBAC97 de�nes some authorization relations such as can-assign, can-revoke and

37

can-modify. If the roles speci�ed as end points of the role ranges of these relationships

are deleted, we will leave dangling references to non-existing roles. The ranges with

these deleted end points will become meaningless. To avoid this problem RRA97

provides two alternatives.

1. Roles referred in can-assign, can-revoke and can-modify relationships cannot be

deleted. Although this is a fairly restrictive constraint, it is required to keep

the range referential integrity intact.

2. Roles referred in 1 above can be made inactive (explained in the next paragraph)

whenever it is needed to delete them. The advantage of deactivating roles is

that it avoids references to non-existing roles and at the same time achieves the

purpose of deletion.

A role is said to be inactive if a user assigned to it cannot activate it in a session.

The edges to and from the inactive role, its associated permissions and assigned users

remain unchanged. While a user assigned to an inactive role cannot activate it, the

permissions associated with that role are still inherited by senior roles. In this way the

hierarchy is not changed but at the same time a partial e�ect of deletion is achieved.

RRA97 allows both of the above alternations. Regular users cannot invoke inactive

roles, but administrators can revoke users and permissions from these roles. These

roles can be made empty but cannot be deleted from the hierarchy until the references

preventing deletion are suitably adjusted. Other roles in the role hierarchy can be

deleted.

In case of deletion of a role we need to preserve the permissions and users assigned

to the role. RRA97 provides two alternatives for deletion of roles.

1. Roles can be deleted only if they are empty.

38

2. Delete role but at the same time take care of the assigned permissions and

associated users as follows: assign permissions to the immediate senior roles

and assign users to immediate junior roles.

3.6 Restriction on Edge Insertion

Now let us explain how the model deals with the insertion of edges in the role to role

relationships. The insertion of transitive edges has no e�ect so we only consider edges

inserted between incomparable roles. When an edge is inserted we must ensure that

encapsulation of authority range is not violated. We have the following rules.

� The roles between which the edge is inserted must have same immediate au-

thority range, or

� if the new edge connects a role in one authority range to a role outside the range

encapsulation of the authority range must not be violated.

For example in �gure 3.2 assume edges (y, r3) and (r3, x) are initially not present,

and that (x, y) and (B, A) are authority ranges. Insertion of the edge (y, r3) does not

pose any problem. However in presence of this edge, insertion of edge (r3, x) violates

encapsulation of authority range (x, y), hence it must not be allowed. Similarly in the

presence of (r3, x) the edge (y, r3) would not be allowed. This leads to the following

formal de�nition for insertion of an edge.

De�nition 17 The new edge AB between incomparable roles A and B can be in-

serted only if ARimmediate(A) = ARimmediate(B) or if (x; y) is an authority range such

that (A = y ^ B > x) _ (B = x ^ A < y) then insertion of AB must preserve

encapsulation of (x; y). 2

39

SQE1

JQE1

PE1

PL1

E1

DIR

PL2

PE2 QE2

E2

ED

Figure 3.4: Before Deletion of edge from SQE1 to JQE1

SQE1

JQE1

PE1

PL1

E1

DIR

PL2

PE2 QE2

E2

ED

Figure 3.5: After Edge Deletion

40

3.7 Restriction on Edge Deletion

The deletion of a transitive edge does not change the hierarchy, so their deletion is

meaningless. In RRA97 we consider only those edges for deletion that are in transitive

reduction of the hierarchy. If edge AB is not in the transitive reduction then it is

not a candidate for deletion.1 For example in �gure 3.4 deletion of the edge SQE1 to

JQE1 will change the hierarchy. Edge deletion only applies to a single edge and does

not carry over to implied transitive edges. As discussed in the general rules for edge

deletion RRA97 keeps intact transitive edges after deletion. For example, deletion of

the edge SQE1 to JQE1 makes SQE1 and JQE1 incomparable, but SQE1 continues

to be senior to E1 and JQE1 junior to PL1 shown in �gure 3.5.

There is one special case that needs to be considered. If the edge being deleted

is between the end points of an authority range, deletion of the edge will disrupt

the authority range and cause inconsistency in the model. Hence this operation is

disallowed.

3.8 Summary

In this chapter we have formally de�ned the model for decentralized administration

of role-role relationships thus completing the de�nition of ARBAC97 that started in

[SBC+97]. In RRA97 [SM98b] the concept of authority and encapsulated range is

introduced for the �rst time. This concept is used to restrict the administrative roles

to do the role-role assignments without a�ecting authority of other administrative

roles. Restrictions are imposed on creation and deletion of roles as well as on insertion

and deletion of edges so that the encapsulated authority range remains encapsulated.

Administrative roles are given autonomy within their authority range as far as the

1Other models do not have this restriction. For example, Oracle allows insertion and deletion of
transitive edges [KL95].

41

global side e�ects are acceptable.

Chapter 4

ARBAC99 - ADMINISTRATIVE MODELS FOR

RBAC

As mentioned in chapter 2, administrative model for RBAC (ARBAC97) de�ned by

Sandhu et. al [SBM99] consists of three components. URA97 is concerned with user-

role assignments. PRA97 is concerned with permission-role assignments and is a dual

of URA97. For example, every constraint on user-role relationships has a dual counter

part with respect to permission-role relationships, and vice versa. RRA97 deals with

role-role relationships. RRA97 is formally de�ned in chapter 3.

In this chapter we introduce the concept of mobile and immobile users and permissions1

that was lacking in ARBAC97. To incorporate mobility in URA97, we provide moti-

vation in section 4.1 and extensions that lead to new models for user-role assignments,

URA99 grant model described in section 4.2 and URA99 revoke model in section 4.3.

The lack of symmetry in can-assign and can-revoke relations in URA97 model is

discussed in section 4.3. Motivation for introducing mobility of permissions and ex-

tensions in PRA97 to incorporate this concept is described in section 4.4. Can URA97

accommodate mobility? The answer to this question is provided in section 4.5.

1The concept of mobile and immobile users and permissions is introduced for the �rst time
in [SM98a]

42

43

4.1 Motivation for enhancements:

The URA97 model de�ned by Sandhu et. al [SB96] to decentralized the administra-

tion of user-role assignments is described in chapter 2. The assignment of users to

roles is controlled by the can-assign relation. The consequence of assigning a user to

a role is that the user can use the permissions associated with that role and that ad-

ministrative roles can use this membership to assign this user to other roles. We want

to de-couple these tightly coupled aspects of role memberships. Following examples

are provided as a motivation for de-coupling these aspects of user-role membership.

1. Visitor: Assignment of a visitor to a role should allow the visitor to use the

permissions of the role but this membership should not be used to assign the

visitor to other roles.

2. Trainee: A user under training can be assigned to the ED role of the engi-

neering department. Being a member of this role the user can participate in

the engineering department while junior administrators can be prevented from

assigning this user to any project. However after completion of training user's

membership in ED role can be used to assign him to other roles.

3. Consultant. A consultant assigned to E2 role of hierarchy �gure 1 is required to

participate in project 2 and use the general resources of engineering department

due to inherited membership in ED role. At the same time we want to prevent

junior administrators to use this membership to assign the consultant to project

1.

4.2 URA99 Grant Model

In this section we present a formal model for User-Role Assignments keeping in view

the issues described in section 4.1. URA99, a new model thus developed is an en-

44

hancement in URA97. The basic intuition of URA97, that is, the decentralization

of administration of user role assignments, permission role assignments and role-role

assignments is not changed. URA99 builds upon the URA97 model by introducing

the concept of mobile and immobile memberships. A user's membership in a role can

be mobile or immobile. Mobile membership of user u in a role x means that u can use

permissions of role x and members of an administrative role can use this membership

to put user u in other roles. Immobile membership of user u in a role x means that u

can use permissions of role x but members of an administrative role cannot use this

membership to put user u in other roles.

To formalize this distinction we consider each role x to consist of two sub-roles Mx and

IMx. Membership in Mx is mobile, whereas in IMx is immobile. For compatibility

with URA97 we de�ne a set of roles R to consist of the mobile and immobile sub-roles

de�ned as follows.

De�nition 18 For a given set of roles R1 we de�ne the roles for URA99 to be

R = fMx; IMx j x 2 R1g

2

The de�nition for user assignment relation of URA97, UA 2 U�R essentially remains

unchanged in URA99. Assignment of user to Mx signi�es that the user is a mobile

member of x. Similarly, assignment of user to IMx signi�es that the user is an

immobile member of x. Combined with the previously de�ned notion of explicit and

implicit memberships we distinguish four kind of role memberships in URA99.

De�nition 19 There are four kinds of user-role memberships in URA99 for any given

role x.

45

(b) Multiple Inheritance(a) Single Inheritance

x2

x1

x3

x1 x2

(c) Multiple Inheritance

x2

x3

x1

Figure 4.1: Inheritance of mobility and immobility

� Explicit Mobile Member EMx

u 2 EMx � (u;Mx) 2 UA

� Explicit Immobile Member IMx

u 2 IMx � (u; IMx) 2 UA

� Implicit Mobile Member IMx

u 2 ImMx � (9x 0 > x)(u;Mx 0) 2 UA

� Implicit Immobile Member IMx

u 2 ImIMx � (9x 0 > x)(u; IMx 0) 2 UA 2

It is possible for a user to have more than one kind of membership in a role. However,

we will de�ne the semantics of URA99 so that there is strict precedence amongst these

four kinds of memberships as follows:

46

EMx > IEMx > ImMx > ImIMx

Though a user has more than one kind of membership in a role, at any time only

one of them is in e�ect. For example consider the hierarchy of �gure 4.1(a) where

role x1 is senior to role x2. A user who is an explicit mobile member of x1 is an

implicit mobile member of x2. Similar inheritance implies to immobile memberships

as well. Next consider hierarchy of �gure 4.1(b). Let a user be an explicit mobile

member of x1 and explicit immobile in x2. Now this user is implicit mobile (because

of membership in x1) as well as implicit immobile in x3 (because of membership in

x2). According to the precedence rule the implicit mobile is stronger than implicit

immobile membership so the user will e�ectively have implicit mobile membership in

role x3. Finally consider �gure 4.1(c) and a user who is explicit mobile member of x3

and explicit immobile member of role x2. Now the user is implicit mobile membership

(because of membership in x3) and explicit immobile member in role x2. According

to our precedence rule the e�ective membership of user in role x2 will be immobile,

whereas the user will have mobile membership in role x1.

The prerequisite condition for URA99 in context of mobile and immobile memberships

is di�erent from URA97. It is also di�erent for grant and revoke models. URA99

grant model requires membership to a check for mobile membership whereas non-

membership means absence of any kind of membership. The prerequisite condition

for URA99 grant model is formally de�ned as follows.

De�nition 20 In URA99 grant model a prerequisite condition is evaluated for user

u by interpreting x to be true if

u 2 EMx _ (u 2 ImMx ^ u =2 EIMx)

47

Table 4.1: Example of can-assign-M with Prerequisite Conditions

Administrative Role Prerequisite Condition Role Range

PSO1 ED [E1, PL1)
PSO2 ED [E2, PL2)
DSO ED ^ PL2 [PL1, PL1]
DSO PE1 ^ PL1 [PL2, PL2]
SSO ED (ED, DIR]
SSO E [ED, ED]

Table 4.2: Example of can-assign-IM with Prerequisite Conditions

Administrative Role Prerequisite Condition Role Range

PSO1 ED [E1, PL1)
PSO2 ED [E2, PL2)
DSO ED ^ PL2 [PL1, PL1]
DSO PE1 ^ PL1 [PL2, PL2]
SSO ED (ED, DIR]
SSO E [ED, ED]
DSO E [ED, ED]

and x to be true if

u =2 Emx ^ u =2 EIMx ^ u =2 ImMx ^ u =2 ImIMx

Note that it is not possible for x and x to be simultaneously true. However they can

be simultaneously false (u 2 EIMx and u =2 EMx).

The user role assignments are controlled by two relations as follows.

De�nition 21 User-role assignments as mobile members are authorized by the rela-

tion, can-assign-M � AR�CR�2R and user-role assignments as immobile members

are authorized by the relation, can-assign-IM � AR� CR� 2R. 2

48

The meaning of can-assign-M (x; y; Z) is that a member of administrative role x (or a

member of administrative role senior to x) can assign a user whose current member-

ship satis�es the prerequisite condition y to a regular role z 2 Z as a mobile member.

Whereas the meaning of can-assign-IM (x; y; Z) is that a member of administrative

role x (or a member of administrative role senior to x) can assign a user whose current

membership satis�es the prerequisite condition y to a regular role z 2 Z as a immo-

bile member. Examples of can-assign-M and can-assign-IM are respectively shown

in table 4.1 and table 4.2. The top six rows of table 4.2 are identical to table 4.1.

This means mobile or immobile membership is granted at discretion of the individual

administrator. URA99 requires that authorizations for granting mobile and immobile

memberships be explicitly expressed in this manner. There is no implication in gen-

eral that authority to grant mobile implies authority to grant immobile memberships

(although this may be a common case). The last row in table 4.2 authorizes DSO

to enroll any employee as an immobile member of ED. DSO does not have power

to enroll employee as mobile member of ED. That power is con�ned to SSO. In this

example DSO can enroll an employee as immobile member of ED and later the SSO

can upgrade the membership to be mobile.

4.3 URA99 Revoke Model

In URA97 the can-assign relation involves prerequisite condition whereas can-revoke

does not. URA99 revoke model �xes this lack of symmetry, which is quite independent

of the issue of mobility. The revoke model also deals with the revocation of mobile

and immobile memberships.

49

Table 4.3: Example of can-revoke-M with Prerequisite Conditions

Administrative Role Prerequisite Condition Role Range

PSO1 E [E1, PL1)
PSO2 E [E2, PL2)
DSO E (ED, DIR)
SSO E [ED, DIR]
PSO1 E1 [E2, PL2)
PSO2 E2 [E1, PL1)

4.3.1 Motivation for �xing lack of symmetry

Consider the example of engineering department where PSO1 controls the user-role

assignments in project 1 roles. If user Bob is member of role E1 then PSO1 can assign

him to any role of project 1. Suppose PSO1 does not want Bob to member of any

role outside project 1 because that may a�ect Bob's performance in project 1. If Bob

is assigned to any role outside project 1 then PSO1 should have authority to revoke

him from there. The lack of prerequisite condition in URA97 does not provide this

conditional authority to revoke a user from a role.

In URA99 revoke model we introduce two relations to authorize revocation of mobile

and immobile memberships as follows.

De�nition 22 The URA99 revoke model authorizes revocation of mobile member-

ships by the relation can-revoke-M (x; y; Z) and revocation of immobile membership

by the relation can-revoke-IM (x; y; Z) 2

The meaning of meaning of can-revoke-M (x; y; Z) is that a member of administrative

role x (or a member of administrative role senior to x) can revoke a user whose current

membership satis�es the prerequisite condition y to a regular role z 2 Z as a mobile

member. Similarly for can-revoke-IM with respect to immobile memberships.

50

Table 4.4: Example of can-revoke-IM with Prerequisite Conditions

Administrative Role Prerequisite Condition Role Range

PSO1 E [E1, PL1)
PSO2 E [E2, PL2)
DSO E (ED, DIR)
SSO E [ED, DIR]
PSO1 E1 [E2, PL2)
PSO2 E2 [E1, PL1)
DSO E [ED, ED]

An example of these relations is shown in table 4.3 and table 4.4. The evaluation

of prerequisite condition for URA99 revoke model is di�erent from grant model. For

revoke model we do not distinguish mobile and immobile memberships.

De�nition 23 In URA99 revoke model the prerequisite condition is evaluated for a

user u by interpreting x to be true if

u 2 EMx _ u 2 EIMx _ u 2 ImMx _ u 2 ImIMx

and x to be true if

u =2 EMx ^ U =2 EIMx ^ u =2 ImMx ^ u =2 ImIMx

2

Note that unlike the grant model x and x cannot be false at the same time. As in

URA97 they are complements of each other.

If all membership is restricted to being mobile then URA99 is identical to URA97.

This can be achieved by setting can-assign-IM and can-revoke-IM to be empty.

51

4.4 PRA99 - Model for permission-role assignments

In this section we formally de�ne PRA99, model for permission role assignments.

PRA99 model builds upon PRA97 by introducing the concept of mobile and immobile

permissions.

4.4.1 Motivation for mobile and immobile permission

Consider �gure 1.1, PRA97 allows us to give PSO1 authority to take a

permission assigned to PL1 and grant it to the roles in the range [E1, PL1g. The

idea is that each project can delegate permissions of the project lead role to more

junior project roles as the project security o�cer deems appropriate. While this may

be acceptable for most project lead permissions, it is likely that some permissions

are not suitable for such delegation. These permissions are to be assigned to PL1 as

immobile.

4.4.2 Formal De�nition of PRA99

The PRA99 model deals with assignments and revocation of permission from roles.

In this section we de�ne the formal model for permission role assignments. Like

users, permission can also be assigned as mobile and immobile. As PRA97 relates to

URA97, we have PRA99 as an exact dual of URA99. The main di�erence in PRA99

and URA99 is that in PRA99 implicit membership of permissions is inherited upward

in the hierarchy. The de�nitions for PRA99 are as follows.

De�nition 24 The roles in PRA99 are the same as in URA99, that is,

R = fMx; IMxj x 2 R1g

. The permission role assignment relation is PA � U � R. 2

52

De�nition 25 There are four kinds of permission-role memberships in PRA99 for

any given role x.

� Explicit Mobile Member EMx

p 2 EMx � (p;Mx) 2 PA

� Explicit Immobile Member IMx

p 2 IMx � (p; IMx) 2 PA

� Implicit Mobile Member IMx

p 2 ImMx � (9x 0 > x)(p;Mx 0) 2 PA

� Implicit Immobile Member IMx

p 2 ImIMx � (9x 0 > x)(p; IMx 0) 2 PA 2

De�nition 26 In PRA99 grant model a prerequisite condition is evaluated for per-

mission p by interpreting x to be true if

p 2 EMx _ (p 2 ImMx ^ p =2 EIMx)

and x to be true if

p =2 EMx ^ p =2 EIMx ^ p =2 ImMx ^ p =2 ImIMx

2

The permission-role assignments are controlled by two relations as follows.

De�nition 27 Permission-role assignments as mobile members are authorized by

the relation, can-assignp-M � AR�CR� 2R and User-role assignments as immobile

members are authorized by the relation, can-assignp-IM � AR� CR� 2R. 2

53

De�nition 28 The PRA99 revoke model authorizes revocation of mobile member-

ships by the relation can-revokep-M (x; y; Z) and revocation of immobile membership

by the relation can-revokep-IM (x; y; Z). 2

De�nition 29 In PRA99 revoke model the prerequisite condition is evaluated for a

permission p by interpreting x to be true if

p 2 EMx _ p 2 EIMx _ p 2 ImMx _ p 2 ImIMx

and x to be true if

p =2 EMx ^ p =2 EIMx ^ p =2 ImMx ^ p =2 ImIMx

2

4.5 Discussion

We have formally described the motivation and enhancements in components of AR-

BAC97 to accommodate mobility without loosing the basic intuition, that is, the de-

centralization of administration of user-role assignments, permission-role assignments

and role-role hierarchies by means of administrative roles, prerequisite conditions and

role ranges. The principal objective in de�ning modi�cations was simplicity of ad-

ministrative models. The model with URA99, PRA99 and RRA97 components is

given the name ARBAC99 [SM99]. ARBAC97 is a special case of ARBAC99. If all

memberships are restricted to being mobile then URA99 is identical to URA97 and

PRA99 is identical to PRA97. This can be achieved by simply setting can-assign-IM

and can-revoke-IM to be empty.

54

4.6 Simulating mobility in URA97

The concept of mobility is missing from sub-models of ARBAC97. Users and per-

missions are mobile in URA97 and PRA97. Theoretically the possibility of immobile

behavior of users and permissions is not ruled out from these sub-models. In this

section we would like to investigate issues arising if mobility is introduced in AR-

BAC97. This will justify need for enhancements in URA97 and PRA97 that gives

us the new sub-models for user-role assignments (URA99) and permission-role as-

signments (PRA99). ARBAC99 model consists of sub-models URA99, PRA99 and

RRA97 that is left unchanged.

4.6.1 URA97 with �xed mobility

In URA97 all users are mobile. The simplest way of introducing the concept of

immobile users is that SSO creates a special role IR, call it immobile role. The

members of IR role cannot be assigned to any other role and that this role cannot be

made part of any role hierarchy. Although not required but for simplicity we assume

that only SSO is authorized to assign users to role IR. The members of IR cannot

be assigned to other roles is a way of making them immobile users. It is imposed

by modifying can-assign relationship. An example of can-assign relation is shown

in table 4.5. The �rst tuple allows SSO to assign members of roles in range [ED,

DIR] to role IR, thus making them immobile. In other tuples a check is performed as

prerequisite condition before assigning a user to any other role that the user is not a

member of IR.

To analysis the limitations to this method, let us consider the role hierarchy of the

engineering department shown in �gure 1(a). Let us say, we want user Bob to be

a mobile member of the E1 role so that PSO1 can use this membership to put Bob

in PE1 or QE1 roles and at the same time we want Bob to be immobile member

55

Table 4.5: Example of can-assign With mobility

Administrative Role Prerequisite Condition Role Range

SSO [ED, DIR] [IR, IR]
PSO1 ED ^ IR [E1, PL1)
PSO2 ED ^ IR [E2, PL2)
DSO ED ^ PL2 ^ IR [PL1, PL1]
DSO PE1 ^ PL1 ^ IR [PL2, PL2]
SSO ED ^ IR (ED, DIR]
SSO E ^ IR [ED, ED]

of ED role to make sure that he should not be put by administrative roles to other

projects. The method does not enforce this exibility with respect to memberships.

Bob can have only one character in the system. He is either mobile or immobile. It

is not possible to make Bob mobile in one range and immobile in the other roles.

Let us consider another example, if Bob is a consultant (described in section 4.1)

and an explicit member of role E2 thereby acquire implicit member ship to ED role.

We cannot prevent other administrative roles from using this membership to assign

him to project 1. Forcing restriction so that he should not be assigned to project 1

will enforce that he cannot be assigned to any other role of project 2. We term this

mobility as �xed mobility. The impact of �xed mobility is global to the system.

4.6.2 URA97 with dynamic mobility

In this section we describe another approach that allows user to have mobile mem-

bership in certain roles and at the same time have immobile membership in others.

URA97 does not distinguish these kinds of memberships. To introduce mobility in

URA97 framework, we create two roles for each role. For example ED will be replaced

with two roles MED and IMED representing mobile ED and immobile ED respec-

tively. Members of MED are mobile whereas that of IMED are immobile. Similarly

56

E1 is replaced with ME1 and IME1 and so on. The administrative roles can assign

membership to these roles. We do not restrict membership in these roles. A user can

be explicit member of mobile role as well as immobile role at the same time but only

one will be e�ective at a time. In case a user has both mobile as well as immobile

membership it can be resolved using same precedence rules de�ned for URA99.

This method may be practical if there are no role hierarchies. The e�ective mem-

bership of a role is easy to �nd. However if there are role-role relationships, as in

case of engineering department, then we have to maintain two separate hierarchies.

One for mobile roles and other for immobile roles. Any change in one will require a

similar change in the other hierarchy. For example, consider hierarchy of �gure 1.1

(a), we will have two hierarchies one with MX roles and the other with IMX (where

X is a regular role in �gure 1.1, like ED and E1 etc.) roles with similar relation-

ships. Now if PL1 wants to add an edge between MPE1 and MQE1, he has to add

an edge between IMPE1 and IMQE1 as well. Similarly adding a role, deleting a role,

inserting or deleting an edge, all these actions require maintenance of two separate

hierarchies. That may become cumbersome if there are thousands of roles. Not only

this, �nding the membership will require tracing membership in di�erent hierarchies

before resolving any conict.

The can-assign relation is modi�ed to accommodate this concept. Some tuples of

can-assign relation are shown in table 4.6. For simplicity, We assume that similar

authority ranges in both hierarchies are controlled by same administrative roles. For

example, PSO1 controls assignments in both [ME1, MPL1] and [IME1 and IMPL1]

ranges. We call [ME1, MPL1] and [IME1 and IMPL1] ranges similar authority ranges

in two hierarchies.

From the perspective of roles, users and permission have similar character. PRA97

is concerned with the permission-role assignments. PRA97 is a dual of URA97

57

Table 4.6: Example of can-assign for URA97 with dynamic mobility

Administrative Role Prerequisite Condition Role Range

PSO1 MED [ME1, MPL1) _ [IME1, IMPL1)
DSO MED ^ MPL2^ IMPL2 [MPL1, MPL1] _ [IMPL1, IMPL1]

with the exception that prerequisite condition is evaluated for membership and non-

membership of permissions in roles and that in role hierarchies the membership is

inherited upward. Dynamic mobility in PRA97 requires two roles for mobile and

immobile permissions. Permissions associated with mobile roles can be assigned to

other roles whereas permissions associated with immobile roles cannot be. We can

modify can-assignp relation to accommodate mobility as we did for URA97. The

major issue here is that the mobile and immobile users can use both mobile and

immobile permission associated with the roles. Roles de�ned in URA97 to simulate

mobility (such as ME1 and IME1) are not suitable for PRA97. The reason is that

immobile permissions assigned to immobile role cannot be used by the mobile users

because of non-membership in immobile role. For example, Bob is mobile in E1 there-

fore he is member of ME1 role not of IME1 role. We have to create separate roles

for permission-role assignments and have to create a relationship between these roles

similar to the one created for user-role assignments in URA97. For E1 regular role we

will create MPE1 and IMPE1 roles for mobile and immobile permissions respectively

with a constraint that no user can be explicitly assigned to these roles, that is these

are abilities. Similarly we restrict that no permissions should be associated with ME1

and IME1 roles, that means these are groups. The members of groups can use per-

mission if there is a relationship among groups and corresponding abilities. MPE1

and IMPE1 are corresponding abilities for groups ME1 and IME1. The required re-

lationship among these roles is shown in �gure 4.2. Overall conclusion is that we will

58

MX IMX

MPX IMPX

Figure 4.2: Relationship among groups and abilities for role X

have four role hierarchies, namely role hierarchy for mobile users, roles hierarchy for

immobile users, role hierarchy for mobile permissions and role hierarchy for immobile

permissions. We have not only to maintain same structure of these hierarchies but

also to maintain relationship of corresponding roles.

Complicated can-assign and can-revoke relations and maintenance of role hierarchies

with relationships between roles in di�erent hierarchies leads to signi�cant complica-

tion of administration and make this approach impractical.

In this chapter we have described motivation of introducing mobile and immobile

character of users and permissions. The new models developed on this concept are

URA99 and PRA99 that allows administrative roles to manage and change mobile and

immobile behavior within their authority range. ARBAC97 is also considered to be

enough exible to incorporate mobility of users and permissions, but the components

become so complicated that they loose practicality. We believe that there are bene�ts

to have URA99 and PRA99 for administrative simplicity.

Chapter 5

DISCRETIONARY ACCESS CONTROL IN

RBAC96

The principal contribution of this chapter is that it demonstrates that RBAC is

exible and expressive enough to simulate Discretionary Access Control (DAC). We

�rst de�ne the concept of an object in RBAC environment and the operations that

are associated with creation and destruction of an object. MAC and DAC are two

extrems of Access Control. It has already been shown in [NO96, San96] that MAC

can be simulated using roles. It was assumed that RBAC is exible enough that

it can accommodate DAC as well, but there was no formal simulation. The formal

simulation is described in this chapter. The results derived from this chapter has

opened ways to think of accommodating the generalized DAC oriented Access Control

Models like HRU and TAM in RBAC. The results of this chapter has theoretical

importance.

The chapter is organized as: Section 5.1 de�nes DAC variations that are considered in

this chapter for simulation. Section 5.2 discusses operations associated with creation

of an object in RBAC and section 5.3 describes operations involved in destroying an

object. Section 5.4 is gives simulation of DAC variation de�ned in section 5.1. Section

5.5 discusses revocation of access.

59

60

5.1 DAC variations

There is no well de�ned DAC in literature. The basic concept of DAC policy is that the

originator or creator of the object retains the control over granting access to objects

it owns. Owner of an object has discretionary authority over who else can access

that object [SS94, SS97]. In other words DAC policy is owner-based administration

of access rights. There are many variations of DAC policy, particularly concerning

how the owner's discretionary power can be delegated to other users and how access

is revoked. [Lam71, GD72]. In this section we de�ne DAC variations that will be

consider for simulation.

Our intention is to identify major mainstream variations of DAC and demonstrate

their construction in RBAC. The constructions are such that it will be obvious how

they can be extended to handle other related DAC variations. This is an intuitive,

but well-founded, justi�cation for the claim that DAC can be simulated in RBAC.

1. Strict DAC The �rst variation is a strict DAC policy. The control over the

access to the object is in the hands of the owner. Suppose Tom has created an

object (Tom is owner of the object) and grants read access to Bob. This DAC

policy variation requires that Bob cannot propagate access to the object to any

other user directly or indirectly. Tom has the right to take away any granted

access from Bob.

2. Liberal DACThe liberal DAC policy is relaxed. We will be considering the

following three variations of liberal DAC policy as:

(a) One Level Grant:Owner allows access to users such that the users can

grant access to the objects for which they have access to. So Tom being

the owner of object O can grant access to Bob who can grant access to

61

Harry. But Harry cannot grant access to any other user. The users can

get access either from owner or from a user to whom owner has granted

right to grant access to other users.

(b) Two Level Grant: Not only the owner but some of the users, on the

owner's discretion, can grant access to users with a permission to further

grant access. Bob can now may be allowed to grant access to Harry who

can grant access to other users.

(c) Multilevel Grant In two level grant variation Harry can grant read access

to the users but not with a permission to grant it further. In multilevel

grant variation the user Harry is permitted to grant access to users with a

permission to grant it further.

For revocation we will consider the cases where the revocation is independent

of grantor and also when only the users who has granted access to an object

can revoke the access from the user.

3. DAC with Change of Ownership The last variation we will consider is DAC

policy where not only the right of granting access is propagated to other users

as in (2) but the ownership can also be transferred. However we will restrict

our self to objects of single ownership. Tom can allow other users, of his choice,

to have access with a propagation of access right and as well as can transfer the

ownership on the object it owns.

The DAC policies we consider, all share the following characteristics.

1. The creator of an object becomes its owner.

62

2. There is only one owner of an object.1 In some cases ownership[remains �xed

with the original creator, whereas in other cases it can be transfered to another

owner.

3. Destruction of an object can only be done by its owner.

There can be more variations of DAC policy but we are considering only the three

mentioned above to make the conclusions that DAC policy can be simulated in RBAC.

To specify above variations in RBAC, for simplicity, it is su�cient to consider DAC

with one operation for convenience. We choose read operation on objects. Other

operations like write or execute etc. can be explained on similar lines. The DAC policy

only a�ects the R; UA; AUA; PA and APA components of RBAC96. In the rest of

the paper the values of these components before and after the execution of any of the

above operations are represented as non-primed and primed values respectively. Thus

R is set of roles before operation and R' after operation. Before we de�ne a mechanism

for simulation of DAC variations let us �rst describe the common operations which

are speci�cally associated with the creation and destruction of object in RBAC96

system.

5.2 Creation of Object in RBAC

In RBAC96 the creation of an object is linked with the creation of four roles and six

permissions de�ned as below.

De�nition 30 The creation of an object O in an RBAC96 system is associated with

the creation of the following,

1This assumption is not critical to our constructions. It will be obvious how multiple owners can
be handled. Assuming a single owner is convenient and simpli�es our exposition.

63

1. Three administrative roles, OWN O, PARENT O and

PARENTwithGRANT O.

2. One regular role, READ O.

3. Eight permissions for object O; addParent O; deleteParent O;

destroyObjects O; addReadUser O; deleteReadUser O;

addParentWithGrant O; deleteParentWithGrant O:

andcanRead O. 2

The meaning of permission addParent O is that if it is associated with a role then

the members of that role can assign a user to role PARENT O and the meaning

of addReadUser O is that the members of the role with which it is associates can

assign users to role READ O. Similarly the meanings of other permissions can be

understood from their names. We emphasis that these roles and permissions are

associated with the object created and each object created will have a distinct set of

such roles.

The permissions assigned to the roles at the time of creation of an object O are as

follows:

1. OWN O gets the permissions destroyObject O, addParentWithGrant O,

deleteParentWithGrant O.

2. PARENTwithGRANT O gets addParent O, deleteParent O.

3. PARENT O is associated with addReadUser O; deleteReadUser O.

4. READ O has associated permission canRead O.

5. The user who creates the object automatically becomes member of the roles

thus created. 2

64

In RBAC96 this behavior would be enforced by appropriate constraints. One con-

straint on the permissions would be that they are automatically associated with the

roles at the time of their creation. Another constraint would be that the user who

creates an object O, automatically becomes the member of all four roles. The result

e�ect is that the owner have discretionary control over access to the newly created

object.

De�nition 31 The creation of an object O by a user u results in the following

changes in RBAC96 system. 2

1. R0 = R [fREAD Og

2. AR0 = AR [fOWN O [PARENT O [PARENTwithGRANT Og

3. ARH 0 = ARH [f(OWN O;PARENTwithGRANT O) [

(PARENTwithGRANT O; PARENT O)g

4. UA0 = UA [f(u;READ O)g

5. AUA0 = AUA [f(u;OWN O) [(u; PARENT O)g

6. PA0 = PA [f(canRead O;READ O)g

7. APA0 = APA [f(addParentWithGrant O;OWN O);

(deleteParentWithGrant O;OWN O);

(destroyObject; OWN O);

(addParent O; PARENTwithGRANT O);

(deleteParent O; PARENTwithGRANT O);

(addReadUser O; PARENT O);

(deleteReadUser O; PARENT O)g

65

The members of role OWN O manage the administrative roles PARENT O and

PARENTwithGRANT O roles whereas the members of roles PARENT O and

PARENTwithGRANT O roles manage the user role assignments for READ O role.

This is shown in �gure 5.1. The arrow indicates which role can add/revoke member-

ship of the role. For example, member of OWNER role can add/revoke a user from

membership of roles PARENT O and PARENTwithGRANT O roles. The �gure

also shows seniority relationship between the three administrative roles, so OWN O

inherits all permissions of PARENTwithGRANT O which in tern inherits permis-

sions of PARENT O.

5.3 Destroy an Object in RBAC

Destroying an object O requires deletion of four roles namely OWN O, PARENT O,

PARENTwithGRANT O and READ O and six permissions, also removing the

references to these roles in relations UA, AUA and APA. This can be achieved by

�rst �nding the sub-relations of UA, AUA and APA that refer to the roles associated

with the object O. Let us call them as UA O, AUA O and APA O and de�ned as:

De�nition 32 UA O is de�ned as follows.

UA O = f8(x; y) 2 UA j y = READ Og

2

De�nition 33 AUA O is de�ned as follows.

AUA O = f8(x; y) 2 AUA j y = OWN O _

y = PARENT O _ y = PARENTwithGRANT Og 2

66

De�nition 34 APA O is de�ned as follows.

APA O = f8(x; y) 2 APA j y = OWN O _

y = PARENT O _ y = PARENTwithGRANT Og 2

With these relations destroying an object O requires removal of all tuples referring to

roles associated with that object. The following de�nition speci�es the changes made

when an object O is destroyed.

De�nition 35 Destroying of the object O owned by user u means:

� APA0 = APA� APA O

� AUA0 = AUA� AUA O

� UA0 = UA� UA O

� AR0 = AR� f(PARENT O;OWN O;PARENTwithGRANT O)g

� R0 = R � fREAD Og

5.4 Simulation of Strict DAC

In strict DAC only the owner can grant/revoke read access from users. The cre-

ator is the owner of the object and being member of the roles PARENT O and

PARENTwithGRANT O roles can change assignments of the role READ O. The

constraint imposed is that the membership of administrative roles cannot change.

Hence only owner can do the assignments in the READ O role.

De�nition 36 The constraints in RBAC96 system for strict DAC are as follows.

67

OWN_O READ_O

(a)

OWN_O

PARENTwithGRANT_O

PARENT_O

(b)

PARENTwithGRANT_O PARENT_O

Figure 5.1: (a)Administration of roles associated with an object (b) Administrative
role hierarchy

1. The cardinality ofOWN O; PARENT O and PARENTwithGRANT O roles

is one.

2. The membership of OWN O; PARENT O and PARENTwithGRANT O

roles cannot change. 2

De�nition 37 Granting access to user u0 to read object O results in following change

in RBAC system:

UA0 = UA [f(u0; READ O)g

De�nition 38 Revoking access for user u0 to read an object O results if following

changes in RBAC system.

UA0 = UA� f(u0; READ O)g

To simulate this particular DAC policy we actually need only two roles, OWN O and

READ O. However, for consistency we give this more general construction since it

applies to other forms of DAC we consider.

68

5.5 Simulation of Liberal DAC

The two variations of liberal DAC described in section 3 are considered separately

for granting and revoking access to the objects. Here we describe the one level grant,

two level and multilevel grant DAC. The revocation of users from roles is discussed

later in this section.

5.5.1 One Level Grant

The one level grant DAC policy can be simulated in RBAC96 by relaxing the con-

straint on Strict DAC. The cardinality restriction of PARENT O is removed. The

member of OWNER O role can assign users to PARENT O role who can assign

users to the READ O role. The constraint in RBAC96 is modi�ed as follows.

De�nition 39 The constraints for one level grant DAC are given below.

1. The cardinality of OWN O and PARENTwithGRANT O roles is one.

2. The membership ofOWN O and PARENTwithGRANT O roles cannot change.

2

5.5.2 Two Level Grant

In two level grant DAC policy there are two types of users, those who can only

grant read access and those who can grant read access with a permission to grant it

further. In our simulation read access to object O is granted by the members of role

PARENT O. Members of role PARENTwithGRANT O can assign users to roles

READ O as well as to PARENT O. Assigning a user to PARENT O authorizes

that user to assign other users to have read access to object O. On the other hand

assigning a user to regular role READ O means the user can only have read access

to object O but cannot grant it further. Thus two level grant can be achieved by

69

assigning users to roles READ O, PARENT O and PARENTwithGRANT O as

appropriate. This is speci�ed by further relaxing the constraint de�ned above as

follows.

De�nition 40 The constraints for two level grant DAC policy in RBAC:

1. The cardinality of OWN O role is one.

2. The membership of OWN O role cannot change. 2

De�nition 41 Grant of read access to user u0 on object O with a permission to grant

read makes following changes.

� AUA0 = AUA [f(u0; PARENT O)g

� AUA0 = AUA [f(u0; PARENTwithGRANT O)g 2

5.5.3 Multilevel Grant

To grant access beyond second level we need members of role PARENTwithGRANT O

to be allowed to assign users to PARENTwithGRANT O. In two level grant only

members of OWN O have this permission. To simulate multilevel grant DAC we need

to allow the members of the role PARENTwithGRANT O to have the permission

as well. The association of this permission to the role PARENTwithGRANT O

serves the purpose. Now not only the members of OWN O but also the members of

PARENTwithGRANT O can assign users to roles PARENTwithGRANT O and

multilevel grant DAC can be achieved.

De�nition 42 Grant of read access to user u0 on object O with a permission to grant

read as well as grant it to other users makes the following changes.

70

� AUA0 = AUA [f(u0; PARENTwithGRANT O)g

� APA0 = APA [f(addParentWithGrant O; PARENTwithGRANT O)g 2

This de�nition authorizes members of role PARENTwithGRANT O to assign users

to role PARENTwithGRANT O

5.6 DAC with change of Ownership

In above variations we have restricted discussion to the case where the ownership

remains with the creator of the object. This is not always true of DAC policies.

There are cases where the change in ownership occurs. Change of ownership can be

simulated by changing the constraints in RBAC96 as follows.

De�nition 43 The constraints for Multilevel grant DAC policy in RBAC96 is that

the cardinality of OWN O role is one but membership to it can be modi�ed. 2

De�nition 44 Change of ownership from user u to u0 means:

AUA0 = AUA� f(u;OWN O)g [f(u0; OWN O)g

5.7 Revocation of access

So far we have explained only the process of granting an access. This section describes

the revocation of access. We are considering two cases of access revocation as follows.

5.7.1 Revocation is independent of granter.

This variation is easy to simulate in our constructions. It simply requires deleting a

user from the membership of a role. For example if we want to revoke user u from

reading an object O then the tuple (u;READ O) is required to be removed from

relation UA of RBAC96. The following de�nition describes this formally.

71

U1_PARENT_O

U2_PARENT_O

Un_PARENT_O

U11_READ_O

U12_READ_O

 U1n_READ_O

U21_READ_O

U21_READ_O

 U2n_READ_O

Un1_READ_O

Un2_READ_O

Unn_READ_O

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.2: Read O Roles associated with members of PARENT O

De�nition 45 Revoking a user u from reading an object O is achieved by making

following changes in RBAC:

UA0 = UA� f(u;READ O)g

The members of administrative roles PARENT O and PARENTwithGRANT O

are authorized to do these changes. Revocation does not depend upon how user u

has got the access to read O. Similarly we can de�ne revocation from PARENT O

and PARENTwithGRANT O roles.

5.7.2 Revocation only by granter of access

In this case only the user who has granted access to another user can revoke the

access. The above simulation does not have this restriction. To simulate grant-

dependent revocation we need to make the following changes in our construction. To

explain this variation let us consider the one level grant DAC policy where members

of PARENT O role can assign users to READ O role. We need a di�erent admin-

istrative role U PARENT O and a di�erent regular role U READ O for each user

72

authorized to do a one level grant by the owner. These roles are automatically cre-

ated when the owner authorizes user U. We also need two administrative permission

created at the same time s follows.

1. addU ReadUser O; deleteU ReadUser O: respectively authorizes the opera-

tions to add users to the role U RAEAD O and remove them from this role.

They are assigned to role U PARENT O.

thereby, Ui PARENT O manages the membership assignments of Ui READ O role

as indicated in �gure 5.2 for users U1; U2; :::; Un. The cardinality constraint of

U PARENT O is one. Moreover its membership cannot be changed. Thus user U

will be the only one granting and revoking users from U READ O role.

We can allow the owner to revoke users from the U READ O role by making role

U PARENT O junior to OWN O. Simulation of grant-dependent revocations can

be similarly simulated with respect to PARENT O and PARENTwithGRANT O

roles. This construction is cumbersome but is theoretically feasible.

In this chapter we have shown that DAC can be simulated using roles. The concept of

RBAC object is introduced for the �rst time. The importance of this concept is that

now we are able to demonstrate that administrative models built on the concept of a

user object are within the purview of RBAC. Another conclusion that can be drawn

from this chapter is that for each object we create four roles and eight permissions.

If in a system there are hundreds of objects, we can imagine thousands of roles and

permissions. The administration of such a huge number of roles and permissions is a

formidable task. This is another reason why we need to decentralize administration

in RBAC.

Chapter 6

AUGMENTED TYPED ACCESS MATRIX

MODEL

AND RBAC96

This chapter demonstrates the expressiveness of RBAC to accommodate other highly

decentralized general administrative models. The results are theoretically important,

especially in conjunction with earlier results regarding the simulation of MAC and

DAC using roles. The results of this chapter show that RBAC not only subsumes both

traditional forms of access control but also the highly decentralized administrative

model ATAM [MS99]. Section 6.1 provides an overview of ATAM and mapping of

ATAM components with RBAC. The formal simulation is described in section 6.2.

In section 6.3 we give summary of ATAM simulation in RBAC.

6.1 Overview

As explained in chapter 2, ATAM requires that the security o�cer should specify the

�nite set of types (T), rights (Rright) and a set of commands as part of the system

de�nition. The subjects and objects are created of speci�c types, which thereafter

cannot be changed. The strong types are the principle innovation of ATAM. ATAM

represents the distribution of rights by the access matrix. The access matrix has a row

and column for each subject and a row for each object. Subjects are also considered

as objects. Objects that have only a column in the access matrix are called pure

73

74

objects. In ATAM terminology ATAM objects are denoted by symbol OBJ . If SUB

is set of subjects then set of pure Objects is OBJ - SUB

The contents of the access matrix are changed by means of commands. The usual

interpretation of ATAM command is that it is initiated by the �rst parameter in

the parameter list of the command. For each ATAM command we create an admin-

istrative permission which performs the required checks and changes in the RBAC

components. The administrative role ADMN ROLE is created and all adminis-

trative permissions are assigned to this role. All users are made members of this

administrative role. In RBAC we will have:

AR = fADMN ROLEg

In our simulation we will create a role for each ATAM type. When an object O is

created of certain type t then we create self O role senior to role that correspond

to the type t. At the same time we create one role for each right for O along with

the permissions, one for each right on the object. The permissions are assigned to

the corresponding roles that cannot be changed thereafter. This means that the

permission role assignments (PA) for these roles are initiated ONLY at the time of

role creation. If the object is a subject (S) then a user, user S is also created and

made member of the roles self S and ADMN ROLE. In this way if S is the �rst

parameter of the command then user S will be able to make the checks and changes

in the components of RBAC.

Deleting an objectX removes the roles, permissions and user X, if any, corresponding

to the object X from the RBAC system. The removal of the user X will require its

revocation from all roles it is explicit member of.

A change in the set SUB or OBJ or the change in the contents of any cell of AM

changes the protection state. The change in SUB and OBJ changes the set of roles

75

in the system whereas the change in the contents of the cells of AM changes the UA

and PA components of the equivalent RBAC. This suggests that we may consider

the set of components U; R; PA; UA and RH of RBAC to represent the protection

state of the ATAM system.

6.2 Formal description of the simulation

In this section we formally describe the simulation of ATAM system using roles. In

the RBAC and ATAM mapping we use the RBAC terminology on the left hand side

and ATAM on the right hand side of the equations and expressions. Therefore R

appearing on left side of expression is 'ROLE' where as R right on right side is the

set of ATAM rights. The mapping of ATAM de�nition to RBAC constructions is as

follows:

6.2.1 Administrative role ADMN ROLE

We create an administrative role ADMN ROLE. It is represented by RBAC com-

ponent as follows.

AR = fADMN ROLEg

6.2.2 ATAM types are RBAC roles

For each ATAM type we will have an RBAC role. For example: if we have the set

of ATAM types as T = ft1; t2; t3; ::::; tng then in RBAC simulation we will create n

roles namely, t1; t2; t3; ::::; tn. In RBAC we will have

R � ft j t 2 Tg

6.2.3 Mapping of ATAM rights and ATAM Objects

For each ATAM object X we create

76

� Role self X senior to type role this object is created of.

� Roles corresponding to the object and rights (one for each right) and

� Corresponding Permissions (one for each right).

� However if the object is a subject then we also create a user, user X and a role

session X.

� user X is assigned the membership of the self X and ADMN ROLE.

For example, the creation of object X of type t in ATAM is equivalent to cre-

ate a role self X senior to role t and the corresponding roles for object X are

r1 X; r2 X; ::::rm X with corresponding permissionsCan r1 X;Can r2 X; :::::; Can rm X

assuming that Rright = fr1; r2; r3; :::rmg. Furthermore if the object is a subject then

a user X and a session X are created. The user user X is made member of the

role self X and ADMN ROLE. This leads to the following mapping of ATAM to

RBAC.

U = fuser X j X 2 SUBg

R = ft j t 2 Tg [fr X j r 2 Rright ^X 2 OBJg [fself X j X 2 OBJg

P = fCan r X j r 2 Rright ^X 2 OBJg

Sessions = fsession X j X 2 SUBg

Constraint : user(session X) = user X

UA = f(user X; self X) j X 2 SUBg

AUA = f(user X;ADMN ROLE) j X 2 SUBg

77

6.2.4 The ATAM commands:

Each ATAM command is equivalent to some changes in the components of RBAC.

This is achieved by creating an administrative permission for each command. These

permissions will perform the equivalent checks and changes in the components of

RBAC. For example, for ATAM command create object O we will create an admin-

istrative permission create object O that will perform equivalent checks and changes

in RBAC components. These administrative permissions are assigned to the role

ADMN ROLE. That is

AP = f� j � is an ATAMcommandg

APA = f(�;ADMN ROLE) j � is an ATAMcommandg

The ATAM command consists of three parts namely parameter list, condition and

body. The translation of each of these is as follows.

� Parameters of the command:

Formal parameters of ATAM commands are the checks of existing objects for

the memberships or relationships of roles that map with the ATAM types.

The Command �(X1 : t1; X2 : t2; X3 : t3; :::; Xk : tk) is simulated as follows.

1. Check if role self Xi is senior to role ti for existing objects and

2. If Xi is the �rst parameter in the parameter list then checking the mem-

bership of user Xi in role self Xi and ADMN ROLE.

Example: Command �(X1 : t1; X2 : t2)

If

Create object X2 of type t2

end

78

The above conditions for X1 : t1 will be checked whereas the checks for X2

will not be performed because X2 is not an existing object. On the other hand

the role self X2 senior to t2 along with the roles and permissions (depending

upon the set of rights) as explained in section 6.2.3 will be created as a result

of 'Create object X2 of type t2' operation in the body of the command.

� Condition part of the command: The condition part of the command is

the testing for the membership and non-membership in a role. For example

a) If r 2 [Xs1; Xo1] will be translated as user Xs1 2 r Xo1 and

b) If r =2 [Xs1; Xo1] will be translated as user Xs1 =2 r Xo1

� The body of the command:

The body of the command consists of the ATAM operations which are translated

as follows.1

{ Create object/subject X of type t is translated as creation of self X

role senior to role t, all right related roles (i.e., r1 X; r2 X; :::; rn X) and

permissions (i.e., Can r1 X;Can r2 X; :::::; Can rm X) with respect to ob-

ject X. In RBAC this is captured by the following changes in the compo-

nents:

R0 = R [fself X; r1 X; r2 X; :::; rn Xg

P 0 = P [fCan r1 X;Can r2 X; :::::; Can rm Xg

PA0 = PA [f(r1X;Can r1 X); (r2X;Can r2 X); :::::;

(rmX;Can rm X)g

RH 0 = RH [f(self X > t)g

1In this section the RBAC terminology is used on both right and left side of the equations and
expressions.

79

If the object is a subject then we also create user X and assign it the

membership of roles self X and ADMN ROLE. This will be equivalent

to the following changes in RBAC components:

U 0 = U [fuser Xg

UA0 = UA [f(user X; self X); (user X;ADMN ROLE)g

{ Enter r into [X, Y] is translated as making user X member of role r Y .

The e�ect in RBAC is

UA0 = UA [f(user X; r Y)g

{ Delete r from [X, Y] revokes the membership of user X from role rY .

The e�ect is:

UA0 = UA� f(user X; r Y)g

{ Destroy object/subject X: In ATAM the e�ect of this operation is

removal of row or/and column associated with the object/subject X from

access matrix. On the RBAC side this requires the deletion of all roles and

permissions associated with the object X. This is depicted by the following

component changes:

R0 = R� fr1X; r2X; :::; rnXg

P 0 = P � fCan r1 X;Can r2 X; :::::; Can rm Xg

PA0 = PA� f(r1X;Can r1 X); (r2X;Can r2 X); :::::;

(rmX;Can rm X)g

RH 0 = RH � f(self X > t)g

However if the object is a subject then we require that �rst the explicit

membership of user X be revoked from all other roles.

U 0 = U � fuser Xg

(8r 2 R)UA0 = UA� (user X; r)

80

6.3 Summary:

In this section we give the summary of the above translation of ATAM system into

RBAC. On the left side of the expression we use RBAC terminology whereas on right

is ATAM terminology. Therefore R on right represents the set of ATAM rights and

on left it is set of ROLES.

6.3.1 De�nition of RBAC components

U = fuser X j X 2 SUBg

R = ft [t 2 Tg [fr X j r 2 Rright ^X 2 OBJg [fself X j X 2 OBJg

AR = [ADMN ROLE]

P = fCan r X j r 2 R ^X 2 OBJg

PA = f(Can r X; r X) j r 2 R ^X 2 OBJg

AP = f� j � is an ATAM commandg

APA = f(�;ADMN ROLE) j � is an ATAM commandg

Sessions = fsession X j X 2 SUBg

UA = f(user X; self X) j X 2 SUBg

AUA = f(user X;ADMN ROLE) [X 2 SUBg

RH = fself X > t j X 2 OBJg

Constraint on sessions:

� user(session X) = user X

� A user can have only one session that persists as long as the user remains in

the system.

Constraints on PA and APA:

81

� The permissions are assigned to the roles only at the time of creation and cannot

be changed thereafter.

� There is one administrative permission per ATAM command and they are as-

signed to administrative role ADMN ROLE.

6.4 Example

In this subsection we demonstrate the ATAM simulation in RBAC using the example

of Liberal multilevel DAC policy with one level grant option of chapter 6.

6.4.1 Multi-level DAC policy and its simulation

In multi-level DAC policy the owner of the object can grant authority to users who

in turn can use this authority to grant access to the object. So Alice being the owner

of the object O can grant access to Bob. Now Bob can grant access to Charles. But

Bob cannot grant Charles the power to further grant access to Dorothy. The ATAM

solution to this policy is as follows:

Types: fs; og

Rights: fown; read; ReadwithGrantg

ATAM commands are as follows.

1. Command Create Object(S : s;O : o)

create object O of type o

enter own in [S;O]

enter read in [S;O]

end

2. Command Grant Read ObjectWithGrant(S : s;S 0 : s;O : o)

If own 2 [S;O] then

82

enter ReadwithGrant in [S 0; O]

end

3. Command Grant Read Object(S : s;S 0 : s;O : o)

If own 2 [S;O] or ReadwithGrant 2 [S;O] then

enter read in [S 0; O]

end

For simplicity we do not consider the revoke commands in this example.

6.4.2 RBAC simulation of ATAM solution

In this section we will demonstrate the use of mappings described in section 4 to

translate the ATAM solution into RBAC96 constructions.

1. Create an administrative role ADMN ROLE.

2. The types are the RBAC96 roles: Thus we create two roles S ROLE for s and

O ROLE for o type.

3. The ATAM commands can be implemented by checking the memberships and

relationships. Depending upon the results of these checks, roles and permissions

are created/deleted and user role and permission role assignments are done.

Here we show the e�ects of ATAM command with respect to RBAC96:

� Command Create Object(S : s;O : o)

create object O of type o

enter own in [S;O]

enter read in [S;O]

end

83

Is equivalent to an administrative permission Create Object that can per-

form following checks and changes.

if self S > S ROLE and user S 2 self S

then

R0 = R [fself O;OWN O; ReadWithGrant O; READ Og and

P 0 = P [fCanOwn O; CanReadWithGrant O; CanRead Og

PA0 = PA [f(OWN O; CanOwn O); (ReadWithGrant O;

CanReadWithGrant O); (READ O; CanRead O)g

RH 0 = RH [fself O > O ROLEg

UA0 = UAf(user S;OWN O); (user S; READ O)g

That is, if self S > S ROLE then create RBAC96 roles self O; OWN O,

READ O; ReadWithGrant O with the permissions CanReadWithGrant O;

CanOwn O and CanRead O are created. The role self O is made senior

to role O ROLE and we also do the permission role assignments.

� Command Grant Read ObjectWithGrant(S : s;S 0 : s;O : o)

If own 2 [S;O] then

enter ReadwithGrant in [S 0; O]

end

Is equivalent an administrative permissionGrant Read ObjectWithGrant

that can perform following.

if user S 2 self S and self S > S ROLE and self S 0 > S ROLE

and self O > O ROLE

then

UA0 = UA [fuser S 0g; ReadWithGrant O)

That is, if self S and self S 0 roles are senior to S ROLE and self O is

senior to O ROLE then user S 0 are assigned the membership of

84

ReadWithGrant O role.

� Command Grant Read Object(S2 : s;S3 : s;O : o)

If own 2 [S2; O] or ReadwithGrant 2 [S2; O] then

enter read in [S3; O]

end

The RBAC96 administrative permission Grant Read Object can do fol-

lowing equivalent changes.

If user S2 > S ROLE and user S 2 self S and

user S3 > S ROLE and

self O > O ROLE and

(user S2 2 OWN O or user S2 2 ReadWithGrant O)

then

UA0 = UA [(user S3; READ O)

The three administrative permissions are assigned to the role ADMN ROLE.

6.5 Simulation of RBAC in ATAM

In previous section we have described that RBAC can easily accommodate ATAM.

Therefore RBAC is as expressive as ATAM. Is ATAM as expressive as RBAC? In this

section we try to simulate RBAC using ATAM. We will agree that ATAM cannot

accommodate RBAC conveniently. For simplicity we will not consider constraints in

RBAC for this simulation.

For RBAC simulation using ATAM, we de�ne following mappings.

RBAC users (U), roles (R), administrative roles (AR) and sessions (S) are ATAM

subjects (SUB). RBAC permissions (P) and administrative permissions (AP) are

ATAM rights (Rright).

85

Table 6.1: Access matrix for ATAM simulation of RBAC

U R R' S
U assign assign
R x, x1
R' x2, x3
S own

For simulation we will make use of following ATAM types and rights,

Types T = fU, R, AR, Sg Rights Rright = fassign, owng [fP [APg

Creation of a RBAC user, role or session is simulated as addition of a column and a

row in access matrix (AM). An example of access matrix (AM) is shown in table 6.1.

Translation of the contents of AM is as follows.

User U is assigned to roles R and R'. Role R is associated with permissions x1, x2

and R' is associated with permissions x3, x4. The AM also shows that session S is

created by user U.

User-role assignments (UA) are controlled by can-assign relation. This is sim-

ulated ny ATAM commands. Prerequisite condition is the condition part and as-

signment is body of the ATAM command. For example, second tuple of can-assign

relation shown in table 2.2 is simulated as follows.

Command PSO1 can assign PE1(PSO1: AR; U1: U; ED: R; QE: R)

If assign 2 [U1; ED] and assign 62 [U1; QE1] then

enter assign in [U1, PE1]

end

tuple 9 authorizes administrative role DSO and tuple 11 authorizes SSO to assign user

to PE1. The ATAM commands that will simulate this authorization are as follows.

Command DSO can assign PE1(DSO: AR; U1: U; ED: R)

86

If assign 2 [U1, ED] then

enter assign in [U1, PE1]

end

Command SSO can assign PE1(SSO: AR; U1: U; ED: R)

If assign 2 [U1, ED] then

enter assign in [U1, PE1]

end

The concept of authority range cannot be directly silulated in ATAM. We create

ATAM commands, one for each administrator that is authorized to do user-role as-

signment in a regular role. Therefore a change in authority range or in prerequisite

condition requires a change in ATAM commands.

Similar commands can be created for revocation of users from roles using information

in can-revoke relation.

Permission-role assignments (PA) in RBAC are controlled by can-assignp rela-

tion. PA is simulated by ATAM commands using similar constructions used for UA.

The main di�erence in these commands is that we cannot pass permission as a pa-

rameter. The ATAM command for tuple 3 in can-revoke relation shown in table 2.4

is simulated as follows.

Command PSO1 assign p to PE1(PSO1: AR; ED: R; QE: R; PE1:R)

if assign 2 [U1; ED] and assign 62 [U1; QE1] then

enter p in [PE1, PE1]

end

Similar commands for other administrators and for other permissions can be added.

It is obvious that a large number of commands will be required to simulate PA. Revo-

cation of permissions can be simulated by adding similar commands using can-revokep

87

Table 6.2: Access matrix for ATAM simulation of role hierarchies

U U' PL1 PE1 QE1 E1
U assign
U' assign
PL1
PE1 assign
QE1 assign
E1 assign assign

relation.

Role hierarchies (RH) simulation in ATAM requires an understanding of role-role

relationship concept we will use in ATAM. To simulate a role-role relationship we

use the concept of assigning a role to another role. For example if we want role E1

to be junior to role PE1 (as in �gure 1.1 (a)) then we assign role E1 to role PE1.

This means that a right assign in a cell of access matrix (AM) shows that there is

a relationship among two roles. An example of role hierarchy of range (E1, PL1) is

shown in table 6.2. ATAM right assign in cell [E1,PE1] indicates that Role E1 is

assigned to role PE1 thereby making E1 junior to PE1. Right assign in [E1, PE1]

indicates that E1 is junior to QE1 and so on. Note the di�erence of having a right

assign in cells [U, PL1] and [PE1, PL1]. The �rst value is an indication that user U

is a member of role PL1, while second value indicates that the relationship among

PE1 and PL1.

RRA97 model de�nes restrictions on the role-role assignments. Administrative roles

can create role, delete role, insert edges and delete edges between roles only if these

operations do not produce anomalous side e�ects2. We have found that following

concepts are not easy to simulate in ATAM commands.

2Discussed in chapter 3

88

� Authority range do not partially overlap.

� Encapsulated range.

� Authority range is required to remain encapsulated when RH changes.

� The concept of create range.

� End points of an authority range cannot be deleted.

� Deletion of role requires that members of deleted role be assigned to immediate

senior roles and associated permission to immediate junior roles.

Sessions (S) creation in RBAC is easy to simulate using following ATAM command.

Command create session(U1:User; S1:S)

create subject S1 of type S

enter own in [U1, S1]

end

For the simulation of use of a permission in a session we create following command.

Command can use permission x(S:Session;, U:User; R:Role)

If assign 2 [U, R] and own 2 [U, S] and x 2 [R, R] then

Enter x in [S, S]

%[Commands to use permission x]

delete x from [S, S]

end

The philosophy behind this command is that in RBAC permissions can be revoked

from a role at any time. Therefore ATAM system requires to perform checks if the

permission is associated with role at the time it was used or not. On successful check

89

it enters permission in appropriate cell to allow session to use it and after its use

the permission should be deleted from there. In the interval between entering and

deleting permission, the command should allow the use of permission. ATAM system

does not provide this syntax. This is to be taken care programatically. Another

issue here is this command allows the use of explicitly assigned permissions to a role.

For implied permissions we require a mechanism to check the membership of implied

permission to a role. The program for the command can make such checks from AM.

The constructions we have shown in this section are for the assignments of users

and permissions to regualr roles. We can create similar commands for administrative

user-role assignments (AUA) and administrative permission-role assignments (APA).

6.6 Summary

In this chapter we have shown that RBAC provides an open ended general framework

for access control. Not only the Policies like MAC and DAC can be accommodated

in RBAC framework but models such as HRU, TAM and ATAM can be reduced to

RBAC. We have also shown that ATAM, on the other hand, cannot conveniently

accommodate RBAC.

Chapter 7

CONCLUSION

This chapter lists the contributions of this thesis and presents an insight into the

future directions. The contributions of this thesis are presented in 7.1 and future

directions are given in section 7.2.

7.1 Contributions

In this thesis we have completed the Administrative models for Role-based Ac-

cess Control (ARBAC) By formally de�ning the model for Role-Role Assignments

(RRA97). This is signi�cant as there has been no formalism to control role to role re-

lationships. The e�ect of role-role assignment is to construct a role hierarchy in which

senior role inherits permissions from junior roles. The model provides a decentralized

administration of role hierarchies. It gives administrative roles autonomy within a

range but only so far as the side e�ects of the resulting actions are acceptable. The

model disallows some operations authorized by authority range, thereby tempering

the administrative role's authority. We have formally identi�ed these restrictions and

provided their motivations.

We then address the concept of mobile and immobile users and permissions in context

of administration of user-role and permission-role assignments for the �rst time in

this arena. Introduction of mobility in URA97 and PRA97 make the constructions

cumbersome, and the models di�cult to use. We have formally de�ned enhancements

90

91

to these models to give rise to URA99 and PRA99 models with out changing the basic

intuition, that is the decentralization of administration of user-role, permission-role

and role-role assignments by means of administrative roles, prerequisite conditions

and role ranges. With the modi�cations we obtain the ARBAC99 model. Thai is

ARBAC99 contains URA99, PRA99 and RRA97.

Role-based Access Control is a promising alternative to traditional discretionary ac-

cess control (DAC and mandatory access control (MAC). Our �nal contribution in

this thesis is to show that RBAC is su�ciently powerful to accommodate DAC. The

DAC variations are de�ned and then simulated to show the simplicity and exibility

of RBAC to accommodate them. We have de�ned strict and liberal DAC and the sim-

ulation covers the issues like one level, two level, multilevel grant, DAC with change

of ownership, grant-independent revocation and grant-dependent revocation. Our

contribution shows that RBAC is su�ciently powerful to simulate DAC. This raises

an important question as to weather it can accommodate the Access Control Models

based on Discretionary Access like HRU, TAM or Augmented Types Access Matrix

Model (ATAM). To answer this issue we have selected the ATAM because, �rstly it

can accommodate HRU and TAM and secondly it is recognized as the current state

of art with respect to formal models for generalized access control, and shown that

ARBAC can easily accommodate this highly decentralized administrative model. In

combination with previous results on simulating MAC in RBAC [NO96, San96] our

work shows RBAC accommodates bot MAC and DAC as special cases.

7.2 Future Research

Based on the research work in this thesis, we propose the following future research

directions.

92

Table 7.1: can-assign with contradicting tuples

Administrative Role Prerequisite Condition Role Range

PSO1 ED [E1, PL1)
PSO2 ED [E2, PL2)

� ARBAC99 is a low level model which would be tedious to setup. In future

there is need to look for more abstract models for administration of RBAC.

This thesis provides an intuition and a good starting point in this direction.

� In ARBAC99 can-assign, can-assignp, and can-modify relations are used to

specify restriction on user-role, permission-role and role-role assignments re-

spectively. The relations are open ended and there are possibilities that one

can add conicting tuples in these relations. For example in can-assign relation

one can add tuples as shown in table 7.1. This makes prerequisite condition

ine�ective. Similar situation may arise when we have a tuple that contradicts

entry in the role range. In future, we would like to de�ne these relations formally

so that the system does not allow to add tuples in relations that contradicts

any existing tuple.

� URA97 and PRA97 components of ARBAC97 are implememted [SB99]. URA97

and PRA97 models are special cases of URA99 and PRA99 models. In future

we would like to see how the implementations of URA97 and PRA97 can be

extended to accommodate URA99 and PRA99 models. We would also like

to see the implementation of RRA97 model formally de�ned in this thesis for

role-role assignments.

� In this thesis we have shown that ATAM cannot accommodate RBAC conve-

niently. In future, we need to formally de�ne extentions in ATAM so that the

93

issues raised in this thesis with respect to ATAM limitations can be resolved.

BIBLIOGRAPHY

94

95

BIBLIOGRAPHY

[AELO90] M. Abrams, K. Eggers, L. LaPadula, and I. Olson. A generalized frame-

work for access control: An informal description. In Proceedings of

13th NIST-NCSC National Computer Security Conference, pages 135{143,

1990.

[ALS92] P.E. Ammann, R.J. Lipton, and Ravi S. Sandhu. The expressive power

of multi-parent creation in monotonic access control models. In Proceed-

ings of IEEE Computer Security Foundations Workshop, pages 148{156,

Franconia, NH, June 1992.

[AS92a] P.E. Ammann and Ravi S. Sandhu. The extended schematic protection

model. The Journal Of Computer Security, 1(3&4):335{384, 1992.

[AS92b] P.E. Ammann and Ravi S. Sandhu. Implementing transaction control

expressions by checking for absence of access rights. In Proceedings of 8th

Annual Computer Security Application Conference, pages 131{140, San

Antonio, TX, December 1992.

[Bis88] M. Bishop. Theft of information in the take-grant protection model. In

Proceedings of IEEE Computer Security Foundations Workshop, pages

194{218, Franconia, NH, June 1988.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access controls. In Pro-

ceedings of 15th NIST-NCSC National Computer Security Conference,

pages 554{563, Baltimore, MD, October 13-16 1992.

[GD72] G.S. Graham and P.J. Denning. Protection { principles and practice. In

AFIPS Spring Joint Computer Conference, pages 40:417{429, 1972.

[GI96] Luigi Guiri and Pietro Iglio. A formal model for role-based access control

with constraints. In Proceedings of 9th IEEE Computer Security Founda-

tions Workshop, pages 136{145, Kenmare, Ireland, June 1996.

[HRU76] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating

systems. Communications of the ACM, 19(8):461{471, 1976.

96

[KL95] George Koch and Kevin Loney. Oracle The Complete Reference. Oracle

Press, 1995.

[Lam71] B.W. Lampson. Protection. In 5th Princeton Symposium on Information

Science and Systems, pages 437{443, 1971. Reprinted in ACM Operating

Systems Review 8(1):18{24, 1974.

[LM82] A. Lockman and N. Minsky. Unidirectional transport of rights and take-

grant control. IEEE Transactions on Software Engineering, SE-8(6):597{

604, 1982.

[LS77] R.J. Lipton and L. Snyder. A linear time algorithm for deciding subject

security. Journal of the ACM, 24(3):455{464, 1977.

[McL94] J. McLean. Security models. In John Marciniak, editor, Encyclopedia of

Software Engineering. Wiley & Sons, Inc., 1994.

[MMN90] C.J. McCollum, J.R. Messing, and L. Notargiacomo. Beyond the pale of

MAC and DAC - de�ning new forms of access control. In Proceedings of

IEEE Symposium on Security and Privacy, pages 190{200, Oakland, CA,

May 1990.

[MS99] Qamar Munawer and Ravi Sandhu. Simulation of augmented typed ac-

cess matrix model (atam) using roles. In 1999 International Conference

on Information Security, Science Hall, Shanghai, China., October 10-13,

1999.

[Mur93] William H. Murray. Introduction to access controls. In Zella A. Ruthberg

and Hal F. Tipton, editors, Handbook of Information Security Manage-

ment, pages 515{523. Auerbach Publishers, 1993.

[NO96] Matunda Nyanchama and Sylvia Osborn. Modeling mandatory access

control in role-based security systems. In Database Security VIII: Status

and Prospects. Chapman-Hall, 1996.

[San88] Ravi S. Sandhu. The schematic protection model: Its de�nition and anal-

ysis for acyclic attenuating schemes. Journal of the ACM, 35(2):404{432,

April 1988.

[San89] Ravi S. Sandhu. The demand operation in the schematic protection model.

Information Processing Letters, 32(4):213{219, September 1989.

[San92a] Ravi S. Sandhu. Expressive power of the schematic protection model. The

Journal Of Computer Security, 1(1):59{98, 1992.

97

[San92b] Ravi S. Sandhu. The typed access matrix model. In Proceedings of IEEE

Symposium on Research in Security and Privacy, pages 122{136, Oakland,

CA, May 1992.

[San96] Ravi S. Sandhu. Role hierarchies and constraints for lattice-based ac-

cess controls. In Elisa Bertino, editor, Proc. Fourth European Symposium

on Research in Computer Security. Springer-Verlag, Rome, Italy, 1996.

Published as Lecture Notes in Computer Science, Computer Security{

ESORICS96.

[San97] Ravi Sandhu. Rationale for the RBAC96 family of access control models.

In Proceedings of the 1st ACM Workshop on Role-Based Access Control.

ACM, 1997.

[San98] Ravi Sandhu. Role-based access control. In Zelkowitz, editor, Advances

in Computers, Volume: 46. Academic Press, 1998.

[SB96] Ravi S. Sandhu and Venkata Bhamidipati. A role-based administrative

model for user-role assignment and its Oracle implementation. Technical

report, Laboratory for Information Security Technology, George Mason

University, 1996.

[SB97] Ravi Sandhu and Venkata Bhamidipati. The URA97 model for role-based

administration of user-role assignment. In T. Y. Lin and Xiaolei Qian,

editors, Database Security XI: Status and Prospects. North-Holland, 1997.

[SB98] Ravi Sandhu and Venkata Bhamidipati. An Oracle implementation of

the PRA97 model for permission-role assignment. In Proceedings of 3rd

ACM Workshop on Role-Based Access Control, pages 13{21, Fairfax, VA,

October 22-23 1998. ACM.

[SB99] Ravi S. Sandhu and Venkata Bhamidipati. Role-based administration of

user-role assignment: The URA97 model and its Oracle implementation.

The Journal Of Computer Security, 1999. in press.

[SBC+97] Ravi Sandhu, Venkata Bhamidipati, Edward Coyne, Srinivas Ganta, and

Charles Youman. The ARBAC97 model for role-based administration

of roles: Preliminary description and outline. In Proceedings of 2nd ACM

Workshop on Role-Based Access Control, Fairfax, VA, November 6-7 1997.

ACM.

[SBM99] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The AR-

BAC97 model for role-based administration of roles. ACM Transactions

on Information and System Security, 2(1), February 1999.

98

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based access control models. IEEE Computer, 29(2):38{47,

February 1996.

[SG93] Ravi S. Sandhu and S. Ganta. On testing for absence of rights in access

control models. In Proceedings of IEEE Computer Security Foundations

Workshop, Franconia, NH, June 1993. 109{118.

[SM98a] Ravi Sandhu and Qamar Munawer. How to do discretionary access control

using roles. In Proceedings of 3rd ACM Workshop on Role-Based Access

Control, pages 47{54, Fairfax, VA, October 22-23 1998. ACM.

[SM98b] Ravi Sandhu and Qamar Munawer. The RRA97 model for role-based ad-

ministration of role hierarchies. In Proceedings of 14th Annual Computer

Security Application Conference, pages 39{49, Scotsdale, AZ, December

7-11 1998.

[SM99] Ravi Sandhu and Qamar Munawer. The ARBAC99 model for administra-

tion of role-based access control. In Proceedings of 15th Annual Computer

Security Application Conference, Scotsdale, AZ, December 6-10 1999.

[SS92] Ravi S. Sandhu and G. Suri. Non-monotonic transformations of access

rights. In Proceedings of IEEE Symposium on Research in Security and

Privacy, pages 148{161, Oakland, CA, May 1992.

[SS94] Ravi Sandhu and Pierangela Samarati. Access control: Principles and

practice. IEEE Communications, 32(9):40{48, 1994.

[SS97] Ravi S. Sandhu and Pierangela Samarati. Authentication, access control

and intrusion detection. In Allen B. Tucker, editor, The Computer Science

and Engineering Handbook, pages 1929{1948. CRC Press, 1997.

VITA

Qamar Munawer was born on April 21, 1948, in Pakistan and is a Pakistani citizen.

He received the B.S. in Physics and Mathematics from University of the Punjab,

Pakistan in 1969, the M.S. in Physics from University of the Punjab, Pakistan in

1971 and M.S. in Computer Science from George Mason University, Fairfax, Virginia,

USA in 1993. He was assistant professor of Physics from 1973 to 1990. During 1993-

1998 he was teaching assistant with department of Information System and Software

Engineering. From 1994 to 2000 he was actively involved in research in Information

Security. At present he is an instructor of Sybase Inc. His current work involves class

room teaching and development of technical courses that includes the implementation

of Role-Based Access Control (RBAC) in Sybase products.

Permanent address: 182 D G 7/3-2 Islamabad, Pakistan.

This dissertation was typeset with LATEX
z by the author.

zLATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth's TEX Program.

99

