
dRBAC: Distributed Role-based Access Control
for Dynamic Coalition Environments

Eric Freudenthal, Tracy Pesin, Lawrence Port,
Edward Keenan, and Vijay Karamcheti

Department of Computer Science
New York University

{freudent, tracyp, lport, woodiek, vijayk}@cs.nyu.edu

Abstract

Distributed Role-Based Access Control (dRBAC) is
a scalable, decentralized trust-management and access-
control mechanism for systems that span multiple admin-
istrative domains. dRBAC utilizes PKI identities to define
trust domains, roles to define controlled activities, and role
delegation across domains to represent permissions to these
activities. The mapping of controlled actions to roles en-
ables their namespaces to serve as policy roots.

dRBAC distinguishes itself from previous approaches by
providing three features: (1) third-party delegation of roles
from outside a domain’s namespace, relying upon an ex-
plicit delegation of assignment; (2) modulation of trans-
ferred permissions using scalar valued attributes associ-
ated with roles; and (3) continuous monitoring of trust rela-
tionships over long-lived interactions. This paper describes
the dRBAC model and its scalable implementation using a
graph approach to credential discovery and validation.

1. Introduction

dRBAC was motivated by the problem of controlling ac-
cess to resources incoalition environments. A “coalition
environment” could be commercial, in which corporations
form a partnership, or governmental/military, in which sev-
eral nations work together to achieve a common goal. In ei-
ther case, the defining characteristic is the presence of mul-
tiple organizations or entities that are unwilling to rely on a
third party to administer trust relationships. Consequently,
the entities must cooperate to share the subset of their pro-
tected resources necessary to the coalition, while protect-
ing the resources that they don’t want to share. The growth
of mobile users and network-based services in the Internet
promises to make such environments commonplace; how-
ever, supporting them presents a number of challenges:

• Highly dynamic coalition environments must support
the authorization of resources at varying levels of ac-
cess to reflect natural structures of organizations and
their alliances. Additionally, these authorizations must
allow transitive delegation to support access by users
that are unknown to the resource owner.

• Established trust relationships must be monitored over
their lifetime to track the status of revocable cre-
dentials. Continuous monitoring enables appropriate
authorization of prolonged user-resource interactions
such as login sessions or continuous data feeds.

• Credentials must be automatically distributed to those
who require them. Entities must be able to discover
credentials that authorize desired trust relationships.

Unfortunately, existing solutions do not address these
challenges well. Access control lists are difficult to admin-
ister, and neither scale well nor permit transitive delegation
of authority. Traditional role-based access control (RBAC)
systems [16] depend upon a central trusted computing base
administered by a single authority, which contains the en-
tire organization’s security policy. This approach does not
scale to the large numbers of mutually anonymous users
one might encounter in coalition settings. More recently,
trust-based systems (e.g., SDSI/SPKI [15, 6], KeyNote [2],
RT0 [11]) have been developed to control access in a decen-
tralized fashion. dRBAC extends these models to include
support for varying levels of access and continuous moni-
toring of trust relationships.

dRBAC combines the advantages of role-based access
control and trust-management systems to create a system
that offers both administrative ease and a decentralized,
scalable implementation. dRBAC represents permissions
for controlled actions in terms ofroles. Roles are defined
within the namespace of a responsible entity; these permis-
sions can be transitively delegated to other roles within the
same or other namespaces. dRBAC utilizes PKI to iden-
tify all entities engaged in trust-sensitive operations and to

validate delegation certificates. The mapping of roles to au-
thorized name spaces defined by public keys obviates the
need to identify additional policy roots.

dRBAC has been influenced by other recently proposed
trust management systems, most notably SDSI [15] and
RT0 [11]. However, dRBAC distinguishes itself from pre-
vious approaches in its support for the following features:

• Third-Party delegationsallow an authorized entity to
delegate roles created byanotherentity by referring
directly to the role originator’s namespace. This mech-
anism, related to thespeaks forrelationship in the Taos
system [17], improves expressiveness and permits a
natural administration model where privileged entities
in the system can create roles and designate other (less
privileged) entities to give out these roles.

• Valued attributesallow for modulated control of access
rights, supporting varying levels of access for the same
resource. The issuer of a valued attribute delegation
sets a numeric value associated with a role.

• Continuous monitoringallows dRBAC to guarantee
validity of established trust relationships over the life-
time of prolonged interactions. This feature uses a
pub/sub infrastructure to selectively push status up-
dates for revocable credentials to interested parties.

These three features of dRBAC enable the construction
of a powerful trust management and access control system.
Like other trust management systems (see Blaze et al. [2]),
mechanisms that provide access are separated from policy.
No globally trusted ‘certifying authority’ is required: Each
authority responsible for a protected resource can define its
own trust relationships with other entities throughout the
distributed system. Privilege to access-restricted resources
is completely specified through the issuance of authoriza-
tion certificates called delegations.

Project Context dRBAC is part of a larger architecture
called the Distributed Coalitions Infrastructure (DisCo) [7].
DisCo presents a simple, unified interface for applica-
tion deployment in environments that contain systems
and services administered by multiple authorities with dy-
namic and transitive trust relationships. DisCo provides
application-neutral support for authentication and access
control, secure communication, code distribution, and pro-
cess rights management, relieving the application developer
from their independent management.

DisCo utilizes dRBAC to manage authentication and ac-
cess control. Application developers reference dRBAC to
register new protected resources whose access is regulated
using dRBAC roles. Thereafter, dRBAC facilities enable
discovery of authorizing trust relationships between entities
requesting interactions, and continuous monitoring of the
status of these relationships over the interaction lifetime.

1.1. Extended Example

We now introduce an example that will run through this
paper. In this “coalition”, a mobile user seamlessly obtains
Internet connectivity using network facilities at an airport
by presenting evidence of a trust relationship between her
regular ISP and the ISP administering the airport network.

BigISP and AirNet strike up a marketing partnership
in which BigISP members can use AirNet’s services
in a limited fashion; i.e., with less bandwidth and
server storage space, and fewer online hours per month.
Sheila, who works in the marketing department at Air-
Net, administers the deal. Maria, a BigISP member, will
attempt to access AirNet facilities.

Throughout the paper, we detail the ways in which dR-
BAC facilitates this partnership, including authenticating
the principals to each other, specifying the usage restrictions
placed onAirNet subscribers, helpingAirNet servers dis-
cover evidence of the trust relationship betweenBigISP

and AirNet , and efficiently monitoringMaria ’s access
once it has been established. By using dRBAC,AirNet

will be able to grantMaria access at the appropriate level,
in spiteof the anonymous and transient nature of her rela-
tionship with the network.

The rest of this paper is organized as follows. Section 2
defines dRBAC terminology, and Section 3 discusses the
basic dRBAC model for delegating authority and its ex-
tension to support modulation of access rights. Section 4
presents an architecture to support distribution, discovery,
validation and continuous monitoring of delegation chains.
We summarize the dRBAC facilities used in the above ex-
ample in Section 5. We conclude with a discussion of re-
lated work and future implementation and design goals.

2. dRBAC Terminology

Fundamentally, dRBAC authorizes accesses to secure re-
sources by ascertaining whether the requesting principal has
been granted a role that the resource requires for access.
The key question that dRBAC attempts to answer is “Does
principalP have the permissions associated with roleR?”

dRBAC uses the “building blocks” defined below:

Principals, resources, entities dRBAC does not distin-
guish between owners ofresourcesprotected by the system
andprincipalsattempting to access them. Both are termed
entitiesand represented by a unique PKI public identity.
Authenticating a principal in dRBAC consists of verifying
(using standard public-key cryptographic protocols) that it
does possess the claimed identity. Relaxing the distinc-
tion between resource owners and principals simplifies trust

management without sacrificing expressiveness.

Roles The central construct in dRBAC is arole. Any user
wishing to perform a protected action must first prove that
he can act in the necessary role. As in SDSI/SPKI [15] and
RT0 [11], roles are names in an entity’s namespace. dRBAC
roles represent classes of permissions controlled by their
namespace. These permissions can be delegated to other
roles (in the same or other namespaces), or entities. For ex-
ample, the roleBigISP.member defines the namemember

in the namespace associated with the entityBigISP .

Delegations Delegations authorize a principal to act in a
given role. At a high level, the format of a delegation is:

[Subject → Object] Issuer

whereSubject is a role or an entity,Object is a role, and
Issuer is an entity. The arrow “→” can be read as “has
the permissions of.” This relationship is cryptographically
signed by theIssuer .

Transitive delegation chains Permissions can be dele-
gated in a transitive fashion. A subjectS who has been
granted the permissions associated with a roleR may be
able to further delegateR to others, depending on howS
was delegated those rights. (See Section 3). A sequence of
delegations from a subject to an object is referred to as a
delegation chain.

Proofs A graph of delegations that demonstrate that “prin-
cipal P has the permissions of roleR” is called aproof and
authorizesP ⇒ R. Support proofsvalidate the authority of
an issuer to delegate a role.

Proof monitor In order to safely authorize prolonged trust
relationships, dRBAC relies uponproof monitor objectsthat
continuously monitor the validity of delegations comprising
a proof. Proof monitors are described in Section 4.

3. dRBAC Delegation Forms

3.1. Base Model for Delegations

Table 1 gives syntax and usage examples for the base dR-
BAC delegation model, which includes three types of del-
egations:self-certifying, third-party, andassignment. The
first two permit an entity to delegate permissions associated
with a role, either in its own namespace or in another, while
the third permits delegation of the “right of assignment” of
the referenced role.

3.1.1. Self-certifying and Third-Party Delegation

In these two forms, the issuing entity delegates the permis-
sions associated with a role to another role or entity. The
general form of these delegations is as below:

[Subject → OEntity.OName] Issuer

where the delegation’sSubject may be a role or an entity,
its objectOEntity.OName is a role in the namespace of
OEntity , andIssuer is an entity. This delegation grants
all privileges associated withOEntity.OName to entities
with the privileges ofSubject . If the subject is an entity,
then these privileges may not be further delegated to others.
Otherwise, if the subject is a role, these privileges can be
extended to others via additional delegations.

Self-certifying and third-party delegations differ based
on whether or not the object role belongs to the namespace
of the Issuer. When it does, i.e.,OEntity = Issuer , the
delegation is referred to asself-certifyingdenoting that no
additional authorization is required because an entity is per-
mitted to delegate the permissions associated with any role
in its namespace. All valid dRBAC proofs are rooted with
self-certifying delegations.

When the object role being delegated is not defined in
the namespace of theIssuer , the delegation is referred to
asthird-party. In this case, theIssuer must be delegated
the right-of-assignment privilege for roleOEntity.Oname

as described below.

3.1.2. Assignment Delegation

dRBAC treats the “right of assignment” of permissions as-
sociated with a role,R, as if it were just another role it-
self, denoting it with a tick mark:R’ . As with roles, rights-
of-assignment can also be delegated, and the entity within
whose namespace a role is defined can also delegate that
role’s right-of-assignment using self-certified delegations.
Such delegations are referred to asassignmentdelegations
and take the following form:

[Subject → Object’] Issuer

whereSubject (which can be an arbitrary role or an entity)
is given theright of assignmenton the roleObject . Such
delegations authorize entities with theSubject ’s privileges
to directly delegate theObject role. Like other roles, right-
of-assignment roles can be transitively delegated.

Assignment delegations authorize the third-party delega-
tion form described above. To see this, note that using third-
party delegation, an issuer can explicitly delegate a role that
exists in another user’s namespace. Each such delegation
D in a dRBAC proof must be accompanied by asupport
proofproviding the right-of-assignment ofD’s object role to
D’s issuer. Self-certifying assignment delegations represent
the simplest form of a support proof. However, this idiom
is recursive: a support proof may itself include third-party
delegations, requiring additional support proofs.

Table 1 shows examples of self-certified, third-party, and
assignment delegations. To see how these delegations come
together to form a dRBAC proof, consider a situation where
Maria wants to log ontoBigISP ’s servers by presenting
delegation (3) (from Table 1), which identifies her as a

Entities A public key that represents a principal or a resource, and defines a namespace that can contain roles.

Form: cryptographic public key and a human-readable name

Examples: Maria ; BigISP

Roles A name within anEntity’s namespace.

Form: Entity.LocalName

Example: BigISP.member

Role Delegations Signed Certificates that extend access rights on someObject to aSubject .

Form: [Subject → Object] Issuer

whereObject is aRole , Issuer is anEntity , andSubject is aRole or anEntity .

dRBAC includes three major types of delegations:
Self-certified Delegation An Issuer A grants role A.a to someSubject . The role granted is defined within A’s namespace.

Form: [Subject → A.a] A

Example: [Mark → BigISP.memberServices] BigISP .(1)

Assignment Delegation: Entity B grants someSubject the right to delegateRole A.a to others. The tick (’) indicates that theSubject

can further delegate theRole . B and A may or may not be the sameEntity .

Form: [Subject → A.a’]B

Example: [BigISP.memberServices → BigISP.member’] BigISP .(2)

Third-Party Delegation: In third-party delegation, someIssuer B exercises their right to delegate aRole defined in A’s namespace. A and

B arenot the sameEntity .

Form: [Subject → A.a]B

Example: [Maria → BigISP.member] Mark .(3)

Table 1. Syntax for the base dRBAC delegation model. Refer to the text for an explanation of the
numbered delegations.

BigISP member.
Since the object entity (BigISP) and the issuer (Mark)

are different, delegation (3) is of the third-party type, and
so additional evidence is necessary to determineMark ’s per-
mission to delegate the roleBigISP.member .

Delegations (1) and (2) in Table 1 provide this evidence.
Delegation (1) grants entityMark all permissions of the role
BigISP.memberServices . Delegation (2) grants the role
BigISP.memberServices theright of assignmenton role
BigISP.member , in effect allowing any entity that pos-
sesses permissions of the former role to also delegate the
role BigISP.member to others. Both delegations (1) and
(2) are self-certifying, and require no further authorization.

Delegations (1) and (2) compose a valid proof forMark

⇒ BigISP.member’ , which in turn acts as a support proof
for delegation (3). Together, delegations (1), (2), and (3)
prove thatMaria ⇒ BigISP.member , granting Maria

the permissions ofBigISP.member .

3.1.3. Benefits of Third-Party Delegation

Third-party and assignment delegations provide a semanti-
cally expressive structure with the following benefits:

Delegation clarity and namespace managementIt is
natural for an entityE to directly express the delegation of a
role (e.g.,BigISP.member) by referring to that role’s con-

trolling namespace (BigISP). Without third-party delega-
tion, E would require a distinct name in its namespace for
each role that it wants to delegate (e.g.,E.BigISPmember).
The resulting namespace pollution significantly increases
the difficulty of administering such systems.

Additional functional capabilities Third-party delega-
tion provides a powerful mechanism forgroupingassign-
ment capabilities into a roleR, which can be further dele-
gated to users. Any entity with this “administrative” role
now has the ability to delegate to others any or all of the
privileges associated withR’s roles.

This property, which we callseparability, offers im-
mense value in systems where a role may encompass a large
number of capabilities. In its absence, the alternative is to
create a number of local roles, one for each delegation sce-
nario. The scalability implications (and resulting admin-
istration nightmare) of this expansion create incentives for
administrators to create catch-all administrative roles that
represent multiple privileges. Unfortunately, without sepa-
rability, these aggregate roles can no longer be decomposed,
resulting in a significant reduction in functionality.

3.2. Extensions to the Base Delegation Model

Table 2 gives syntax and examples for two extensions to
the base dRBAC model –valued attributesassociated with
roles, andcredential managementinformation.

Valued Attributes A name within an Entity’s namespace, disjoint from the role namespace, that can be set to a numeric value in order to

modulate access level. Zero or more Valued Attributes can be set in conjunction with the delegation of a Role.

Form: [Subject → Object with A.Attribute1 < Operator >=<Value >
<and B.Attribute2 <Operator >=<Value >>*] C

A, B, and C can either be the same entity, or different entities, or any combination thereof. The ”with” clause

specifies the first Valued Attribute in the delegation; subsequent attributes are specified using ”and” clauses.

Example: [BigISP.member → AirNet.member with AirNet.BW <= 100

and AirNet.storage -= 20] Sheila .(4)

Delegation of
Assignment for
Valued Attributes

These delegations give the Subject the right to set the Object Attribute in future delegations written by the Subject.

While the Valued Attribute is not a Role, the right to set it is a Role, and therefore can be the Object of delegations.

Form: [Subject → Entity.Attribute <operator >=’] Issuer

Example: [AirNet.mktg → AirNet.storage -= ’] AirNet ... (5)

Credential
Management

These delegation annotations provide mechanisms to discover credential chains and control credential lifetime.

Discovery Tags The Discovery Tag provides information to assist in the location of credentials across a distributed system.

Form: [Subject <Discovery Tag > → Object <Discovery Tag >] Issuer
<acting as Role, Discovery Tag >

More information on discovery tags is provided in the Infrastructure section of this paper (Section 4).

Expiration Date A date after which the delegation is no longer valid.

Form: [Subject → Object <expiry: date >]

Table 2. Extensions to the dRBAC delegation model.

3.2.1. Valued Attributes

Access to some services can be naturally differentiated us-
ing scalar values. For example, an ISP may provide dif-
fering bandwidth limits and guarantees based on individual
customer agreements. To avoid an explosion in the num-
ber of roles, dRBAC allows association of scalarvalued at-
tributeswith roles, which modulate the level of access or the
quality of service granted to an authorized user. Like roles,
valued attributes exist in the namespace of a given entity,
albeit disjoint from the role namespace.

Zero or more valued attributes may be set in conjunction
with the delegation of some role. It is only meaningful to
set attributes that are defined within the namespace of the
delegation’s object, or that are inherited by that object. Fi-
nally, like roles, the right to delegate valued attributes can
be assigned to third parties.

Valued attribute delegation types Valued attributes ac-
cumulate along delegation chains in a manner such that no
entity is able to delegate greater permissions than they have
themselves. This monotonicity of attribute values is guar-
anteed by restricting the range of scalar modifiers and asso-
ciating each valued attribute with a single operator.

Supported operators include (see Table 2 for syntax):

− subtract a positive quantity from the valued at-
tribute. Default value is zero.

∗ multiply the attribute value by a positive quan-
tity between 0 and 1. Default value is 1.

< collect the minimum of all values along the
certificate chain. Default value is+∞.

dRBAC also allows transfer of the right to further mod-
ulate valued attributes using either self-certified or third-
party delegations.

To see an example of the use of valued attributes in the
context of the extended example introduced in Section 1.1,
consider delegations (4) and (5) shown in Table 2.

Delegation (4) accords the roleBigISP.member all of
the permissions of the roleAirNet.member , but modulates
them by defining how the scalar attributes associated with
the latter role are modified. In particular, the bandwidth and
storage limits of aBigISP.member role are defined rela-
tive to that of anAirNet.member : it receives a bandwidth
of at most 100 units and 20 units less of storage. Delegation
(5) shows an example of delegation of assignment for val-
ued attributes: the roleAirNet.mktg is given the right to
modulate values of theAirNet.storage attribute.

3.2.2. Credential management

Table 2 also shows the syntax fordiscovery tagsandexpi-
ration dates. Discovery tags are described in Section 4.

Expiration dates have the obvious semantics for specify-
ing credential lifetimes. dRBAC also provides an additional
mechanism,delegation subscriptions, for updating creden-
tial lifetimes, which allow for the continuous monitoring of
established trust relationships. Delegation subscriptions are
described in the next section.

4. dRBAC: Supporting Infrastructure

The dRBAC infrastructure provides mechanisms for (1)
publishing of delegations; (2) delegation discovery and val-
idation to build proofs; and (3) continuous monitoring of
credential validity. These mechanisms are implemented in
distributed credential repositories, calledwallets, hosted on
participating servers. All user operations — delegation pub-
lishing, queries (of the form “Does principalP have the per-
missions associated with roleR?”), and monitoring of ex-
isting proofs — are performed against a local wallet, which
maintains a consistent view of the credentials in the system
usingdelegation subscriptions.

Because most of the complexity arises from the need
for delegation chain discovery and monitoring across dis-
tributed repositories, this section focuses on our solutions
to those problems. For clarity of presentation, we first de-
scribe the functionality provided by a single dRBAC wallet,
then discuss the ways in which wallets on different servers
interact in a distributed environment.

4.1. Wallets

Similar to a real wallet containing identification cards,
a dRBAC wallet stores a collection of delegations. Fig-
ure 1 shows the structure of a dRBAC wallet (containing
two delegations that support a trust relationship betweenA

andC.c) and its interactions with client applications. Wal-
lets support the three basic operations described below:

Publication of delegations An issuer of new delegations
posts these delegations in a wallet so they can be located and
used by others. Issuers of third party delegations also must
provide authorizing support proofs, freeing wallets from
having to conduct recursive searches to collect the support-
ing chains when building proofs from sets of delegations.

Authorization queries A trust-sensitive system resource
can query a wallet for proofs authorizing whether a re-
quested access is permitted. The query specifies the sub-
ject that is requesting the access, the object being requested,
and, optionally, a set of valued attribute constraints. dRBAC
supports three kinds of queries:

• Direct queries:Given subjectS and objectO and val-
ued attribute constraintsC, does there exist a proof au-
thorizingS ⇒ Owhile satisfyingC?.

• Object queries:Given an objectO (more generally, a
set of objects) and valued attribute constraintsC, enu-
merate the full set of proofs that take the form* ⇒ O

and do not violateC.

• Subject queries:Given a subjectS (more generally, a
set of subjects) and valued attribute constraintsC, enu-
merate the full set of proofs that take the formS ⇒ *

and do not violateC.

queries
direct,
subject,
object

proof
monitoring

publish,
revoke

[A →→→→ B.b]
[B →→→→ C.c]

? A ⇒⇒⇒⇒ C.c

[A →→→→ B.b] B

[B →→→→ C.c] C

callback

Trust-sensitive
client object

Proof monitor

Wallet

subscriptions

delegations

proof

Figure 1. Structure of a single dRBAC wallet.

To generate these proofs, dRBAC wallets rely upon
graph-based data structures that allow efficient enumeration
of delegation chains between any specified subject and ob-
ject. Generated proofs include necessary support proofs to
authorize third-party delegations. The proof returned by a
direct query, if one exists, suffices to establish a trust re-
lationship between the subject and the object, thereby au-
thorizing the requested access. Object and subject queries
return portions of the overall proof, orsub-proofs, and assist
in the construction of proofs spanning multiple wallets.

Proof monitoring Once a proof is returned, wallets pro-
vide functionality to allow continuous monitoring of its va-
lidity over the lifetime of the interaction. This is achieved
via a callback mechanism involving an object called aproof
monitordescribed in additional detail below.

4.2. Distributed Network of Wallets

A distributed environment poses two challenges. First,
the full set of delegations required to authorize a trust rela-
tionship may be spread over multiple wallets. Second, re-
voking a delegation also requires revoking its cached copies
and quickly informing any dRBAC clients that rely on its
validity. The first challenge is addressed by augmenting
credentials withdiscovery tagsand using these tags during
proof construction to discover required credentials, while
the second is addressed by usingdelegation subscriptions
to propagate delegation updates to all interested parties.

4.2.1. Discovery Tags for Delegation Chain Discovery

To facilitate discovery across multiple wallets, our scheme
annotates each subject, object, and issuer of every delega-
tion with adiscovery tag.1 The tag includes the following:

1dRBAC discovery tags have been influenced by the credential tag de-
sign proposed by Winsborough and Li in the context of RT0 [11]. The

• an Internet address identifying the entity’s (or role’s)
authorized home wallet, e.g.,wallet.bigISP.com .

• a dRBAC role required to authorize the home and its
proxies, e.g.,bigISP.wallet .

• a time-to-live (TTL) field that indicates the duration
a delegation is valid following validity confirmation
from its home wallet. Delegations that do not require
monitoring are given TTL values of zero.

• two ternary discovery search flags, which specify the
delegations one can expect to find (by design) in the
entity’s (or role’s) home wallet.

Thesubject discoveryflag applies to the use of an en-
tity (or role) as the subject of a delegation and can
take three values: ‘- ’, ‘ s ’, and ‘S’. Type ‘s ’ (store
with subject) and type ‘S’ (searchfrom subject) re-
quire that such delegations must be stored in the en-
tity’s (or role’s) home wallet. Type ‘S’ additionally
requires that all object roles that the subject can be
granted must also be of type ‘S’.

The object discoveryflag applies to the use of a role
as the object of a delegation and can take values ‘- ’,
‘o’, and ‘O’. Similar to subject discovery types, types
‘o’ (storewith object) and ‘O’ (searchfrom object) re-
quire that the corresponding delegations be stored in
the home wallet of the object role. Type ‘O’ addition-
ally requires that all subjects that this object role can
be granted to must also be of type ‘O’.

An example of dRBAC discovery tags is shown below:
bigISP.member <wallet.bigISP.com:

bigISP.wallet:30:So >

which indicates that the rolebigISP.member has a home
wallet at www.bigISP.com , a distribution authorization
role of bigISP.agent , a TTL of 30 seconds, and discov-
ery typessearchable from subjectandstore with object.

Although issuers of third-party delegations are required
to supply their wallets with all necessary support chains, it
may become necessary at some point to discover new sup-
porting delegations. This is also implemented using discov-
ery tags. As potential subjects of support chains, issuers of
third party delegations are annotated with discovery tags,
and each third-party delegation supporting remote discov-
ery contains an additionalacting asclause enumerating the
assignment roles (including discovery tags) the issuer must
be entitled to in order to validate the delegation.

Discovery algorithm dRBAC builds proofs requiring del-
egation discovery across multiple repositories by conduct-
ing searches from subjects towards objects and/or objects
towards subjects (using subject and object queries against

dRBAC scheme was developed independently but has been refined to in-
corporate relevant features from the RT0 scheme.

individual wallets) as directed by discovery tags. Our dis-
covery mechanism extends the work of Clarke [5] and How-
ell [10]. A similar technique has also been recently investi-
gated by Li and Winsborough [11].

Consider an agent seeking to discover a proof authoriz-
ing a trust relationship from subjectSub to objectObj satis-
fying a set of valued attribute constraintsC. For our descrip-
tion, we assume, without loss of generality, thatSub has a
subject discovery type ‘S’.

The agent first queries its local wallet for sub-proofs of
the form Sub ⇒ * , stopping if it finds one forSub ⇒
Obj . If not, the algorithm observes that sinceSub is of type
‘S’, all authorizing paths (should any exist) fromSub to Obj

must consist only of delegations whose object roles are also
of type ‘S’. This implies that any delegations where one of
these roles appears as a subject must be stored in the wallet
associated with the role. A subject-towards-object search
will therefore discover a proof authorizing the requested re-
lationship. Our algorithm utilizes a parallel breadth-first
search, starting from a direct query forSub ⇒ Obj di-
rected towardsSub’s home wallet.

If the query returns with a proof authorizing the required
relationship while satisfyingC, the search is terminated. If
not, the algorithm issues a subject query forSub to the
same wallet. The returned proofs are inserted into the lo-
cal trusted wallet, with the objects of these proofs serving
as the roots for further searches.

A corresponding scheme, searching from object-
towards-subject takes care of the case whereObj has object
discovery type ‘O’. WhenSub has discovery type ‘s ’ and/or
Obj has discovery type ‘o’, the algorithm starts by querying
for the first set of sub-proofs from the corresponding wal-
lets, and then based on the results, directs future searches.

4.2.2. Delegation Subscriptions for Monitoring Validity

A fundamental objective of dRBAC is to support contin-
uous monitoring of trust relationships. To achieve this, a
dRBAC wallet implements a monitored and secure pub/sub
interface for each delegation (a mechanism to support such
secure monitored links appears in [8]). Thesedelegation
subscriptions, implemented using an eventpushmodel to
minimize polling, notify subscribers if the corresponding
delegation is invalidated.

dRBAC uses delegation subscriptions in two ways:

Proof monitors We have said that a query returns a proof
(if one exists); in fact, what it returns is a proof wrapped in
a proof monitorobject. Proof monitors register delegation
subscriptions with a trusted wallet for each delegation in the
proof. Notification of changes in delegation status are com-
municated using a callback interface to the trust-sensitive
entity that first requested the proof.

Upon receipt of this notification, the entity can request an

alternate proof or discontinue access. Similarly, if the wallet
initially cannot provide a proof for the desired relationship,
the entity object can register a callback that will be activated
when such a proof is available.

Coherent caching of delegationsWallets can serve as val-
idated caches for copies of delegations whose home is in
other wallets. The copies are kept coherent by registering
a delegation subscription with either the delegation’s home
wallet or an authorized proxy. Wallets containing cached
copies are notified whenever a delegation is invalidated.

4.2.3. Efficiency Considerations

The number of potential authorizing paths in a delegation
tree with a constant branching factor, as might be obtained
by conducting aforward(subject-towards-object) orreverse
(object-towards-subject) search, is clearly exponential in
depth. As observed by others [11], a significant reduction
in the number of paths that must be considered is possible
if the search is simultaneously conducted in both directions,
whenever allowed by the values of discovery tags.

Furthermore, monotonicity of valued-attibute values en-
ables pruning of the search when the composition of valued
attribute modifiers on its primary chain results in a value
that does not satisfy the search requirements. Additional
improvements are possible if wallet queries for path aug-
mentation are accompanied by modulated attributeranges
that will satisfy the desired trust relationship in the context
of constraints required by the chains already discovered.

Potential proofs are not necessarily discovered in topo-
logical order. Therefore, repeat queries may be required
for multiple search paths that only modulate a single valued
attribute. Monotonicity of valued-attribute operators guar-
antees that all searches will terminate and permits pruning
of branches that do not satisfy attribute value constraints.

4.3. Implementation Status

We have implemented a centralized dRBAC system
that responds to trust-relationship queries generated by our
DisCo infrastructure, and are currently extending it to sup-
port a distributed network of wallets. Our Java-based im-
plementation leverages a novel secure inter-host commu-
nication abstraction called Switchboard [8]. Updated ver-
sions of the dRBAC system can be downloaded fromhttp:

//www.cs.nyu.edu/pdsg/projects/drbac .

5. A Case Study of dRBAC Usage

Returning to the example introduced in Section 1.1, we
trace a full instance of dRBAC usage, including discovery,
authorization, and monitoring.BigISP memberMaria will

[Maria → BigISP.member] BigISP (1)
[BigISP.member → AirNet.member

with AirNet.BW <= 100
and AirNet.storage -= 20
and AirNet.monthlyHrs *= 0.3] Sheila (2)

[Sheila → AirNet.mktg] AirNet (3)
[AirNet.mktg → AirNet.member’

with AirNet.BW <=’
and AirNet.storage -=’
and AirNet.monthlyHrs *=’] AirNet (4)

[AirNet.member → AirNet.access
with AirNet.BW = 200
and AirNet.storage = 50
and AirNet.monthlyHrs = 60] AirNet (5)

Table 3. Delegations supporting Maria’s ac-
cess to AirNet resources.

take advantage of a coalition betweenBigISP andAirNet

to obtain wireless Internet access throughAirNet .
Table 3 shows the delegations authorizing this access.

Delegation (1) identifiesMaria as aBigISP.member . Del-
egation (2) defines the coalition betweenBigISP andAir-

Net as set up bySheila , whose authorization for doing
so is provided by delegations (3)–(5). All entities and roles
in our example are assumed to be tagged with the subject
discovery type ‘S’ (search-from-subject).

Figure 2 shows how the case study evolves, from ini-
tial steps requesting authorization in Figure 2(a) to the final
steps in Figure 2(b) that authorize and subsequently moni-
tor the request. Figure 2(a) also shows the initial state of the
various wallets: the server wallet is empty, and each delega-
tion (along with its support proof) is stored in its subject’s
home wallet. Dotted lines represent the inter-wallet delega-
tion subscriptions required for coherence.

Our case study starts off withBigISP ’s software run-
ning on Maria ’s laptop establishing a wireless connec-
tion to anAirNet server to connect to the Internet (Step
1). BigISP ’s software authenticates itself to theAir-

Net server using a standard public-key cryptographic pro-
tocol, and requests access to the Internet onMaria ’s be-
half by passing on delegation (1), which validatesMaria

as aBigISP.member . To authorize access, theAirNet

server software must discover a proof forBigISP.member

⇒ AirNet.access , which when combined with delega-
tion (1) proves thatMaria ⇒ AirNet.access .

Following the procedure outlined in Section 4.2.1, the
AirNet server software queries its trusted local wallet for
the required proof (Step 2). Upon failing to find a proof
locally, the wallet attempts to discover the delegations nec-
essary for it to build the proof. The wallet observes that
the subject of the desired relationship,BigISP.member ,
has the discovery search type ‘S’. Therefore, it contacts
the home wallet corresponding to the roleBigISP.member

BigISP.member

Maria →
BigISP.member(1)

AirNet.member →
AirNet.access(5)

(1)

(2)

(3) (4)⊕

BigISP.member →
AirNet.member(2)

(3) (4)⊕
(5)

AirNet.mktg →
AirNet.member’(4)

(3)

AirNet.mktg AirNet.member

AirNet

Maria’s
laptop

AirNet’s
serverStep 1 Step 2

Step 3

Sheila →
AirNet.mktg

? Maria ⇒
AirNet.access

? BigISP.member ⇒
AirNet.access ? BigISP.member ⇒

AirNet.access

Step 4

BigISP.member

Maria →
BigISP.member(1)

AirNet.member →
AirNet.access(5)

(2)

(3) (4)⊕

(2)
(5)

AirNet.mktg →
AirNet.member’(4)

(3)

AirNet.member

AirNet

Maria’s
laptop

AirNet’s
server

return proof
monitor

store proof
and establish
subscriptions

Access Granted!

AirNet.mktg

BigISP.member →
AirNet.member

(3) (4)⊕

Sheila →
AirNet.mktg

(2)

(3) (4)⊕
(5)⊕

(2)
(3) (4)⊕

(5)⊕

Step 5 Step 6

(a) (b)

Figure 2. Distributed proof construction: (a) Initialization and first steps; (b) Final steps.

and issues a subject query to obtain all proofs of the form
BigISP.member ⇒ * (Step 3). In response to this query,
it discovers delegation (2), defining a relationship between
the rolesBigISP.member andAirNet.member . Note that
since delegation (2) is a third-party delegation, the delega-
tion must have been accompanied by its support proof. In
this case, the latter comprises of delegations (3) and (4).

At this point, the server wallet has a chain fromMaria to
AirNet.member , but is still missing a proof that would au-
thorizeAirNet.member ⇒ AirNet.access . To obtain
this, the wallet continues with its forward subject-towards-
object search by contacting the home wallet corresponding
to the roleAirNet.member , and issuing to it a direct query
for AirNet.member ⇒ AirNet.access (Step 4). The
response to this query is self-certified delegation (5).

Now the proof authorizingMaria ⇒ AirNet.access

is complete. Delegations from this proof are inserted into
the local wallet, which is trusted to verify signatures and
establish its own validation subscriptions (Step 5). The
server wallet then aggregates the valued attributes, autho-
rizing Maria ’s access request with a BW (bandwidth) of
100 units (≤ 200), server storage of 30 units (= 50 − 20),
and a limit of 18 hours (= 60 ∗ 0.3) of monthly access.

The last step (Step 6), consists of the proof being re-
turned to the original requester, the server software, bun-
dled in a proof monitor object. As described earlier, this
object allows the server software to continuously monitor
the delegations authorizingMaria ’s access.

6. Related Work

Decentralized access controlTrust-management systems
such as PolicyMaker [3], KeyNote [2], and Taos [17] permit
expression of complex distributed trust relationships. These
systems can in principle be used to support distributed ac-

cess control, but need to be extended with credential dis-
covery and revocation mechanisms.

dRBAC provides these latter features, and alternate tech-
niques for some others. In particular, the mapping of roles
to authorized name spaces provides expressive power simi-
lar to the policy roots required in these systems. Third-party
delegations generalize the “speaks-for” relationship in Taos.
On the other hand, unlike these systems, dRBAC does not
currently support any provision for limiting transitive trust.
While dRBAC can be extended to limit delegation depth, a
scheme, which leverages ‘S’ and ‘O’ discovery tags tore-
quire public registry of further delegation may provide an
alternative mechanism to audit and restrict re-delegation.

dRBAC is closely related to systems like RT0 [11] and
SDSI [15]/SPKI [6] that combine role-based access control
and trust management. dRBAC differs in its support for val-
ued attributes and credential monitoring. Also, third-party
delegations provide a cleaner mechanism for achieving role
separability. In both SDSI/SPKI and RT0, the only way to
allow a third partyT to delegate a privilegeP controlled by
entity O is to introduce a phantom role representingP into
T’s namespace. The resulting namespace pollution, along
with the potential of accidental aliasing multiple privileges
from multiple authorities to the same phantom role, compli-
cates administration.

Recently, there has been a lot of interest in security mod-
els for peer-to-peer applications. Most proposed solutions,
e.g., the credentialing system [4] in Project JXTA [14], rely
on a PGP-like “web of trust”, achieving modulation through
the registering of ”personal opinions”. Unlike dRBAC,
these solutions generally do not provide a strong enough
security model for use in security-critical applications.

Distributed credential discovery Clarke et al. [5] recog-
nized the utility of reachability closures in credential dis-
covery. dRBAC filters these closures for proofs that satisfy

a required attribute value range restriction. Li and Winsbor-
ough [11] contemporaneously developed a credential dis-
covery mechanism in the context of the RT0 system that
utilizes search tags with similar semantics to ours.

Credential validation and revocation dRBAC’s delega-
tion subscriptions offer benefits over both online positive
authorization schemes such as OCSP [12] and revocation
schemes such as CRLs [9]. Unlike OCSP, where a client
monitoring the status of a certificate must continuously
poll an authorized server (even when the credential has not
changed), delegation subscriptions only require server and
network resources when a credential has been updated.

Revocation-based schemes transmit information regard-
ing all revoked certificates to all subscribers. In contrast,
delegation subscriptions permit construction of hierarchical
directory-based caches of trusted online validation agents
that can avoid communication of updates irrelevant to par-
ticular caches. This scheme can yield additional benefits by
utilizing the aggressive encoding and digest schemes, such
as hierarchical structures [1] and skip-lists [13], developed
for traditional credential revocation schemes.

7. Conclusion

We have specified a decentralized access-control mech-
anism, dRBAC, for trust-relationships encompassing mul-
tiple administrative domains and discussed aspects of both
its theory and its deployment architecture. We have intro-
duced a method for third-party delegation and shown how it
augments the expressiveness of trust-management systems.
Additionally, we have shown how trust-management lan-
guages can realize access-rights modulation through the use
of valued attributes, eliminating the need for out-of-band se-
curity policy. Our supporting infrastructure introduces dele-
gation subscriptions, which solve the problem of efficiently
monitoring established trust relationships for updates to cre-
dential status. dRBAC defines a complete system that can
be used to distribute, locate, validate and revoke role-based
delegations in a larger security context.

Acknowledgements

The authors thank Jordan Applebaum, Joshua Rosen-
blatt, Oliver Kennedy, and Vladimir Vanyukov for their as-
sistance with the design and implementation of dRBAC.

This research was sponsored by DARPA agreements
F30602-99-1-0157, N66001-00-1-8920, and N66001-01-
1-8929; and by NSF grants CAREER:CCR-9876128 and
CCR-9988176. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as representing the offi-

cial policies or endorsements, either expressed or implied,
of DARPA, Rome Labs, SPAWAR SYSCEN, or the U.S.
Government.

References

[1] W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital identity
revocation. InProc. of CRYPTO’98, 1998.

[2] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures. InProc.
of Security Protocols International Workshop, 1998.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProc. of IEEE Conf. on Privacy and Secu-
rity, 1996.

[4] R. Chen and W. Yeager. Poblano: A Distributed Trust Model
for Peer-to-Peer Networks. Available athttp://www.
jxta.org/project/www/docs/trust.pdf , 2001.

[5] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Mor-
cos, and R. L. Rivest. Certificate Chain Discovery in
SPKI/SDSI. Available atciteseer.nj.nec.com/
article/clarke99certificate.html , 1999.

[6] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. SPKI Certificate Theory. IETF
RFC 2693, 1998.

[7] E. Freudenthal, E. Keenan, T. Pesin, L. Port, and V. Karam-
cheti. DisCo: A Distribution Infrastructure for Securely De-
ploying Decomposable Services in Partially Trusted Envi-
ronments. Technical Report 2001-820, Computer Science,
New York University, 2001.

[8] E. Freudenthal, L. Port, E. Keenan, T. Pesin, and V. Karam-
cheti. Credentialed Secure Communication Switchboards.
In Proc. of IEEE Workshop on Resource Sharing in Mas-
sively Distributed Systems, 2002. To appear.

[9] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
Public Key Infrastructure Certificate and CRL Profile. IETF
RFC 2459, 1999.

[10] J. Howell and D. Kotz. End-to-end authorization. InProc.
of USENIX Symp. on Operating Systems Design and Imple-
mentation, 2000.

[11] N. Li, W. Winsborough, and J. Mitchell. Distributed creden-
tial chain discovery in trust management. InProc. of ACM
Conf. on Computer and Communications Security, 2001.

[12] M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X.509 Internet Public Key Infrastructure Online
Certicate Status Protocol. IETF RFC 2560, 1996.

[13] M. Naor and K. Nissim. Certificate revocation and certificate
update. InProc. of USENIX Security Symp., 1998.

[14] Project JXTA. JXTA Version 1.0 Protocols Specification.
Available athttp://spec.jxta.org , 2001.

[15] R. L. Rivest and B. Lampson. SDSI – A simple distributed
security infrastructure. InProc. of CRYPTO’96, 1996.

[16] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models.IEEE Com-
puter, 20(2):38–47, 1996.

[17] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos Operating System.ACM Trans. on
Computer Systems, 12(1):3–32, 1994.

