An Algebraic Approach to the Analysis
of Constrained Workflow Systems

Jason Crampton
Information Security Group, Royal Holloway, University lobndon

7th June 2004

Abstract

The enforcement of authorization constraints such as atparof duty in workflow systems
is an important area of current research in computer sgciife briefly summarize our model
for constrained workflow systems and develop a systemagebahic method for combining con-
straints and authorization information. We then show hosvdlosure of a set of constraints and
the use of linear extensions can be used to develop an d&lgofir computing authorized users
in a constrained workflow system. We show how this algorittam be used as the basis for a
reference monitor. We discuss the computational compl@fiimplementing such a reference
monitor and briefly compare our methods with the best exjsdimproach.

Keywords Workflow specification, entailment constraints, linear extensions, satisfiability

1 Introduction

A workflow is a representation of an organizational or business psaed is typically specified as
a set of tasks and a set of dependencies between the tasks. Depesndesy include authorization
constraints such as separation of duty requirements, where two difteers must execute two dif-
ferent tasks. There exist several schemes and models in the literatapeé&ifying separation of duty
constraints [1, 2, 3, 5, 10, 12] and cardinality constraints [2] in comfa&gmorkflow systems.
These schemes are often based on a particular computational model: exarojpide logic pro-
grams [2, 12], active databases [5] and petri nets [1]. We introdaicadple specification scheme for
authorization constraints that is independent of an underlying computiathmuiel and showed that
it could be used to articulateter alia separation of duty constraints and cardinality constraints [6].
In this paper, we exploit the simplicity and uniformity of our scheme to analyzsatisfiability of
constrained workflow systems. We also show how this analysis can basifieelbasis for a reference
monitor for constrained workflow management systems and compare the ttimpal complexity
of our approach with that of Bertingt al [2], the most sophisticated existing approach in this area.
In the next section we review our work on modelling workflows and authtidm constraints in
workflows. Most importantly, we introduce entailment constraints, lineamsites of a workflow
specification and methods for combining entailment constraints and autharizaftiomation. In
Section 3 we introduce the conceptsafisfiabilityin a workflow and thelosureof a set of entailment
constraints. This leads naturally to the development of an algorithm fomaigiag the set of users
that are authorized to perform a task and who satisfy the entailment dotsstheat apply to that task.

In Section 4 we briefly describe a reference monitor for workflow systesiag this algorithm as the
basis for deciding whether an access request should be granteltiy wimaiscuss future work.

2 A model for constrained workflows

A workflow specifications a partially ordered set of tasks if t < t’ thent must be performed
beforet’ in any instance of the workflow. Léf be a set of users. Workflow authorization schema
apair(T,A), whereA C T x U and(t,u) € A means that is authorized to perfornfor executt.
(Generally,A will not encode task-user pairs directly; often such authorizations wilhtegred from
the assignment of tasks and users to common roles.)

Let Rel(U) denote the set of all binary relations dn (In other words Rel(U) is the powerset of
U x U.) Define

0 ={(u,v):u,v € Uu#v}y 1'={(uu):uecl}
0=10 1=170U0=UxU

An entailment constrainhas the form(D, (t,t’), p), whereD C U, p € Rel(U) andt % t'.

A constrained workflow authorization schersaa triple (T, A, C'), whereC' is a set of entailment
constraints.

Informally, if usersu andw’ performt andt’, respectively, and € D, then constraintD, (t,t’), p)
is satisfied iff(u,u") € p. (In other words, the constraint is not applied:i#z D. We refer toD as
thedomainof the constraint.) Hence a separation of duty constraint can be egdras#/, (t,t’),0)
and a binding of duty constraint can be expressedaét, t'),1’).

In fact, any binary relation between users can be used (including thaseah be derived from
contextual information). Hence it is possible to articulate constraints of the ‘fiaskst andt’ must
be performed by two different users in the same department”. If we asthenexistence of group-
based or role-based authorization structures, then it is possible to iaduzdering (binary relation)
on the set of users determined by the relative seniority of the roles to whithuser is assigned. The
relation? € Rel(U) will be used to denote an ordering on the set of users, which may besderiv
depending on context, from role information, organizational informaticth@tuser groups to which
users belong. We anticipate that this sort of relation will prove particularlyortapt, because it is
natural to implement access control in workflow systems using role-basedidees.

We have previously shown that cardinality constraints can be exprassectailment constraints
and that role-based authorization constraints should either be expreEssenstraints on the autho-
rization information or as entailment constraints based on the relative seribtisers (encoded by
the/ relation) [6]. In that paper we also provide an example of a constraiekifimw authorization
schema; lack of space prevents us reproducing the example here.

2.1 Linear extensions and execution schedules

Let (X, <) be a partially ordered set. lnear extensiorof X is a total ordering of the elements &f
that respects the ordering of the elementXinin other words{ X, <) is a linear extension gfX,, <)
if for all =1,z € X, eitherz; < a9 Orxs < 21, and ifz; < z9 thenz < z9. We denote the set of
linear extensions ok by £(X).

Linear extensions are important in the context of workflows becausélthegrize” a partially or-

dered set of tasksIn other words, a linear extension dfrepresents a possible sequence of execution
of the tasks in a workflow. Figure 1 shows a simple example of a workflowifsgegion and its three
linear extensions.

ty ts
o—————
ti <t <tg3 <ty <Xty < tg
ti <t <ty <tg3 <ty < tg
@ ~@ []
t th t te ti <t <ty <Xty <t3 < tg

(@) (b)

Figure 1: A simple workflow specification and its linear extensions

Definition 1 Let (T, A, C) be a constrained workflow authorization schema.eXacution schedule
for (T, A,C) is apair (L, «), whereL € £(T) anda : L — U assigns tasks to users, such that for
allte T, (t,a(t)) € A, and for all(D, (t,t'), p) € C, a(t) € D implies(a(t), a(t')) € p.

In other words, an execution schedule respects the relative orddiiagks in the workflow spec-
ification (since it is a linear extension @), every task is performed by an appropriately authorized
user and every entailment constraint is satisfied. A constrained workifldorization schema is
satisfiablef there exists an execution schedule for the schema (asdtisfiableotherwise).

In general, the set of linear extensionslitan be generated in ting(|£(T)|) [11] and computing
|L£(T)| is #P-complete [4]. However, if the width of the poset is small (as will be tle &ar a typical
workflow specification), then the set of linear extensions can be compuiielly using dynamic
programming techniques. We now discuss this is in more detail.

Proposition 2 Suppos€ X, <) is a poset and:; < z3 < - -+ <z, is a linear extension oK. Then
{z1,...,z}isan orderideal inX, 1 < k < n.

Proof Suppose{zi,...,z;} is not an order ideal. Then there exigtss X such thaty < z; for
somej, 1 < j < k,andy & {z1,...,z,}. Thereforey < z; andx; < y; hence{xy, ...,z } is not
a linear extension and the result follows by contradictioll

Hence each linear extension is a directed path of maximal length in the gragf pfthe lattice
of order ideals off .

Lemma 3 Let (X, <) be a poset and lef(X) denote the set of order ideals Xi. Then

ool ([B)+1)

1We note that in certain circumstances, it will be possible for certain tasksvrldlow to execute in parallel. Specif-
ically, if t andt’ are tasks witht || t and neithet nort’ appears in any constraint, then they may be executed in parallel.
Such situations are outside the scope of this paper.

wherew is the width ofX.

Proof By Dilworth’s theorem [8], we can partition the posék, <) into w disjoint chains
Cy,...,Cy. Consider the posetX, <), wherex < y iff 2,y € C; for somei andz < y (in
X). Then any order ideal ifX, <) is an order ideal iNX, <). To see this, note that there is an
isomorphism between the set of order ideals and the set of antichaing arerder ideal is mapped
to the antichain comprising the maximal elements in the order ideal [7]. Itis cletanly antichain in
(X, <) must also be an antichain {X', <) by construction. In other words, the number of antichains
in (X, <) (and hence the number of order ideals) is bounded by the number ofaintch(X, <).

The number of antichains ifX, <) is equal to[[;” , (|C;| + 1) (because we can choose at most
one element from each chain (i, <)). It is easy to show using elementary calculus that the product
xy, subject tar + y = k, is maximized when: = y = k/2. Generalizing this result, we obtain

e <fi([2])

=1

The result follows. W

Hence the number of order idealsTnis bounded b |wl| +1 w, wherew is the width of T,

and the directed paths can be computed using a breadth-first searsh wtroplexity is linear in
the number of nodes of the graph. In other wordsy iis small, the number of order ideals can be
computed in time polynomial in the number of tasks in the workflow specification.

Figure 2 shows the lattice of order ideals and the lattice of antichains for thdlow specification
depicted in Figure 1. (We have adopted the usual convention in Hassam&that: < y impliesy
is abover in the diagram.) In our exampte = 2 and the number of order idealsds

2.2 The algebra of entailment constraints

In this section we state without proof a number of simple results concerntagreent constraints.
The reader is referred to our earlier work for further details [6]. \Wectude the section with a new
result that enables us to omit authorization information from a workflowrsahéhereby facilitating
the analysis of workflow systems.

Proposition 4 (Merging domains) Let (T, 4, {(D1, (t,t'), p), (D2, (t,t'),p)} be a con-
strained workflow authorization schema. Théh,«) is a workflow execution schedule
for (T,A,{(D1,(t,t),p), (D2, (t,t'),p)} iff (L,a) is a workflow execution schedule for
(T,A,{D1 U Da, (t,t'), p}).

Proposition 5 (Expanding the domain) Let (T, A, {(D, (t,t'), p)}) be a constrained workflow au-
thorization schema and defime= (U \ D) x U. Then(L, «) is a workflow execution schedule for
(T, A, {(D, (t,t'), p)}) iff (L, «) is a workflow execution schedule for, A, {(U, (t,t'),pU0o)}).

Proposition 6 (Merging constraints) Let W = (T, A, {((t,t), p1), ((t,t'), p2)}) be a constrained
workflow authorization schema. Théh, «) is an execution schedule foi iff (L, «) is an execution
schedule fofT, A, {((t,t'), p1 N p2)}).

In other words, we can assume that the domain of every constrdingtig Proposition 5), and that
for each pair of taskét, t') there is a single constraint (by Proposition 6).

{ti,t2,t3,t4,t5,t6} ® {t¢}

{ti,t2,t3,t4,t5}

{ti,t2,ts,t5} {t1,t2,t3,t4} {ts}

{ti,t2,ta} {t1,t2,t3} {ts} {ts}
{t1,t2}
o {t} o {t}
o o)
(a) Order ideals (b) Antichains

Figure 2: Lattices derived from the workflow specification in Figure 1

Proposition 7 (Composing constraints)Let W = (T, A, {((t,t'), p1), (t',t"),p2)}) be a con-
strained workflow authorization schema. Thin «) is an execution schedule oV iff (L, «) is
an execution schedule fom, A, {((t,t'), p1), ((t',t"), p2), ((t,t"), p1p2)}), where

p1P2 = {(U,U)) :Jdv e U, (U7U) € p1, (U7w) € p2}

It is important to note that if L, «) is an execution schedule foT, A, {((t,t"), p1p2)}), then it
is not necessarily an execution schedule(for A, {((t,t'), p1), ((t',t”), p2)}). (Although we have
(a(t),a(t”)) € pip2, we can not necessarily infer that there exists an authorized usér)foin
other words, we cannot delete the constraints from which a compoustraio is derived. Unfortu-
nately, the composition of relations is neither commutative nor associativee¢owor each linear
extension of the workflow there is a unique order in which the relationscargposed.

At the moment we only consider entailment constraints to be specificationsuritgepolicy re-
quirements such as separation of duty. However, we can view the aati@miinformation as a set
of entailment constraints on the execution of tasks. In particulaiT let {t;,...,t,} and for all
t; # tj, definea;; = U(t;) x U(t;), whereU(t) = {u € U : (t,u) € A}. Then the entailment
constraint((t;, t;), a;;), is only satisfied if two appropriately authorized users perform tasksd
t;. If there exists an entailment constraint of the faffs, t;), p;;) then we form the new constraint
((tist)), pij N asj). More formally, we have the following result. The proof of this result fokow
immediately from the definition of an execution schedule and is omitted.

Proposition 8 (Incorporating authorization information) LetW = (T, A, {((t,t’),p)}) be a con-
strained workflow authorization schema. Thdn «) is an execution schedule fav iff (L, «) is an

execution schedule f@i, T x U, {((t,t'),pNa)}), wherea = {(u,u’) : (t,u), (t',u') € A}.

In other words, we can express all the information required to make aoraation decision in
terms of entailment constraints. Hence it is sufficient from a theoreticat pbiview to consider
workflow schemata of the forniT, C), although, from a practical perspective, it is clearly more
natural to include authorization information.

3 Satisfiability in workflow systems

There are three questions that are of interest:

e Is a constrained workflow authorization schema satisfiable? Given &raioesl workflow au-
thorization schemaT, A, C), is it possible for some instance of the workflow to complete.
In other words, is there an assignment of tasks to usersT — U and a linear extension
L € L£(T) such thai L, «) is an execution schedule.

e Is an instance of a workflow schema satisfiable? We writedenote an instance of the task
t € T. In other words, given a constrained workflow authorization schémal, C') and an
order ideall C T, wheret; € I has been executed hy, is it possible to extend the ideal to
a linear extension of and to find an assignment of the remaining tasks to users such that the
resulting linear extension and the assignment of tasks to users formsautiexeschedule for
(T,A,C).

e Given a satisfiable workflow authorization schema, is it possible to desigfe@nce monitor
so that every instance of that schema is satisfiable? In other words, issibf@to design a
decision process that only permits a request from a user to executeitthasiemaining tasks
can be completed. Clearly, an answer to the previous question will prosatieeprint for the
design of such a reference monitor.

3.1 The closure of a set of constraints

LetW = (T, C) be a constrained workflow authorization schema. We assume;that((t;, t;), pi;)
is defined wheneves; 2 t; (settingp;; = 1 where necessary) and define

C*=CU {((tatu)a /)1,02) : ((tat/)v pl)a ((tlvt,/)7p2) € 0}7
CF = C* T U{((6,t"), prp2) : ((1,1), p1) € CF1 (Y1), p2) € C.

Let |T| = n. ThenC™~! denotes the set of all possible constraints that can be derived from the
original set of constraint§’ using composition. Lezr:fj e C* denote the constrairﬁ(ti,tj),pfj).2
Define theclosureof C, denotedC™, to be the set of constraintg; = ((ti,t;), pj;), wheret; 2 t;
andp;; = ﬂZ;i pfj 1 < 4,5 < n. If a pair of users satisfy a constrai{t,t'), p) € C*, then for
every linear extension of, there exists a sequence of users that can execute the sequendes of tas
between andt’.

Informally, we can regard’ as a labelled directed graph in which the set of noddsaad an edge
(t;,t;) labelledp;; exists ift; # t;. The constraints ilC* are the paths of lengthin this graph. In
fact, we can realiz€' as a matrix (in which thejth entry isp;;) and “multiply” the matrix by itself
n — 1times to deriveC?, ... C" 1,

2There may be more than one constraint that can be derived forttahat ;. In this case we simply take the intersection
of the relations for each of these constraints to derive a single constraint.

Theorem 9 Let (T, C') be a constrained workflow authorization schema and ketT be a minimal
element and’ € T be a maximal element. Théft,t'),p) € C* for somep C 1 and(T,C) is
satisfiable ifp # 0.

Proof sketch There exists a “path” of length— 1 betweert andt’ and hence there exists a constraint
of the form((t,t'), p). A simple induction (using Propositions 6 and 7 for the base case) shotvs tha
every constraint on that path is satisfied. Hence i§ non-empty, then there exists a pair of users
that can perform the first task and last task and a sequence of usesatikfies all the constraints in
between. In other words, there exists an execution schedu(d far). W

Unfortunately, it is rather difficult to compute the closure@®@fin this way directly because the
graph ofC is not acyclic More specifically, we need to be able to distinguish between constraints
that arise because of paths (in which each node is visited at most onlcisiose that arise because of
walks (in which a node may be visited more than once). One possible wayngf this is to compute
the length of the longest path between each pair of tasks and omit anyaiotssthat arise due to
a walk between a given pair of tasks which exceed this length. The computdtibe longest path
between a pair of nodes in a directed graph is NP-complete [9, ProblerB]ND2

Alternatively, given a workflow schem@& = (T,C'), we can enumerate all possible linear ex-
tensions, thereby creating a family of workflow schemiatan which each specification is a totally
ordered set of tasks. For each such schema we compute the closueesef thf constraints. Fi-
nally, we can create a single workflow schewa = (T, C*), where for all((t;, t;), pi;; € C*, pi; iS
obtained by taking the intersection of the relations in every constraint obthe({t;, t;), p) in W.

3.2 An algorithm for computing execution schedules

Figure 3 illustrates an algorithm (written in pseudo-code) that compateg’) for each pair(t, t'),
whereV(t,t') is the set of users that can executandt’ (in that order) given the authorization
information and the entailment constraints in the schema that applanat’. The basic strategy
is to initialize eachl/(t) to the set of users that are authorized to perfdrigiine 02) and then, for
each linear extension, to apply all the possible constraints (including tleosed from authorization
information) (lines07-08). Essentially, the algorithm is applying Proposition 8 and computing a
new relation for each entailment constraint. If one of these relations is ethpty,the algorithm
terminates prematurely (lin@8), since there does not exists a pair of authorized users that comply
with the entailment constraints. Finally, for each taske (re-)compute the set of users that can
performt (lines10-11).

The overall time complexity of the algorithm &(|T|¥|T?|U|*) = O(|T|**2|U*), since the
number of linear extensions &(|T|*) (see Section 2.1), the number of constraint®{$7’|?) and
the comparison in lin®7 is O(|U|*) in the worst case. Note that the computational complexity
of the comparison in lin®7 dominates the complexity of the computations required in lib@s
and11, which areO(|U|*). Note also that ifR is 0’ or 1/, then the computation in lin87 is a
simple comparison o/ (i) and V() and hence has time complexi@(|U|?). In other words, if
we restrict our attention to cardinality, separation of duty and binding of domgtraints, then the
overall complexity reduces t@(|T|“*2|U|?). (Recall that cardinality constraints can be modelled
using separation of duty constraints [6].)

3For example, if we define the constraiti{ss, t4),0’) and(t4, t3), 0’) for the workflow in Figure 1, meaning that the
same user cannot perform bathandt,, then we have a cycle of lengthin the graph.

01 for i =1to |T]|

02 let V(i) = set of users authorized to performtask i

03 for each linear extension

04 for i =1to |T|

05 for j =1 to |T|

06 if ((4,5),R) € C

07 let V(i,j) = (Mi) x V(j)) NnR

08 if V(i,j) is enpty then exit

09 el se

10 let V(i) set of users in first position of V(i,j)

11 let V(j) set of users in second position of V(i,j)

Figure 3: An algorithm for determining whether an execution schedule exists

4 A reference monitor for constrained workflows

A workflow systenis a pairS = (W, M), whereW is a set of workflow schemata ant is a
reference monitor. Aeference monitors an abstract machine for deciding whether an access request
from a user will be granted. A workflomstanceis created (instantiated) when the first task in some
linear extension of is executed.

LetW = (T, A, C) be a constrained workflow authorization schema. Then we denote and@stan
of this schema byl and an instance of taskby ¢. A workflow instance completes if every task in
the workflow specification is performed by some user.

We will say that a workflow system sompletédf every instance of every schema is guaranteed to
complete. A workflow instance, in general, will not complete because tlweigga of certain tasks by
certain users and the existence of entailment constraints in the schema traytresusers that can
perform subsequent tasks. Hence, a workflow system will be compiétefahe reference monitor
is able to identify and deny tasks that would prevent subsequent taskdfing executed because
certain entailment constraints could not be satisfied. However, a refemonitor that guarantees a
workflow system is complete is likely to be computationally expensive [2].

In the context of workflow systems, a user requests the permission totexetask in a workflow
instance. In other wordsy1 is a function that takes a triplg, i, «) and returnsl | owif the request
is granted andeny otherwise. The triplét, i, u) is interpreted as a request by usdp execute task
t € T in W;, theith instance ofV = (T, A, C).

Let W be a workflow instance in which all the tasksThC T have been executed, wheréis an
order ideal inT. Then this workflow instance can be represented as a funftioh’” — U, where
user!(t) performed task. The execution of a workflow instance is constrained landC'. Given a
workflow authorization schem@', A, C), letW|I denote the workflow schen{@V, A|I, C'), where

AT ={(t,I(t):teT}IUu{(t,bu) e A:te T\ T}

In other wordsW/|I is a constrained workflow authorization schema in which eachttask’ has a
single authorized usdi(t); that is, the user that performedh instancel.

In general, given a partially completed workflow instardcand a request by to executet in this
instance there are three questions a reference monitor could consider:

Q1 Isw authorized to perforna?

Q2 Are all constraints in whichis the consequent task satisfied?

Q3 Can the workflow complete if performst?

The reference monitor must certainly guarantee that the answers to thedirguestions are yes.

It is up to the designers of the reference monitor to decide whether the thestiogn should always
have an affirmative answer. Indeed, some research has beenrdoveroding (that is, not enforcing)
constraints in the event that a workflow cannot complete because abpseask executions and the
existence of constraints [12]. We say a reference monitenfercement compliarit it guarantees
(for all requests) that the answers to the first two questions are yescampletion complianif it
guarantees that the answer to each of the three questions is yes.

Let W = (T, A, C) be a constrained workflow authorization schema. In order to implement a
reference monitor for this workflow, we computé& and use the algorithm in Figure 3 to establish
that an execution schedule for the workflow exists and to compute a relatiom C T x U, where
(t,u) € V implies thatu is authorized to performand all entailment constraints can be satisfied. We
write V' (t) to denote the setu € U : (t,u) € V'}.

Let us first consider the case wharec T is a minimal element (and hence can be the first task
executed in a workflow). In this casé,=) andW|I = W.% Then a request to executanay be
granted if(t,u) € V. If the request were to be granted, ther= {(t,u)}; a completion compliant
reference monitor must recalculatefor the workflowW|{(t,u)}. If V(t') = () for somet’ € T
then the workflow schema, and hence the workflow instance, cannatibfesl. Hence, in order to
implement a completion compliant reference monitor, we simply run the algorithm ime=8jyfor the
workflow W|{(t,u)} beforegranting the request, i, u). If the request is granted, the next request
must be evaluated for the workflow |{(t, u)}.

In the general case, Idtbe an instance oV = (T, A,C) and let/ U {t} be an order ideal in
T. Then a request by to executet in this instance oW is granted by a completion compliant
reference monitor if there exists an execution schedulgfidrsuch that. executes and there exists
an execution schedule foY|(I U {(t,u)}). In other words, we simply run the algorithm in Figure 3
for the workflowW| (I U {(t,u)}) beforegranting the request, i,). If the request is granted, the
next request must be evaluated for the workf\7 U {t, u}).

In summary, a completion compliant reference monitor must calculdtefore any instance of the
workflow is created. The reference monitor must also re-calciabefore every request (to check
that the request is completion compliant) and update the workflow after euegessful request
(to ensure that the fact that a particular user executed a particular tasksglered in enforcing
constraints that apply to subsequent tasks).

The only comprehensive treatment of completion compliant workflow systeths iiterature [2]
includes an algorithm for “user planning”, which associates tasks witbrarote pair. The complexity
of this algorithm isO((Ng - Ny - Nact)m), where N is the maximum number of roles associated
with any task in the workflowVy; is the maximum number of users associated with any role in the
workflow and N, is the maximum number of activations associated with any task in the workflow.
This algorithm is run before any workflow instance is created and, in tirstvease, is also run
when a request is received and when a task has been succességllyezk Our algorithm has time
complexity O(|T|“*2 - |Ny|*). It has better time complexity than the user planner algorithm for
several reasons:

o firstly, we only consider entailment constraints, which makes the analysismefraints uniform
and hence simpler;

I = () in the sense that there are no p4irs/ (t)) defined.

e secondly, we only consider user-based constraints (having showrnoteebased constraints
can be enforced in other ways [6]);

o thirdly, we do not compute every possible sequence of tasks and ustesd computing the
closure and determining if a workflow instance can complete (without explicliyutating a
sequence of tasks and users).

We note that the performance of the user planner algorithm can be impbgvadopting certain
heuristics, but the worst case complexity is still exponential in the numbeské fa the workflow
specification.

5 Concluding remarks

The analysis of satisfiability in this paper suggests that there are distirattades to our approach to
authorization constraints in workflow systems. We believe our approacthbdollowing advantages
over existing approaches:

e The ability to treat most, if not all, useful authorization constraints as speasalk of entailment
constraints means that the analysis of a set of authorization constraiata/éokflow is greatly
simplified.

e The ability to express authorization information in terms of entailment constrairdagribat
satisfiability questions can be analyzed entirely in the context of the clo$areai of entail-
ment constraints.

e The fact that our model for constraints is independent of any undgremputational model
coupled with its simplicity means that it can be easily implemented in a variety of ways.

There are numerous opportunities for further research. Perhapadbieobvious of these is a
prototype implementation, perhaps using an off-the-shelf relational dsabanagement system, to
assess the usability and scalability of our approach.

In many workflow models, a task may be repeated several times within a warkii¢hen the
number of occurrences of the task is fixed in each instance of the werkfics can be modelled
using cardinality constraints. However, in other models, the number ofrecmes is allowed to vary.
This clearly makes the analysis of satisfiability and the design of a refenaoigigor for such systems
more complex. However, we believe that extending our model to include tafire@nt constraints
of the form((t, t), p) may provide a suitable platform for investigating such workflow systems. The
investigation of this topic will be one of our immediate priorities in future research

Another avenue for further work is to consider substituting “proxy sistar actual users in the
analysis of the workflow schema. The complexity of the algorithm is polynomialemtimber of
users and it is likely that the number of tasks will be considerably smaller tleamumber of users.
A proxy user is simply identified with a subset of tasks (and hence is symouny with a role). This
means that proxy users can also be used to derive a role hierarahg fworkflow.

The number of proxy users is certainly bounde@By, and we would expect the number of roles to
be bounded by the number of tasks. However, we also need to consiaepbund roles” consisting
of tasks assigned to two or more roles. (For example, we mightidentifythat } naturally form one
role and{ts, t4 } form another. We need to allow for the fact that a user may be assignethtodies
and so there must be a proxy user for the{setto, t3, t4}.) Hence, in general the number of proxy
users will actually be bounded by the number of antichains in the role higra¥fe would expect

10

that the number of roles is less th@r. Hence we can run the algorithm in Figure 3 using proxy users
rather than actual users, thereby reducing the time complexity of the algawtidg| 7’|V +++2),
whereWW denotes the width of the role hierarchy.

Acknowledgements We would like to thank Frank Ruskey for his helpful comments on generating
linear extensions.

References

[1] V. Atluri and W. Huang. An authorization model for workflows. Rroceedings of the 4th
European Symposium on Research in Computer Secpeages 44—64, 1996.

[2] E. Bertino, E. Ferrari, and V. Atluri. The specification and enfaneat of authorization con-
straints in workflow management systemM&M Transactions on Information and System Secu-
rity, 2(1):65—-104, 1999.

[3] R.A. Botha and J.H.P. Eloff. Separation of duties for access coatrfarcement in workflow
environmentsIBM Systems Journadl0(3):666—682, 2001.

[4] G. Brightwell and P. Winkler. Counting linear extensioi@der, 8:225-242, 1991.

[5] F. Casati, S. Castano, and M. Fugini. Managing workflow authorimatnstraints through
active database technologynformation Systems Frontier8(3):319-338, 2001. Technical
Report HPL-2000-156, Hewlett Packard Laboratories.

[6] J. Crampton. On the satisfiability of authorization constraints in workflpgtesns. Techni-
cal Report RHUL-MA-2004-1, Department of Mathematics, Royal HalgwJniversity of
London, 2004ht t p: / / www. ma. r hul . ac. uk/techreports/.

[7] J. Crampton and G. Loizou. The completion of a poset in a lattice of amishbiternational
Mathematical Journall(3):223-238, 2001.

[8] R.P. Dilworth. A decomposition theorem for partially ordered sefginals of Mathematics
51:161-6, 1950.

[9] M.R. Garey and D.S. Johnso@omputers and Intractability.H. Freeman and Company, San
Francisco, California, 1979.

[10] K. Knorr and H. Stormer. Modeling and analyzing separation of dutievorkflow environ-
ments. InTrusted Information: The New Decade Challenge, IFIP TC11 SixteemibaN\Vork-
ing Conference on Information Securipages 199-212, 2001.

[11] G. Pruesse and F. Ruskey. Generating linear extensions #aiM Journal on Computing
23(2):373-386, 1994.

[12] J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC — A workflowsiyg model incorporating
controlled overriding of constrainténternational Journal of Cooperative Information Systems
12(4):455-486, 2003.

11

