
An Algebraic Approach to the Analysis
of Constrained Workflow Systems

Jason Crampton
Information Security Group, Royal Holloway, University ofLondon

7th June 2004

Abstract

The enforcement of authorization constraints such as separation of duty in workflow systems
is an important area of current research in computer security. We briefly summarize our model
for constrained workflow systems and develop a systematic algebraic method for combining con-
straints and authorization information. We then show how the closure of a set of constraints and
the use of linear extensions can be used to develop an algorithm for computing authorized users
in a constrained workflow system. We show how this algorithm can be used as the basis for a
reference monitor. We discuss the computational complexity of implementing such a reference
monitor and briefly compare our methods with the best existing approach.

Keywords Workflow specification, entailment constraints, linear extensions, satisfiability

1 Introduction

A workflow is a representation of an organizational or business process and is typically specified as
a set of tasks and a set of dependencies between the tasks. Dependencies may include authorization
constraints such as separation of duty requirements, where two different users must execute two dif-
ferent tasks. There exist several schemes and models in the literature for specifying separation of duty
constraints [1, 2, 3, 5, 10, 12] and cardinality constraints [2] in computerized workflow systems.

These schemes are often based on a particular computational model: examples include logic pro-
grams [2, 12], active databases [5] and petri nets [1]. We introduceda simple specification scheme for
authorization constraints that is independent of an underlying computational model and showed that
it could be used to articulateinter alia separation of duty constraints and cardinality constraints [6].
In this paper, we exploit the simplicity and uniformity of our scheme to analyze thesatisfiability of
constrained workflow systems. We also show how this analysis can be usedas the basis for a reference
monitor for constrained workflow management systems and compare the computational complexity
of our approach with that of Bertinoet al [2], the most sophisticated existing approach in this area.

In the next section we review our work on modelling workflows and authorization constraints in
workflows. Most importantly, we introduce entailment constraints, linear extensions of a workflow
specification and methods for combining entailment constraints and authorization information. In
Section 3 we introduce the concepts ofsatisfiabilityin a workflow and theclosureof a set of entailment
constraints. This leads naturally to the development of an algorithm for determining the set of users
that are authorized to perform a task and who satisfy the entailment constraints that apply to that task.

1

In Section 4 we briefly describe a reference monitor for workflow systems, using this algorithm as the
basis for deciding whether an access request should be granted. Finally we discuss future work.

2 A model for constrained workflows

A workflow specificationis a partially ordered set of tasksT; if t < t
′ then t must be performed

beforet
′ in any instance of the workflow. LetU be a set of users. Aworkflow authorization schemais

a pair(T, A), whereA ⊆ T × U and(t, u) ∈ A means thatu is authorized to perform(or execute) t.
(Generally,A will not encode task-user pairs directly; often such authorizations will beinferred from
the assignment of tasks and users to common roles.)

Let Rel(U) denote the set of all binary relations onU . (In other words,Rel(U) is the powerset of
U × U .) Define

0′ = {(u, v) : u, v ∈ U, u 6= v} 1′ = {(u, u) : u ∈ U}

0 = ∅ 1 = 1′ ∪ 0′ = U × U

An entailment constrainthas the form(D, (t, t′), ρ), whereD ⊆ U , ρ ∈ Rel(U) and t 6> t
′.

A constrained workflow authorization schemais a triple(T, A, C), whereC is a set of entailment
constraints.

Informally, if usersu andu′ performt andt
′, respectively, andu ∈ D, then constraint(D, (t, t′), ρ)

is satisfied iff(u, u′) ∈ ρ. (In other words, the constraint is not applied ifu 6∈ D. We refer toD as
thedomainof the constraint.) Hence a separation of duty constraint can be expressed as(U, (t, t′), 0′)
and a binding of duty constraint can be expressed as(U, (t, t′), 1′).

In fact, any binary relation between users can be used (including those that can be derived from
contextual information). Hence it is possible to articulate constraints of the form “taskst andt

′ must
be performed by two different users in the same department”. If we assumethe existence of group-
based or role-based authorization structures, then it is possible to inducean ordering (binary relation)
on the set of users determined by the relative seniority of the roles to which each user is assigned. The
relationℓ ∈ Rel(U) will be used to denote an ordering on the set of users, which may be derived,
depending on context, from role information, organizational information orthe user groups to which
users belong. We anticipate that this sort of relation will prove particularly important, because it is
natural to implement access control in workflow systems using role-based techniques.

We have previously shown that cardinality constraints can be expressedas entailment constraints
and that role-based authorization constraints should either be expressed as constraints on the autho-
rization information or as entailment constraints based on the relative seniorityof users (encoded by
theℓ relation) [6]. In that paper we also provide an example of a constrained workflow authorization
schema; lack of space prevents us reproducing the example here.

2.1 Linear extensions and execution schedules

Let 〈X, 6〉 be a partially ordered set. Alinear extensionof X is a total ordering of the elements ofX
that respects the ordering of the elements inX. In other words,〈X, 4〉 is a linear extension of〈X, 6〉
if for all x1, x2 ∈ X, eitherx1 4 x2 or x2 4 x1, and ifx1 6 x2 thenx1 4 x2. We denote the set of
linear extensions ofX by L(X).

Linear extensions are important in the context of workflows because they“linearize” a partially or-

2

dered set of tasks.1 In other words, a linear extension ofT represents a possible sequence of execution
of the tasks in a workflow. Figure 1 shows a simple example of a workflow specification and its three
linear extensions.

t

t1

t

t2

t

t3

t

t6

t

t4
t

t5

- - -�
�

�
�

�
��

-
@

@
@

@
@
@R

(a)

t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6

t1 ≺ t2 ≺ t4 ≺ t3 ≺ t5 ≺ t6

t1 ≺ t2 ≺ t4 ≺ t5 ≺ t3 ≺ t6

(b)

Figure 1: A simple workflow specification and its linear extensions

Definition 1 Let (T, A, C) be a constrained workflow authorization schema. Anexecution schedule
for (T, A, C) is a pair (L, α), whereL ∈ L(T) andα : L → U assigns tasks to users, such that for
all t ∈ T, (t, α(t)) ∈ A, and for all(D, (t, t′), ρ) ∈ C, α(t) ∈ D implies(α(t), α(t′)) ∈ ρ.

In other words, an execution schedule respects the relative ordering of tasks in the workflow spec-
ification (since it is a linear extension ofT), every task is performed by an appropriately authorized
user and every entailment constraint is satisfied. A constrained workflowauthorization schema is
satisfiableif there exists an execution schedule for the schema (andunsatisfiableotherwise).

In general, the set of linear extensions inT can be generated in timeO(|L(T)|) [11] and computing
|L(T)| is #P-complete [4]. However, if the width of the poset is small (as will be the case for a typical
workflow specification), then the set of linear extensions can be computedquickly using dynamic
programming techniques. We now discuss this is in more detail.

Proposition 2 Suppose〈X, 6〉 is a poset andx1 ≺ x2 ≺ · · · ≺ xn is a linear extension ofX. Then
{x1, . . . , xk} is an order ideal inX, 1 6 k 6 n.

Proof Suppose{x1, . . . , xk} is not an order ideal. Then there existsy ∈ X such thaty 6 xj for
somej, 1 6 j 6 k, andy 6∈ {x1, . . . , xk}. Thereforey 6 xj andxj ≺ y; hence{x1, . . . , xk} is not
a linear extension and the result follows by contradiction.�

Hence each linear extension is a directed path of maximal length in the graph ofI(T), the lattice
of order ideals ofT.

Lemma 3 Let 〈X, 6〉 be a poset and letI(X) denote the set of order ideals inX. Then

|I(X)| 6

(⌈

|X|

w

⌉

+ 1

)w

,

wherew is the width ofX.

1We note that in certain circumstances, it will be possible for certain tasks in aworkflow to execute in parallel. Specif-
ically, if t andt

′ are tasks witht ‖ t
′ and neithert nor t

′ appears in any constraint, then they may be executed in parallel.
Such situations are outside the scope of this paper.

3

Proof By Dilworth’s theorem [8], we can partition the poset〈X, 6〉 into w disjoint chains
C1, . . . , Cw. Consider the poset〈X, E〉, wherex E y iff x, y ∈ Ci for somei and x 6 y (in
X). Then any order ideal in〈X, 6〉 is an order ideal in〈X, E〉. To see this, note that there is an
isomorphism between the set of order ideals and the set of antichains, where an order ideal is mapped
to the antichain comprising the maximal elements in the order ideal [7]. It is clear that any antichain in
〈X, 6〉 must also be an antichain in〈X, E〉 by construction. In other words, the number of antichains
in 〈X, 6〉 (and hence the number of order ideals) is bounded by the number of antichains in〈X, E〉.

The number of antichains in〈X, E〉 is equal to
∏w

i=1
(|Ci| + 1) (because we can choose at most

one element from each chain in〈X, E〉). It is easy to show using elementary calculus that the product
xy, subject tox + y = k, is maximized whenx = y = k/2. Generalizing this result, we obtain

w
∏

i=1

(|Ci| + 1) 6

w
∏

i=1

(⌈

|X|

w

⌉

+ 1

)

.

The result follows. �

Hence the number of order ideals inT is bounded by
(⌈

|T|
w

⌉

+ 1
)w

, wherew is the width ofT,

and the directed paths can be computed using a breadth-first search whose complexity is linear in
the number of nodes of the graph. In other words, ifw is small, the number of order ideals can be
computed in time polynomial in the number of tasks in the workflow specification.

Figure 2 shows the lattice of order ideals and the lattice of antichains for the workflow specification
depicted in Figure 1. (We have adopted the usual convention in Hasse diagrams thatx 6 y impliesy
is abovex in the diagram.) In our examplew = 2 and the number of order ideals is9.

2.2 The algebra of entailment constraints

In this section we state without proof a number of simple results concerning entailment constraints.
The reader is referred to our earlier work for further details [6]. We conclude the section with a new
result that enables us to omit authorization information from a workflow schema, thereby facilitating
the analysis of workflow systems.

Proposition 4 (Merging domains) Let (T, A, {(D1, (t, t
′), ρ), (D2, (t, t

′), ρ)} be a con-
strained workflow authorization schema. Then(L, α) is a workflow execution schedule
for (T, A, {(D1, (t, t

′), ρ), (D2, (t, t
′), ρ)} iff (L, α) is a workflow execution schedule for

(T, A, {D1 ∪ D2, (t, t
′), ρ}).

Proposition 5 (Expanding the domain) Let (T, A, {(D, (t, t′), ρ)}) be a constrained workflow au-
thorization schema and defineσ = (U \ D) × U . Then(L, α) is a workflow execution schedule for
(T, A, {(D, (t, t′), ρ)}) iff (L, α) is a workflow execution schedule for(T, A, {(U, (t, t′), ρ ∪ σ)}).

Proposition 6 (Merging constraints) Let W = (T, A, {((t, t′), ρ1), ((t, t
′), ρ2)}) be a constrained

workflow authorization schema. Then(L, α) is an execution schedule forW iff (L, α) is an execution
schedule for(T, A, {((t, t′), ρ1 ∩ ρ2)}).

In other words, we can assume that the domain of every constraint isU (by Proposition 5), and that
for each pair of tasks(t, t′) there is a single constraint (by Proposition 6).

4

t∅

t{t1}

t{t1, t2}@
@

@
@

@

�
�

�
�

�
t{t1, t2, t4} �

�
�

�
�

t{t1, t2, t3}@
@

@
@

@
t{t1, t2, t3, t4}t{t1, t2, t4, t5} �

�
�

�
�

t{t1, t2, t3, t4, t5}

t{t1, t2, t3, t4, t5, t6}

(a) Order ideals

t∅

t{t1}

t{t2}@
@

@
@

@

�
�

�
�

�
t{t4} �

�
�

�
�

t{t3}@
@

@
@

@
t{t3, t4}t{t5} �

�
�

�
�

t{t3, t5}

t{t6}

(b) Antichains

Figure 2: Lattices derived from the workflow specification in Figure 1

Proposition 7 (Composing constraints)Let W = (T, A, {((t, t′), ρ1), ((t
′, t′′), ρ2)}) be a con-

strained workflow authorization schema. Then(L, α) is an execution schedule forW iff (L, α) is
an execution schedule for(T, A, {((t, t′), ρ1), ((t

′, t′′), ρ2), ((t, t
′′), ρ1ρ2)}), where

ρ1ρ2 = {(u, w) : ∃v ∈ U, (u, v) ∈ ρ1, (v, w) ∈ ρ2}.

It is important to note that if(L, α) is an execution schedule for(T, A, {((t, t′′), ρ1ρ2)}), then it
is not necessarily an execution schedule for(T, A, {((t, t′), ρ1), ((t

′, t′′), ρ2)}). (Although we have
(α(t), α(t′′)) ∈ ρ1ρ2, we can not necessarily infer that there exists an authorized user fort

′.) In
other words, we cannot delete the constraints from which a compound constraint is derived. Unfortu-
nately, the composition of relations is neither commutative nor associative. However, for each linear
extension of the workflow there is a unique order in which the relations are composed.

At the moment we only consider entailment constraints to be specifications of security policy re-
quirements such as separation of duty. However, we can view the authorization information as a set
of entailment constraints on the execution of tasks. In particular, letT = {t1, . . . , tn} and for all
ti 6> tj , defineaij = U(ti) × U(tj), whereU(t) = {u ∈ U : (t, u) ∈ A}. Then the entailment
constraint((ti, tj), aij), is only satisfied if two appropriately authorized users perform tasksti and
tj . If there exists an entailment constraint of the form((ti, tj), ρij) then we form the new constraint
((ti, tj), ρij ∩ aij). More formally, we have the following result. The proof of this result follows
immediately from the definition of an execution schedule and is omitted.

Proposition 8 (Incorporating authorization information) Let W = (T, A, {((t, t′), ρ)}) be a con-
strained workflow authorization schema. Then(L, α) is an execution schedule forW iff (L, α) is an

5

execution schedule for(T, T × U, {((t, t′), ρ ∩ a)}), wherea = {(u, u′) : (t, u), (t′, u′) ∈ A}.

In other words, we can express all the information required to make an authorization decision in
terms of entailment constraints. Hence it is sufficient from a theoretical point of view to consider
workflow schemata of the form(T, C), although, from a practical perspective, it is clearly more
natural to include authorization information.

3 Satisfiability in workflow systems

There are three questions that are of interest:

• Is a constrained workflow authorization schema satisfiable? Given a constrained workflow au-
thorization schema(T, A, C), is it possible for some instance of the workflow to complete.
In other words, is there an assignment of tasks to usersα : T → U and a linear extension
L ∈ L(T) such that(L, α) is an execution schedule.

• Is an instance of a workflow schema satisfiable? We writet to denote an instance of the task
t ∈ T. In other words, given a constrained workflow authorization schema(T, A, C) and an
order idealI ⊆ T, whereti ∈ I has been executed byui, is it possible to extend the ideal to
a linear extension ofT and to find an assignment of the remaining tasks to users such that the
resulting linear extension and the assignment of tasks to users forms an execution schedule for
(T, A, C).

• Given a satisfiable workflow authorization schema, is it possible to design a reference monitor
so that every instance of that schema is satisfiable? In other words, is it possible to design a
decision process that only permits a request from a user to execute a taskif the remaining tasks
can be completed. Clearly, an answer to the previous question will provide ablueprint for the
design of such a reference monitor.

3.1 The closure of a set of constraints

Let W = (T, C) be a constrained workflow authorization schema. We assume thatcij = ((ti, tj), ρij)
is defined wheneverti 6> tj (settingρij = 1 where necessary) and define

C2 = C ∪ {((t, t′′), ρ1ρ2) : ((t, t′), ρ1), ((t
′, t′′), ρ2) ∈ C},

Ck = Ck−1 ∪ {((t, t′′), ρ1ρ2) : ((t, t′), ρ1) ∈ Ck−1, ((t′, t′′), ρ2) ∈ C}.

Let |T| = n. ThenCn−1 denotes the set of all possible constraints that can be derived from the
original set of constraintsC using composition. Letck

ij ∈ Ck denote the constraint((ti, tj), ρk
ij).

2

Define theclosureof C, denotedC∗, to be the set of constraintsc∗ij = ((ti, tj), ρ
∗
ij), whereti 6> tj

andρ∗ij =
⋂n−1

k=1
ρk

ij , 1 6 i, j 6 n. If a pair of users satisfy a constraint((t, t′), ρ) ∈ C∗, then for
every linear extension ofT, there exists a sequence of users that can execute the sequence of tasks
betweent andt

′.
Informally, we can regardC as a labelled directed graph in which the set of nodes isT and an edge

(ti, tj) labelledρij exists if ti 6> tj . The constraints inCk are the paths of lengthk in this graph. In
fact, we can realizeC as a matrix (in which theijth entry isρij) and “multiply” the matrix by itself
n − 1 times to deriveC2, . . . , Cn−1.

2There may be more than one constraint that can be derived for tasksti andtj . In this case we simply take the intersection
of the relations for each of these constraints to derive a single constraint.

6

Theorem 9 Let (T, C) be a constrained workflow authorization schema and lett ∈ T be a minimal
element andt′ ∈ T be a maximal element. Then((t, t′), ρ) ∈ C∗ for someρ ⊆ 1 and (T, C) is
satisfiable ifρ 6= ∅.

Proof sketch There exists a “path” of lengthn−1 betweent andt
′ and hence there exists a constraint

of the form((t, t′), ρ). A simple induction (using Propositions 6 and 7 for the base case) shows that
every constraint on that path is satisfied. Hence ifρ is non-empty, then there exists a pair of users
that can perform the first task and last task and a sequence of users that satisfies all the constraints in
between. In other words, there exists an execution schedule for(T, C). �

Unfortunately, it is rather difficult to compute the closure ofC in this way directly because the
graph ofC is not acyclic.3 More specifically, we need to be able to distinguish between constraints
that arise because of paths (in which each node is visited at most once) and those that arise because of
walks (in which a node may be visited more than once). One possible way of doing this is to compute
the length of the longest path between each pair of tasks and omit any constraints that arise due to
a walk between a given pair of tasks which exceed this length. The computationof the longest path
between a pair of nodes in a directed graph is NP-complete [9, Problem ND29].

Alternatively, given a workflow schemaW = (T, C), we can enumerate all possible linear ex-
tensions, thereby creating a family of workflow schemataW in which each specification is a totally
ordered set of tasks. For each such schema we compute the closure of the set of constraints. Fi-
nally, we can create a single workflow schemaW

∗ = (T, C∗), where for all((ti, tj), ρij ∈ C∗, ρij is
obtained by taking the intersection of the relations in every constraint of the form ((ti, tj), ρ) in W.

3.2 An algorithm for computing execution schedules

Figure 3 illustrates an algorithm (written in pseudo-code) that computesV (t, t′) for each pair(t, t′),
whereV (t, t′) is the set of users that can executet and t

′ (in that order) given the authorization
information and the entailment constraints in the schema that apply tot and t

′. The basic strategy
is to initialize eachV (t) to the set of users that are authorized to performT (line 02) and then, for
each linear extension, to apply all the possible constraints (including those derived from authorization
information) (lines07–08). Essentially, the algorithm is applying Proposition 8 and computing a
new relation for each entailment constraint. If one of these relations is empty,then the algorithm
terminates prematurely (line08), since there does not exists a pair of authorized users that comply
with the entailment constraints. Finally, for each taskt we (re-)compute the set of users that can
performt (lines10–11).

The overall time complexity of the algorithm isO(|T |w|T |2|U |4) = O(|T |w+2|U |4), since the
number of linear extensions isO(|T |w) (see Section 2.1), the number of constraints isO(|T |2) and
the comparison in line07 is O(|U |4) in the worst case. Note that the computational complexity
of the comparison in line07 dominates the complexity of the computations required in lines10
and11, which areO(|U |2). Note also that ifR is 0′ or 1′, then the computation in line07 is a
simple comparison ofV (i) andV (j) and hence has time complexityO(|U |2). In other words, if
we restrict our attention to cardinality, separation of duty and binding of dutyconstraints, then the
overall complexity reduces toO(|T|w+2|U |2). (Recall that cardinality constraints can be modelled
using separation of duty constraints [6].)

3For example, if we define the constraints((t3, t4), 0
′) and(t4, t3), 0

′) for the workflow in Figure 1, meaning that the
same user cannot perform botht3 andt4, then we have a cycle of length2 in the graph.

7

01 for i = 1 to |T|
02 let V(i) = set of users authorized to perform task i
03 for each linear extension
04 for i = 1 to |T|
05 for j = 1 to |T|
06 if ((i, j), R) ∈ C
07 let V(i,j) = (V(i) × V(j)) ∩ R
08 if V(i,j) is empty then exit
09 else
10 let V(i) = set of users in first position of V(i,j)
11 let V(j) = set of users in second position of V(i,j)

Figure 3: An algorithm for determining whether an execution schedule exists

4 A reference monitor for constrained workflows

A workflow systemis a pairS = (W,M), whereW is a set of workflow schemata andM is a
reference monitor. Areference monitoris an abstract machine for deciding whether an access request
from a user will be granted. A workflowinstanceis created (instantiated) when the first task in some
linear extension ofT is executed.

Let W = (T, A, C) be a constrained workflow authorization schema. Then we denote an instance
of this schema byW and an instance of taskt by t. A workflow instance completes if every task in
the workflow specification is performed by some user.

We will say that a workflow system iscompleteif every instance of every schema is guaranteed to
complete. A workflow instance, in general, will not complete because the execution of certain tasks by
certain users and the existence of entailment constraints in the schema may restrict the users that can
perform subsequent tasks. Hence, a workflow system will be complete only if the reference monitor
is able to identify and deny tasks that would prevent subsequent tasks from being executed because
certain entailment constraints could not be satisfied. However, a reference monitor that guarantees a
workflow system is complete is likely to be computationally expensive [2].

In the context of workflow systems, a user requests the permission to execute a task in a workflow
instance. In other words,M is a function that takes a triple(t, i, u) and returnsallow if the request
is granted anddeny otherwise. The triple(t, i, u) is interpreted as a request by useru to execute task
t ∈ T in Wi, theith instance ofW = (T, A, C).

Let W be a workflow instance in which all the tasks inT
′ ⊆ T have been executed, whereT

′ is an
order ideal inT. Then this workflow instance can be represented as a functionI : T

′ → U , where
userI(t) performed taskt. The execution of a workflow instance is constrained byI andC. Given a
workflow authorization schema(T, A, C), let W|I denote the workflow schema(W, A|I, C), where

A|I = {(t, I(t)) : t ∈ T
′} ∪ {(t, u) ∈ A : t ∈ T \ T

′}.

In other words,W|I is a constrained workflow authorization schema in which each taskt ∈ T
′ has a

single authorized userI(t); that is, the user that performedt in instanceI.
In general, given a partially completed workflow instanceI and a request byu to executet in this

instance there are three questions a reference monitor could consider:

Q1 Isu authorized to performt?

Q2 Are all constraints in whicht is the consequent task satisfied?

8

Q3 Can the workflow complete ifu performst?

The reference monitor must certainly guarantee that the answers to the first two questions are yes.
It is up to the designers of the reference monitor to decide whether the third question should always
have an affirmative answer. Indeed, some research has been done on overriding (that is, not enforcing)
constraints in the event that a workflow cannot complete because of previous task executions and the
existence of constraints [12]. We say a reference monitor isenforcement compliantif it guarantees
(for all requests) that the answers to the first two questions are yes andcompletion compliantif it
guarantees that the answer to each of the three questions is yes.

Let W = (T, A, C) be a constrained workflow authorization schema. In order to implement a
reference monitor for this workflow, we computeC∗ and use the algorithm in Figure 3 to establish
that an execution schedule for the workflow exists and to compute a relationV ⊆ A ⊆ T× U , where
(t, u) ∈ V implies thatu is authorized to performt and all entailment constraints can be satisfied. We
write V (t) to denote the set{u ∈ U : (t, u) ∈ V }.

Let us first consider the case wheret ∈ T is a minimal element (and hence can be the first task
executed in a workflow). In this case,I = ∅ andW|I = W.4 Then a request to executet may be
granted if(t, u) ∈ V . If the request were to be granted, thenI = {(t, u)}; a completion compliant
reference monitor must recalculateV for the workflowW|{(t, u)}. If V (t′) = ∅ for somet

′ ∈ T

then the workflow schema, and hence the workflow instance, cannot be satisfied. Hence, in order to
implement a completion compliant reference monitor, we simply run the algorithm in Figure 3 for the
workflow W|{(t, u)} beforegranting the request(t, i, u). If the request is granted, the next request
must be evaluated for the workflowW|{(t, u)}.

In the general case, letI be an instance ofW = (T, A, C) and letI ∪ {t} be an order ideal in
T. Then a request byu to executet in this instance ofW is granted by a completion compliant
reference monitor if there exists an execution schedule forW|I such thatu executest and there exists
an execution schedule forW|(I ∪ {(t, u)}). In other words, we simply run the algorithm in Figure 3
for the workflowW|(I ∪ {(t, u)}) beforegranting the request(t, i, u). If the request is granted, the
next request must be evaluated for the workflowW|(I ∪ {t, u}).

In summary, a completion compliant reference monitor must calculateV before any instance of the
workflow is created. The reference monitor must also re-calculateV before every request (to check
that the request is completion compliant) and update the workflow after everysuccessful request
(to ensure that the fact that a particular user executed a particular task isconsidered in enforcing
constraints that apply to subsequent tasks).

The only comprehensive treatment of completion compliant workflow systems inthe literature [2]
includes an algorithm for “user planning”, which associates tasks with a user-role pair. The complexity
of this algorithm isO((NR · NU · Nact)

|T|), whereNR is the maximum number of roles associated
with any task in the workflow,NU is the maximum number of users associated with any role in the
workflow andNact is the maximum number of activations associated with any task in the workflow.
This algorithm is run before any workflow instance is created and, in the worst case, is also run
when a request is received and when a task has been successfully executed. Our algorithm has time
complexityO(|T |w+2 · |NU |

4). It has better time complexity than the user planner algorithm for
several reasons:

• firstly, we only consider entailment constraints, which makes the analysis of constraints uniform
and hence simpler;

4I = ∅ in the sense that there are no pairs(t, I(t)) defined.

9

• secondly, we only consider user-based constraints (having shown that role-based constraints
can be enforced in other ways [6]);

• thirdly, we do not compute every possible sequence of tasks and users,instead computing the
closure and determining if a workflow instance can complete (without explicitly calculating a
sequence of tasks and users).

We note that the performance of the user planner algorithm can be improvedby adopting certain
heuristics, but the worst case complexity is still exponential in the number of tasks in the workflow
specification.

5 Concluding remarks

The analysis of satisfiability in this paper suggests that there are distinct advantages to our approach to
authorization constraints in workflow systems. We believe our approach has the following advantages
over existing approaches:

• The ability to treat most, if not all, useful authorization constraints as specialcases of entailment
constraints means that the analysis of a set of authorization constraints fora workflow is greatly
simplified.

• The ability to express authorization information in terms of entailment constraints means that
satisfiability questions can be analyzed entirely in the context of the closure of a set of entail-
ment constraints.

• The fact that our model for constraints is independent of any underlying computational model
coupled with its simplicity means that it can be easily implemented in a variety of ways.

There are numerous opportunities for further research. Perhaps themost obvious of these is a
prototype implementation, perhaps using an off-the-shelf relational database management system, to
assess the usability and scalability of our approach.

In many workflow models, a task may be repeated several times within a workflow. When the
number of occurrences of the task is fixed in each instance of the workflow, this can be modelled
using cardinality constraints. However, in other models, the number of occurrences is allowed to vary.
This clearly makes the analysis of satisfiability and the design of a referencemonitor for such systems
more complex. However, we believe that extending our model to include an entailment constraints
of the form((t, t), ρ) may provide a suitable platform for investigating such workflow systems. The
investigation of this topic will be one of our immediate priorities in future research.

Another avenue for further work is to consider substituting “proxy users” for actual users in the
analysis of the workflow schema. The complexity of the algorithm is polynomial in the number of
users and it is likely that the number of tasks will be considerably smaller than the number of users.
A proxy user is simply identified with a subset of tasks (and hence is synonymous with a role). This
means that proxy users can also be used to derive a role hierarchy forthe workflow.

The number of proxy users is certainly bounded by2|T|, and we would expect the number of roles to
be bounded by the number of tasks. However, we also need to consider “compound roles” consisting
of tasks assigned to two or more roles. (For example, we might identify that{t1, t2} naturally form one
role and{t3, t4} form another. We need to allow for the fact that a user may be assigned to both roles
and so there must be a proxy user for the set{t1, t2, t3, t4}.) Hence, in general the number of proxy
users will actually be bounded by the number of antichains in the role hierarchy. We would expect

10

that the number of roles is less than|T|. Hence we can run the algorithm in Figure 3 using proxy users
rather than actual users, thereby reducing the time complexity of the algorithmto O(|T |W+w+2),
whereW denotes the width of the role hierarchy.

Acknowledgements We would like to thank Frank Ruskey for his helpful comments on generating
linear extensions.

References

[1] V. Atluri and W. Huang. An authorization model for workflows. InProceedings of the 4th
European Symposium on Research in Computer Security, pages 44–64, 1996.

[2] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization con-
straints in workflow management systems.ACM Transactions on Information and System Secu-
rity, 2(1):65–104, 1999.

[3] R.A. Botha and J.H.P. Eloff. Separation of duties for access controlenforcement in workflow
environments.IBM Systems Journal, 40(3):666–682, 2001.

[4] G. Brightwell and P. Winkler. Counting linear extensions.Order, 8:225–242, 1991.

[5] F. Casati, S. Castano, and M. Fugini. Managing workflow authorization constraints through
active database technology.Information Systems Frontiers, 3(3):319–338, 2001. Technical
Report HPL-2000-156, Hewlett Packard Laboratories.

[6] J. Crampton. On the satisfiability of authorization constraints in workflow systems. Techni-
cal Report RHUL–MA–2004–1, Department of Mathematics, Royal Holloway, University of
London, 2004.http://www.ma.rhul.ac.uk/techreports/.

[7] J. Crampton and G. Loizou. The completion of a poset in a lattice of antichains. International
Mathematical Journal, 1(3):223–238, 2001.

[8] R.P. Dilworth. A decomposition theorem for partially ordered sets.Annals of Mathematics,
51:161–6, 1950.

[9] M.R. Garey and D.S. Johnson.Computers and Intractability. W.H. Freeman and Company, San
Francisco, California, 1979.

[10] K. Knorr and H. Stormer. Modeling and analyzing separation of duties in workflow environ-
ments. InTrusted Information: The New Decade Challenge, IFIP TC11 Sixteenth Annual Work-
ing Conference on Information Security, pages 199–212, 2001.

[11] G. Pruesse and F. Ruskey. Generating linear extensions fast.SIAM Journal on Computing,
23(2):373–386, 1994.

[12] J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC – A workflow security model incorporating
controlled overriding of constraints.International Journal of Cooperative Information Systems,
12(4):455–486, 2003.

11

