
1 6/4/93

To appear in the Journal of Organizational Computing

Policy Conflict Analysis in Distributed System Management

6 April 1993

Jonathan D. Moffett
Department of Computer Science

University of York, UK1

Morris S. Sloman
Department of Computing

Imperial College of Science Technology and Medicine
University of London, UK

ABSTRACT

Distributed system management is concerned with the tasks needed to ensure that large
distributed systems can function in accordance with the objectives of their users. These
objectives are typically set out in the form of policies which are interpreted by the system
managers. There are benefits to be gained by providing automated support for human
managers, or actually automating routine management tasks. In order to do this, it is desirable
to have a model of policies as objects which can be interpreted by the system itself. The model
is summarised.

It is clear that there is the potential for conflicts between policies. These conflicts may be
resolved informally by human managers, but if an automated system is to recognise them and
resolve them appropriately it is necessary first of all to analyse the types of conflict which may
occur. We analyse the types of overlap which may occur between policies, and show that this
analysis corresponds to several familiar types of policy conflict. Some possible approaches to
the prevention and resolution of conflicts are suggested, and this work is put into the context of
other work on policies and related areas, including deontic logic.

Keywords

Management policy, policy conflicts, authority, conflict resolution, distributed system
management.

1 Address for correspondence:
Department of Computer Science, University of York, Heslington, York YO1 5DD, UK

 Email: jdm@minster.york.ac.uk

2 6/4/93

1 . INTRODUCTION

This paper describes a model of policies for use in distributed system management, and
analyses some possible forms of policy conflict in terms of the components of the model.

1 . 1 . Distributed System Management

Large distributed processing systems are becoming increasingly important for organisations to
manage their own activities and interact with others. They typically consist of multiple
interconnected networks and span the computer systems belonging to a number of different
organisations.

Active management, rather than fire-fighting when problems occur, is essential for systems of
this kind for several reasons. First, many organisations now depend upon distributed systems
in order to function, and they have developed from supportive to operational roles, so there has
to be a positive approach to ensuring that they function adequately. Second, in many cases the
system is not controlled from one central point, but has to be maintained by the cooperative
effort of several independent managers. Third, distributed systems are highly complex in
several dimensions: they have diverse components supplied by diverse manufacturers; they
may be distributed across wide geographical areas, across international boundaries, across
different regulatory authorities and across time-zones; they may contain hundreds of thousands
of resources and be used by thousands of users.

Distributed system management can be defined briefly as the task of maintaining the
service required of a system. In order to make this possible for heterogeneous systems, and to
cope with complexity, a set of standards for Open Systems Interconnection (OSI) management
[1] have been developed. They partition the overall management into areas of functional
responsibility. The main functional areas defined by OSI are: Configuration Management to
control installation of both the hardware and software components within a distributed system
or application; Performance Management, concerned with optimisation of performance to
improve the service provided to users in terms of better throughput, response times or
reliability, or to reduce operating costs; Fault Management, including detection, location and
recovery from faults; Security Management to maintain the security mechanisms of the system,
e.g. access control, encryption facilities and physical security; and Accounting, which records
information on usage of resources and enables suppliers of services to charge for the use of
those services. In addition, Monitoring of state, errors, performance and usage information is
needed in order to support all the above management functions, although it is not a standard
OSI Systems Management function.

The approach to distributed systems management, like that for any other management task, is
to take action as far as possible on the basis of general policies, not of particular cases. This
implies the generation of policies which apply to abstractly defined situations, and to groups of
components and users of the system rather than individual units. For example the same policy
may apply to all people in a department or to the set of files pertaining to an application. The
grouping of system objects into management domains, to which policies may refer, has
been described in [2].

1 . 2 . Paper Outline

The paper covers its subject matter as follows. Section 2 introduces the subject of policies and
the need to provide a structured model of policies in order to analyse conflicts. Section 3
describes our model of management action policies and their attributes. The fundamental
distinction between imperatival policies, which cause actions to be initiated, and authority
policies, which give them the power to happen, is made. Policies may themselves be objects
which are part of the system, and the operations which can be performed upon them are
introduced. The concept of the overlap of policies, which is crucial to the analysis of

3 6/4/93

relationships between them, is defined. Section 4 describes and analyses several kinds of
policy conflict in terms of the possible types of policy overlap. In section 5 some possible
approaches to the resolution of conflicts are introduced. Related work is described in
section 6. Finally, in section 7, conclusions are reached about the progress which has been
made and the research tasks which remain.

2 . POLICIES

2 . 1 . Management Policies

All formal organisations have policies, which are defined in the dictionary as 'the plans of an
organisation to meet its goals'. They are the driving force behind management. They have two
related purposes: to define the goals of the organisation; and to allocate the resources to achieve
the goals. The policies are used as a means of management, in a hierarchical fashion. A high-
level policy guides a manager, who may achieve goals by making lower-level policies which
apply to other managers lower in the hierarchy.

Most organisations issue Policy Statements, intended to guide their members in particular
circumstances. Policies may provide positive guidance about the goals of the organisation and
how they are to be achieved, or constraints limiting the way in which the goals are to be
achieved. Other policy statements allocate (give access authority to) the resources which are
needed to carry out the goals. If they allocate money they are typically called Budgets.

A common theme in distributed system management is the need for independent managers to be
able to negotiate, establish, query and enforce policies which apply to a defined general set of
situations.

An example of interaction between independent managers arises from the interconnection of
two network management domains such as a Public Network (PN) and a local Imperial College
(IC) network. This requires communication between the PN and IC network managers in
order to exchange management information and establish access authority. Let us suppose that
there are two relevant policies in force: PN policy gives the PN Manager the authority to carry
out all relevant management operations on the network; and IC policy requires the IC Network
Manager to report regularly to his users on the status of the academic subset of PN nodes. We
call these managers the subjects of the policies. In the absence of any other policies, then the
PN Manager has the authority to provide the regular status information, but no obligation to do
so, while the IC Network Manager has the obligation to obtain the information but no authority
to do so. The initial situation is shown in figure 1a.

4 6/4/93

PN Network

Academic
nodes

all ops Read
 status

Authority Obligation

PN
Manager

IC Network
Manager

PNNetwork

Academic
nodes

PNNetwork

Acad nodes

all
ops

Read
status

Authority &
Obligation

a) Initial Situation b) PN management operation c) IC management operation

Information

Read
status

all
ops

PN
Manager

IC Network
Manager

PN
Manager

IC Network
Manager

Generate
Status

for IC

status rprt

Figure 1 Policies for PN and IC Managers

An additional policy has to be established (created) by the PN Manager to meet IC’s
requirements. One approach is to create an imperatival policy which causes the PN Manager
himself to generate the status information and provide it to the IC Network Manager regularly,
as shown in figure 1b. An alternative approach is to create a policy which gives the IC
Network Manager the authority to perform the operations needed to obtain the regular status
information, as shown in figure 1c.

This example brings out one of the main points in the model. Policies which cause activities to
be initiated and policies giving authority to carry out activities can each exist independent of
each other. However, if only one of the two kinds of policies exists in relation to an action, the
action will not be performed. For management activities to be carried out, there needs to be a
manager who is the subject of both kinds of policy: a policy giving authority to carry out the
activity; and a policy causing him to do so.

2 . 2 . The Need to Model Policies

We view the activity of system management as implementing the policies of the organisation(s)
which run the system. There is a need for a means by which independent managers can query,
negotiate, set up and change policies. It can of course be done by the well-tried method of
telephone calls and the exchange of paper, but there are potential benefits in using the
distributed system itself to communicate and store policies, particularly with respect to
automated management. Thus it must be possible to represent and manipulate policies within a
computer system. It is important that the representation of policies and the protocols used to
negotiate them should be uniform across management applications. An important factor in
distributed system management is the potential benefit to be gained from computer-assisted
support for it or even, in appropriate cases, its complete automation.

With the automation of many aspects of management in distributed systems and computer
networks, there is the need to represent management policy within the computer system so that
it can be interpreted by automated managers in order to influence their activities.

'Policy' is a very wide term, and there can be little hope of capturing all kinds of policy in a
model. We distinguish here between two particular kinds of policy, while recognising that
there may be many others which are of neither kind. Management action policies are the
main kind which are of interest to distributed system management; briefly, they describe a
persistent, positive or negative, imperative or authority for a set of policy subjects to achieve

5 6/4/93

goals or actions on a set of target objects. Human subjects or targets can be represented
by software objects within the computer system.

However, other policies cannot easily be fitted into this framework. For example, the policy
that 'the same person must not be authorised both to enter a payment and sign the payment
cheque' cannot easily be modelled as a management action policy. It is most easily described
as a policy about management action policies (PAMAP policy), because two
management action policies are in question: one authorising X to input accounts for payment,
and the other authorising X to approve accounts for payment. The PAMAP policy is that the
two management action policies must not coexist. This example is considered further in
section 4.5.

We do not at present know how to model PAMAP policies usefully, and so where we need to
describe one we have to step 'outside the model'. This is not important at present because
there is still a great deal of work still to be done exploring ordinary management action policies
and their relationships. However, in the long term this is a significant limitation which will
need to be overcome.

2 . 3 . Policy Conflicts

A dictionary definition of conflict is 'opposition, difference, disagreement', and we will use
this as a general guide. There are several well-known phrases describing policy conflicts.
Conflict of interests describes a situation where a single person has tasks relating to two
different enterprises, and carrying out both together conscientiously may be impossible.
Conflict of duties is the dual situation; it describes a failure of the control principle of
separation of duties requiring at least two different people to be involved in carrying out
important transactions. Conflict of priorities occurs when the resources available are not
sufficient to meet the demands upon them. Other forms of conflict are more primitive, and are
typically (but not always!) avoided by human managers, for example: an action is
simultaneously authorised and forbidden; or, someone has a duty to carry out an action which
is forbidden.

Human managers recognise, avoid and resolve conflicts by a combination of formal and
intuitive rules and by informal negotiation. They do not always do it very well. Automated
systems are forced into a much more formal approach and there can, at worst, be a complete
failure of the system if conflicts are not dealt with correctly. This paper is an exploration of
how far it is possible to use our model of policies to analyse conflicts with a view to their
prevention, identification and resolution.

3 . A MANAGEMENT POLICY MODEL

3 . 1 . Characteristics of Management Action Policies

We define some characteristics of the policies which we will be discussing in order to give a
working definition which is more precise than simply ‘plans’. We start from the basis that
policies are intended to influence actions. However, policies are not concerned with instant
decisions to perform an action, instantly carried out. If a manager specifies that something is to
be done once only, and instantly, e.g. an order 'Shut the door!', he does not create a policy,
but simply causes the action to be carried out. Our definition of policy requires it to have
persistence, whether because it defines a single future action or repeated actions, or because it
relates to the continuing maintenance of a condition.

3 . 1 . 1 . Policy Modalities - Imperatival and Authority

As shown in the example above, we distinguish between policies which are intended as
imperatives to initiate actions, and policies which give or withhold authority for actions to take

6 6/4/93

place. Actions are operations which are performed by agents on target objects provided two
preconditions are satisfied: imperative and authority:
• Imperatival policies are those which cause actions to be initiated (or deterred). A

common form of imperative is an obligation which is undertaken by the agent, and many
of our examples refer to obligations as a form of imperative;

• Authority policies are those which cause actions to be given authority to be carried out.

Figure 2 illustrates our view of the world. Agents are objects which interpret and apply
imperatival policies of which they are the subjects. Whenever the conditions of these policies
apply, the agent initiates an action, directed to a target object . However, the action will only
operate if it is authorised; a reference monitor intercepts all initiated actions and only allows
them to proceed (authorises them) if the applicable authority policies permit this. The
authorised action operates upon the target object.

Initiated &
Authorised

Action

Policy
Subject
(Agent)

Reference
Monitor

Target
Object

Imperatival
Policies

Authority
Policies

Initiated
Action

Figure 2 The Roles of Imperatival and Authority Policies

3 . 1 . 2 . Policy Attributes

Policies, whether concerned with imperatives or with authority, have at least the following
attributes: modality; policy subjects; policy target objects; policy goals; and policy constraints.
We use a standard graphical convention for illustrating policies (omitting constraints), as
shown in figure 3. It will be seen that, for graphical convenience, the subjects and target
objects are shown in standard Venn diagram convention, while the set of goals is shown as a
list attached to the policy modality. We use the convention that subjects are represented by
squares and target objects by triangles.

Policy
Subjects

Policy
Target
Objects

Policy
Goals

GoalA
 ...
GoalZ

Possible
Modalities

+ve Authorisation (Permitting)

-ve Authorisation (Forbidding)

+ve Imperatival (Requiring)

-ve Imperatival (Deterring)

Modality

Figure 3 A Management Action Policy

7 6/4/93

Modality

A policy has one of the following modalities: positive authority (permitting), negative
authority (forbidding), positive imperatival (requiring or obliging), and negative
imperatival (deterring). We do not exclude the possibility of other useful policy modalities
being proposed, but these are adequate for the present analysis. As mentioned above, we
regard an obligation as a special form of imperative.

Policy Subjects and Target Objects

Policies are about organisational goals, which need someone to achieve them. All policies in
this model have a policy subjects attribute which defines a set of users. The policy subjects
are the people to whom the policy is directed, i.e. who have the imperative or authority to carry
out the policy goal within the limits defined by the policy constraints. Where a policy has been
automated as a computer system command we regard the user who will input the system
command as the policy subject. Note that many policies are by implication directed to all users,
possibly constrained by some predicate, and the value of the policy subjects attribute is then the
set of all users.

The policy target objects attribute defines the set of objects at which the policy is directed.

The sets of policy subjects and target objects may each be specified either by enumeration or by
means of a predicate which is to be satisfied. Individual policy subjects and target objects are
not normally specified, because a policy is typically expressed in terms of organisational
positions and domains of objects, not individuals. One approach to specifying organisational
positions and enumerating groups of objects is by using management domains; see [2].

It should be noted that, although the subjects of both imperatival and authority policies are
defined as sets, the typical set membership is likely to be different. The set of subjects of an
authority policy simply describes who has the power to perform actions, and no problems arise
if there is a large number of members of the set. On the other hand, the set of subjects of a
imperatival policy will typically consist of one member only, because usually actions are
performed by one person, and when the same goal is allocated to more than one, conflict may
result. It may be appropriate for the subject set to be defined as a position, e.g. Security
Administrator, with more than one member, but it will then be necessary for members of the
position to coordinate between themselves to avoid conflict. This is discussed further below in
section 4.6.

Policy Goals

The policy goals attributes can be expressed as a high-level goal which specifies what the
manager should achieve in abstract terms which do not identify how to achieve the goals.
Alternatively the goals can be refined to a set of more concrete actions which specify how to
achieve the required goal. Actions are specified in terms of an alphabet of operations which can
be performed on objects in the system, and so are amenable to automated interpretation.

An example of a high level goal is 'Department Ds' managers must protect department D's files
from loss due to fire or media failure'. This can be refined into the following set of actions:
i) The system is to run a backup program to archive files on Department D's file server to

cartridge tape every night at 22.00;
ii) The duty operator is to take the cartridge tape to off-site safe storage every morning at

08.00.

A high-level goal can be refined into many alternative sets of actions. The process of refining
a goal to a set of actions is similar to refining a set of requirements into the detailed design of a
computer program.

8 6/4/93

Note that a high-level authorisation policy such as the 'computer manager has authority to order
computer equipment' will be refined into a set of lower level policies which authorise the
manager to perform specific operations on system objects, e.g.:

read budget;
read suppliers;
new order_transaction;
query payments_made.

There is no inherent ordering relationship between these permitted operations.

Policy Constraints

The Policy Constraints attribute of a policy object places constraints on its applicability. They
are predicates which may be expressed in terms of general system properties, such as extent or
duration, or some other condition. An example of constraints in authority policies expressed
by access rules is the limits on the terminal from which the operation may be performed, and/or
limits on date or time, for example 'Members of Payroll are permitted to Read Payroll Master
files, from terminals in the Payroll office, between 9 am and 5 pm, Monday to Friday'.

3 . 2 . Representing Management Action Policies as Objects

It is useful to view management action policies as objects on which operations can be
performed. For simplicity we assume the following minimal set of operations:
• Create a policy;
• Destroy a policy;
• Query a policy.

Authority may be required to perform operations on policy objects. If the computer system is
simply a documentation aid, no restrictions may be needed. On the other hand, if the policies
are actually used to influence system actions, as in the case of access control policies,
restrictions on operations are required. They are discussed in detail for authority policies in
[3].

The advantage of representing policies as explicit objects which are interpreted by managers is
that it is easier to determine what policies exist and to change them. If necessary, policies can
be made read-only to prevent change. However, many systems define policy implicitly by
coding it into the implementation of the system or the manager components. Even if it is
necessary to encode a policy into an implementation as the only practical means to implement
certain policies, there should still be a (high level) policy object to explicitly specify the policy
so that it does not get changed with a new release of the system without realising there has been
a change of policy.

3 . 3 . Overlapping Policies

Our model of management action policies represents both subjects and target objects as sets of
objects. The overlap relationship between sets of objects exists when their intersection is non-
empty, as shown in figure 4.

9 6/4/93

Figure 4 Overlapping Sets

Overlap is crucial to our discussion of policy conflicts as it is our contention that without some
kind of overlap between the objects in two policies there can be no conflict between them. We
analyse conflicts below using the kind of overlap as our first level of classification. There are
several possibilities for overlap between policies, corresponding to various combinations of
overlap between objects in the subject and target object sets of the policies:
• Double overlap - both the subjects and the target objects of the two policies overlap;
• Subjects overlap;
• Target objects overlap;
• Subjects - Targets overlap - the subjects of one policy and the target objects of

another policy overlap.

Overlap of some kind is of course the prerequisite for many kinds of relationship between
polices which do not involve conflict. Here are some examples in which the target objects
attributes of policies overlap but there is no conflict:
• Authority hierarchies. Many organisations have a well-defined authority hierarchy.

When a high level manager delegates authority to subordinate managers, this is usually a
partitioning of the target objects into subsets assigned to different managers. Obviously
the target object set, in the policy which gives authority to the higher level manager,
overlaps with the target object sets which have been delegated to the subordinate
managers. Conflict is avoided by an imperatival policy deterring the higher level manager
from exercising control over the delegated targets, except possibly in case of failure of a
subordinate manager.

• Imperatival policy hierarchies. When a high level imperatival policy is refined into
more concrete lower level policies or sets of actions (as described in section 3.1), there is
obviously overlap between the target objects of higher and lower level policies. This
does not lead to conflict as only the more concrete lower level policies will actually be
translated into action by managers.

• Responsibility. As pointed out by Kanger [4] there is a distinction between
responsibility for and responsibility to, when discussing a goal to achieved. We think
that it is likely to be useful to analyse the concept of responsibility into two separate
imperatival policies which both apply to the same set of target objects. The two policies
would have as their subjects, respectively, the manager who is responsible for achieving
the goal, and the manager to whom the first manager is responsible. This is the subject
of current research.

4 . MANAGEMENT ACTION POLICY CONFLICTS

Management action policy conflicts are not yet well understood, and we do not claim in this
paper to describe all possible kinds of conflict. However, the policy model has opened up the
possibility of systematic analysis of policy conflicts. This analysis is at an early stage, but a
first step has been taken by recognising that the overlap of objects – either or both of policy

10 6/4/93

subjects and target objects – between policies is a necessary condition for conflict. If there are
no objects at all in common between two policies, there is no possibility of conflict.

We classify conflicts as shown in figure 5. The major distinction is between conflict of
modalities and conflict of goals. Conflicts of modalities can be recognised without
reference to the meaning of the policy goal, whereas conflicts of goals depend upon the
semantics of the goal, or are application-dependent.

Conflict of
duties

(Double
overlap)

Conflict of
interests
(Subjects
overlap)

Self- management
(Subjects-Targets

overlap)

Multiple
managers

(Target Objects
overlap)

Policy Conflict

Conflict
of

priorities

Conflict of
Authority Goals

Positive-
negative
conflict

Conflict
between

imperative &
authority

Conflict of
Imperatival

Goals

Conflict of Modalities Conflict of Goals

Figure 5 Classification of Policy Conflicts

4 . 1 . Positive-Negative Conflict of Modalities

Direct positive-negative conflict is shown in figure 6. It requires a triple overlap of target
objects, subjects and goals. It occurs when a subject is both authorised and forbidden for the
same goal on an object, or both required and deterred: for example 'The Accounts Supervisor
is permitted to sign payment cheques' and also 'The Accounts Supervisor is forbidden to sign
payment cheques'. This conflict is very serious, as there is no means of deciding whether the
action is to be permitted (or initiated, depending on the modality); unless there is some means
of resolution this could lead to a deadlocked situation if the conflict were encountered in an
automated system. Conflicts of this kind in access control (authority) policies are discussed in
[5].

GoalA

Either Authority or
Imperative

X Y

Figure 6 Direct Positive-Negative Conflict of Policy Modalities

Note that this conflict can be detected without understanding the semantics of the particular
goal; we can immediately recognise that the following two statements are in conflict:
a) X is obliged (/authorised) to achieve GoalA on Y.

11 6/4/93

b) X is obliged not (/forbidden) to achieve GoalA on Y.

4 . 2 . Conflict between Imperatival and Authority Policies

Conflict between imperatival and authority policies is shown in figure 7. It also requires a
triple overlap of target objects, subjects and goals. It occurs when a subject is both required to
initiate and forbidden to carry out an action on an object: for example 'The Accounts
Supervisor is obliged to sign all payment cheques which have been approved by the
Accounting Manager' and also 'The Accounts Supervisor is forbidden to sign payment
cheques'. This conflict is less serious because the question of whether the action is to be
carried out is settled unambiguously; although it is initiated as a result of the imperatival policy,
it will be prevented when the reference monitor intercepts it, because of the negative authority
policy (see figure 2). However, it is at least strange if someone is simultaneously obliged and
forbidden to do an action. At best this is a temporary situation, e.g. reflecting a partially
completed organisational change. At worst the work of the organisation may be brought to a
halt.

GoalAX Y
-ve Authority - Forbidden

+ve Imperative - Obliged

Figure 7 Conflict between Imperatival and Negative Authority Policies

This conflict too can be detected without any application knowledge at all; we can immediately
recognise that the following two statements are in conflict:
a) X is obliged to carry out ActionA on Y.
b) X is forbidden to carry out ActionA on Y.

There is of course also the complementary situation, in which a subject is authorised to achieve
a goal on an object, but deterred from doing it. We do not regard this as a conflict at all,
because it is commonplace to give a manager powers but instruct him not to use them until
some future situation arises. However, it is not in general a good thing for subjects to have
unnecessary powers, and it is therefore good management practice to detect this situation as
part of the management monitoring activity.

4 . 3 . Conflict of Priorities for Resources

The situation of conflicting requirements for a limited or single resource is familiar wherever
concurrent access may be attempted, e.g. in database systems. This is a conflict (or
contention) between actions, not policies. There is also a familiar situation of competition
within an organisation for resource budgets, which may be viewed as a particular kind of
authority policy. However, we are not attempting to model contention or competition in this
paper.

There is one area of conflict for resources where the policy model may be able to help,
although our analysis is at an early stage. Commodity resources are resources which have
a quantity associated with them, rather than being atomic, so that they can be partially used.
Examples are money, time, and memory or disc space. Typical operations that can be

12 6/4/93

performed upon them are use and replenish, parameterised by a quantity. So if a particular
money resource has a value of £400 and the operation use(300) is performed on it, its value
afterwards will be £100.

Casual reading of a number of organisations' policy statements suggests that many of them are
intended to initiate the spending of money or use of other resources. Clearly when two or
more policies between them require the use of more resource than is available, there is a
conflict for resources. This is shown by two imperatival policies whose goals are each
use and whose target object is the same money resource. This is shown in figure 8. Further
progress on this area of conflict requires a better understanding of how to represent commodity
resources in computer systems. Varley [6] provides some discussion of them.

Use

X

Y

Figure 8 Conflict for Resources

4 . 4 . Conflict of Duties

When two positive authority policies are in the double overlap relationship, in which both the
subjects and the target objects of the two policies overlap, there is the possibility that a subject
can perform two operations, which are defined by the application as conflicting, upon an
object. This is described as a conflict of duties, more familiarly known as a failure of the
control principle of separation of duties described by Clark & Wilson [7]. See figure 9a
for the general case; figure 9b illustrates a special case, perhaps more common, in which the
two conflicting operations occur in a single authority policy. An example of the principle is
'The same person must not be allowed both to enter a payment and sign the payment cheque' .
This is a PAMAP policy, which would be violated by two such policies as ‘The Accounts
Supervisor is authorised to enter payment information’ and ‘The Accounts Supervisor is
authorised to sign payment cheques’, unless further restrictions are applied.

Application knowledge is required to tell whether two goals can give rise to a conflict of duties.
If conflicts of this kind are to be recognised in a system, it is necessary to set up a table of pairs
of goals which are declared to be in conflict.

Enter
X

Sign
Enter

X Sign

a) Conflict of Duties between two Policies b) Conflict of Duties within a Policy

Figure 9 Potential Conflict of Duties

13 6/4/93

A conflict of duties arises if both subjects and targets of two policies overlap (treating the two
goals of figure 9b as two separate policies). The absence of subject overlap is a sufficient
condition to enforce separation of duties, and Clark and Wilson discuss this in more detail.
Brewer, Nash & Poland [8, 9] discuss how the condition may safely be relaxed further; they
would characterise the absence of subject overlap as a static separation of duties, and they
describe methods of dynamic separation of duties which are more flexible in operation.

4 . 5 . Conflict of Interests

When the subjects of two authority policies overlap, this implies that the same subject can
perform management tasks on two different sets of targets. See figure 10. In some
application-defined circumstances there is a conflict, known as a conflict of interests. The
best example of this is when a merchant bank is acting as adviser to two different
organisations, e.g. on a takeover bid for one client while advising other clients on investment
decisions which would be influenced by knowledge of the takeover. There is a public policy
(PAMAP) forbidding the use of this knowledge, and declaring the situation to be one of
conflict.

Takeover
Advice

Merchant
Bank

Investment
Advice

ClientA

ClientB

Figure 10 Potential Conflict of Interests

4 . 6 . Multiple Managers

When the target objects of two policies, of either mode, overlap, there is a potential conflict
arising from multiple managers of a single object, when the goals of the policies are
semantically incompatible. For example, if the 'Maintain' operation on a computer entails
taking it out of service, and the 'Schedule' operation requires it to be in service, any two
policies which oblige subjects to do both simultaneously are in direct conflict. See figure 11.

Y

Maintain

Schedule

Figure 11 Multiple Managers

There is also a potential conflict arising from multiple managers having authority over the same
object, but this is often tolerated. In some cases multiple managers of an object are forbidden

14 6/4/93

on the grounds of potential conflict, e.g. generally each worker has one line manager. In other
cases it is positively encouraged, e.g. there are normally at least two people with security
administrator authority for a computer system, to cover sickness and holiday absences.

The conflicts which arise from multiple managers being authorised to operate upon a single
target object are often controlled by ensuring that there is no simultaneous conflict of
obligations. The way in which Security Administrators cooperate is by coordinating their
obligations; the backup Security Administrator normally has no obligation to use his authority,
and will refer requests for action to the primary Security Administrator. However, when the
primary is unavailable, the backup's imperatival policy becomes activated and gives him the
obligation to take action. When this sort of coordination is carried out between humans, it may
be informal and even unformulated, but when the managers are automated it is necessary to
formalise the way in which the obligations are controlled, by ensuring that the relevant
imperatival policy only applies to one subject at a time.

Another source of multiple management is mentioned in [2]. If the same real-world object,
e.g. a computer, is represented by two different software objects, e.g. in scheduling and
maintenance applications, then there can be interference between the two applications which
cannot be dealt with by the system. For example, if the maintenance system has caused the
computer to go into a disabled state, there is no possibility for it to be scheduled. This kind of
conflict may be serious, because it is undetectable and unresolvable within the computer
system. It can only be dealt with at the design stage, by ensuring that multiple representations
of real-world objects are avoided.

4 . 7 . Self-Management

The final situation to be mentioned is when the subjects of one policy overlap with the target
objects of another policy. We do not know of any interesting conflicts which arise from this
kind of overlap when the two policies are different, but when this applies within a single
authority policy there occurs the possibility of self-management. The situation is of a
manager managing himself. See figure 12. This is again a potential conflict which is
application-dependent; it may be acceptable for an automated manager to configure itself, but
not for a human manager to sign his own expenses.

Approve
expenses

ManagerA

Figure 12 Self-Management

5 . RESOLUTION OF CONFLICTS

As observed above, the degree of importance to the resolution of conflicts varies widely. At
one end of the scale, it is essential that direct positive-negative modality conflicts should be
prevented or that a method of immediate resolution is available. At the other end, many
conflicts of duties are tolerated indefinitely.

There are several different levels at which conflicts can be prevented or resolved:

15 6/4/93

• At the highest level, the language used for system description may be designed to prevent
an unresolved conflict arising at all, e.g. our approach to prevention of authority conflicts
in this section.

• Conflicts may be detected off-line by a compiler or some other pre-processor. Type
checkers (now) and automatic proof systems (when they exist) detect inconsistencies in
specifications and programs. Potential conflicts of interest may be detected by
application-specific tools which are aware of conflicting goals. The (human) developer
can then resolve these conflicts off-line.

• Potential conflicts may be detected on-line in advance, and prevented. For instance, one
form of conflict of duties could be prevented by restricting the domain of subjects of an
authority policy to a single member at any moment.

• Actual conflicting actions may be detected at the time that they occur. Another way of
dealing with conflict of duties could be by detecting that an action is being performed
which reverses an action carried out by another subject. It would be an application-
specific decision whether to prevent the action or simply to raise a warning to allow the
(human) user to resolve the problem.

We discuss two specific approaches to conflict resolution.

5 . 1 . Resolving Positive-Negative Authority Conflicts

Direct positive-negative conflicts must be prevented or resolved. For example, authority
conflicts are prevented in [10] by means of a two-level priority scheme. The default, low
priority, authority for any action is negative, so that in the absence of explicit positive authority
no action is permitted. Explicit authority policies always express positive authority, with high
priority. They cannot conflict with each other, as there is no conflict involved in authorising an
action twice over. They always have precedence over the default negative authority, so the
'conflict' between the default and explicit policies is always resolved.

Mandatory and Discretionary Security, are two forms of security defined by the Department of
Defense (USA) [11]. Mandatory Security is always expressed as a negative authority policy,
and Discretionary Security may be expressed by a positive authority policy. When they
conflict, there is a PAMAP policy (see section 2.2) that the negative authority of the Mandatory
Security policy has higher priority and overrides the positive authority of the Discretionary
Security policy. Implicitly, a three-level priority scheme is used to ensure conflict-free policies
in this situation: low priority negative default policy; medium priority positive discretionary
authority policies; and high priority negative mandatory authority policies.

5 . 2 . Resolving Authority Conflicts by Imperatival Policies

As discussed in section 4.6, on multiple managers, an authority conflict can in some
circumstances be dealt with by ensuring that the associated imperatival policies are coordinated.
Potentially conflicting actions between two authorisation policies may be prevented by ensuring
that the respective subjects are not simultaneously obliged to perform them . For example, the
maintenance manager may be authorised to disable a computer and the scheduler to schedule it.
If the first occurs it will be impossible for the second to be carried out. The conflict can be
resolved by ensuring that imperatival policies for the maintenance manager and the scheduler
are not in force simultaneously.

It depends entirely upon the application whether this method of conflict resolution is
satisfactory. In the case of multiple managers, e.g. two people acting in the security
administrator role, it is a commonly adopted technique of resolution. In other cases it is
impossible to be sure that a subject is deterred. In relation to conflict of interests and human
agents, it is well known that negative imperatival policies have frequently failed to prevent
actions in breach of them; policies which remove the authority, not simply the imperative, may
be necessary.

16 6/4/93

6 . DISCUSSION AND RELATED WORK

6 . 1 . Human or Automated Managers?

In the above discussions we have not distinguished between human and automated managers.
We assume that automated managers are 'well behaved' and always perform the goals specified
by imperatival policies, whereas human managers always have freedom of choice and may
refuse to carry out an obligation for whatever reason. We have not attempted to model this
freedom of choice and instead assume 'good behaviour' of both automated and human
managers.

We assume humans are represented within the computer system by a persistent 'user
representation' object for which policies can be specified. When a person logs into the system,
an active object (software process) is created to interface to the person's workstation, and this
object 'inherits' all policies specified for the user representation object. Initiation of an action
can be represented by the human typing in a command, which will only be performed if the
human subject has authority for it.

We have not yet attempted to make any formal analysis of the implications of the difference
between human and automated managers, nor are aware of any publications doing so.
However, a more detailed analysis than this will need to explore the distinction.

6 . 2 . Sociological Approaches

The heart of our model is the categorisation of policies into imperatival and authority policies.
We have not seen this distinction made elsewhere in relation to the explicit discussion of
policies outside computer systems, in a sociological context. This may be because it is only in
automated systems that it is possible to force such a simple dichotomy onto a naturally
complicated world. There are approximately eight definitions of 'policy' in [12], with varying
mixtures of flavour of imperative and authority. Most are biased towards imperatives, not all
of which could be described as 'obligations'. Only one clearly emphasises authority. This
book discusses policy conflicts entirely from the point of view of power struggles between
opposing parties (often political parties) attempting to impose or frustrate the imposition of
policies.

Star [13] uses a sociological approach to the subject. The concept of due process is used –
the incorporation of differing viewpoints for decision-making in a fair and flexible manner.
Sociological analysis of organisational problem solving in scientific communities yields the
concept of boundary objects which are put forward as being a sufficiently plastic data
structure for adopting differing viewpoints while maintaining continuity of identity. Clearly
boundary objects have some similarity to the domains which we use for grouping objects to
which policies refer, but there is not yet any evidence of how well they can be formalised.

6 . 3 . Computer-Related Work

Bruggeman [14] discusses rights in an object-oriented environment, and analyses the conflicts
which may arise when two elementary rights have the same object but different permission tags
and the same priority. His 'basic conflict' corresponds to our positive-negative conflict of
modalities, and he also notes the existence of 'latent conflicts', where the basic conflict has no
immediate effect because of another right with a higher priority.

Wand & Woo [15] attempt to analyse conflict by interpreting it to mean a situation where it is
impossible to resolve which of two possible stable states is to be chosen. This seems possibly
suitable for the discussion of conflicts where two parties are putting forward different points of
view and cannot decide between them, e.g. positive-negative conflicts. However, other
conflicts are less suited to this approach.

17 6/4/93

Michael et al [16] address the problem of introducing precision into natural language security
policies by treating them as a set of logical axioms and attempting to derive theorems from
them. Policy conflicts are then represented by inconsistencies between the axioms. Many of
the inconsistencies between the policies in a case study derived from the assumptions about
real-world knowledge which are embedded in natural language. The conflicts were not
formally categorised. The use of a theorem prover, similar in principle to the use of Prolog,
appears a useful approach to the identification of possible conflicts in a large system.

An area which is related to policy conflicts, though not referring to it directly, is the use of
contracts as a model for cooperation in distributed problem-solving. Smith & Davis [17]
achieved task-sharing by using contracts, explicit agreements between nodes that generate a
task (the manager) and nodes willing to execute the task (the contractor). The approach in
ISTAR [18], an Integrated Project Support Environment, is to use contracts as the model for
activities in the software development process. Each activity is conducted by a ‘contractor’
(e.g. a programmer), for a ‘client’ (e.g. a manager). It has precisely defined deliverables and
acceptance criteria, and other contractual conditions.

6 . 4 . Deontic Logic

The work which is closest in spirit to ours is in deontic logics, the logics of normative
systems. These logics have operators which denote obligation and permission, either of
states or actions. These operators correspond roughly to our own use of similar terms.

There are, however, differences of emphasis which have led us deliberately to retain different
terminology. At a philosophical level, some people follow Kant's belief that 'ought' implies
'can' more or less strongly. Many flavours of deontic logic actually have the axiom that
obligation implies permission, or even define them interchangeably, e.g. permission for an
action means being not obliged to refrain from the action. By contrast, we wish to couple
imperatives and authority rather loosely. It is obviously of interest when there is a imperatival
policy for an unauthorised goal, but it is a common situation in human organisations for the
goals to be set up before the resources to achieve them have been marshalled, e.g. when a
company prospectus is issued.

Some more recent work overcomes these limitations. Wieringa et al [19] define obligation and
permission independently; in their logic permission implies possibility, but does not imply
obligation. Alchourron [20] also defines obligation and permission independently; the
possibility of obligation without permission is explicitly discussed, and characterised as
'inconsistent norming'. One could describe the equivalent situation for us as 'inconsistent
policy-making'. Hage [21] deals with consistency of rules, which is closely related.

One issue which we are aware of, but have not resolved, is the logical status of policies.
Alchourron makes the distinction between the logic of normative propositions and the logic of
the norms themselves. As observed by Wieringa et al [22] there are two ways of interpreting
‘It is forbidden to park here’. It may be the observation that a rule exists or the promulgation
of the rule itself. One is a proposition with a truth value, while the other is a norm with the
effect of a command. If we are to attempt to formulate a logic of policies – a task for the future
– should it be a logic of propositions, of norms, or of both?

It is our intuition that the path of deontic logic is the correct one to follow if we wish to set up a
theory of policies on a sound basis, but we cannot claim to have made much progress yet.

7 . CONCLUSIONS

This paper has given an outline of our approach to the formalisation of management policies
and then used this formalisation as a framework for the analysis of conflicts between policies.
The different ways in which policy overlap can occur have been found to correspond closely to
the informal intuitive classification of policies.

18 6/4/93

In the long run, automation of the detection and resolution of policy conflicts will be essential
for effective automated distributed system management; if it were necessary to invoke human
intervention for every potential or actual conflict, much of the benefit of automation would be
lost. However, progress needs to be made on at least three fronts before this idea can be a
reality.

First, a detailed knowledge of the application functions of distributed system management is
needed. We have presented our examples in this paper on the basis of what is intuitive and
familiar. Only when we know what actual conflicts arise can we be sure of the areas which
need most attention.

Second, progress needs to be made on the generic formalisation of policies. It must be formal,
because then it will be possible to treat it rationally, whether by creating simulation models or
by reasoning in a formal logic. It must also be generic, because all kinds of policy have to fit
into a compatible framework if conflicts between them are to be discussed.

Third, practical implementations of the theoretical model must be created and developed. Work
has started on this in projects such as Domino [23] but there is a long way to go before it yields
its benefits.

ACKNOWLEDGEMENTS

We acknowledge the contribution of colleagues in the Domino project in stimulating and
criticising the ideas of this paper. Also, comments by John McDermid, Bret Michael and
Philip Morris on earlier drafts have resulted in a number of improvements. We are grateful for
the helpful suggestions of the anonymous reviewers. This work was carried out with the
support of the UK DTI/SERC (Grant No. GR/F 35197).

REFERENCES

[1] Klerer, S.M., The OSI Management Architecture: an Overview. IEEE Network, 1988,
vol. 2(2), pp. 20-29.

[2] Sloman, M.S. and J.D. Moffett, "Domain Management for Distributed Systems," in
Integrated Network Management I, B. Meandzija and J. Westcott, Eds., 1989, North
Holland, pp. 505-516.

[3] Moffett, J.D. and M.S. Sloman, "Delegation of Authority," in Integrated Network
Management II, I. Krishnan and W. Zimmer, Eds., 1991, North Holland, pp. 595-606.

[4] Kanger, S., Law and Logic,Theoria, 1972, vol. 38, pp. 105-132.
[5] Heydon, A. and e. al, Miro: Visual Specification of Security. IEEE Transactions on

Software Engineering, 1990, vol. 16(10), pp. 1185-1197.
[6] Varley, B., "User Administration and Accounting," in Network and Distributed System

Management, M.S. Sloman and K. Kappel, Eds., 1993, Addison Wesley.
[7] Clark, D.C. and D.R. Wilson. "A Comparison of Commercial and Military Computer

Security Policies," in Proc. IEEE Symposium on Security and Privacy. 1987.
[8] Brewer, D.F.C. and M.J. Nash. "The Chinese Wall Security Policy," in Proc. IEEE

Symposium on Security and Privacy. 1989, IEEE Computer Society Press.
[9] Nash, M.J. and K.R. Poland. "Some Conundrums Concerning Separation of Duty," in

Proc. IEEE Symposium on Security and Privacy. 1990, IEEE Computer Society Press.
[10] Moffett, J.D., M.S. Sloman, and K.P. Twidle, Specifying Discretionary Access Control

Policy for Distributed Systems. Computer Communications, 1990, vol. 13(9), pp. 571-
580.

[11] Department of Defense (USA), Department of Defense Trusted Computer System
Evaluation Criteria., Rep. DOD 5200.78 - STD, 1985.

19 6/4/93

[12] Hogwood, B. and L. Gunn, Policy Analysis for the Real World. 1990, Oxford
University Press.

[13] Star, S.L., "The Structure of Ill-Structured Solutions: Boundary Objects and
Heterogeneous Distributed Problem Solving," in Distributed Artificial Intelligence 2, M.
Huhns & Casser L., Eds. 1989, London: Pitman, pp. 37- 54.

[14] Bruggemann, H.H. "Rights in an Object-Oriented Environment," in Proc. IFIP WG 11.3
Fifth Working Conference on Database Security. 1991, Sheperdstown, WV.

[15] Wand, Y. and C. Woo, A Formal Model for Analysing Organizational Computing
Concepts. 1992, Faculty of Commerce and Business Administration, University of
British Columbia, Vancouver, Canada.

[16] Michael, J.B., et al. "On the Axiomatization of Security Policy," in Proc. IFIP WG 11.3
Sixth Working Conference on Database Security, 1992, Vancouver, Canada.

[17] Smith, R.G. and R. Davis, Frameworks for Cooperation in Distributed Problem,
Solving. IEEE Transactions on Systems, Man and Cybernetics, 1981, vol. SMC-11(1),
pp. 61-70.

[18] Dowson, M., ISTAR - An Integrated Project Support Environment. J SIGPLAN
Notices, 1987, vol. 22(1), pp. 27 - 33.

[19] Wieringa, R., et al., The Inheritance of Dynamic and Deontic Integrity Constraints.
Annals of Mathematics and Artificial Intelligence, 1991, vol. 3, pp. 393-428.

[20] Alchourron, C.E. "Philosophical Foundations of Deontic Logic and its Practical
Applications in Computational Contexts," in Proc. First International Workshop on
Deontic Logic in Computer Science (DEON'91), 1991, Amsterdam, The Netherlands:
Free University of Amsterdam.

[21] Hage, J. "Consistency of Rules," in Proc. First International Workshop on Deontic
Logic in Computer Science (DEON'91), 1991, Amsterdam, The Netherlands: Free
University of Amsterdam.

[22] Wieringa, R., J.-J. Meyer, and H. Weigand, "Specifying Dynamic and Deontic Integrity
Constraints," in Data and Knowledge Engineering 4, 1989, North Holland, pp. 157-189.

[23] Sloman, M.S., J.D. Moffett, and K.P. Twidle, Domino Domains and Policies: An
Introduction to the Project Results, 1992, Dept of Computing, Imperial College,
University of London.

