Access RIGHTS ADMINISTRATION

IN
ROLE-BASED SECURITY SYSTEMS !
Matunda Nyanchama & Sylvia Osborn
The Department of Computer Science
The University of Western Ontario
London Ontario N6A 5B7 Canada
FAX: (519) 661-3515
email:{matunda,sylvia}@csd.uwo.ca

Abstract

This paper examines the concept of role-based protection and, in particular, role
organization. From basic role relationships, a model for role organization is developed.
The role graph model, its operator semantics based on graph theory and algorithms for
role administration are proposed. The role graph model, in our view, presents a very
generalized form of role organization for access rights administration. It is shown how
the model simulates other organizational structures such as hierarchies [TDH92] and
privilege graphs [Bal90].

Keywords: Roles, role-based protection, access control, privilege graph, least privilege,
Role Graph.

1 Introduction

Role-based protection is a flexible means of administering large numbers of system privileges
especially for large databases. A privilege is a unit of access to system information. A role
is a named collection of such privileges [Bal90, KM92, NO93b]. User authorization to a role
grants the user access to the privileges defined in the role.

The advantage of role-based protection is that it eases the administration of privileges
because of the flexibility with which roles may be configured and reconfigured [TDH92,
NO93b]. System security is served further when the role configuration process is based on
the principle of least privilege in which a role is equipped only with sufficient privileges to
facilitate the intended duty requirements [Tho91].

In an organization with a large number of diverse duty requirements, the number of
roles can proliferate as new roles are defined to meet specific duty requirements. Some roles
can have overlapping functions (hence overlapping privileges) while others need not overlap.
The need to have some formal manner of tracking the distribution and administration of
privileges is important to ensure proper exercise of both responsibility and system security.
It is important to have a means of formally expressing role relationships — one which reflects
the manner of distribution of privileges in a system.

This paper examines what we consider basic relationships that can exist among roles
in an organization and their application in modeling role organization. Using these basic
relationships as the foundation, a model for role organization is proposed. It is possible for
the privilege sets of two roles to completely overlap (one is a subset of the other), partially
overlap (have a common subset) or have a common superset. These relationships, along
with the concepts of mazimum and minimum privilege sets form the basis of the role graph
model. To demonstrate the expressive power of this model, we illustrate how it simulates
organizational structures such as hierarchies [TDH92] and privilege graphs [Bal90].

!To Appear in Database Security VIII: Status & Prospects, August, 1994.

In the next section we discuss the concepts of privileges, roles and the advantages of
role-based protection. We formally define the term role, as used in this paper, and motivate
the need for formal role organization. In section 3 we discuss the basic relationships that
can exist among roles and introduce operators to model these relationships. We regard these
relationships as forming the basis of role organization modeling. Section 4 formally presents
the role graph model, and gives algorithms for role administration. Section 5 discusses
model simulation of other role organizational structures. Section 6 contains the summary
and conclusions.

2 Introduction to Roles

2.1 Basic Definitions

The idea of a role arises out of the need to provide duty functionality which is then autho-
rized as a single unit. A role can be seen as a job, office, set of actions of a role-holder,
a collection of responsibilities and functions or a collection of privileges pertaining to some
duty requirements [DM89, Bal90]. A role exists as an entity separate from the role holder or
role administrator. It should be equipped with sufficient functionality to enable an autho-
rized user to achieve the duty requirements associated with the role. Hence a clerical role
will be given sufficient access rights to enable an authorized user, or user group, to perform
clerical duties. Baldwin [Bal90] terms these Named Protection Domains (NPDs). Such
a role specification captures the responsibilities, rights and obligations associated with what
Dobson and McDermid [DM89] term a functional role.

The other important component of role definition is its structural [DM89] aspect which
captures a role’s relationship with other roles. For purposes of this paper, we shall use the
term role to refer to the functional aspect while the structural aspect of role relationships
will be captured by the structure defining their relationships—in our case a role graph model.

A role is defined in terms of privileges. A privilege, on the other hand, is defined in terms
of access modes and can be viewed as a unit of access rights administration.

Definition 1 Privilege: A privilege is a pair (x, m) where x refers to an object and m is a
non-empty set of access modes for x. O

The object referred to by x can be a protected data item, an object-oriented (O-0O) class
definition or extent, a complex object, a resource (e.g. printer), etc. x can be any name
or identifier which uniquely specifies the associated object. m, the set of access modes, is
composed of valid modes of access to x. Its specification and administration can be subjected
to a range of security policies. In systems with simple access modes such as reads, writes,
executes, etc. m, is a subset of these access modes. In complex systems, these access modes
can be composed of a series of or nested applications of reads, writes and executes. Where x is
an object in an O-O environment, m would be the execute mode of one or more methods. In
transactional systems, m would be a list of transactions that facilitate access to x. The exact
nature of x and m is a matter of the application environment and the associated security
policy [NO93a]. Since privileges are intended for security administration, the security policy
must specify how they are administered. In our case, the initialization and modification of a
privilege must be authorized.

Definition 2 Role: A role is a named set of privileges. It is a pair (rname, rpset) where
rname is the role name and rpset is the privilege set. m|

A role’s name rname uniquely identifies a role in a system. We use dot notation to
refer to a role’s name and privilege set. Thus for a given role r, r.rname and r.rpset refer

to the name of the role and its privilege set, respectively. Let PV denote the universal set
of privileges in a given system, and R the universal set of roles. We also define a function
U : R — PV, which enumerates the privileges of a given role, so that for every r € R, ¥(r) =

{pv1,---,pvn} = r.rpset.

2.2 Strengths of Role-Based Protection

Role-based protection offers flexibility in system privilege administration [TDH92, NO93b].
User access rights can be varied either by exzplicit authorization (or revocation of authoriza-
tion) of a user to a role or by indirectly varying the role privilege set. Further advantage
is gained if users are organized into groups such that authorizations are given to groups, as
opposed to individuals.

Given that system privileges can be very fine-grained, roles offer a means of managing
them incrementally. Considering the manner in which privileges can be assigned/revoked
to/from a given role, this method approaches a continuum in system privilege administration
[NO93b]. A related advantage is that role-based protection can be used to enforce the
principle of least privilege where a role is defined to have only the necessary functionality
required for the associated duties [Tho91].

This approach offers a simplification of the complexity of system privilege management.
With a suitable organizational framework capturing role relationships, it is possible to analyze
the implications of given authorizations. Moreover, such a formal framework lends itself to
the development of analytical tools. It is also possible that management tools for access
rights administration can be used in role management.

Given that role-based protection is designed with a given application in mind, this method
provides a chance for incorporation of application level security constraints and semantics
[Tho91]. An associated advantage is that roles allow for multidirectional information flow
policies [Tho91] unlike such models as Denning’s lattice model [Den76] and Bell and La-
Padula’s [BL75] multilevel model. As well, unlike these traditional models which specify
what information flows should not take place, role-based protection affirms which informa-
tion flows can take place [GMP92].

2.3 Roles & Access Rights Administration

Roles act as gateways to system information. The privilege set of a given role determines
what information is available via the role. One advantage of role-based protection mentioned
in the previous section is that access to system information is accomplished at two levels:
via explicit authorization to a role or via inclusion of some privilege in a role. We term
the former user-role authorization while the latter is termed role-privilege authorization (see
figure 1). A third form of authorization is role-role authorization [Bal90] in which one role is
authorized another’s privileges. We address each of these in turn.

In user-role authorization, a user/group is authorized access to system privileges avail-
able via the role. Such authorization must be specified in a role’s access control list. For
each role, such an access control list contains the user identifier for each user authorized to
the role.

Let UZD be the set of all user identifiers, and GZD the set of all group identifiers;
ID =UIDUGID.

Definition 3 Access Control List: A role access control list (racl) is of the form: [idy,-- - ,id,],
where id; € ID. O

Users/Groups Roles Resources

_
-

|

ole-Privilege

User-Role Role-Role

Authorization Authorization Authorization

Figure 1: Three Kinds of Authorizations

In a secure system all roles must have access control lists, i.e. VYr € R,dr.racl =
[---,%d;,---]. A role with an associated access control list is called a secure role.

Definition 4 Secure Role: A secure role is a named collection of privileges along with its
access control list. It is a triple (rname,rpset,racl), where rname is the role name, rpset is
its privilege set and racl is its access control list. O

Role-privilege authorization involves role configuration in which a privilege is added to
the role’s privilege set. Role-role authorization [Bal90] forms the third kind of authorization.
If a role A is authorized to access a role B, it means that all of B’s access rights are available
via role A. In other words, B’s privileges are a proper subset of the privileges of A. Role-role
authorization is an aspect of role structure.

Example 1 Suppose we have two roles: clerk and supervisor in which the supervisor
role has a role authorization to the clerk role. This means that the clerk’s access rights are
available to the supervisor. A user authorized to the supervisor role can perform whatever a

user authorized to the clerk role can do.?

We can view the privilege relationships between the
two roles as V(clerk) C V(supervisor). O
This paper examines role-role authorizations which define role relationships. These have
implications on role organization and access rights administration. Role-role authorizations
can be complex. To capture the role-relationships completely and be able to carry out an
analysis of the implications of privilege assignment and distribution in a system can be very
complex without some formal organizational structure. Complexity of analysis of system
privilege distribution is one short-coming of role-based protection [TDH92, NO93b].
Baldwin’s approach to access rights administration uses privilege graphs (PG) which
capture functionality, structure and authorizations. A PG (figure 2) is an acyclic graph with
three types of nodes: functionality, role and user/group. A path from a given user node

to a functionality node means that the user is authorized to execute the functionality. The

2Separation of duty [CW87], on the other hand, ensures that the supervisor does not perform both roles.

Users/Groups Roles Functionality

Accounts Accounts Clerk
Supervisor Clerk

Compile

Accounts

Make

Orders

Enter

Receipts Receipts
Supervisor Clerk

Receipts

Figure 2: Baldwin’s Privilege Graph

access rights available to such a user are all the privileges specified in roles on any such path.
Ting et.. al.’s [TDH92] approach utilizes hierarchical ordering of roles in which for any given
roles in a path, those lower in the hierarchy have lower functionality than those high in the
hierarchy. In general, the path captures a subsetting relationship between the roles such that
for a given directed edge (v;,v;), ¥(v;) C ¥(v;). Both of these structures have what we term
the acyclicity property.

Definition 5 Acyclicity Property: A role organization structure is said to have the acyclicity
property if in a graph of the role relationships, with the roles as nodes, we have a directed
edge (r;,7;) whenever ¥(r;) C V(r;) and the graph is acyclic. O

Property 1 Role Organization Structure Acyclicity: A role organization must preserve the
acyclicity property in order to offer differentiated access to system information via role-based
protection techniques. O

3 Modeling Role Organization

A role is a collection of privileges which facilitates the execution of some functionality for
an authorized user. Roles in a system can have different kinds of relationships among them
based on their associated functionalities and organizational constraints. Thus it is important
to develop some formal organizational framework which expresses desirable properties for an
enterprise whose security is being enforced and, in the process, captures the relationships
among roles. Such a framework will facilitate the analysis of privilege distribution and
sharing.

In this section, we discuss and model basic role relationships which form the basis of a
role organization framework. We start with relationships between two roles and introduce
the concepts of the minimum and maximum privilege sets in a role-based system and their
relationship with other roles. Finally, we combine these concepts to yield a framework for
role organization.

| \/Q /KZ\

lA R X Y

‘ .P . ‘
‘

Partial Privileges Common Privileges Augmented Privileges
(a) (b) (c)
Figure 3: Three Kinds of Basic Role Relationships

3.1 Basic Role Relationships

We identify three kinds of basic relationships: junior-senior, common “junior” and common
“senior”. The junior-senior relationship, expressed as junior—senior, captures the fact
that the senior role’s privileges include those of the junior one. A role is a common junior
of two other roles if it shares some privileges with both of these senior roles. A role which
encompasses all of the privileges of two junior roles is called a common senior to these roles.
Figure 3 shows these three possibilities with Venn diagrams over the associated privileges.
In all cases, there is privilege and functionality sharing between two roles.

1. Partial Privileges

With partial privilege sharing, privileges defined in one role are a complete subset of
privileges in another role. This implies shared functionality via the shared privileges.
For instance, the clerk and supervisor roles in example 1 share the functionality
associated with the clerk role, i.e. a user authorized to the supervisor role can
execute the functionalities associated with both roles (figure 3a).

We model such direct functionality and privilege sharing using the is-junior relation-
ship denoted by “—”. In our example, clerk—supervisor. In general, given two roles
r;,7; € R with r; — r;, we have the following interpretation:

r; and r; are “junior” (subservient) and “senior” (superior) roles, respectively.
Moreover, r;’s privileges and functionality are available to r;. Hence ¥(r;) C
U(r;). We say r;’s privileges are indirectly available to r;.

Definition 6 is-junior relationship (—): An is-junior relationship exists between two
roles r; and rj, denoted r; — r;, if and only if U(r;) C W(r;). O

The is-junior relationship can be seen as a role-role authorization in which the superior
role is authorized to the privileges of the junior role.

If we consider relative authority as a measure of the privileges associated with a role,
then the is-junior relationship can be seen as specifying which of the two roles has a

higher authority than the other. In our case the junior role exercises less authority
than the superior one. Moreover, the is-junior relationship can be seen as specifying
the flow of authority in which the senior role exercises more authority than the junior
one. Further, for this authority to be meaningful, this relationship must be acyclic; it
must preserve property 1.

2. Common Privileges

Another form of relationship between two roles is where there is privilege sharing in
which roles have a non-empty intersection of their privilege sets but with neither of
the sets being a subset nor a superset of the other. Such a relationship can be used to
express an overlap of responsibility (figure 3b).

If there exists a role defined whose privilege set is some or all of this intersection, then
we say such a role is a common-junior of the other two roles. We denote the common-
Junior relationship by “©”. In general, 7; © r; is not unique. Suppose we have roles A,
B and C related as C € A B. Suppose the privilege sets associated with A and B are
V(A)={1,2,3,4} and ¥(B) ={3,4,5,6,7}, respectively. ¥(C') must be a common subset
of both ¥(A) and ¥(B),ie. ¥(C)C (VY(A)NVY(B))={3,4}.

In general, given three roles r;,7;,7, € R and r, € 7; © r;, we have the following
interpretation:

both r; and r; are senior (superior) roles to ri. Moreover, ri,’s privileges and
functionality are indirectly available to both r; and r;. Hence ¥(ry) C ¥(r;)
and V(ry) C U(r;).

Definition 7 common-junior relationship (®): Given roles r; and r;, r; ® r; is all ry,
such that V(ry) C (¥(r;) N Y(r;)).]

3. Privilege Augmentation

Another important consideration is privilege augmentation. In analyzing privilege dis-
tribution it may be necessary to find a role that embodies the functionality and privi-
leges of two given roles. Such a role’s privileges will be a superset of both given roles
(figure 3c).

The relationship in such a case is termed common-senior and is denoted by “G”. In
general, r; © r; is not unique. Suppose we have roles X, Y and Z related as Z € X QY.
Let ¥(X)={1,2,3,4} and ¥(Y)={6,7,8,9}. For Z’s privileges to be a common superset
of those of X and Y, we must have (V(X)U ¥(Y)) C ¥(Z2), i.e. {1,2,3,4,6,7,89}
CVY(2).

Given three roles r;,7;,7, € R and 7, € r; & 7;, we have the following interpretation:

both r; and r; are junior (subservient) roles to . Moreover, both r;’s and
r;’s privileges and functionalities are indirectly available to r,. Hence ¥(r;) C

U(ry) and ¥(r;) C U(rg).

Definition 8 common-senior relationship (®): Given roles r; and r;, r; @& r; is all ry,
such that (V(r;) U ¥(r;)) C ¥(rg). O

The foregoing relationships can be extended to cater for more than two roles.

1. Partial Privilege Sharing

From the definition of the is-junior relationship, if (r; — r;) and (r; — ry) then it must
also be true that r; — 74 since (¥(r;) C W(r;)) A(V(r;) C ¥(rr)) = (¥(r;) C ¥(rg)).
This then captures the transitive property of the is-junior relationship. In general, if
we have a role relationship of the form: r; — 741 — -+ — 74, n > 0, it follows that
U(r;) C ¥(ri41) C -+ C ¥(7i4p)- This captures the monotonic increasing property of
the privilege function for roles related via the is-junior relationship.

Property 2 The privilege function ¥ increases monotonically with respect to the is-
junior (—) relationship.]

We denote 7, — 7j44 — -+ — 7ip, — 7 by r; =" 1; forn > 0 and 7; -t r; for n > 0.
This leads to the concept of a path:

Definition 9 Role Path: A role path, p, between two roles r; and r; is of the form
r; =™ r;. A trivial path exists between a role and itself. m|

Other properties of the is-junior relationship include reflezivity and antisymmetry.
Given roles r; and r;, we have r; — r; (reflexivity) since ¥(r;) C ¥(r;). As well,
((r; = ;) A(r; — r;)) = r; = rj. This follows from the observation that (r; — r;) =
U(r;) CV(r;) and (r; — r;) = ¥(r;) C ¥(r;). With ¥(r;) C ¥(r;) and ¥(r;) C ¥(r;)
and by the acyclicity property, it follows that ¥(r;) = ¥(r;), which implies r; = r;.
This is the basis of the following property:

Property 3 Role Privilege Set Uniqueness: A Role’s privilege set must be unique. O

2. Common Privileges

From the common-junior (®) relationship above, observe that the common subset of
two roles need not be an immediate junior role of both roles in question. The fol-
lowing lemma expresses the relationship between the is-junior and the common-junior
operators, — and (), respectively:

Lemma 1 Ifry € r; © rj, then 1, —F r; and 1y —7F ;. O
The common-junior operator (©) is commutative, associative and reflexive;i.e. r;0r; =
T, OT, i O(r;Org) =(r; ©r;)© 1k and r; © r; is defined and includes 7;.

3. Privilege Augmentation

As with the common-junior relationship, the common-senior relationship need not in-
volve immediate superiors of the role under consideration. The following lemma cap-
tures the relationship between the two operators — and ®:

Lemma 2 Ifrp € r; @ rj, then r; =% v and r; =71 r. O

The operation @ is commutative, associative and reflexive i.e. 7, & 7r; = 1, & 15,

i & (r;®&ry) = (ri & r;)dry and 7 & r; is defined and includes 7.

3.2 The Concepts of Minimum and Maximum Privilege Sets

It is possible that an organization provides a minimum set of privileges available to every
user. Such a basic privilege set, for instance, can be things like the ability /permission to log
onto a computer system, the privilege to get into certain areas of an organization’s premises,
etc. In general, this minimum privilege set represents the very minimum that any valid user
can be authorized to.

Since users are authorized to specific roles, it is possible to organize such a basic set
of privileges into a role such that they are available via explicit authorization or via role
relationships with other roles. We denote the role with the basic privilege set MinRole. In
general, depending on a particular organization, MinRole’s privilege set can be empty.

Minimum mandatory privilege set if defined
0 otherwise

¥(MinRole) = {

For all » € R, MinRole —* r holds.

Property 4 Minimum Privilege Property: MinRole is always defined. |
With the introduction of MinRole, there is always at least one common-junior for all
roles, namely MinRole.
As with MinRole, we envisage MaxRole, some system “chief executive” role, which
embodies the collection of all privileges in a given system. Theoretically, a user authorized

to MaxRole can execute any functionality using the associated privileges in whatever role
they are specified. Unlike ¥(MinRole) which can be empty, ¥(MaxRole) can never be empty
if the system is intended to accomplish anything at all.

¥(MaxRole) = U U(r)
r€R

For all r € R,r —TMaxRole holds.

Property 5 Maximum Privilege Property: MlaxRole is always defined. |
With the introduction of MaxRole, there is always at least one common-senior for two

roles, namely MaxRole.

The is-junior, common-junior and common-senior relationships introduced in the previ-
ous section capture all manner of relationships that can be used to associate two or more
roles when there is need for analysis of their interaction. MinRole and MaxRole express
the concepts of minimum mandatory and maximum privilege sets, respectively, in a system.
Combining these yields representations such as those in figure 4.

For the purposes of security and the need for dispersion of powers, MaxRole may not
be authorized to any one individual in an organization. In an ideal situation, MaxRole
conceptually corresponds with the role of a Chief Executive in an organization. It is unlikely
that an administrative or a security policy would advocate such singular exercise of powers.
Moreover, there is a very realistic risk that allowing exercise of privileges of MaxRole can
compromise the system. However, such problems need not arise if we make the exception
that no single user can exercise the privileges of MaxRole. This will make MaxRole a non-
executable role. Other policies may choose a collective execution of the role, e.g. by a number
of votes of authorized users. Whatever the case, authorization to MaxRole with be a matter
of a specific security policy. MaxRole, in our modeling, is useful for purposes of completeness.
It ensures that every two roles in the system have a common-senior just as MinRole ensures
that every two roles have a common-junior.

MaxRole

MaxRole
MaxRole / MaxRole
" A B
A I .
A

® MinRole MinRole
MinRole
MinRole

MaxRole

N
>

® MinRole

f) Ca

Figure 4: Different Forms of Role Organization

4 A Role Graph Model for Role Organization

The basic role relationships discussed in section 3 point to an acyclic role graph organization
for roles. In this section we develop the modeling further using graph theory. We present a
role graph model for role organization and develop algorithms for the management of roles
and their relationships.

4.1 The Model: Informally

To minimize the task of enumerating the privileges of each role, we organize them using
the concepts introduced in section 3 which incorporate acyclicity of the role graph structure
and the monotonicity of role privileges for any path. Such a structure, along with rules for
role ordering and determining the privileges associated with a role, facilitate a simple, yet
elegant, organization of roles to reflect the authority® attached to each role. Role ordering
and role inter-relationships, in turn, offer a means of distributing privileges among the roles.
The idea is that we explicitly assign a privilege at the lowest point in the role graph where it
is desirable. Since our formulation specifies that high order roles can execute the privileges
of the lower order ones with a connecting path, we can make the least number of explicit
privilege assignments that would facilitate the desired distribution.

From the ordering, we define authority paths that are linear (total) orders of roles accord-
ing to increasing authority, connected by the is-junior (—) relationship which can be seen
to be specifying the flow of authority. In essence, the ordering asserts the fact that higher
authority roles have access to more privileges than lower ordered ones in any given path.
The effective privileges associated with a role result from those privileges directly associated
with the role and those indirectly associated with it. The former are those privileges explic-
itly specified in the role while the latter are those privileges specified in lower order roles
connected by a path to the role.

4.2 The Role Graph Model: Formally

This section presents the formal organization of roles into a role graph RG = (R, —), as shown
in figure 5. The nodes of the graph correspond to the roles given, and include MlaxRole and

3Our use of this term will become clear as we advance.

10

Supervisor \

Ordinary Employee

Figure 5: Example of Role Graph

MinRole. R = {ry,rq,---,7,, MaxRole, MinRole}. The edges are defined by the is-junior
relationship. Note that by the definition of privileges for MaxRole and MinRole and the
definition of is-junior, there is an edge from MinRole to every r;, and an edge from every
r; to MaxRole. The common-junior and common-senior relationships, (® and @) still have
the same meaning as previously.

Note that if a system administrator is specifying roles, it is possible that the privileges are
specified in a highly redundant fashion. In other words, rather than specifying the minimum
set of direct privileges for a role, some indirect privileges might be given as being direct
privileges. The function ¥(r) returns the set of all direct and indirect privileges of a role,
which we also call the effective privileges. The version of the graph which we will present to
the role administrator should neither have redundant privilege specifications nor redundant
is-junior relationships (i.e. redundant graph edges), in order to highlight the true nature of
the role relationships. We will further explain this reduced form of the graph shortly.

Paths in the role graph not involving MaxRole and MinRole are of more interest to
us. Consequently, we shall use the following role graph path definition in the subsequent
sections.

Definition 10 Role Graph Path: A role graph path, p, is of the form r; — r;y; — --+ —
Titn — Tj,1 > 0 such that r; # MinRole A r; # MaxRole. O

The quadruple (R, —,®,®) which includes MaxRole and MinRole, specifies an au-
thority structure for roles. For any role graph path of the form r; — -+ — r,,,n > 1 we have

an authority relation of the form r; < --- < r,, with the authority embodied in the roles on
a path totally ordered. In general, given any two roles ry,r9 € R, r1 < rq, 79 < 71 Or they are
incomparable. Where there is a path (call it an authority flow path), the roles in the path
form a total order.

Definition 11 Path Role Set: The role set of a given path, denoted by I'(p), is the set of all
roles that compose the path. We say that a given role participates in a path if it belongs to
the path’s role set. m|

11

MaxRole

H {9, 10} {11 12} |
{5} F {6} {r.8y G
A {1} c {3 {4} D
MmRoIe

Figure 6: Role Graph with Privileges

Privilege Distribution Table
For Figure 6
Role Name | Direct (D) | Indirect (I) | Effective (DUI) ¥ |
A {1} {} {1}
B {2} {} {2}
C {3} {} {3}
D {4} {} {1}
E {5} {1,2} {1,2,5}
F {6} {3} {3,6}
G {7,8} {4} {4,7,8}
i {9,10} {1,2,5} {1,2,5,9,10}
T (11,12} {1,2,3,4,5,6,7,8} | {1,2,3,4,5,6,7,8,11,12}

Table 1: Table of Privileges

12

We extend the function ¥ to paths as follows: for a path p, ¥V(I'(p)) = U, ¢, ¥(r:).

T €EP
Definition 12 Path Independence: Let p; and p; be two paths in a role graph. We say p; is
independent of p; if ¥(I'(p;)) N ¥(I'(p;)) = ¥(MinRole). O

In other words, the two role sets are related only via MaxRole and MinRole. Such
independence can be exploited to prohibit privilege sharing by ensuring that the privilege
sets of two independent paths are disjoint.

Example 2 Consider figure 6 where we have distinct privileges numbered 1,---,12 with priv-
ileges 1,---,6 directly assigned to roles A,--- F and {7,8},{9,10},{11,12} assigned roles
G, H,I respectively. We have a role graph specification as follows: A — F,B — E.C —
F,D—G FE—{H,I},{F,G} — I,MaxRole = H & I, and MinRole = A ® B ® C ® D with
¥(MinRole) = 0.

From this we can compute the privileges of various roles and obtain the privileges distribution
as in table 1. Moreover, we have the following relationships relating to the &, %, — operators:

1. The common-junior operator, ©, defines a common subset of privileges for any two roles.

Consider £ € H ® I and note that V(H & 1) = V(F) = {1,2,5} = V(H)n V().

2. The common-senior operator, &, defines the union of privileges of two roles and as such
is a common superset for any two roles. Consider / € F'& G and note that ¥(F' & G) =
U(F)U¥(G) = {3,4,6,7,8} C ¥(I) = {3,4,6,7,8,11,12}.

3. The is-junior operator, —, defines a proper subset relationship between two roles, e.g.
E— H. Note that ¥(F) = {1,2,5} C {1,2,5,9,10}. This is true for all roles related via
the is-junior relationship.

4. Paths A — F — H and C' — F are independent paths since their roles sets {A,E,H} and

{C,F} are mutually exclusive and the two paths are related via only via MaxRole and
MinRole.

O

The role graph in figure 6 shows only direct (non-redundant) privileges for each node, and

has no redundant edges. Specifying a role’s direct privileges and its is-junior relationships
with other roles completely specify its effective privileges.

Definition 13 Direct Privileges: Let Direct(r) denote the direct privileges of a role; i.e.
Direct(r) C V(r) such that for all r; — r, ¥(r;) N Direct(r) = 0. O

For the purpose of the algorithms below, assume that for each role in a role graph, we keep
Direct(r) and is-junior relationships. By the definition of is-junior, the edge set in the role
graph will in fact be highly redundant. What we want to present to the role administrator,
and maintain, is the transitive reduction of the graph [AGU72]. The transitive reduction of
an acyclic graph is a graph in which there are no edges r; — r; whenever there is a path
r; —T r; in the graph. Inputs to and outputs of the algorithms assume well-formed graphs.

Definition 14 Role Graph Well-Formedness: A role graph is well-formed if it is a transitive
reduction and if the direct privilege set associated with each role r conforms to the definition
of Direct(r).]

By the original definition of the edge set (based in turn on the is-junior relationship which
depends on the effective privilege sets of nodes), a path r; =% r; exists in the well-formed
role graph whenever ¥(r;) C ¥(r;). The following terms will be useful in the algorithms to
be presented below:

13

Definition 15 Juniors(r) The set of Junior roles for a given role r is all r; such that r; —% r.
O

Definition 16 Seniors(r)The set of Senior roles for a given role r is all r; such that r —7 r;.
O

Constraint 1 Role Graph Privilege Set Invariant Constraint: The effective privilege set of
every role in a role graph remains invariant unless altered by the system security officer, SSO.
O
The SSO exercises privileges like any other system user by executing in an authorized
security administration role. This can be seen as the security information administration
role. However, care must be taken to ensure there is no conflict of interest. Hence no one
user, whether SSO or not, should be able to administer security information pertaining to
one’s access rights.

4.3 Role Graph Maintenance Algorithms

We are now ready to introduce some algorithms to assist a role administrator in specifying and
modifying a collection of roles. These will ultimately be incorporated in a role maintenance
tool.

Our goal is to have all the operations map a well-formed role graph to another well-formed
role graph. We assume that the administrator begins with a graph containing only MaxRole
and MinRole. Any direct privileges defined for MinRole can be specified at this time.

The role graph can be expanded at any point by adding new roles as need may arise
while retaining the role graph structure. This strategy offers a flexible manner of introducing
new privileges into the role graph. Such privileges can be incorporated into an existing role
graph by introduction of new roles or by increasing the privileges of existing ones. New roles
can be introduced by the addition of completely new roles, or by partitioning existing roles
either horizontally or vertically. We also consider role deletion. In all these cases, we can
have an increment or decrement in the overall privileges associated with paths in which the
affected role participates. Such privileges can remain invariant, be reduced or be increased
depending on the operation. Given the space constraints here, we address the cases where
(1) path privileges are introduced with the addition of a new role, (2) path privileges may
or may not remain invariant with the deletion of a role, (3) path privileges are partitioned
with the horizontal partition of a role and (4) privileges remain invariant with the vertical
partition of a role.

Consequently, after carrying out the operations on the graph, our procedures will confine
themselves with the immediate neighbourhood of the target role. In other words we look
for redundant arcs generated due to the operation in question. This involves the immediate
senior and immediate junior role sets of the roles affected by the operations.

4.3.1 Role Addition & Deletion

By role addition we mean the creation and incorporation of a totally new role into the role
graph. Such a role is defined (name and privilege set) before being integrated into the role
graph. While the integration process must preserve the role definition, it is important to
ensure that if there are privileges defined in the new role that exist in junior roles in the
target paths, they must be removed to take away the redundancy. To introduce such a role
requires the specification of the target paths and the position in the paths. This involves the
specification of the target superior and junior role(s) for the role to be added (see figure 7a).

14

Eliminate Redundant Arcs

Target Junior and Senior Insert Role

esecccccccccccccccccccccccscccnns,

.
..................................

Figure 7: Role Addition

The role to be inserted is added to the node set of the graph, and the appropriate edges
are created to indicate the immediate junior and superior roles. It is possible that a node
already exists with the same effective privilege set. Once this possibility has been eliminated,
redundant paths are removed from the resulting structure. Finally, privilege resolution is
done to remove redundant privileges from Direct of the new node, and privileges in nodes in
Seniors of the the new node made redundant by this insertion. Note that for a node r, the
set Seniors(r) can be enumerated by a depth-first search in the role graph starting at node
r [CLR90, Man89]. Similarly, the set Juniors(r) can be computed by a depth-first search of
the graph formed by reversing the edges in the role graph, again starting the search at node
r. The details of these operations will not be given here.

Algorithm 1 in figure 8 and also figure 7 illustrate the role addition process.

The flip side of role addition is role deletion which involves the elimination of a role from
the role graph. This process requires specifying the target role and short-circuiting it by
making the target’s immediate subservient role(s) the immediate subservient role(s) of the
target’s immediate superior(s). In doing so, the privileges associated with the deleted role can
either be eliminated or distributed. Privilege elimination involves overall privilege reduction
of the path associated with the role so deleted.

Retaining the privileges of the deleted role, on the other hand, requires a specification of
how these privileges will be distributed among the existing roles. It is reasonable to assume
that such role deletion would not affect the effective privilege sets of any superior roles of
the deleted role. Hence such privileges must be transferred to the immediate superiors. This
would ensure path privilege invariance. This case is illustrated pictorially in figure 9. See

the associated algorithm 2 of figure 10.

Example 3 Suppose our target role for deletion is role D in figure 9a with the constraint that
all existing paths must keep their privilege sets invariant. For this purpose we choose to shift the
privilege set of the target role to its superiors.

To achieve this, first transfer the privileges from role D to both F and G which are both
superior to D. This results in roles roles FX and GX which we make immediate superiors of
both A and B. The previous edges incident to role D, ie. A - D — F/A—- D — G,B —

15

Algorithm 1 Role_Addition(rg, target, s.target.set,j.target.set)

/* For the addition of a given role into a role graph */
Input: rg = (R, —) (the role graph), target role to be added (role name along with its proposed direct privilege set),
s.target.set (immediate superior set for the target), j.target.set (immediate junior set for the target),
Output: The role graph with target added and overall privileges of other roles left intact.
Var 7, Ty Ts: roles;

/* Must not violate acyclicity */

/* Role privilege sets must be unique */

/* Must not violate acyclicity */

/* Add target to system roles */

/* Add this inferred edge */

/* Add this inferred edge */

/* Remove any duplicate roles */

Begin
If A(rs —t T]) for any rs € s.target.set,rv; € j.target.set
Then abort
Else Begin
1. P(target):= (Urej,target.set‘l'(r))u Direct(target);
/* Compute the effective privileges of target role */
2. If ¥(r) = ¥(target) for any r € R
Then target := 7
3. If 3(target _t T]) for any r; € j.target.set
Then abort
Else Begin
a. R := R Utarget;
b. Forall rg € s.target.set do add the edge target — rg;
c. Forall Ty € j.target.set do add the edge L target;
d. If for any r € R, ¥(7) C ¥(target) and NOT(r -t target)
Then add the edge r — target;
e. If forany r € R, ¥(target) C ¥(r) and NOT(target —t T)
Then add the edge target — 7;
f. Rem_Red_Arcs(rg, j.target.set, s.target.set, target);
g. Red_Priv_Res(rg, j.target.set, target);
end;
4. Forallmry,r; €R if ¥(r;) = \Il(rj) then
Begin for all 7; — 7 do add the edge Ty =T
for all » — r; do add the edge r — Ty
Delete all edges r; — r and r — 7;;
Remove r;; end;
end;
end. /* Role_Addition */

Procedure Rem_Red_Arcs(var rg: role graph; j.target.set, s.target.set: role_set; target: role);
/* Removes redundant arcs in the immediate neighbourhood of target role */
Var rp, Ty Ts: roles;

Begin 1.

end;

Procedure Red_Priv_Res(var rg: role graph; j.target.set:
privilege; r :
1. For all r in Seniors(r) do

Var pv :
Begin

For all r
ifEI(T]‘ — T =

5 € j.target.set do
— target) then
Delete the edge r; — target

For all 75 € s.target.set do

if I(target — rp — - -

— r5) then
Delete the edge target — rg

role;

For all pv € Direct(target) do

if pv € Direct(r) then
Direct(r) := Direct(r) — pv;

2. For all r in j.target.set do
For all pv € ¥(7) do

if pv € Direct(target) then
Direct(target) := Direct(target) — pv;

/* Remove direct paths where there is another path */

/* delete the direct edge*/

/* delete the direct edge*/
/* Red_Red_Arcs */

role_set; target: role);

/* remove redundant privileges from senior roles. */

/* remove redundant privileges from Direct(target).

/* Red_Priv_Res */

Figure 8: Algorithm for Role Addition

16

i

b c

Figure 9: Role Deletion

D — F,and B — D — G are replaced by A — FX,A — GX,B — FX, and B — GX,
respectively.

The next move is to do away with redundant alternative paths (marked X in the figure 9b)
and remove them. We notice that paths A — C — FX and B — E — GX contain the set
of privileges of paths A — FX and B — GX, respectively. This results in a new role graph

structure as shown in figure 9c. |

Both role addition and deletion correspond to real life situations where in creating a new
portfolio, a new role is added while in eliminating some “office”, a role will be deleted. Role
deletion without privilege reduction entails elimination of some “office” in an organization
while retaining the total functionality. Privileges of the deleted role would be distributed to

other roles.

4.3.2 Role Partition

A role can be partitioned into two or more roles in our role graph. Essentially, the basic
partition operations are either vertical or horizontal, and can of course be combined. In both
cases it must be specified what the new roles and their corresponding privileges are. Where
the order of “seniority” is required, as in the case of vertical partition, it must be specified
as well.

In vertical role partition, a role is split into two or more roles and an ordering is
imposed on them with the is-junior relationship. In doing vertical partition, we must specify
the target role, the new roles to be created, their direct privileges and their ordering (ac-
cording to partial privilege criterion). For instance, a role X is not only partitioned into
roles Xy,---, X, but also, these roles must be ordered, e.g. X1 — --- — X, (see figure 11b
and algorithm 3 of figure 12). Privilege distribution among the new roles is constrained by
the privileges associated with the role being partitioned; there must not be an increment or

decrement of privileges, i.e.

Direct(X) = U Direct(X;)

i=1,m

Consequently, the privileges associated with the paths in which the role appears neither

17

Algorithm 2 Role_Deletion(rg, target, inv)

/* Deletes a specified role retaining or discarding its privileges depending on inv */
Input: rg = (R, —) (the role graph structure), target (the target role to be deleted),
inv Boolean indicating whether or not to retain the role’s privileges

Output: The role graph structure with target deleted

Var s.set, j.set: role set; T,Ty,Tst role;
Begin 1. s.

set := Superior_Set(target);
2. j.set := Junior_Set(target);
3. For all rg € s.set do
For all Ty € j.set do add r,
4. If inv then do
For all rg € s.
Direct(rs
5. For all rg € s.set do

For all Ty € j.set do

set do

If El(r] — 7 - -+ — rg) then delete r

6. R:= R — target;
end.

j TS

:= Direct(rs) U Direct(target);

— Ts;

J

/
/
/
/
/

/
/

Function Superior_Set(var rg: role graph; target: role): role_set;

Var Tempset: role_set; r: role;
Begin 1. Tempset := @;
2. For all r with target — r do
Tempset := Tempset U r;
3. Superior_Set := Tempset
end;

Function Junior_Set(var rg: role graph; target:

Var Tempset: role_set; r: role;
Begin 1. Tempset := @;
2. For all r with r — target do
Tempset := Tempset U r;
3. Junior_Set := Tempset
end;

Figure 10:

role): role_set;

/

/

*

*
*

*

*

*

*

*

*

Get the senior set */
Get the junior set */

Connect Junior and Senior Roles */

Transfer Privileges to superiors */

Remove all redundant arcs */

Take out target from system roles
Role_Deletion */

Superior_Set */

Junior_Set */

Algorithm for Role Deletion

18

Figure 11: Vertical & Horizontal Role Partition

decrease nor increase. In general, vertical partition leaves the privilege set associated all
paths unaffected; only the path length increases.

Further constraints include the requirement for distinct direct privilege sets for the newly
created roles, i.e. for any

Xi, X; € {X1,--+, Xy}, Direct(X;) [Direct(X;) = 0

Suppose we have a target role for partition (call it X) with a relationship {Jy,---,J,} — X —
{S1,--+,5,} which is partitioned vertically into roles {Xy,---, X,,} such that {Jy,---,J,} —
{X1 — - = X} — {51,---,9,}. It follows that (X, C (510 S2 @ ---© 5,)) A (X1 C
(1 &2 @B Jp)).

Horizontal role partition, on the other hand, involves partitioning a role into two or
more roles with none of them being subservient (superior) to another (see figure 11c and
algorithm 4 of figure 13). Partition, as used here, merely distributes the direct privileges
of the target role among newly created roles that replace it. In partitioning a role, there
should be no effective increment or decrement of privileges. In other words, as with vertical
partitioning, if role X is partitioned into roles Xj,---, X,, we require that

Dif['ect(X) = U D’LT‘@Ct(XZ)

i=1,m

The direct privilege sets of these newly created roles can have empty or non-empty intersec-
tions. However, none of them should have identical privilege sets. Note that, unlike vertical
partition, horizontal partition can cause a variation of privileges associated with a path when
the target role is the senior-most role in the path.

Suppose we have a target role for partition (call it X) with a relationship {Jy,---,J,} —
X — {S1,--+,5,} which is partitioned horizontally into roles { Xy,---, X, } such that {Jy,---,J,} —
{X1,---, X} — {S1,---,59.}. It follows that ({J1,---,J.} C (X1 O X200 ---© X)) A
({81,380} C(X1© X2 @ -+ © Xy))

Updates to the role graph include the reduction and addition of role privileges which
require the specification of the target role and privileges to be removed/added, but do not
alter the basic structure and relationships in the role graph structure. These may be addressed
within the context of role-privilege authorization.

19

Algorithm 3 Vertical Partition(rg, target, {((z;, —), z;.7pset;)})

/* Partitions a given role vertically */

Input: rg = (R, —) (the role organization structure), target (the target role to be partitioned),
{((z;, —), rpset;)} (the new role-direct privilege set pairs and their ordering).

Output: The role graph with target vertically partitioned into {((z;, —), rpset;)} and integrated
into the role graph structure.

Uses Superior_Set and Junior_Set of algorithm 2 in figure 10.

Var s.set, j.set: role set; Ty, Ts roles;

Begin

If Direct(target) # U (Di'rect(zi))

Then abort /* Must keep privilege set invariant */

Else Begin

1.

2
3
4.
5.
[
7
8

end;

R:=RU{z;};
s.set := Superior_Set(target);

/* Add new roles to system */
* Generate superior set */

j.set := Junior_Set(target); * Generate Junior set */
Add edges z1 — zp,2p — T3, - - ,ZTp_1 — Zn; [* Create a Path as specified */
*

For all z; do Direct(z;) := rpset;;
For all rg € s.set do add =z — 7g;
For all T € j.set do add Ty = 21
R := R — target;

Assign the appropriate privileges */
/* Join the Senior end */
/* Join the Junior end */

/* Delete target from system */

/* Vertical_Partition */

Figure 12: Algorithm for Vertical Partition

Algorithm 4 Horizontal Partition(rg, target, {(z;, z;.rpset;)}

/* Partitions a given role horizontally */
Input: rg = (R, —) (the role organization structure), target (the target role to be partitioned),{(z;, rpset;)}

(the new role-direct privilege pairs to replace target).
Output: The role structure with target horizontally partitioned into {(z;)} and integrated into rg.
Uses Superior_Set and Junior_Set of algorithm 2 in figure 10.

Var s.set, j.set: role set; T, Ty, TSt roles;

Begin If Direct(target) # U (Direct(zi))

Then abort
Else begin
1. R:=RU{z;};
2. s.set := Superior_Set(target);
3. j.set := Junior_Set(target);
4. Forall z; € {zy,---,2n} do
Direct(z;) := rpsety;
5. R:= R — target;
6. Forall z; € {z1,---,zn} do
begin For all rs € s.set do add z; — rg;
For all Ty € s.set do add Ty = T4
end;
7.

end;

Forall r,ry,7j € R if ¥(r;) = ‘I’(r]) then
Begin

for all 7; — 7 do add the edge Ty T

for all 7 — 7; do add the edge r —
Delete all edges 7; — 7 and r — r;;
Remove r;;

T3

Must keep privilege set invariant */

Add new roles to system Roles */
Generate the superior set */

Generate the junior set */

assign the privilege set to the new role */
Assign respective privilege sets */

Delete target */

Link New Roles to seniors */
Link New Roles to juniors */

Remove any duplicate roles */

Horizontal Partition */

Figure 13: Algorithm for Horizontal Partition

20

4.4 The Role Graph & Role Coupling

Considering our role graph model proposed in section 4.2, we term the extent of linkage
between roles a coupling which is related to the extent to which privileges are shared among
roles. We can have a variety of cases, e.g. where each role is independent of all others or
where some roles are coupled and hence dependent on each other.

Definition 17 Coupling: Coupling exists between two roles r; and r; if 3r; such that r; €
r; © r; and r, # MinRole. We call 7, a coupling role between r; and r;. |

Definition 18 Role Independence: Two roles r; and r; are independent if and only if r; ®

r; = {MinRole}, i.e. their only coupling is the role common to all roles in the role graph. In

other words their only greatest lower bound is MinRole. O
Independent roles have no coupling between them.

5 Comparison with Hierarchies, Privilege Graphs & Others

The role graph model presented here can simulate a hierarchical organization. We can convert
a role graph into a tree (hierarchy) and vice versa. To obtain a tree from a given role graph, we
designate MaxRole as the root of the hierarchy and do a recursive bread-first or depth-first
traversal for every node with a relationship with MaxRole. A given path terminates when
MinRole is encountered which forms the leaves of all paths in the resulting tree (hierarchy).
This tree contains all paths present in the associated role graph. In going from a tree to a
role graph, we designate the root of the tree to be MaxRole, do a depth-first traversal of the
tree and equating nodes whenever equal privileges are encountered. The resulting role graph
can then be augmented with MinRole if necessary. The advantage with the role graph is
its compactness, i.e. shared nodes lower in the hierarchy, need not be duplicated. This is a
major advantage in that it reduces the extent to which shared privileges are scattered among
roles which makes the task of tracking their use easier.

To simulate privilege graphs [Bal90], attach to every role an associated functionality that
specifies the associated duty requirements/title/etc. With the role’s access control list (racl)
acting as the user/group node (figure 2), it is possible to determine the authorized users
for any role. An authorized user’s access rights are determined by the effective privilege set
VU(r) of the associated role r to which the user is authorized. Further, remove MaxRole
and assign its explicit privileges to roles with direct partial privilege relationship with it. As
well, remove MinRole and assign its privileges to those roles with a direct partial privilege
relationship with it. The result is a privilege graph.

Finally, although this model is based on subsets with an acyclic graph, it is different
from the Bell and LaPadula Model (BLPM). Moreover, although both are meant for security
application, they have different approaches to realizing protection. The BLPM relies on
subsets, acyclicity and is static. However, it is based on the classification of information as
opposed to the execution of operations as is the case in our model. The BLPM specifies two
simple operations of either read or write access depending on object classification and subject
clearance. This approach realizes multilevel security. In our model, privileges represent pre-
defined executions designed in a manner intended to realize certain desired functionality in
a system. These operations are designed from considerations of desired system functionality.
Once defined, the operations are distributed among roles in the system in the manner that
suits organizational requirements. The executions can be simple reads and writes. They can

21

be a combination of simple reads and writes. But they can also be complex executions such
methods in object-oriented programming. These operations need not merely alter or return
the information relating to a given object but can also create other objects and invoke other
operations.

In the BLPM, once classification has been done, access to information is governed by
the simple security property and the *-property. Its specification is static. In our model,
execution of privileges can cause the assignment or revocation of privileges pertaining to
some role. In that respect, our model is dynamic.

6 Summary & Conclusions

It is important to have a means for role organization that reduces the complexity of privilege
management in a role-based security system. This paper has presented a model for role
organization derived from three basic role relationships, viz: partial, shared and augmented
privileges. These lead to a role graph formulation and use of role graph theory. The model
allows for the assignment of privileges in a particular role and through role relationships, we
determine the extent of privilege sharing. Given the acyclicity property, the role graph model
facilitates role partial ordering and privilege subsetting among roles. With an appropriate
assignment of privileges to roles and specification of role relationships, the role graph can
ease the task of access rights rights administration in a system. Our model has the expressive
power of both hierarchies [TDH92] and privilege graphs [Bal90].

The issue of role administration was addressed and algorithms for role management pre-
sented. These include algorithms for role addition, deletion and split (partition). Central to
role management is the concept of the change (or lack of change) of path privileges, because
path privilege changes have implications for roles with indirect access to these privileges.

The concept of paths in the role graph is important in that specific types of processing
can be associated with specific paths. Since there is privilege sharing among roles within
a path, one can impose constraints about the order of role participation in the processing
as well as separation of duty requirements. Role and path independence are important for
cases with conflict of interest. Two types of processing that conflict can be associated with
independent paths and by ensuring that no user is authorized for roles from both paths, we
can impose conflict of interest restriction to processing.

Currently, we are involved in the implementation of a role management tool which we
hope will give further insight into the applications of the role graph model in access rights
administration.

Acknowledgements

This work was supported in part by a grant from the Natural Science & Engineering Research
Council, NSERC, of Canada. We also thank Jim Mullin for his useful comments on an earlier
draft of this paper. The anonymous referees raised a number of issues that have been useful
in making clear some of our ideas. Sheila Lindsay, who worked on an implementation of the
role graph, pointed out some errors in the algorithms proposed earlier. We are grateful for
her comments.

References

[AGU72] A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a Directed
Graph. SIAM Journal of Computing, 1(2):131-137, June 1972.

22

[Bal90]

[BL75]

[CLR90]

[CW8T]

[Den76]

[DM89]

[GMP92]

[KM92]

[Law93]
[Man89]
[NO93a]

[NO93b]

[NO94]

[RBWKO1]

[RWK88]

[TDH92]

[Tho91]

R. W. Baldwin. Naming & Grouping Privileges to Simplify Security Management in
Large Databases. In Proc. 1990 IEEE Symposium on Research in Security and Privacy,
pages 116-132. IEEE Computer Society Press, May 1990.

D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposition & Multics
Interpretation. Technical Report MTIS AD-A023588, MITRE Corporation, July 1975.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Presss,
1990.

D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military Security
Policies. In Proc. 1987 IEEE Symposium on Research in Security and Privacy, pages
184-194. IEEE Computer Society Press, April 1987.

D. E. Denning. A Lattice Model of Secure Information Flow. Communications of the
ACM, 19(5):236-243, May 1976.

J. E. Dobson and J. A. McDermid. Security Models and Enterprise Models. In C. E.
Landwehr, editor, Database Security II: Status & Prospects, pages 1-39. North-Holland,
1989.

J. Glasgow, G. MacEwen, and P. Panangaden. A Logic for Reasoning About Security.
ACM Transactions on Computer Systems, 10(3):226-264, August 1992.

E. V. Krishnamurthy and A. McGuffin. On the Design & Administration of Secure
Database Transactions. ACM SIGSAC Review, pages 63—70, Spring/Summer 1992.

L. G. Lawrence. The Role of Roles. Computers & Security, 12(1):15-21, Feb 1993.
Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.

M. Nyanchama and S. L. Osborn. Role-Based Security, Object Oriented Databases &
Separation of Duty. ACM SIGMOD RECORD, 22(4):45-51, Dec 1993.

M. Nyanchama and S. L. Osborn. Role-Based Security: Pros, Cons & Some Research
Directions. ACM SIGSAC Review, 2(2):11-17, June 1993.

M. Nyanchama and S. L. Osborn. Information Flow Analysis in Role-Based Security
Systems. “All about nothing”, Journal of Computing & Information, 1(1), May 1994.
Special Issue: Proc. of the 6th International Conference on Computing and Information
(ICCI), Peterborough, Ontario, Canada.

F. Rabitti, E. Bertino, D. Woelk, and W. Kim. A Model of Authorization for Next
Generation Databases Systems. ACM TODS, 16(1):88-131, March 1991.

F. Rabitti, D. Woelk, and W. Kim. A Model of Authorization for Object Oriented and
Semantic Databases. In Proc. of Int’l Conference on Extending Database Technology,
March 1988.

T. C. Ting, S. A. Demurjian, and M. Y. Hu. Requirements Capabilities and Functionali-
ties of User-Role Based Security for an Object-Oriented Design Model. In C. E. Landwehr
and S. Jajodia, editors, Database Security V: Status & Prospects, pages 275-296. North-
Holland, 1992.

D. J. Thomsen. Role-Based Application Design and Enforcement. In S. Jajodia and
C. E. Landwehr, editors, Database Security, IV: Status and Prospects, pages 151-168.
North-Holland, 1991.

23

