
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141 (DOI: 10.1002/cpe.807)

A role-based infrastructure
management system:
design and implementation

Dongwan Shin1,∗,†, Gail-Joon Ahn1, Sangrae Cho2 and
Seunghun Jin2

1Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte,
NC 28223, U.S.A.
2Department of Information Security System, Electronics and Telecommunications Research Institute,
Taejon, 305-350, South Korea

SUMMARY

Over the last decade there has been a tremendous advance in the theory and practice of role-based access
control (RBAC). One of the most significant aspects of RBAC can be viewed from its management of
permissions on the basis of roles rather than individual users. Consequently, it reduces administrative costs
and potential errors. The management of roles in various RBAC implementations, however, tends to be
conducted on an ad hoc basis, closely coupled with a certain context of system environments. This paper
discusses the development of a system whose purpose is to help manage a valid set of roles with assigned
users and permissions for role-based authorization infrastructures. We have designed and implemented
the system, called RolePartner. This system enables role administrators to build and configure various
components of a RBAC model so as to embody organizational access control policies which can be separated
from different enforcement mechanisms. Hence the system helps make it possible to lay a foundation
for role-based authorization infrastructures. Three methodological constituents are introduced for our
purposes, together with the design and implementation issues. The system has a role-centric view for easily
managing constrained and hierarchical roles as well as assigned users and permissions. An LDAP-accessible
directory service was used for a role database. We show that the system can be seamlessly integrated with
an existing privilege-based authorization infrastructure. Copyright c© 2004 John Wiley & Sons, Ltd.

KEY WORDS: role-based access control; role management; role engineering; role administration; authorization
infrastructure

∗Correspondence to: Dongwan Shin, Department of Software and Information Systems, University of North Carolina at
Charlotte, Charlotte, NC 28223, U.S.A.
†E-mail: doshin@uncc.edu

Contract/grant sponsor: Electronics and Telecommunications Research Institute
Contract/grant sponsor: National Science Foundation; contract/grant number: IIS-0242393

Copyright c© 2004 John Wiley & Sons, Ltd.
Received March 2003

Revised June 2003
Accepted June 2003

1122 D. SHIN ET AL.

INTRODUCTION

Pervasion of interest in using roles in access control has been quite salient in computer security
communities over the last few years. Thus many formalized and practical approaches to recognizing
the value of their usage in access control have been taken by both researchers and practitioners.
The reference models have been proposed for role-based access control (RBAC) in [1,2], and the
efforts to extend the models, for example in the area of constraint specification, role administration,
and role delegation, have followed in [3–5]. With those formal models as its quintessence, RBAC has
grown to be a proven solution for managing access control in a simple, flexible, and convenient manner.
In RBAC, user authorization depends upon the roles of which a user is a member, and permissions are
assigned to the roles. This greatly simplifies management of permissions, reducing complexity and
potential errors in directly assigning permissions to users. Also, RBAC can be easily reconfigured to
comply with different organizational access control policies such as least privilege, separation of duties
and abstract operations. This flexibility is beneficial to organizations that need to modify their access
control policies for their needs.

RBAC has been playing the role of a key component in the design of user authorization services
for a variety of systems or applications. For instance, it is used in a simple Web-based application in
order to provide users with different grades of services, or it is deployed in an entire operating system
as an alternative to the all-or-nothing superuser model. In addition to those individual systems or
applications, enterprise-wise large-scale systems also fall in the sphere of RBAC’s influence. Enterprise
users generally need to access multi-vendor and multi-layered applications and systems of which
enterprise resources consist. Schemes like juxtaposing enterprise-wise roles with localized roles, which
are effective only in the individual applications or systems, have been identified with the purpose of
fertilizing RBAC’s applicability into the enterprise-wise authorization boundary. In those schemes,
simply put, enterprise users are authorized according to their membership of enterprise-wise roles so
as to access multi-vendor and multi-layered enterprise-wise applications and systems.

However, the management of roles in a variety of implementations of RBAC tends to be conducted
on an ad hoc basis, specifically with a certain context of system environments in mind. This often
results from the lack of an approach to systematically administering roles or other RBAC components
for role-based authorization infrastructures. Such an approach requires a sound understanding of RBAC
components and organizational access control policies, and then an exhaustive investigation of how to
configure those RBAC components to realize those policies within multi-vendor and complex systems
or applications. In order for role administrators to carry out the approach, software tools that enable
such systematic role management are required, and these tools should be built on the strong formal
foundation of the reference models of RBAC [1,2,4].

In this paper we describe a role-based infrastructure management system, called RolePartner.
The main purpose of the system is to help role administrators establish a valid set of roles and role
hierarchies with assigned users and associated permissions. By valid we mean that roles and role
hierarchies must be constrained according to organizational access control policies and have properly
designed meanings within an organization’s RBAC environment. The role administrator can define,
build, and manage various components of a RBAC reference model (RBAC96) [1], thereby making it
possible to lay a foundation for a role-based authorization infrastructure. We present how we designed
and implemented RolePartner, with the introduction of our methodological approach to identifying the
necessary constituents for RolePartner design, together with the general requirements of such a system.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1123

Along with basic RBAC components such as user/role and permission/role assignment, RolePartner
supports the advanced notion of role hierarchies and constraints. RolePartner also has a role-centric
view for easily managing permissions and users, and it leverages an LDAP-accessible directory
service for storing role-based authorization organizational policies composed of the configured RBAC
components. We also show that the system can be seamlessly integrated with an existing privilege-
based authorization infrastructure.

ROLES IN ROLE-BASED AUTHORIZATION INFRASTRUCTURES

While the meanings of roles are different, depending upon the context of their usage, they generally
represent a set of competency and responsibility pairs [6]. In the reference models of RBAC [1,2],
they describe the relationship between users and permissions. Roles are used as a middle layer in
between users and permissions. Users are human beings and permissions are a set of many-to-many
relations between objects and operations. Roles bring users and permissions together, representing the
job functions or titles and making it easy to apply organizational policies to the job functions or titles.
Roles also decouple users and permissions, thereby reducing administrative routine works.

More advanced notions of roles include their hierarchical and constrained existence. The reference
models of RBAC discuss those aspects of roles as well. Roles can be hierarchically structured so as
to describe the lines of competencies and responsibilities within an organization. In the hierarchical
structures, senior roles generally inherit the permissions assigned to junior roles, and this enables
the role layer to be multi-layered, thereby further reducing the number of relations between users
and permissions. Roles must be constrained in their relations to users and permissions as well as in
the role-hierarchies. Constraints are an essential construct needed for laying out higher-level access
control policies within an organization. A well-known example of constraints is the separation of duty.
For instance, the same user cannot be a member of roles in a conflicting role set such as purchasing
manager role and accounts payable manager role. The separation of duty constraint
reduces possible frauds or errors by controlling membership in, activation of, and use of roles as well
as permission assignment.

RBAC reference models incorporate notions related to roles such as competency, responsibility,
competency inheritance, and constraints into their integral components. Four conceptual models are
discussed in a reference model [1]: RBAC0, RBAC1, RBAC2, and RBAC3. RBAC0 is the base model,
defining a minimum collection of RBAC components for the purpose of completely realizing a role-
based access control system. It is made up of six components: users (U), roles (R), permissions (P),
sessions (S), user assignment (UA), and permission assignment (PA). RBAC1 adds the component
of role hierarchies (RH). Role hierarchy is mathematically a partial order defining roles’ inheritance
of users and permissions. RBAC2 includes the component of constraints. RBAC3, as a consolidated
model, combines RBAC1 and RBAC2.

Role engineering and related works

In order to fully leverage the concept of using roles in access control and benefit from the features
of RBAC reference models, it is important to have a good understanding of role engineering
process. Role engineering (RE) is essentially a requirement engineering for a later RBAC design and

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1124 D. SHIN ET AL.

Figure 1. Three models in role engineering (RE).

implementation. It is an approach to defining roles and assigning permissions to the roles [7], and thus
enables RBAC system developers to identify and build explicit objects used in access control from
the implicit existence of roles within an organization. In RBAC reference models, role engineering
activities concern the components such as roles, role hierarchies, permissions, permission assignment,
and the constraints.

There have been various approaches to engineering roles, and they can be generally categorized into
the following three models: top-down, bottom-up, and hybrid [8,9]. Figure 1 shows the three models
and describes the iterative nature of information exchange between two authoritative domains which
are most likely to be involved in the RE process, security administration and system administration.
Security administration is in charge of organizational security (policy) management, whereas system
administration concerns information system management.

Top-down model

The top-down model can be generally described as an approach to deriving permissions from roles
through the use of abstract concepts such as work-patterns and business processes [8,10]. Looking
at the model in some more detail, work-patterns or business processes in which roles are involved
are analyzed and decomposed into smaller units in a functionally independent manner through the
role identification process. Afterwards, those smaller units or tasks are mapped onto permissions in
information systems for their execution through permission mapping process. As shown in Figure 1,
role identification falls within the scope of security administration, while permission mapping is in the
range of system administration.

Coyne [7] briefly describes how to identify roles in RBAC in a top-down manner. Taken as a
whole, his approach uses system users’ activities as a high-level of abstraction to identify candidate

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1125

roles and remove duplicate candidate roles. Then permissions can be identified as a minimal
set of access rights on the systems required to perform the roles. Finally, constraints definition
follows before role hierarchies are built. Though introducing the concept of RE to the point, his
approach lacks many technical details of the RE process, only to be depicted in a highly conceptual
manner.

Roeckle et al. [10] discuss a process-oriented approach to finding roles in a top-down manner.
The concept of role-finding is described for the purpose of deducting roles from business needs or
functions. Their approach deals with an RBAC metamodel (we will discuss this in more detail in
‘Functional requirements’) to describe the notion of roles and their relation to users and access rights.
Three different layers are discussed in conjunction with the metamodel: process layer, role layer, and
access rights layer. Simply put, business processes are initially analyzed in the process layer. Then roles
are derived from the business processes in the role layer and access rights on systems are assigned
to the roles in the access rights layer. While their metamodel is well defined and structured, their
procedural approach to finding roles lacks the support of some important issues such as how to handle
role information update.

Bottom-up model

In the bottom-up model, permissions are generally working as a building block so as to be aggregated
into roles. Like the top-down model, this model often uses abstract concepts such as scenarios and
business functions in order to both derive and group permissions [11]. In addition, certain attributes
of target objects and operations can be used for that purpose as well. More specifically speaking,
permissions (object and operation pairs) are derived from existing information systems and grouped on
the basis of the certain attributes of permissions. The attributes can be drawn from objects, applications,
and systems where those permissions are involved. For example, the owner information or ACLs in file
objects can be security-relevant attributes and used for grouping permissions as a functional building
block of roles. This is usually done through the permission derivation process which falls within the
scope of system administration. Afterwards, those permissions are aggregated to roles through the role
composition process which falls within the scope of security administration.

Thomsen et al. [12] propose an RBAC framework for network enterprises, in which permissions are
derived from objects and their methods and roles are derived from the permissions. All these procedures
are enabled by an introduction of seven abstract layers for security management: object, object handles,
application constraints, application keys, enterprise keys, key chains, and enterprise constraints.
The first four layers belong to application developers, who can use their in-depth knowledge of
the applications in order to create generic security components. The last three layers are under
the control of system administrators, who can use the generic security components as the security
building blocks in order to customize the security policy for their organization. They developed the
NAPOLEON tool, which implements the portion of the framework used by the application developer.
Subsequently, Epstein and Sandhu [13] propose an approach to leveraging UML language for RE
and discuss an exemplary UML modeling case which is based upon the framework proposed by
Thomsen et al. Their approach is straightforward in representing the RBAC framework. However,
their approach needs to be improved to address how UML can be used for modeling the process side
of RE.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1126 D. SHIN ET AL.

Role
Engineering

Role
Administration

RBAC
System

Design
Implementnation

Policy Management

Policy Enforcement

Figure 2. Role administration as access control policy management.

Hybrid model

The hybrid model can be described as a mixed approach of top-down and bottom-up models so as
to engineer RBAC roles. For example, the role identification process and the permission derivation
process in Figure 1 can be conducted in parallel for a later role definition.

Epstein and Sandhu [8] propose a conceptual framework where roles can be defined in either a top-
down or a bottom-up manner. They extend RBAC reference models by introducing three additional
layers in between roles and permissions. They use the concepts of jobs, work-patterns, and tasks, to
represent those respective layers and facilitate role-permission assignment into smaller and better steps.
Top-down and bottom-up models are discussed in conjunction with the notions of focus and bucket,
respectively. However, their work addresses RE in a conceptual manner without discussing how those
concepts are specified, constructed, or concretized.

Role administration and related works

After the role engineering process, roles and other RBAC components are designed and implemented
for RBAC system development. In general, an RBAC system is composed of two modules: a policy
management module and a policy enforcement module. The former concerns proper configuration of
RBAC components so as to reflect organizational access control policies, while the latter is related to
how to practice those configured RBAC components for access control services. As shown in Figure 2,
role administration is an integral aspect of RBAC policy management, allowing the configuration
of RBAC components. Hence it is needless to say that the administration of roles should be done
cautiously so as not to diverge from organizational access control policies.

Ferraiolo et al. [14] discuss an approach to designing and implementing RBAC features for Web
servers. To support a comprehensive implementation of RBAC services for the Web servers, they
developed a system, called Admin Tool, to manage user/role and role/role relationships and to store
those relationships in the RBAC database. The system supports role-hierarchies, cardinality constraints
and dynamic and static separation of duties. However, the use of Admin Tool is limited to only Web-
based applications.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1127

Role-based Infrastructure
Management

Role Administration

…

RBAC Enforcement Systems

RBAC Enforcement Systems

Role Engineering

Figure 3. Role-based infrastructure management, role engineering, and role administration.

Neumann and Strembeck [15] present the design and implementation of a flexible RBAC service
using the language of XOTcl, called xoRBAC. The xoRBAC implementation conforms to level 4a
of the unified NIST model for RBAC. xoRBAC supports the functionality for user/role assignment,
permission/role assignment, arbitrary role hierarchies, static separation of duties, and cardinality
constraints. However, their work focuses on mainly RBAC enforcement, barely discussing role
administration or policy management.

Kern et al. [9] propose a life cycle model of roles, interwoven with role engineering and role
administration processes as dicussed. The life cycle model is based on an iterative-incremental process
similar to those found in the area of software engineering. Four stages of the life cycle of roles are
identified: role analysis, role design, role management, and role maintenance. Role analysis is the
activity of identifying roles as they occur within the target domain. Role design involves with mapping
roles onto the system-dependent syntax and semantics as well as designing roles for administration.
Role management is the routine role administration such as creation or deletion of a user or a
permission and changes in the role model. Role maintenance activities are composed of changes in
the mapping of organizational structures to role and changes in the definition of user–role and role–
permission relationships.

OUR APPROACH

Figure 3 describes our understanding of role-based infrastructure management in conjunction with
role engineering and administration. Role-based authorization infrastructures are likely to encompass
a variety of complex systems or applications within or across enterprise whose access control
services depend upon roles. Considering the number of roles existing in enterprise-wise environments,
role engineering and administration are unarguably a challenging task for role-based infrastructure
management. Though they are equally important, we mainly restrict our attention to the system
development for role administration in this paper due to the space limitation (for more details on role
engineering, refer to [16]).

Before describing how to design and implement a role-based infrastructure management system
concentrating on role administration, we believe that it is important to be cognizant of the general

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1128 D. SHIN ET AL.

requirements of such a system. We identify and depict those requirements, which are to be factored
later into our design and implementation decisions, as follows.

• Availability: a role-based infrastructure management system should be available in as many
system environments as possible. This issue pertains to the platform-independence of, the
support of various formats of authorization policies in, and the scalability of the system.

• Applicability: a role-based infrastructure management system should be applicable in different
kinds of organizational policy environments. In order to do that, the system should support all
RBAC components whose configuration and customization enhance the system’s applicability
into different organization policy environments.

• Ease-of-use: a role-based infrastructure management system should enable role administrators
to perform role management activities with ease. The system should also have an intuitive visual
interface to make it usable without extensive formal training.

• Standardization: a role-based infrastructure management should adhere to RBAC standards in
its desired functionality, such as multiple inheritances in role hierarchies.

Methodology

RBAC reference models and their components are conceptual. For the purpose of building a concrete
role-based infrastructure management supporting RBAC, RBAC components in the reference models
need to be reorganized according to the system’s structural and behavioral characteristics. Hence we
classify RBAC components into three constituents: structural, functional, and informational. We use
the RBAC96 model and its components with the support of constraints such as cardinality (users and
roles), static separation of duty, and prerequisite condition.

Structural constituents

The structural constituents consist of users, roles, permissions, role hierarchies, objects, operations,
and constraints. The structural constituents represent both their semantics and syntaxes. The semantic
of each of those components is well defined in the RBAC framework. For instance, roles may have the
meaning of job functions or titles and users may have the meaning of employees in an organization.
However their syntactic representations within concrete role-based systems are wholly dependent upon
the developers. Thus we define the structural constituents to address both semantic and syntactical
representation of those RBAC components.

Functional constituents

The functional constituents comprise some RBAC components which can represent the assignment
relationships among users, roles, and permissions. Hence we include user assignment and permission
assignment in functional constituents. Additionally, search functions such as USERS and ROLES are
included in this category. Using USERS, we find out which roles are associated with a user, or which
users are entitled to a role. ROLES returns which roles are associated with a permission, or which
permissions are assigned to a role.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1129

Get roles as a managed element
in MOF structure

Get roles as a security principal
in XML structures

Get roles as an attribute in
ASN structures

RBAC Policies

XML-Based Web Service
Authorization Domain

Certificate-based
Authorization Domain

CIM-based Authorization
Domain

Generic Role-Based
Authorization Domain

Figure 4. Separating RBAC policies from their enforcement mechanisms.

Informational constituents

The informational constituents represent repositories such as directory services and relational
database systems. Informational constituents are composed of a database for roles and role–hierarchy
information, a database for role–permission information, and a database for role–user information.

THE ROLEPARTNER: DESIGN

One of our primary concerns in designing a role-based infrastructure management system is the
separation of RBAC policy from its enforcement mechanisms, and RolePartner is designed to work as
a centralized RBAC policy administration system which is separated from various policy enforcement
mechanisms. Figure 4 shows four different domains which possibly leverage RBAC policies built
through RolePartner for their access control services: generic role-based, CIM-based, XML-based,
and certificate-based. Note that each of them may need RBAC policies in its preferable format, such as
ASN and XML.

Functional requirements

In addition to the general requirements discussed earlier, a role-based infrastructure management
system should have the functional requirements which describe its behavior within role-based
authorization environments. To determine the functional requirements of the system, we defined its
use cases and their relationships, as shown in Figure 5. The use cases are grouped into three use
cases groups according to our methodological approach: use case group A, related to the structural
constituents, use case group B, relevant to the functional constituents, and use case group C, pertaining

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1130 D. SHIN ET AL.

R
o
le

 A
d
m

in
is

tr
a
to

r

R
o
le

P
a
r
tn

e
r

U
s
e
 C

a
s
e
 G

ro
u
p
 A

U
s
e
 C

a
s
e
 G

ro
u
p
 C

U
s
e
 C

a
s
e
 G

ro
u
p
 B

«
u
s
e
s
»

«
u
s
e
s
»

«
u
s
e
s
»

d
e
p
e
n
d
s

d
e
p
e
n
d
s

d
e
p
e
n
d
s

U
s
e
 C

a
s
e
 G

ro
u
p
 B

 (
re

la
te

d
 t
o
 F

u
n
c
ti
o
n
a
l
C

o
n
s
ti
tu

e
n
ts

)

 P
e
rm

is
s
io

n
-r

o
le

 a
s
s
ig

n
m

e
n
t

 U
s
e
r-

ro
le

 a
s
s
ig

n
m

e
n
t

 U
S

E
R

S

 G

e
t
a
ll
 r

o
le

s
 a

u
th

o
ri
z
e
d
 f
o
r

a
 u

s
e
r

 G

e
t
a
ll
 u

s
e
rs

 a
s
s
ig

n
e
d
 t
o
 a

 r
o
le

 R
O

L
E

S

 G

e
t
a
ll
 r

o
le

s
 h

a
v
in

g
 a

 p
e
rm

is
s
io

n

 G

e
t
a
ll
 p

e
rm

is
s
io

n
s
 a

s
s
o
c
ia

te
d
 w

it
h
 a

 r
o
le

U
s
e
 C

a
s
e
 G

ro
u
p
 A

 (
re

la
te

d
 t
o
 S

tr
u
c
tu

ra
l
C

o
n
s
ti
tu

e
n
t)

 R
o
le

s
 a

n
d
 R

o
le

-h
ie

ra
rc

h
y
 i
n
fo

rm
a
ti
o
n

 C

re
a
te

,
d
e
le

te
,
a
n
d
 u

p
d
a
te

 r
o
le

s

 U
s
e
r

in
fo

rm
a
ti
o
n

 C

re
a
te

,
d
e
le

te
,
u
p
d
a
te

,
a
n
d
 i
m

p
o
rt

 u
s
e
rs

 P
e
rm

is
s
io

n
 i
n
fo

rm
a
ti
o
n

C

re
a
te

,
d
e
le

te
,
a
n
d
 u

p
d
a
te

 p
e
rm

is
s
io

n
s

 C
o
n
s
tr

a
in

t
in

fo
rm

a
ti
o
n

 S

e
t/
d
ro

p
 c

o
n
s
tr

a
in

ts

U
s
e
 C

a
s
e
 G

ro
u
p
 C

 (
re

la
te

d
 t
o
 i
n
fo

rm
a
ti
o
n
a
l
C

o
n
s
ti
tu

e
n
t)

 C
re

a
te

 m
e
ta

 d
a
ta

 t
y
p
e
s
 f
o
r

o
b
je

c
ts

 i
n
 U

s
e
 C

a
s
e
 G

ro
u
p
 A

F
ig

ur
e

5.
F

un
ct

io
na

lr
eq

ui
re

m
en

ts
of

th
e

R
ol

eP
ar

tn
er

,d
efi

ne
d

by
th

re
e

gr
ou

ps
of

us
e

ca
se

s.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1131

User Interface (GUI)User Interface (GUI)

Network Interface (NI)Network Interface (NI)

Executive Services (ES)Executive Services (ES)

Data Encoding Service (DES)Data Encoding Service (DES)

RBAC Structural RBAC Structural
Service (RSS)Service (RSS)

RBAC ConstraintRBAC Constraint
Service (RCS)Service (RCS)

RBAC FunctionalRBAC Functional
Service (RFS)Service (RFS)

Data Synchronization Service (DSS)Data Synchronization Service (DSS)

Figure 6. Structural overview of RolePartner.

to the informational constituents. Since these use cases describe all the required interactions of role
administrators with RolePartner, they improve the general understanding of the system. Note that in use
case group A, not only being able to create, delete, and update user information, but role administrators
can also import the user information from an existing database through RolePartner. This is because
organizations are most likely to have their existing user databases, and we believe the use case of
importing users is essential in order to improve the system’s integration flexibility.

Structural components

RolePartner is composed of three components: user interface (UI), executive services (ES), and
network interface (NI). UI is responsible for the graphical user interface for role administrators.
NI is responsible for database connections to store or retrieve static role-based authorization policies,
which are created or maintained through ES. ES is further divided into five sub-services which are
RBAC functional service (RFS), RBAC structural service (RSS), RBAC constraints service (RCS),
data synchronization service (DSS), and data encoding service (DES). As their names imply, the scope
of services provided by each of them is straightforward. RSS concerns the use case group A excluding
constraint information, whereas RFS involves use case group B. RCS is in charge of constraint
information that RolePartner supports such as cardinality (both user and role), static separation of
duty, and prerequisite condition.

DSS is involved in data synchronization in between role database and RolePartner in case of
data changes occurring in either of them. DES is responsible for encoding and decoding services
for data, which allow for the support of various formats of authorization policies. For example,
the data for role-based authorization policies often need to be encoded into XML or binaries in
some authorization service environments we discussed earlier. Finally, the activities of storing RBAC
component data and creating meta data types for them are carried out through collaboration of ES and

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1132 D. SHIN ET AL.

RBAC

rpcUser
rpc-

Permission
rpcRole

rpc-
Constraint

rpc-
CardiConstraint

rpc-
SODConstraint

rpc-
PrereqConstraint

rpcObject rpcOperation

Logs

Figure 7. Overview of directory service for RolePartner.

NI components. This collaboration concerns Use case group C. Figure 6 gives an overview of those
structural components of RolePartner.

Directory as informational constituent

We leverage directory service as our informational constituents for RolePartner. Directory service is
one of the common data repositories, strongly believed to be an optimal solution for making enterprise-
wide information available to different systems within enterprise. Figure 7 shows the overview of
the directory service designed to hold RBAC policies. On its top level, there are rpcUser, rpcRole,
rpcPermission, and rpcConstraint, which represent users, roles, permissions, and constraint in RBAC
reference models, respectively. Logs represents the logging service for access and error information.

Developing databases in the directory service necessitates the schema design for the needed
objects such as role, user, and permission. Table I describes the schema of the roles component
in a database of roles and role hierarchy, called rpcRole object class. The rpcRole
object class with its attributes embodies a conceptual roles component in RBAC in directory
service. The rpcRole object class must have attributes such as rpCompID (role ID),
rpCompName (role name), and rpCompType (role type), and may have attributes for role hierarchy
information (rpImmediateSeniorRole and rpImmediateJuniorRole), for role member
(rpRoleMember), for associated permission (rpRolePermission), and for encoded data format
(rpBerEncodedVal and rpXACMLEncodedVal). The operations on the roles in the directory
service should follow the rules and structures defined in rpcRole object class.

Similarly the schemas for the components in the role–permission database and the role–user database
are designed. The permissions component can be further divided into two: general permissions and
specific permissions, which are differentiated by the level of abstraction. For example, permissions such
as credit or debit can be represented by general permissions, while specific permissions can account
for privileges such as modify and execute, file f1 (operations and object pair).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1133

Table I. Schema design of roles, defined as objectclass rpcRole.

rpcRole

Definition Object class for Roles in RBAC
Superior class top
OID RP-OID.2.2

Attribute Description Value (if multivalue, *)

Required attribute
objectClass Entry’s objectclass
rpCompID Role ID DirectoryString
rpCompName Role name DirectoryString
rpCompType Role type (1:local, 2:global) Integer

Allowed attribute
rpRoleMember Role members DN*
rpRolePermission Role privileges DN*
rpImmediateSeniorRole Immediate senior roles to this role DirectoryString*
rpImmediateJuniorRole Immediate junior roles to this role DirectoryString*
rpBerEncodedVal Value of role information encoded in BER Binary
rpXACMLEncodedVal Value of role information encoded in XML DirectoryString
rpLastModified Last modification time for logging purpose GeneralizedTime
createTimestamp Creation time for logging purpose GeneralizedTime
creatorsName Creator’s name DN
description Description of this role DirectoryString*
rpExtensions Extension field Binary*

Operational architecture

RolePartner is a client and server-based application enabling RBAC policy management through role
administration. It uses LDAP protocol to communicate with the directory service server. The role
administrator interacts with RolePartner through its UI component, which is playing the role of
delivering commands issued by the role administrator to a facade of ES services. The facade of ES
services provides a single interface to RFS, RSS, and RCS. RSS and RFS are in charge of operations
such as building roles or building assignment relationship. By contrast, in addition to the functionality
of creating static constraint information, RCS has another task, which is monitoring the operations
of RSS and RFS in runtime in order to enforce the constraint policies. As for DES, it is responsible
for data encoding and decoding service. DSS is in charge of synchronization of data between role
databases and RolePartner. Finally, NI provides an interface to an LDAP-accessible directory service
server for synchronous operations. Figure 8 shows the operational architecture, which gives the details
of relationships among the components.

For further detailed interactions among the components, we need to mention the objects within and
their interactions among the components. For instance, we design the following classes which involve
a process of adding a new role into a role hierarchy.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1134 D. SHIN ET AL.

DES

User
Interface

(UI)

Directory
Server

Role
Administrator

Network
Interface

(NI)

RSS

Executive Service (ES)

RFS

ROLEPARTNER

1. Interact for
management of role-
based infrastructure
environment.

Build role, role-
hierarchy, permission,
and user.

Build constraints which
will be applied to RFS,
RSS

Build assignment
relations among
roles, users, and
permissions

Encode data into
appropriate format

Establish network
connection to
LDAP server

Role Database
Connection

DSSRCS

Figure 8. Operational architecture of RolePartner.

• Class UIWorker works as a main user interface, managing all input from a role administrator
and communicating with ESFacade.

• Class ESFacade provides UI with a simple interface to sub-components of the ES component.
• Class StrucCompWorker manages the creation of the structural components (users, roles,

permissions, objects, and operations) through StrucCompFactory, encodes role information
into appropriate formats such as BER or XACML, and handles role hierarchy through
RoleHierarchyWorker class.

• Class RoleHierarchyWorker is in charge of managing role hierarchy in the process of
creation, deletion, and modification of roles.

• Class SyncWorker primarily manages the synchronization of data in between the role database
(class DirEventNotifier) and data pools which are local to RolePartner (Class
ComponentPool).

• Class DirEventNotifier provides support for event notification when changes in directory
service occur.

• Class NIWorker is in charge of connection to, creation of entries (both schema and objects) in,
and manipulation of entries in the directory service (role database).

To add a role into role hierarchy, UIWorker accepts a role administrator’s input value
for attributes associated with the role to be created. UIWorker passes the input value to
ESFacade. Afterwards, ESFacade invokes StrucCompWorker to create a role object (type
of RoleSComp) from StrucCompFactory. Then StrucCompWorker passes the created
role object to RoleHierarchyWorker, which checks the integrity of role hierarchy with the
addition of the role object. Only after getting an OK response from RoleHierarchyWorker,
StrucCompWorker passes the role object into SyncWorker. Otherwise, the process ends.
Subsequently, SyncWorker stores the object into its role object pool as well as passing the object
to NIWorker so that NIWorker can update a role database with the object. If updating the role
database is a success, SyncWorker will get an update notification from DirEventNotifier and

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1135

UI: UIWorker ES: ESFacade ES: StrucCompWorker NI: niWorkerES: RoleHierarchyWorker ES: SyncWorker ES: DirEventNotifier

ES: StrucCompFactoryaddRole()

addSComponent()

RoleSComp

theAddedRoleSComp

addNamingEvent (add)

notify()

checkValue()

notify()

updatePool()

askUser()

confirm()

confirm()

addToRoleHierarchy()hierarchycheckReturn

theAddedRoleSComp

RoleSComp

Figure 9. A sequence diagram for adding a new role in role hierarchy.

it will notify ESFacade of the update. Afterwards, the role will get a confirmation prompt from
ESFacade. Finally, the confirmation message will be passed to SyncWorker to finish this process.
Figure 9 shows a sequence diagram describing the process.

THE ROLEPARTNER: IMPLEMENTATION

We implemented RolePartner using Java language, primarily because of its system-independent
feature. We used JDK 1.4 to develop the components identified in the design phase: Swing for UI and
JNDI for NI. For directory service as a role database, we used iPlanet directory service 5.0. One thing
to note in leveraging iPlanet directory service is that we need to add the access control information
(ACI) attribute value similar to the following ACI into RBAC component container entries with a view
to managing access control to the entries on the basis of administrative roles in RolePartner.

• (targetattr = ”*”) (version 3.0; acl ”RBACRoleAdmin”; allow (all) (userdn = ”ldap:/// base
DN ??sub?(rprole = DN of administrative role)”);)

There are four administrative roles for RolePartner: rpSuperMgr, rpRoleMgr, rpUserMgr,
and rpConsMgr. The rpSuperMgr role has all the privileges needed for operating RolePartner.
The rpRoleMgr role has privileges effective only upon roles, permissions, and permission
assignment. Alternatively, the rpUserMgr role has privileges limited only to users and user
assignment. The rpConsMgr role, as the last one, is capable of performing operations only related to
constraint management.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1136 D. SHIN ET AL.

Figure 10. User interface of RolePartner.

Figure 10 shows the interface of our system, logged in with rpSuperMgr role. In the upper leftmost
tabbed pane of the system is displayed a role hierarchy tree, where two disjoint role hierarchies are
connected through the root node of the tree, Top. The root node is not included in the role hierarchies,
since it only works as a base node connecting two or more disconnected role hierarchy trees. The same
role hierarchies can be viewed as a role graph as shown in Figure 11. The RolePartner displays a role-
centric view, which allows for managing RBAC components in an efficient and easy-to-use manner.
When a role in the upper leftmost tabbed pane is clicked, the system displays in the remaining six
panes all information relevant to the role, i.e. currently assigned members/inherited members, currently
assigned permissions/inherited permissions, its properties, and relevant constraints.

User assignment, permission assignment, and constraint management

We implemented two functions for user assignment:assignUser2Role and assignRole2User.
assignUser2Role handles a role administrator’s request for assignment or de-assignment of users
to a role, while the role administrator views the information or manages the properties related to the
role. By contrast, assignRole2User takes care of a role administrator’s request for assignment or
de-assignment of roles to a user, while the role administrator views the information or manages the
properties related to the user. In assignUser2Role, a set of assignable users to role r (AUr) can be
derived as follows:

AUr ⊆ U− {CAUr ∪ UAU-SSOD ∪ UAU-PRE ∪ UAU-CARDI-U},

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1137

Figure 11. Graph view of role hierarchy tree shown in Figure 10.

where

• U: all users;
• CAUr : all users currently assigned to role r;
• UAU-SSOD: all unassignable users due to separation of duty constraints;
• UAU-PRE: all unassignable users due to prerequisite role constraint;
• UAU-CARDI-U: all unassignable users due to user cardinality constraint.

By the same token, a set of assignable roles to user u (ARu) can be derived as follows:

ARu ⊆ R− {CARu ∪ UAR-SSOD ∪ UAR-PRE ∪ UAR-CARDI-R},
where

• R: all roles;
• CARu: all roles currently associated with user u;
• UAR-SSOD: all unassignable roles due to separation of duty constraints;
• UAR-PRE: all unassignable roles due to prerequisite role constraint;
• UAR-CARDI-R: all unassignable roles due to role cardinality constraint.

Similarly, we implemented two functions for permission assignment: assignPerm2Role and
assignRole2Perm. assignPerm2Role allows a role administrator to assign or de-assign
permissions to a role while he/she views the information or manages the properties related to the role.
assignRole2Perm lets the role administrator assign or de-assign roles to a permission while he/she
views the information or manages the properties related to the permission. In assignPerm2Role,

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1138 D. SHIN ET AL.

Figure 12. User interface of constraint designer provided by RolePartner.

a set of assignable permissions to role r (APr) can be derived as follows:

APr ⊆ P− {CAPr ∪ UAP-SSOD},
where

• P: all permissions;
• CAPr : all permissions currently assigned to role r;
• UAP-SSOD: all unassignable permissions due to separation of duty constraints.

In a similar way, a set of assignable roles to the permission p (ARp) can be derived as follows:

ARp ⊆ R− {CARp ∪ UAR-SSOD},
where

• R: all roles;
• CARp: all roles currently associated with permission p;
• UAR-SSOD: all unassignable roles due to separation of duty constraints.

In addition to the basic role management operations such as user/permission assignment,
RolePartner supports constraint management by providing role administrators with a constraint
designer, which is shown in Figure 12. The constraint designer is capable of managing the following
sets of constraints.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1139

RolePartner

Role
Database

Public AC
Storage

Attribute
Certificate

Server

Privilege
Asserter

Privilege
Verifier

PMI Attribute Authority

Request/issue attribute
certificate

Access request with attribute
certificate

Request/issue attribute
certificate containing
authorization policies

Retrieve
role credentials

Role
Administration

 Constraint information

Figure 13. Integration of the RolePartner into a PMI.

• Cardi-Rn: a set of roles to which the maximum n number of users can be assigned;
• Cardi-Un: a set of users with which the maximum n number of roles can be associated;
• SSOD-CR: a set of roles conflicting each other;
• SSOD-CU: a set of users conflicting each other;
• SSOD-CP: a set of permissions conflicting each other;
• Prereq-Rr

UA: a set of roles to which a user has to be assigned before being assigned to role r.

INTEGRATION INTO A PRIVILEGE MANAGEMENT INFRASTRUCTURE

In order to demonstrate the feasibility of our approach, we integrated RolePartner into the privilege
management infrastructure (PMI) leveraging X.509 attribute certificate [17–19]. PMI is a collection of
attribute certificates, attribute authorities, repositories, entities involved such as privilege asserters and
verifiers. It provides certificate-based scalable and interoperable authorization. The attribute certificate
binds entities to attributes, which may be the entities’ role or group information. The PMI control
model explains how access control is managed when privilege asserters request services.

Figure 13 describes where our RolePartner is positioned and how it functions in the authorization
service of the PMI. RolePartner is placed in PMI attribute authority (AA), which is the entity
responsible for digitally signing two types of the attribute certificate: role assignment attribute
certificate (RAAC), which contains a user’s roles, and role specification attribute certificate (RSAC),
which contains all associated permissions to a role. Using RolePartner, role administrators in PMI
AA manage and configure RBAC components in the role database. As for data encoding, RolePartner
supports BER encoding of data, which will be included in RSAC. At the privilege asserter’s request,
the attribute certificate server issues the attribute certificate containing the role information of the

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

1140 D. SHIN ET AL.

privilege asserter. When the privilege asserter requests services through presenting his/her privileges in
attribute certificates, the privilege verifier makes access control decisions based upon the role presented
and authorization policies.

DISCUSSION AND FUTURE WORKS

RolePartner allows role administrators to manage role-based security policies in a centralized manner.
Thus, its usage is more appropriate for the authorization environments where tight control of security
policies by a limited number of role administrators is required. However, taking into account
possible overburden of those administrators in managing a large number of roles and associated
security policies, decentralizing administrative authority would be desirable. RolePartner supports
decentralized administration in a limited way. Sandhu et al. [4] proposed a model, called ARBAC97,
for managing RBAC with RBAC itself through decentralization of administrative authority. It has three
components: URA97 (user–role assignment), PRA97 (permission–role assignment), and RRA97 (role–
role assignment). Central notion of ARBAC97 is role ranges, which is used to impose restrictions on
the role administration boundary. Our short-term plan for enhancing the system pertains to this issue
as well as role delegation.

Comprehensive constraint support would be advantageous in many aspects, such as improving the
applicability of RolePartner or facilitating new RBAC features like context sensitive roles. Currently,
RolePartner supports static separation of duty, role/user cardinality, and prerequisite constraints.
A more advanced concept of constraints entails location, time, role activation, as well as dynamic
separation of duty. Future development of the system should address this issue as well.

CONCLUSION

Role management in various implementations of RBAC services tends to be conducted on an ad hoc
basis or in a system-dependent way. In this paper we describe a role-based infrastructure management
system, called RolePartner. The main purpose of the system is to help a role administrator establish
a valid set of roles and role hierarchies with assigned users and associated permissions. The role
administrator can define, build, and manage the components of RBAC96 model. We present how we
designed and implemented the system in a systematic way, with the help of a methodological approach
to facilitating role administration through the system. The RolePartner has a role-centric view for
easily managing constrained roles and associated permissions and users, and it leverages the LDAP-
accessible directory service for storing role-based authorization policies. We also show that the system
can be seamlessly integrated within the existing privilege-based authorization infrastructure.

ACKNOWLEDGEMENTS

This work was partially supported by grants from the Electronics and Telecommunications Research Institute and
National Science Foundation (IIS-0242393). Portions of this paper appeared in preliminary form in Proceedings
of the 18th ACM Symposium on Applied Computing (SAC03).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

A ROLE-BASED INFRASTRUCTURE MANAGEMENT SYSTEM 1141

REFERENCES

1. Sandhu RS, Coyne EJ, Feinstein HL, Youman CE. Role-based access control models. IEEE Computer 1996; 29(2):38–47.
2. Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R. Proposed NIST standard for role-based access control.

ACM Transactions on Information and System Security 2001; 4(3):224–274.
3. Ahn G-J, Sandhu R. Role-based authorization constraints specification. ACM Transactions on Information and System

Security 2000; 3(4):207–226.
4. Sandhu R, Bhamidipati V, Munawer Q. The ARBAC97 model for role-based administration of roles. ACM Transactions

on Information and System Security 1999; 2(1):105–135.
5. Zhang L, Ahn G-J, Chu B-T. A rule-based framework for role-based delegation. ACM Transactions on Information and

System Security 2003; 6(3):404–441.
6. Goh C, Baldwin A. Towards a more complete model for role. Proceedings of 3rd ACM Workshop on Role-Based Access

Control, Fairfax, VA, 22–23 October 1998.
7. Coyne E. Role engineering. Proceedings of the 1st ACM Workshop on Role-Based Access Control, Gaithersburg, MD,

November 1995.
8. Epstein P, Sandhu R. Engineering of role/permission assignment. Proceedings 17th Annual Computer Security Application

Conference, New Orleans, LA, December 2001. IEEE, 2001.
9. Kern A, Kuhlmann M, Schaad A, Moffett J. Observations on the role life-cycle in the context of enterprise security

management. Proceedings of the 7th ACM Symposium on Access Control Models and Technologies, Monterey, CA, June
2002.

10. Roeckle H, Schimpf G, Weidinger R. Process-oriented approach for role-finding to implement role-based security
administration in a large industrial organization. Proceedings of the 5th ACM Workshop on Role-Based Access Control,
Berlin, Germany, 26–27 July 2000.

11. Neumann G, Strembeck M. A scenario-driven role engineering process for functional RBAC roles. Proceedings of the 7th
ACM Symposium on Access Control Models and Technologies, Monterey, CA, June 2002.

12. Thomsen D, O’Brien D, Bogle J. Role based access control framework for network enterprises. Proceedings 14th Annual
Computer Security Application Conference, Scotsdale, AZ, 7–11 December 1998. IEEE, 1998; 50–58.

13. Epstein P, Sandhu R. Towards a UML based approach to role engineering. Proceedings of the 4th ACM Workshop on
Role-Based Access Control, Fairfax, VA, 28–29 October 1999; 33–42.

14. Ferraiolo DF, Barkley JF, Kuhn DR. A role based access control model and reference implementation within a corporate
intranet. ACM Transactions on Information and System Security 1999; 2(1):34–64.

15. Neumann G, Strembeck M. Design and implementation of a flexible RBAC-service in an object-oriented scripting
language. Proceedings of the 8th ACM Conference on Computer and Communication Security, Philadelphia, PA, November
2001.

16. Shin D, Ahn G-J, Cho S, Jin S. On modeling system-centric information for role engineering. Proceedings of the 8th ACM
Symposium on Access Control Models and Technologies, Como, Italy, 2–3 June 2003.

17. Farrell S, Housley R. An internet attribute certificate profile for authorization. Technical Report, PKIX Working Group,
June 2001.

18. ITU-T Recommendation X.509. Information Technology: Open Systems Interconnection. The Directory: Public-Key and
Attribute Certificate Frameworks. ISO/IEC 9594-8, 2000.

19. Shin D, Ahn G-J, Cho S. Role-based EAM using x.509 attribute certificate. Proceedings of the Sixteenth Annual IFIP WG
11.3 Working Conference on Data and Application Security, Cambridge, U.K., 29–31 July 2002.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1121–1141

	INTRODUCTION
	ROLES IN ROLE-BASED AUTHORIZATION INFRASTRUCTURES
	Role engineering and related works
	Top-down model
	Bottom-up model
	Hybrid model

	Role administration and related works

	OUR APPROACH
	Methodology
	Structural constituents
	Functional constituents
	Informational constituents

	THE ROLEPARTNER: DESIGN
	Functional requirements
	Structural components
	Directory as informational constituent
	Operational architecture

	THE ROLEPARTNER: IMPLEMENTATION
	User assignment, permission assignment, and constraint management

	INTEGRATION INTO A PRIVILEGE MANAGEMENT INFRASTRUCTURE
	DISCUSSION AND FUTURE WORKS
	CONCLUSION

