
Constraint Generation for Separation of Duty

Hong Chen
Dept. of Computer Science

Purdue University

chen131@cs.purdue.edu

Ninghui Li
Dept. of Computer Science

Purdue University

ninghui@cs.purdue.edu

ABSTRACT
Separation of Duty (SoD) is widely recognized to be a fundamental
principle in computer security. A Static SoD (SSoD) policy states
that in order to have all permissions necessary to complete a sen-
sitive task, the cooperation of at least a certain number of users is
required. In Role-Based Access Control (RBAC), Statically Mutu-
ally Exclusive Role (SMER) constraints are used to enforce SSoD
policies. This paper studies the problem of generating sets of con-
straints that (a) enforce a set of SSoD policies, (b) are compatible
with the existing role hierarchy, and (c) are minimal in the sense
that there is no other constraint set that is less restrictive and satis-
fies (a) and (b).

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Algorithms, Security

Keywords
role based access control, separation of duty, constraints

1. INTRODUCTION
Separation of Duty (SoD) is widely recognized as a fundamen-

tal principle in computer security [4, 21]. In its simplest form, the
principle states that a sensitive task should be performed by two dif-
ferent users acting in cooperation. The concept of SoD has long ex-
isted before the information age; it has been widely used in, for ex-
ample, the banking industry and the military, sometimes under the
name “the two-man rule”. More generally, an SoD policy requires
the cooperation of at least k different users to complete the task.
To ensure that at least k different users are involved to complete a
task, one approach is to require that no k − 1 users together have
all the permissions needed to complete the task. We call such a re-
quirement a Static Separation of Duty (SSoD) Policy, following the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’06, June 7–9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

terminology in [17]. In Role-Based Access Control (RBAC) [3, 8,
9, 10, 11, 24], SSoD policies are usually enforced using constraints
that restrict the role memberships of users. For example, one con-
straint may declare two roles r1 and r2 to be mutually exclusive, in
the sense that no user is allowed to be a member of both r1 and r2.
More generally, a constraint may require that no user is a member
of t or more roles in a set of m roles {r1, r2, · · · , rm}. We call
these constraints Statically Mutually Exclusive Role (SMER) con-
straints. SMER constraints are part of most RBAC models, includ-
ing the RBAC96 models by Sandhu et al. [24] and the proposed and
adopted ANSI/NIST standard for RBAC [3, 11], in which SMER
constraints are referred to as SSD constraints.

SSoD policies should not be equated with SMER constraints.
Each SSoD policy specifies the minimum required number of users
that are allowed to together possess all permissions for a sensitive
task. Such a policy can be specified independent of whether roles
are used to manage the permissions or not. On the other hand,
SMER constraints are specific to RBAC. Each constraint limits the
role memberships a single user is allowed to have. Whether a set
of SMER constraints is sufficient to enforce a given SSoD policy
depends upon how permissions are assigned to roles. For exam-
ple, if all permissions that are needed to complete a sensitive task
are assigned to a single junior-most role, one cannot use SMER
constraints to ensure that no single user possesses all the permis-
sions, because no SMER constraint can prevent a user from be-
ing assigned to that single role and thereby gaining all permissions
needed for the task.

Li et al. [17] studied the relationship between SSoD policies and
SMER constraints. The following two problems were introduced:
the verification problem asks “does a set of SMER constraints en-
force an SSoD policy?”, and the generation problem asks “how to
generate a set of SMER constraints that is adequate to enforce an
SSoD policy?” Li et al. showed that the verification problem is in-
tractable (coNP-complete). They also noted that often multiple
sets of SMER constraints can enforce an SSoD policy, and these
constraint sets have different degree of restrictiveness. Intuitively,
when two sets of constraints all enforce the desirable SSoD policy,
one would prefer the set that is less restrictive. Li et al. introduced
the notion that a set C of SMER constraints minimally enforces a
set E of SSoD policies, which means that C enforces E and there
does not exist any other set of constraints that is both less restric-
tive than C and also enforces C. Li et al. presented an algorithm
that generates singleton sets of SMER constraints that minimally
enforce the policies.

The constraint generation work in [17] does not consider the in-
teraction between role hierarchies and constraints. More specifi-
cally, the algorithm in [17] may generate SMER constraints that
preclude any user from being authorized for some roles in a role

130

hierarchy. For example, if {(r3 ≥ r1), (r3 ≥ r2)} ⊆ RH , then
the constraint smer〈{r1, r2} , 2〉 implies that no user is allowed to
be authorized for r3. This is undesirable, because, if no user is
allowed to be authorized for a role, then there is no reason in hav-
ing that role as part of the role hierarchy. Another limitation of the
work in [17] is that it generates only singleton constraint sets.

In this paper, we study constraint generation while considering
the impact of role hierarchies. We define the notion of compati-
bility between a role hierarchy and a set of SMER constraints, and
then present necessary and sufficient conditions for compatibility.
Recall that each SMER constraint requires that no user is a member
of t or more roles in a set of m roles. We show that, for any integer
j > 2, SMER constraints with t = j provide additional expres-
sive power than using only SMER constraints with t < j. We then
study the problem of generating constraint sets that are compatible
with the given role hierarchy, enforce the desired SSoD policies,
and are minimal. We present two algorithms for generating such
constraint sets.

The rest of this paper is organized as follows. We discuss related
work in Section 2, and give preliminary definitions in Section 3.
In Section 4, we study the notion of compatibility, and discuss the
expressive power of SMER constraints. In Section 5, we discuss
how to generate SMER constraints to implement SSoD policies,
and give the two algorithms. We also discuss experimental results
of the algorithms in Section 6. We conclude this paper with Sec-
tion 7.

2. RELATED WORK
To our knowledge, in the information security literature the no-

tion of SoD first appeared in Saltzer and Schroeder [21] under the
name “separation of privilege.”

Clark and Wilson’s commercial security policy for integrity [4]
identified SoD along with well-formed transactions as two major
mechanisms for controlling fraud and error. The use of well-formed
transactions ensures that information within the computer system is
internally consistent. Separation of duty ensures that the objects in
the physical world are consistent with the information about these
objects in the computer system. As Clark and Wilson [4] explained:
“Because computers do not normally have direct sensors to mon-
itor the real world, computers cannot verify external consistency
directly. Rather, the correspondence is ensured indirectly by sep-
arating all operations into several subparts and requiring that each
subpart be executed by a different person.”

Sandhu [22, 23] presented Transaction Control Expressions, a
history-based mechanism for dynamically enforcing SoD policies.
Nash and Poland [19] explained the difference between dynamic
and static enforcement of SoD policies. In the former, a user may
perform any step in a sensitive task provided that the user does not
also perform another step on that data item. In the latter, users are
constrained a-priori from performing certain steps.

There exists a wealth of literature [1, 2, 6, 13, 14, 15, 25, 26]
on constraints other than SMER constraints in RBAC. They either
proposed and classified new kinds of constraints [13, 25] or pro-
posed new languages for specifying sophisticated constraints [1, 2,
6, 15, 26]. Most of the proposed constraints are variants of SMER
constraints; for example, one may declare that two permissions are
mutually exclusive, so that no role can be authorized for both per-
missions, or that two roles are dynamically mutually exclusive, so
that they cannot be activated in the same session.

Kuhn [16] discussed mutual exclusion of roles for separation of
duty and proposed a safety condition: that no one user should pos-
sess the privilege to execute every step of a task, thereby being able
to complete the task.

Crampton [5] discussed a set-based approach to separation of
duty: the state of the access control system is defined as a set of
sets, and a constraint is defined as a set which should be forbidden
in the system state. The system state satisfies the constraint if no
element of the system state (which is a set) is a superset of the
constraint. The comparison of restrictiveness between different
constraints is discussed.

As discussed in Section 1, our work is directly motivated by the
work by Li et al. [17]. See Section 1 for a discussion of [17].

3. PRELIMINARY DEFINITIONS
We now reproduce the definitions of SSoD policies and SMER

constraints from [17] . We assume that there are three countably in-
finite sets: U (the set of all possible users),R (the set of all possible
roles), and P (the set of all possible permissions).

Definition 1 (SSoD Policy). A k-n SSoD (k-out-of-n Static
Separation of Duty) policy is expressed as

ssod〈{p1, . . . , pn} , k〉
where {p1, . . . , pn} ⊂ P is a set of permissions and n and k are in-
tegers such that 1 < k ≤ n. This policy means that there should not
exist a set of fewer than k users that together have all the permis-
sions in {p1, . . . , pn}. In other words, at least k users are required
to perform a task that needs all these permissions.

Definition 2 (RBAC state). An RBAC state γ is a 3-tuple
〈UA,PA,RH 〉, in which the user assignment relation UA ⊂
U × R associates users with roles, the permission assignment re-
lation PA ⊂ R × P associates roles with permissions, and the
role hierarchy relation RH ⊂ R×R specifies an acyclic relation
among roles.

The reflexive, transitive closure of RH (denoted by RH ∗) is a
partial order among roles in R. When (r1, r2) ∈ RH ∗, we write
r1 ≥RH r2 and say that r1 is senior to r2 (or, equivalently, r2 is
junior to r1).

An RBAC state γ = 〈UA,PA,RH 〉 determines the set of roles
of which each user is a member, and the set of permissions for
which each user is authorized. Formally, γ is associated with two
functions, auth rolesγ: U → 2R and auth permsγ: U → 2P . The
two functions are defined as follows:

auth roles〈UA,PA,RH〉[u] =

{ r ∈ R | ∃r1 ∈ R [(u, r1) ∈ UA ∧ r1 ≥RH r] }
auth perms〈UA,PA,RH〉[u] =

{ p ∈ P | ∃r1, r2 ∈ R [(u, r1) ∈ UA ∧
r1 ≥RH r2 ∧ (r2, p) ∈ PA] }

As auth roles〈UA,PA,RH〉[u] is determined only by UA and RH ,
we sometimes write auth roles〈UA,RH〉[u].

Definition 3 (SSoD Safety). We say that an RBAC state γ is safe
with respect to an SSoD policy ssod〈{p1, . . . , pn} , k〉 if in state γ
no k−1 users together have all the permissions in the policy. More
precisely,

∀u1 · · ·uk−1 ∈ U

k−1[
i=1

auth permsγ [ui]

!
6⊇ {p1, . . . , pn}.

An RBAC state γ is safe with respect to a set E of SSoD policies
if it is safe with respect to every policy in the set, and we write this
as safeE(γ).

131

p1 p2 p3 p4

r1 r2 r3

r4

r5

³³³³

E = { ssod〈{p1, p2, p3, p4} , 2〉 } The SSoD policy we want to enforce
PA = { (r1, p1), (r2, p2), (r3, p3), (r3, p4), (r4, p3), (r5, p4) } The permission assignment relation.
RH = { (r4 ≥ r1), (r4 ≥ r2) } The role hierarchy.
UA1 = { (u1, r1), (u1, r3), (u1, r5) } A safe user assignment relation
UA2 = { (u1, r3), (u1, r4) } An unsafe user assignment relation; u1 has all permissions
UA3 = { (u1, r1), (u1, r2), (u1, r3) } An unsafe user assignment relation; u1 has all permissions
C1 = {smer〈{r1, r2, r3} , 3〉, smer〈{r1, r2, r4, r5} , 4〉} C1 enforces E. Both UA2 and UA3 violate C1 because

u1 is authorized for {r1, r2, r3}.
C2 = {smer〈{r3, r4} , 2〉, smer〈{r1, r2, r5} , 3〉} C2 does not enforce E. While UA2 violates E, UA3, which

is unsafe wrt. E, satisfies C2.
C3 = {smer〈{r1, r3} , 2〉, smer〈{r2, r5} , 2〉} C3 enforces E; however, it is too restrictve, as it rules out UA1.
C4 = {smer〈{r1, r2} , 2〉} C4 enforces E; however, C4 is incompatible with RH , as

no user can be assigned to r4.

Figure 1: A running example. The role hierarchy and permission assignment are shown in the picture. Roles are shown in solid
boxes, and permissions in dashed boxes. A sold line segment represents a role-role relationship, and a dash line segment represents
the assignment of a permission to a role.

We use a running example to illustrate the concepts in this paper.
This example is shown in Figure 1 and is explained below.

Example 1. Consider the following singleton set of SSoD policies:

E = { ssod〈{p1, p2, p3, p4} , 2〉 },
which means that at least two users are required to have all per-
missions in {p1, p2, p3, p4}. Consider the following three RBAC
states γ1 = 〈UA1,PA,RH 〉, γ2 = 〈UA2,PA,RH 〉, and γ3 =
〈UA3,PA,RH 〉, in which PA, RH , UA1, UA2, and UA3 are de-
fined in Figure 1. These three states have the same PA and RH ,
and differ only in UA. The state γ1 is safe with respect to E; but
the states γ2 and γ3 are not, because in these two states, the user u1

has all permissions in {p1, p2, p3, p4}.

Definition 4 (SMER constraint). A t-m SMER (t-out-of-m Stati-
cally Mutually Exclusive Role) constraint is expressed as

smer〈{r1, . . . , rm} , t〉
where {r1, . . . , rm} is a set of roles, and m and t are integers such
that 1 < t ≤ m. This constraint forbids a user from being a
member of t or more roles in {r1, . . . , rm}.

A t-m SMER constraint is said to be canonical of cardinality t
when t = m.

In [17] it has been shown that each t-m SMER (t ≤ m) con-
straint can be equivalently encoded as a set of t-t SMER con-
straints. Thus in this paper, sometimes we treat a t-m SMER con-
straint as a set of t-t SMER (canonical) constraints.

Definition 5 (SMER Satisfaction). We say that an RBAC state γ
satisfies a t-m SMER constraint smer〈{r1, . . . , rm} , t〉 when

∀u ∈ U (| auth rolesγ [u] ∩ {r1, . . . , rm} | < t) .

If γ does not satisfy a SMER constraint, we say that γ violates
the SMER constraint. An RBAC state satisfies a set C of SMER
constraints if it satisfies every constraint in the set, and we write
this as satisfiesC(γ).

Observe that a SMER constraint is concerned with only the role
membership of each user, which does not depends on PA; thus we
sometimes say that UA and RH satisfy the SMER constraints and
write satisfiesC(UA,RH).

SMER constraints restrict the role memberships each individual
user is allowed to have. Provided that permissions are carefully
assigned to roles, SMER constraints restrict the permissions each
individual user is allowed to have. When SMER constraints are
motivated by SSoD policies, we need to ensure that SMER con-
straints place sufficient restrictions on each individual user so that
any set of k − 1 users do not have all permissions to complete a
sensitive task. This means that, no matter how users are assigned
to roles, as long as the SMER constraints are satisfied, we want to
ensure that no set of k−1 users together have all permissions. This
is formalized in the following definition.

Definition 6 (SSoD enforcement). An SSoD configuration is a 3-
tuple 〈E,PA,RH 〉, where E is a set of SSoD policies, PA is a
permission assignment relation, and RH is a role hierarchy.

We say that a set C of SMER constraints enforces the SSoD
configuration 〈E,PA,RH 〉 if and only if

132

∀UA ⊂ U ×R [satisfiesC(〈UA,PA,RH 〉)
⇒ safeE(〈UA,PA,RH 〉)]

In other words, if C enforces 〈E,PA,RH 〉, then C rules out
every user-role assignment relation UA such that 〈UA,PA,RH 〉
is not safe with respect to E.

Example 2. Continuing the example in Figure 1. Consider
the three sets of constraints C1, C2, and C3. C1 enforces
〈E,PA,RH 〉. The constraints in C1 require that no user is au-
thorized for all the of r1, r2, and r3, or all of r1, r2, r4, and r5.
Any role combination that enables a user to have all permissions in
{p1, p2, p3, p4} violates one of the constraints in C1.

As we discuss in Example 1, both γ2 = 〈UA2,PA,RH 〉 and
γ3 = 〈UA3,PA,RH 〉 are unsafe with respect to E. In both γ2

and γ3, u1 is authorized for {r1, r2, r3}, thus violating C1.
C2 does not enforce 〈E,PA,RH 〉, because it does not rule out

all UAs that are unsafe. For example, γ3 = 〈UA3,PA,RH 〉 is un-
safe wrt. E, but γ3 does not violate C2 because auth rolesγ [u1] =
{r1, r2, r3}; thus, |auth rolesγ [u1] ∩ {r3, r4}| = 1 < 2, and
|auth rolesγ [u1] ∩ {r1, r2, r5}| = 2 < 3.

C3 enforces 〈E,PA,RH 〉, as it is more restrictive than C1.
In fact, it is more restrictive than necessary; for example, γ1 =
〈UA1,PA,RH 〉 is safe wrt. E; however, γ1 violates C3 because
u1 is authorized for both r1 and r2.

Note that not all SSoD configurations can be enforced by
SMER constraints. For example, given an SSoD configuration
〈{ssod〈P, k〉},PA,RH = ∅〉 such that all permissions in P are
assigned to one role r, then no set of constraints can prevent from
a user being assigned to r; thus, the SSoD configuration is not en-
forceable.

4. COMPATIBILITY &
IMPLEMENTABILITY

In [17], Li et al. showed that any enforceable SSoD configuration
can be enforced by using only 2-2 SMER constraints. Given an en-
forceable SSoD configuration 〈E,PA,RH 〉, one can declare every
pair of roles in Roles[RH] ∪ Roles[PA] to be mutually exclusive,
thereby enforcing E. However, this naive strategy often results in
constraints that are so restrictive that they render some roles in the
role hierarchy useless. More precisely, a set of SMER constraints
may preclude one from assigning any user to some roles in RH .
Consider the example in Figure 1, the constraint smer〈{r1, r2} , 2〉
implies that no user is allowed to be authorized for r4. Note that
this means that no user can be assigned to r4, or any role that is
senior to r4. This is undesirable, because, if no user is allowed to
be authorized for a role, then there is no reason for having that role
as part of the role hierarchy. To address this, we define the notion
of compatibility between a set of SMER constraints and RH , and
then present necessary and sufficient conditions for it.

4.1 Compatibility

Definition 7 (Compatibility and Incompatibility). We say that a set
C of SMER constraints is incompatible with a role hierarchy RH ,
if and only if there is a role r ∈ Roles[RH] such that for any user
assignment relation UA which satisfies C under RH , no user is
authorized for r. C is compatible with RH if and only if C is not
incompatible with RH .

The above definition is based on the intuition that every role must
be “usable” in some state that satisfies the constraints in C. We
now study how to determine whether a set of SMER constraints

is compatible with a role hierarchy. Following is a necessary and
sufficient condition for a set of SMER constraints to be compatible
with a role hierarchy.

Lemma 1. A set C of SMER constraints RH is incompatible
with a role hierarchy if and only if there is a SMER constraint
c = smer〈R, t〉 ∈ C such that t roles in R share a common ances-
tor in RH .

PROOF. For the “if” part, suppose there is a SMER constraint
c = smer〈R, t〉 ∈ C and R contains a subset R′, |R′| = t and
all roles of R′ share a common ancestor r in RH . Then any user
assignment UA that satisfies C will have no user authorized for r,
because if any user is authorized for r, c is violated. Therefore C
is incompatible with RH .

For the “only if” part, suppose C is incompatible with RH . Let
r be the “unusable” role, any user assignment which satisfies C
will have no user authorized for r. Consider an user assignment
UA which contains only one user u and u is assigned with r. By
definition of incompatibility UA doesn’t satisfy C. Suppose UA
violates c = smer〈R, t〉 ∈ C. Then u must be authorized for some
t roles in R, and those roles share the same ancestor r.

The above lemma tells us that one can efficiently check whether
C is compatible with a set RH of constraints. For every constraint
c = smer〈R, t〉 ∈ C and every role r in RH , let R′ be the intersec-
tion of R and all the roles junior to r (including r itself). If for some
c and r, |R′| ≥ t, then C is incompatible with RH . Otherwise C
is compatible with RH .

4.2 Implementing SSoD policies using SMER
constraints

We now introduce the notion of a set C of SMER constraints
implements an SSoD configuration 〈E,PA,RH 〉, which requires
that C enforces 〈E,PA,RH 〉, while being compatible with RH .

Definition 8 (Implementing SSoD policies). Given PA ⊂ R×P ,
RH ⊂ R × R, a set E of SSoD policies, and a set C of SMER
constraints. We say C implements E (under PA and RH) when

1. C is compatible with RH , and,
2. C enforces E under PA and RH , i.e.,
∀UA ⊂ U ×R [satisfiesC(〈UA,PA,RH 〉)

⇒ safeE(〈UA,PA,RH 〉)]

In Figure 1, the constraint set C4 enforces E under PA and RH ;
however, C4 is incompatible with RH , as it means no user can be
authorized for r4. Thus, C4 does not implement E.

Definition 9 (Implementable SSoD configurations). An SSoD con-
figuration is a 3-tuple 〈E,PA,RH 〉, where PA is a permission as-
signment relation, RH is a role hierarchy, and E is a set of SSoD
policies. An SSoD configuration is implementable if there exists a
set C of SMER constraints such that C implements E under PA
and RH .

Lemma 2. An SSoD configuration 〈E,PA,RH 〉 is not im-
plementable if and only if there exists an SSoD policy
ssod〈{p1, · · · , pn}, k〉 in E such that k − 1 roles together have
all the permissions in {p1, · · · , pn}.

PROOF. For the “if” part, assume that there exists such an SSoD
policy. Then no matter what set of SMER constraints we use, either
the set is incompatible with RH , or one can assign k − 1 different
users to the k − 1 roles without violating any constraint from the
set, resulting in an unsafe state. In either case, the set of SMER
constraints does not enforce E.

133

For the “only if” part, assume that there does not exist such an
SSoD policy. We now need to show that there exists a set C of
SMER constraints that enforces E. We now construct such a set C
of constraints. Our approach is to generate the most restrictive set
of constraints(the formal definition of “restrictiveness” is in Sec-
tion 5.2). For example, if RH is empty, then we can declare every
pair of roles to be mutually exclusive, this would enforce E. How-
ever, when RH is not empty, then we need to ensure that C is
compatible with RH . For example, when two roles r1 and r2 has a
common ancestor in RH , then these two roles cannot be declared
to be mutually exclusive.

Construct C as follows. We begin with C = ∅. Let R be the set
of all roles occurring in PA or RH . For each nonempty subset S of
R such that all roles in S have a common ancestor (each singleton
set would satisfy the condition), for every r ∈ R such that the set
S∪{r} does not have a common ancestor, add smer〈S∪{r}, |S|+
1〉 to C. The same smer constraint may be added more than once;
as C is a set, the duplicate ones are ignored.

We first observe that, from Lemma 1, C is compatible with RH ,
because for every t-m SMER constraint in C, t = m and the m
roles in the constraint do not share a common ancestor. Suppose,
for the sake of contradiction, that C does not enforce E, then there
exists in E an SSoD policy ssod〈{p1, · · · , pn}, k〉 and UA such
that k − 1 users together have all permissions in {p1, · · · , pn}
without violating any constraint in C. Let R1, · · · , Rk−1 be the
role memberships of the k − 1 users. For each Rj , all roles in it
must share a common ancestor. The reason is that if these roles do
not, then let S ⊆ R be a largest subset of Rj that shares a com-
mon ancestor and r be any role in Rj − S, there exists a constraint
smer〈S∪{r}, |S|+1〉 ∈ C, this constraint is violated. Let rj be a
common ancestor Rj , then the k−1 roles {r1, · · · , rk−1} together
have all permissions in {p1, · · · , pn}, contradicting the assumption
that such situation does not exist.

Theorem 3. Checking whether an SSoD configuration is enforce-
able is coNP-complete.

PROOF. The proof is similar to the one in [17] for the theorem
that checking whether an RBAC state is safe or not wrt. a set if
SSoD policies is coNP-complete. We first show that determining
that an SSoD configuration is not enforceable is in NP. If an SSoD
configuration is not enforceable, according to Lemma 2, there must
exist an SSoD policy ssod〈{p1, · · · , pn}, k〉 in E such that k − 1
roles together have all the permissions in {p1, · · · , pn}. After such
a policy and the k − 1 roles are guessed, verifying that these roles
indeed have all the permissions takes polynomial time.

We now show that determining whether an SSoD configuration is
not enforceable is NP-hard by reducing the set covering problem
to it. In the set covering problem, the inputs are a finite set S , a
family F = {S1, . . . , S`} of subsets of S , and a budget B. The
goal is to determine whether there exist B sets in F whose union
is S. This problem is NP-complete [12, 20]. The reduction is
as follows. Given S, F , and B, construct an SSoD policy e as
follows: For each element in S, we create a permission for it, let
k be B + 1 and let n be the size of S. We have constructed a k-n
SSoD policy ssod〈S, B + 1〉. Construct PA and RH as follows.
For each different subset Si (1 ≤ i ≤ `) in F , create a new role
ri and assigns to it the permissions corresponding to the elements
in Si. The resulting SSoD configuration is not enforceable if and
only if B sets in F cover S .

4.3 Expressive power
In [17], it was shown that any enforceable SSoD configuration

can be enforced using only 2-2 SMER constraints, even though

p1 p2 p3

r1 r2 r3

r4 r5 r6

PPPP
hhhhhhhh

³³³³
PPPP

((((((((
³³³³

E = { ssod〈{p1, p2, p3} , 2〉 }
PA = { (r1, p1), (r2, p2), (r3, p3)}
RH = { (r4 ≥ r2), (r4 ≥ r3) , (r5 ≥ r1),

(r5 ≥ r3) , (r6 ≥ r1), (r6 ≥ r2) }
c = smer〈{r1, r2, r3} , 3〉

Figure 2: An example to show that 3-3 SMER can implement
some SSoD policy which cannot be implemented by 2-2 SMER.

this may result in constraints that are more restrictive than neces-
sary. We now show if we require constraints be compatible with the
given role hierarchy, t-t SMER constraints for each larger t adds
new expressive power in terms of implementing SSoD configura-
tions. Since t-m SMER has the same expressive power as a set of
t-t SMER constraints, we can also see that t-m SMER constraints
for each larger t adds new expressive power.

In Figure 2, the policy E says no single user can possess all per-
missions in {p1, p2, p3}. The permission assignment relation PA is
such that p1, p2, and p3 are assigned to r1, r2, and r3, respectively.
The role hierarchy RH is such that any two of r1, r2, and r3 have
a common ancestor. The 3-3 SMER constraint c implements E
under RH . However using 2-2 SMER constraints alone, one can-
not implement E, because any such constraint will be incompatible
with RH . More generally, we have the following theorem.

Theorem 4. For any integer t > 2, there exists a SSoD configu-
ration that cannot be implemented using canonical constraints of
cardinality less than t, but can be implemented using canonical
constraints of cardinality t.

PROOF. Given any integer t > 2, consider the following con-
figuration with 2t roles and t permissions:

PA = { (r1, p1), . . . , (rt, pt)}
RH = {(ri+t ≥ rj) | 1 ≤ i, j ≤ t ∧ i 6= j}
E = { ssod〈{p1, . . . , pt} , 2〉 }

In this configuration, every role in {r1, . . . , rt} is associated with
one permission. And every t− 1 roles of {r1, . . . , rt} have a com-
mon ancestor. The policy says no single user should acquire all the
permissions.

Given any set C of canonical SMER constraints that imple-
ments the configuration, C is violated by the user assignment
UA = {(u1, r1), . . . , (u1, rt)} since UA is not safe with respect
to E. Note that auth roles〈UA,RH〉[u1] = {r1, r2, · · · , rt}. Now
consider any c = smer〈R, p〉 ∈ C that is violated by UA. We have
|R| = p, since c is canonical. We also have R ⊆ {r1, . . . , rt},
because otherwise c will not be violated. Finally, we have that p
should not be less than t, since otherwise c will be incompatible
with RH . Therefore, R = {r1, r2, · · · , rt}.

We have shown that every set of canonical SMER constraints
that implements the configuration must include the t-t SMER con-
straint smer〈{r1, r2, · · · , rt}, t〉. It thus follows that any set of
constraints that contains only canonical constraints of size less than

134

t does not implement the configuration. And we can also see that
{smer〈{r1, r2, · · · , rt}, t〉} implements the configuration, since
any single user that wants to acquire {p1, . . . , pt} will have to be
authorized (directly or by role hierarchy) for {r1, . . . , rt}.

By Theorem 4, we can see that canonical SMER constraints of
larger cardinality provides additional expressive power over canon-
ical SMER constraints of smaller cardinalities.

5. CONSTRAINT GENERATION
In this section, we give algorithms to generate SMER constraints

to enforce SSoD policies.

5.1 RSSoD requirements
SSoD policies are expressed in terms of restrictions on permis-

sions. On the other hand, SMER constraints are expressed in term
of restrictions on role memberships. In order to generate SMER
constraints for enforcing SSoD policies, the first step is to translate
restrictions on permissions expressed in SSoD policies to restric-
tions on role memberships. Such role-level SSoD requirements
were introduced in [17].

Definition 10. A k-n RSSoD (k-out-of-n Role-based Static Sepa-
ration of Duty) requirement has the form

rssod〈{r1, . . . , rn} , k〉
where each ri is a role and n and k are integers such that 1 < k ≤
n. The meaning is that there should not exist a set of fewer than
k users that together have memberships in all the n roles in the
requirement. We also say k users are required to cover the set of n
roles.

We say that an RBAC state γ is safe with respect to the above
RSSoD requirement when

∀u1 · · ·uk−1 ∈ U

k−1[
i=1

auth rolesγ [ui]

!
6⊇ {r1, . . . , rn}

!
.

An RBAC state γ is safe with respect to a set D of RSSoD require-
ments if it is safe with respect to every requirement in D, and we
write this as safeD(γ).

As role memberships are determined by UA and RH only, we
sometimes write safeD(UA,PA,RH) as safeD(UA,RH).

Given an SSoD configuration 〈PA,RH , E〉, we say that it is
equivalent to a set D of RSSoD requirements if

∀UA ⊂ U ×R [safeE(〈UA,PA,RH 〉) ⇔
safeD(〈UA,PA,RH 〉)]

where ⇔ means logical equivalence.
Similar to Definition 8, we have the following definition:

Definition 11. Let RH be a role hierarchy, D be a set of RSSoD
requirements, and C be a set of SMER constraints, we say that C
implements D under RH when C is compatible with RH , and

∀ RBAC state γ [satisfiesC(γ) ⇒ safeD(γ)]

An algorithm for generating RSSoD requirements that are equiv-
alent to SSoD configurations has been given in [18]. We thus focus
on generating SMER constraints from RSSoD requirements for the
rest of this section.

5.2 Comparing SMER Constraints
Given an SSoD configuration E,PA,RH , we first generate a set

D of RSSoD requirements, then we need to generate SMER con-
straints that enforce D and are compatible with RH . Furthermore,
we want to avoid generating constraints that are overly restrictive.
If two sets of constraints both implement D under RH , and one set
is less restrictive than the other, then we prefer the less restrictive
one. For this, we need to be able to compare two sets of SMER
constraints.

Definition 12. Let RH be a role hierarchy. Let C1 and C2 be two
sets of SMER constraints. We say that C1 is at least as restrictive
as C2 under RH (denoted by C1 ºRH C2) if

∀UA [satisfiesC1(UA,RH) ⇒ satisfiesC2(UA,RH)] .

The º relation among all sets of SMER constraints is a partial or-
der. When C1 ºRH C2 but not C2 ºRH C1, we say that C1 is
more restrictive than C2 under RH (denoted by C1 ÂRH C2).

When neither C1 ºRH C2 nor C2 ºRH C1, we say C1 and C2

are incomparable under RH , and we write C1 6≈RH C2

In the following, we show how to compare two sets of SMER
constraints. It was shown in [17] that for any SMER constraint
there exists a set of canonical constraints that is equivalent to it.
Therefore, without loss of generality, we compare two sets of
canonical SMER constraints. We first show how to compare two
individual canonical SMER constraints.

Definition 13. Give a role hierarchy RH , we use up〈RH〉(R) to
denote the set of all roles that are senior to some role in R, and
down〈RH〉(R) to denote the set of all roles that are junior to some
role in R. More precisely, we define two functions up〈RH〉 : 2R →
2R and down〈RH〉 : 2R → 2R as follows:

up〈RH〉(R) =
�

r | ∃r′ ∈ R
�
r ≥RH r′

� 	
down〈RH〉(R) =

�
r | ∃r′ ∈ R

�
r′ ≥RH r

� 	
We omit the subscript RH when it is obvious from the context.

Lemma 5. For any RH and canonical SMER constraints c1 =
smer(R1, k1) and c2 = smer(R2, k2), the following hold:

1. c1 ºRH c2 if and only if down (R1) ⊆ down (R2).

2. c1 ÂRH c2 if and only if down (R1) ⊂ down (R2).

3. c1 ≡RH c2 if and only if down (R1) = down (R2), which is
true if and only if R1 = R2.

4. c1 6≈RH c2 if and only if neither down (R1) ⊆ down (R2)
nor down (R1) ⊇ down (R2).

PROOF. We first prove assertion 1. For the “if” di-
rection: Given down (R1) ⊆ down (R2), we show that
∀UA [¬satisfiesc2(UA,RH) ⇒ ¬satisfiesc1(UA,RH)]. For
any UA, if satisfiesc2(UA,RH) is false, then there is a user in
UA who is authorized for all roles in R2. This user is also autho-
rized for all roles in R1. Therefore, satisfiesc1(UA,RH) is also
false.

For the “only if” direction: Suppose, for the sake of contra-
diction, that c1 ºRH c2 and down (R1) 6⊆ down (R2). It fol-
lows that R1 6⊆ down (R2), because if R1 ⊆ down (R2), then
down (R1) ⊆ down (down (R2)) = down (R2). Consider a
user assignment relation UA that has a single user u, which is as-
signed to all roles in R2. Clearly, satisfiesc2(UA,RH) is false. In
(UA,RH), the set of all roles that the user u is authorized for is

135

down (R2). satisfiesc1(UA,RH) is true because the only user in
UA is u and u is not authorized for all roles in R1. This contradicts
the assumption that c1 ºRH c2.

Assertions 2, 3, and 4 follow from Definition 12 and basic facts
from set theory.

Lemma 6. For any RH and two sets of canonical SMER con-
straints C1 and C2, C1 ºRH C2 if and only if for every c2 ∈ C2,
there exists c1 ∈ C1 such that c1 ºRH c2.

PROOF. The “if” part is clear. For the “only if” part, prove by
contradiction. Suppose C1 ºRH C2 and there exists some c2 ∈ C2

and there does not exist c1 ∈ C1 such that c1 ºRH c2. Then we
construct a user assignment UA such that there is just one user u.
u is assigned with all the roles in c2. Then UA does not satisfy C2

since it violates c2. But UA satisfies every constraint in C1. Here
we get a contradiction, c1 ºRH c2 does not hold.

Theorem 7. Given two canonical SMER constraints sets C1, C2

and the role hierarchy RH , It takes time O(|C1| · |C2| · |RH |) to
decide if C1 ºRH C2.

PROOF. There are O(|C1|) SMER constraints in C1, and there
are O(|RH |) roles in RH , thus it takes O(|C1| · |RH |) to
calculate down〈RH〉(R1) and store the result for every c1 =
smer(R1, k1) ∈ C1. Similarly, it takes O(|C2| · |RH |) to
calculate down〈RH〉(R2) and store the result for every c2 =
smer(R2, k2) ∈ C2. To decide if C1 ºRH C2, it is enough to
decide if c1 ºRH c2 for every c1 ∈ C1 and c2 ∈ C2. Each
comparison takes O(|RH |) and there are at most O(|C1| · |C2|)
comparisons. Thus it takes O(|C1| · |RH | + |C2| · |RH | + |C1| ·
|C2| · |RH |) = O(|C1| · |C2| · |RH |) to decide if C1 ºRH C2.

5.3 Normal form of SMER constraints sets
Consider the RH in Figure 1, suppose we have the following

SMER constraints:

c1 = smer〈{r3, r4}, 2〉
c2 = smer〈{r1, r2, r3, r4}, 4〉
c3 = smer〈{r1, r3, r4}, 3〉

Although those three constraints look different, in the sense of
restrictiveness under RH , they are equivalent. Because r4 domi-
nates both r1 and r2, each of the three constraints says that a single
user cannot have all roles of {r1, r2, r3, r4}. Suppose c1, c2, c3 are
all in a constraints set, two of them are redundant. To remove this
redundancy, we can require that for a canonical SMER constraints
set smer〈{R}, |R|〉, R = down〈RH〉(R). So we will use c2 in the
constraints set.

Suppose we have another constraint c4 = smer〈{r2, r3}, 2〉,
c2 ÂRH c4. If c2 and c4 both appear in a constraints set, c2 is
redundant because c4 is more restrictive.

To have a simple form of constraints set, we define a normal
form for constraints set as following:

Definition 14. A SMER constraints set C is in normal form under
RH if and only if

• ∀c ∈ C, c is a canonical SMER constraint.

• ∀c = smer〈{R}, |R|〉 ∈ C, R = downRH (R).

• ∀c1, c2 ∈ C, c1 and c2 are not comparable under RH

By the definition, any constraints set C can be converted into
normal form. And C and its normal form are equivalent under
RH .

5.4 Most restrictive constraints
Given the notion of restrictiveness, given R and RH , we have

the most restrictive constraints set as following:

C∗0 = {smer〈{R} , |R|〉 |
R ⊆ R ∧ smer〈{R} , |R|〉 is compatible with RH

C∗0 is compatible with RH , and it is most restrictive among all
compatible constraints sets because given any set C of constraints
which is compatible with RH , C∗0 ºRH C.

Let C∗ be the normal form of C∗0 . As discussed in Section 5.3,
we would use C∗ to present the most restrictive constraints set.

For example, in Figure 1, the most restrictive constraints
set is {smer〈{r1, r3}, 2〉, smer〈{r1, r5}, 2〉, smer〈{r2, r3}, 2〉,
smer〈{r2, r5}, 2〉, smer〈{r3, r5}, 2〉}. In Figure 2, the most re-
strictive constraints set is {smer〈{r1, r2, r3}, 3〉}.

A special case is when the role hierarchy is empty, then the most
restrictive constraints set ofR is {smer〈{r1, r2}, 2〉 | r1, r2 ∈ R}.

Given the role set R and a role hierarchy RH , there is a unique
most restrictive constraints set C∗. A SSoD policies set E can be
implemented if and only if C∗ can implement E.

5.5 Minimal implementation
Often times multiple SMER constraints sets can implement a

given set of SSoD policies (or, equivalently, a set of RSSoD re-
quirements); some constraint sets are more restrictive than others.
For example, in Figure 1, both C3 and C1 implement the desir-
able SSoD policy; and C3 is more restrictive than C1. In this case
we prefer to use the less restrictive constraint set. The following
definition makes this more precise.

Definition 15 (Minimal Implementation). Given a set D of RSSoD
requirements, we say that a set C of SMER constraints is minimal
for implementing D if C implements D and there does not exist a
different set C′ of SMER constraints such that C′ also implements
D and C Â C′ (C is more restrictive than C′).

Note that for a set of RSSoD requirements, there might be several
SMER constraints sets that minimally implement the requirements.
By definition, any two such constraints sets are not comparable, if
they both minimally implement the same set of RSSoD require-
ments.

5.6 Algorithm 1
We now give an algorithm to generate all SMER constraint

sets that minimally implement a given SSoD configuration
〈E,PA,RH 〉, by minimally implementing the set D of RSSoD
requirements corresponding to the configuration. The high-level
idea of the algorithm is as follows. Given D,RH , the algorithm
first computes the most restrictive SMER constraints set. The algo-
rithm then tries to remove or weaken the constraints in the set, until
we cannot remove or weaken any constraint (any less restrictive set
would not enforce the SSoD policy); this should give a minimal set
of constraints that enforces D. By systematically enumerating all
ways of doing this, the algorithm generates all such minimal sets of
constraints.

We also note that this algorithm can be used when one has a set
C of constraints that enforces the desired SSoD configuration but
may be too restrictive. One can use the algorithm to compute all
constraint sets that are less restrictive than C but still enforce the
desired SSoD configuration.

5.7 Algorithm 2
Consider the following scenario. A system administrator al-

ready has specified certain constraints; however, these existing con-

136

straints are not sufficient to enforce the desired SSoD policies. The
system administrator wants to add just enough constraints to make
sure that the SSoD policies are enforced. We now give an algo-
rithm to do this. Unlike algorithm 1, which starts with the set of
most restrictive set of SMER constraints and gradually weakens it,
this algorithm gradually strengthens a constraint set.

Given D,RH , and a the starting constraint set C0. We first set
C to C0. If C implements D, the algorithm stops; if not, repeat
the following until C implements D. If C does not implement D,
there must be some user assignment UA such that UA satisfies C
while being unsafe wrt. D. Let u1 be a user in UA that is involved
in making D unsafe, and let R1 be the set of authorized roles of u1.
By adding the constraint c1 = smer(R1, |R1|), we are able to rule
out UA. Note that if all roles in R1 share a common ancestor then
we cannot add c1, as it is incompatible with RH . However, when
the configuration is implementable, we can always find a user u1

and prevent u1 from being assigned roles R1.
By repeatedly adding constraints to C, C will finally implement

D under RH , provided that D is implementable. Each time the
algorithm will find a number of constraints that can be added to C
according to the counter example UA. There are two approaches
to choose which constraint to add. In the enumeration approach,
the algorithm tries all possibilities. In this approach, the algorithm
eventually outputs all constraint sets that include the starting con-
straint set as a subset and minimally implement D. In the interac-
tion approach, each time the system will list all possible constraints
and let the administrator to choose which constraint to add.

6. IMPLEMENTATION OF CONSTRAINT
GENERATION

We have implemented the two algorithms in Section 5.6 and Fig-
ure 5.7. For the second algorithm, we have implemented both the
enumeration variant and the interaction variant. The code is written
in C++. Both algorithms need to check whether a set of constraints
implements a set of RSSoD requirements. As shown in [17], this
problem can be reduced to the propositional satisfaction (SAT)
problem. We use the open source SAT solver MiniSAT [7] to solve
the SAT problem for this problem. The tool reads an input file that
contains the SSoD policies, the permission assignment relation, and
the role hierarchy, and outputs all constraint sets that minimally im-
plement the SSoD policies.

Figure 3 and Figure 4 give two example SSoD configurations
and all constraint sets that are minimal in implementing the con-
figurations. The example in Figure 3 has an empty role hierarchy
relation, and the example in Figure 4 has an non-empty role hierar-
chy relation.

7. CONCLUSIONS
We have studied a number of problems related to generating

SMER constraints for enforcing SSoD policies, while respecting
the existing role hierarchy. Particularly we have introduced and im-
plemented two algorithms for generating constraint sets that mini-
mally implement a set of SSoD policies under the given permission
assignment and role hierarchy.

Acknowledgement. Portions of this work are supported by
NSF CNS-0448204 and sponsors of CERIAS. We thank the anony-
mous reviewers for their helpful comments.

p1 p2 p3 p4

r1 r2 r3 r4

PA = {(r1, p1), (r2, p2), (r3, p3), (r4, p4)}
E = {ssod〈{p1, p2, p3, p4}, 3〉}
D = {rssod〈{r1, r2, r3, r4}, 3〉}

Output of the tool: 8 constraints sets that mini-
mally implement the RSSoD policy D, in which
〈r1, r2〉 represents the canonical SMER constraint
smer〈{r1, r2}, 2〉:

{〈r1, r2〉, 〈r1, r3〉, 〈r1, r4〉, 〈r2, r3, r4〉}
{〈r1, r2〉, 〈r1, r3〉, 〈r2, r3〉}
{〈r1, r2〉, 〈r1, r3, r4〉, 〈r2, r3〉, 〈r2, r4〉}
{〈r1, r2〉, 〈r1, r4〉, 〈r2, r4〉}
{〈r1, r2, r3〉, 〈r1, r4〉, 〈r2, r4〉, 〈r3, r4〉}
{〈r1, r2, r4〉, 〈r1, r3〉, 〈r2, r3〉, 〈r3, r4〉}
{〈r1, r3〉, 〈r1, r4〉, 〈r3, r4〉}
{〈r2, r3〉, 〈r2, r4〉, 〈r3, r4〉}

Figure 3: An example SSoD configuration and the constraint
sets generated by the constraint generation tool

p1 p2 p3 p4 p5 p6

r1 r2 r3 r4

r5 r6 r7

(((((((((

PA = {(r1, p1), (r2, p2), (r6, p2), (r5, p3), (r3, p3),
(r3, p4), (r4, p4), (r4, p5), (r7, r6)}

RH = {(r5 ≥ r2), (r3 ≥ r3), (r7 ≥ r3)}
E = {ssod〈{p1, . . . , p6}, 3〉}
D = {rssod〈{r1, r2, r3, r4, r7}, 3〉,

rssod〈{r1, r3, r4, r6, r7}, 3〉}
The 8 constraints sets generated by the tool:

{〈r1, r2〉, 〈r1, r3, r4, r7〉, 〈r1, r3, r6〉, 〈r2, r3, r7〉,
〈r2, r4〉, 〈r3, r4, r6〉, 〈r3, r6, r7〉}

{〈r1, r2〉, 〈r1, r3, r6〉, 〈r1, r3, r7〉, 〈r1, r4〉,
〈r2, r3, r4, r7〉, 〈r3, r4, r6, r7〉}

{〈r1, r2〉, 〈r1, r3, r6〉, 〈r1, r3, r7〉, 〈r2, r3, r7〉, 〈r3, r6, r7〉}
{〈r1, r2〉, 〈r1, r3, r6〉, 〈r1, r4〉, 〈r2, r4〉, 〈r3, r4, r6〉}
{〈r1, r2, r3, r7〉, 〈r1, r3, r6, r7〉, 〈r1, r4〉, 〈r2, r4〉,
〈r3, r4, r6〉, 〈r3, r4, r7〉}

{〈r1, r2, r4〉, 〈r1, r3, r4, r6〉, 〈r1, r3, r7〉, 〈r2, r3, r7〉,
〈r3, r4, r7〉, 〈r3, r6, r7〉}

{〈r1, r3, r7〉, 〈r1, r4〉, 〈r3, r4, r7〉}
{〈r2, r3, r7〉, 〈r2, r4〉, 〈r3, r4, r6〉, 〈r3, r4, r7〉, 〈r3, r6, r7〉}

Figure 4: Another example SSoD configuration and the con-
straint sets generated by the constraint generation tool

137

8. REFERENCES
[1] G.-J. Ahn and R. S. Sandhu. The RSL99 language for

role-based separation of duty constraints. In Proceedings of
the 4th Workshop on Role-Based Access Control, pages
43–54, 1999.

[2] G.-J. Ahn and R. S. Sandhu. Role-based authorization
constraints specification. ACM Transactions on Information
and System Security, 3(4):207–226, Nov. 2000.

[3] ANSI. American national standard for information
technology – role based access control. ANSI INCITS
359-2004, Feb. 2004.

[4] D. D. Clark and D. R. Wilson. A comparision of commercial
and military computer security policies. In Proceedings of
the 1987 IEEE Symposium on Security and Privacy, pages
184–194. IEEE Computer Society Press, May 1987.

[5] J. Crampton. Authorizations and Antichains. PhD thesis,
Birbeck College, University of London, UK, 2002.

[6] J. Crampton. Specifying and enforcing constraints in
role-based access control. In Proceedings of the Eighth ACM
Symposium on Access Control Models and Technologies
(SACMAT 2003), pages 43–50, Como, Italy, June 2003.

[7] N. Een and N. Sorensson. The minisat page.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/.

[8] D. F. Ferraiolo, J. A. Cuigini, and D. R. Kuhn. Role-based
access control (RBAC): Features and motivations. In
Proceedings of the 11th Annual Computer Security
Applications Conference (ACSAC’95), Dec. 1995.

[9] D. F. Ferraiolo and D. R. Kuhn. Role-based access control.
In Proceedings of the 15th National Information Systems
Security Conference, 1992.

[10] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.
Role-Based Access Control. Artech House, Apr. 2003.

[11] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Transactions on Information and
Systems Security, 4(3):224–274, Aug. 2001.

[12] M. R. Garey and D. J. Johnson. Computers And
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

[13] V. D. Gligor, S. I. Gavrila, and D. F. Ferraiolo. On the formal
definition of separation-of-duty policies and their
composition. In Proceedings of IEEE Symposium on
Research in Security and Privacy, pages 172–183, May
1998.

[14] T. Jaeger. On the increasing importance of constraints. In
Proceedings of ACM Workshop on Role-Based Access
Control, pages 33–42, 1999.

[15] T. Jaeger and J. E. Tidswell. Practical safety in flexible
access control models. ACM Transactions on Information
and System Security, 4(2):158–190, May 2001.

[16] D. R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access control
systems. In Proceedings of the Second ACM Workshop on
Role-Based Access Control (RBAC’97), pages 23–30, Nov.
1997.

[17] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive
roles and separation of duty. In Proceedings of the 11th ACM
Conference on Computer and Communications Security
(CCS-11), pages 42–51. ACM Press, Oct. 2004.

[18] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive
roles and separation of duty. Technical Report
CERIAS-TR-2004-21, Center for Education and Research in
Information Assurance and Security, Purdue University, June
2004.

[19] M. J. Nash and K. R. Poland. Some conundrums concerning
separation of duty. In Proceedings of IEEE Symposium on
Research in Security and Privacy, pages 201–209, May
1990.

[20] C. H. Papadimitriou. Computational Complexity. Addison
Wesley Longman, 1994.

[21] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the IEEE,
63(9):1278–1308, September 1975.

[22] R. Sandhu. Separation of duties in computerized information
systems. In Proceedings of the IFIP WG11.3 Workshop on
Database Security, Sept. 1990.

[23] R. S. Sandhu. Transaction control expressions for separation
of duties. In Proceedings of the Fourth Annual Computer
Security Applications Conference (ACSAC’88), Dec. 1988.

[24] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Computer,
29(2):38–47, February 1996.

[25] T. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. In Proceedings of The 10th
Computer Security Foundations Workshop, pages 183–194.
IEEE Computer Society Press, June 1997.

[26] J. Tidswell and T. Jaeger. An access control model for
simplifying constraint expression. In Proceedings of ACM
Conference on Computer and Communications Security,
pages 154–163, 2000.

138

