

PANEL:

Which Access Control Technique will Provide the

Greatest Overall Benefit?

Moderator: Timothy Fraser
(NAI Labs)

PANELISTS: David Ferraiolo, Mikel Matthews, Casey Schaufler,
Stephen Smalley, Robert Watson

The Question Before the Panel:

Considering all factors (for example: quality of protection,
performance, compatibility, ease of use), which operating system
access control technique will provide the greatest overall benefit to
users?

Panelists Positions follow on the next 8 pages.

Copyright is held by the author/owner(s).
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA
ACM 1-58113-350-2/01/00005.

141

An Argument for the Role-Based Access Control Model
David F. Ferraiolo

 National Institute of Standards and Technology

The fundamental objective of any access control system is to
protect system resources against inappropriate or undesired user
access. In practice this objective has been met with a mechanism
that translates a user’s access request through a simple table
lookup of the access control matrix [14] – to grant or deny access.
Although, access control may in some respects seems straight
forward, and mundane, of all disciplines of security, access control
stands out as being the least mature and the most problematic. The
difficulty lies in the policy or the meaning behind the phrase –
“inappropriate or undesired user access.” The reality is that access
control policies can differ greatly from one organization to
another. For instance the military, banking, and healthcare
institutions have all defined and formally modeled unique policies.
The question is, what is the most advantageous security model to
meet these diverse policy needs? From an interoperability
perspective, what model should be used to drive access control
mechanisms of host and network operating systems, database
management systems, and enterprise management systems that
form the information infrastructures of government and
commercial organizations?
To deal with commercial requirements, newer formal models for
access control have been developed that go beyond the simple
access control matrix model for the design of more complex
security policies [4, 5, 15, 19, 21, 24, 25]. Among these models
Role-Based Access Control (RBAC) [6, 7, 10, 17, 20] stands out
in its ability to meet a large variety of policy objectives. By
making central use of role-based structures and going beyond the
simple table lookup of the access control matrix, and the fixed
structure of a lattice of security labels, access control models have
evolved in their support of an increasing range of access control
policies. In particular, RBAC has been shown to be natural in its
support of least privilege as well as static and dynamic separation
of duty policies [9, 13, 16] known to be important to the business
applications of numerous organizations [11, 23]. In addition,
RBAC implementations have been shown to afford administrative
convenience in visualizing and managing authorizations
information in a manor that is natural to the hierarchical privilege
and organizational structures of most enterprises [8]. Because
roles are global to the role-privilege relations of host operating
systems, user privileges can be created, reviewed and deleted
through user-role relations.
The concept of roles has been used in software applications for at
least 25 years, but it is only within the past decade that RBAC has
emerged as a full-fledged mechanism as mature as traditional
mandatory access control (MAC) and discretionary access control
(DAC) concepts. The roots of RBAC include the use of groups in
UNIX and other operating systems, privilege groupings in
database management systems [2, 24], and separation of duty

concepts described in earlier papers [4, 5, 19]. The modern
concept of RBAC embodies all these notions in a single access
control model in terms of roles and role hierarchies, role
activation, and constraints on user/role membership and role set
activation. These constructs are common to the early formal
definitions of RBAC proposed by various authors [6, 7, 17, 20]. A
comprehensive framework for RBAC models was defined by
Sandhu et al. [20], and expanded in subsequent publications [1,
18, 22].
Central to RBAC is the concept of role relations. A role is a
semantic construct around which access policy is formulated.
Common to RBAC models are four basic elements: Users, Roles,
and Permissions (sub-defined as an Operation on an Object); two
types of role assignment relations: User/Role, and
Role/Permission; as well as static constraint relations imposed on
role assignments. Although a role is commonly defined as a job
function within the context of an organization, the basic concept of
a role allows for the abstraction of users into a number of security
related categories that may include among others: users,
administrators, organizational units, clearance levels, or integrity
levels. In addition, role hierarchies are defined as a partial ordering
on the inheritance relation, where role r1 inherits r2 if the
permissions assigned to r1 are also assigned to r2. Similarly, to
roles, object sets have been proposed to serve as abstractions of
objects into a number of categories, to include: object types,
classification levels, integrity levels or object groups.
In addition, operations can be categorized into operation types, for
use in defining application specific permissions. For example,
deposit and withdraw operations of a banking application may be
applied to the objects contained in the accounts object set. Another
example is the administrative operations that are applied to the
RBAC sets in creating and maintaining relations and used in
delegating administrative permissions from one administrator to
another.
Static constraints allow for the specification and enforcement of
separation policies during the construction and maintenance of the
authorization database. Static constraints can take on many forms
to include any combination of user, role, operation, and object
sets.
In support of access decisions, a user establishes a session during
which the user activates some subset of roles that he or she is
authorized. Each session is a mapping of one user to possibly
many roles, i.e., a user establishes a session during which the user
activates some subset of roles that he or she is assigned. Each
session is associated with a single user and each user is associated
with one or more sessions. The permissions available to the user
are the permissions assigned to the roles that are activated across
all the user’s sessions. By placing constraints on the activation of
roles within or across a user’s sessions provides a powerful means
of enforcing a wide variety of least privilege and dynamic
separation of duty policies. As with static constraints, dynamic
constraints can be formulated on any combination of user, role,
operation, and object sets.

Copyright is held by the author/owner(s).
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA
ACM 1-58113-350-2/01/00005.

142

To configure RBAC relationships in the embodiment of policy,
administrative RBAC models and policy specification languages
have been separately proposed [1] and in some cases integrated
into the RBAC model [17, 22, 23].
To attest to its further flexibility in configuring policy, RBAC
models have been extended to show support for One-directional
information flow and, Discretionary access control [18], as well as
integrated with other constructs in support of history-based
policies such as Chinese wall and Workflow policies [3, 12].
Of the many access control technologies currently in development,
RBAC models appear to be the most attractive solution for
providing security features in large enterprises information
infrastructures. RBAC features such as policy neutrality, principle
of least privilege, and ease of management make it an especially
attractive solution to the complex authorization problem.

REFERENCES
[1] Gail Ahn and Ravi Sandhu. “Role-Based Authorization

Constraints Specification.” ACM Transactions on
Information and System Security, Volume 3, Number 4,
November 2000.

[2] R. W. Baldwin. Naming and grouping privileges to simplify
security management in large databases. In proc. of the Symp.
on Security and Privacy, pp. 116-132. IEEE Press, 1990.

[3] E. Bertino, P. Bonatti, E. Ferrari. TRBAC: a temporal role-
based access control model. In Proc. of fifth ACM Workshop
on Role based access control, pp. 21-30, 2000.

[4] D. Brewer and M. Nash. The Chinese wall security policy. In
proc. of the Symp. on Security and Privacy, pp. 215-228.
IEEE Press, 1989.

[5] D. Clark and D. Wilson. A comparison of commercial and
military computer security policies. In proc. of the Symp. on
Security and Privacy, pp. 184-194. IEEE Press, 1987.

[6] D. Ferraiolo and R. Kuhn. Role-Based Access Control. In
Proc. of the NIST-NSA Nat. (USA) Comp. Security Conf., pp
554-563, 1992

[7] D. Ferraiolo, J. Cugini, and R. Kuhn. Role-based access
control: Features and motivations. In Proc. of the Annual
Computer Security Applications Conf., IEEE Press, 1995.

[8] D. Ferraiolo, J. Barkley, and R. Kuhn. A role based access
control model and reference implementation within a
corporate intranet. ACM Transactions on Information and
System Security, 2(1), 1999.

[9] S. Gaverila and J Barkley. Formal specification for rbac
user/role and role relationship management. In Proc. of third
ACM Workshop on Role based access control, pp. 81-90,
1998.

[10] L. Giuri and P. Iglio. A formal model for role based access
control with constraints. In proc. of the Computer Security
Foundations Workshop, pp. 136-145. IEEE Press, 1996.

[11] V.D. Gligor, S.I. Gavrila, D.F. Ferraiolo. On the Formal
Definition of Separation-of-Duty Policies and their
Composition. Proc. Symp. on Security and Privacy, IEEE
Press,1998.

[12] W. Huang and V. Atluri. A secure web-based workflow
management system. In Proc. of fourth ACM Workshop on
Role based access control, pp. 83-84, 1999.

[13] R. Kuhn. Mutual exclusion as a means of implementing
separation of duty requirements in role based access control
systems. In Proc. of Second ACM Workshop on Role based
access control, 1997.

[14] B. Lampson. Protection. ACM Operating Sys. Reviews,
8(1):18-24, 1974.

[15] C. McCollum, J. Messing, L. Notargiacomo. Beyond the pale
of MAC and DAC – defining new forms of access control. In
proc. of the Symp. on Security and Privacy, pp. 190-900.
IEEE Press, 1990.

[16] M. Nyanchama and S. Osborn. The graph model and
conflicts of interest. ACM Transactions on Information and
System Security, 2(1), 1999.

[17] M. Nyanchama and S. Osborn. Access rights administration
in role-based security systems. In J. Biskup, M. Morgenstern,
and C. E. Landwehr, editors, Database Security, VIII: Status
and Prospects, pages 37-56. North-Holland, 1994.

[18] S. Osborn, R. Sandhu and Q. Munawer. Configuring Role-
Based Access Control to Enforce Mandatory and
Discretionary Access Control Policies. ACM Transactions on
Information and System Security, 3(2), 2000.

[19] Ravi Sandhu, “Transaction Control Expressions for
Separation of Duties.” Proc. Fourth Aerospace Computer
Security Applications Conference, Orlando, Florida, IEEE
Computer Society Press, December 1988, pages 282-286.

[20] R Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. IEEE Computer, 29(2),
February 1996.

[21] R. Sandhu. The typed access matrix model. Proc. Symp. on
Security and Privacy, pp. 122-136. IEEE Press, 1992.

[22] Ravi Sandhu, Venkata Bhamidipati and Qamar Munawer.
"The ARBAC97 Model for Role-Based Administration of
Roles." ACM Transactions on Information and System
Security, Volume 2, Number 1, February 1999, pages 105-
135.

[23] R. Simon and M. Zurko. Separation of duty in role based
access control environments. In Proc. of, New Security
Paradigms Workshop, September 1997.

[24] T. C. Ting, S. A. Demurjian, and M. Y. Hu. Requirements
capabilities and Functionalities of User-Role Based Security
for an Object-Oriented Design Model. In S. Jajodia and C. E.
Landwehr, editors, Database Security, IV: Status and
Prospects, pages 275-296. North-Holland, 1992.

[25] D. J. Thomsen. Role-based application design and
enforcement. In S. Jajodia and C. E. Landwehr, editors,
Database Security, IV: Status and Prospects, pages 151-168.
North-Holland, 1991.

143

Position Paper
Mikel L. Matthews

Argus Systems Group, Inc.

1. Question
Considering all factors (for example: quality of protection,
performance, compatibility, ease of use), which operating system
access control technique will provide the greatest overall benefit to
users?

2. Position
It should be obvious that no single access control technique will
provide “the greatest overall benefit” in all circumstances. The goal of
the access control policy and the nature of the user community will
dictate the most appropriate access control component. The difficulty
of selecting an access control mechanism is compounded by the fact
that historically, nearly all operating systems have incorporated only
one access control mechanism, with only a small number of
“specialty” operating systems having a second access control feature.
Even among computer experts, few have had any significant
experience with any access control technique beyond the traditional
mechanism involving user identifiers and file access control lists or
modes.
To answer the question above, I will briefly discuss four types of
access control techniques: DAC (discretionary access control), MAC
(mandatory access control), RBAC (role-based access control), and
DBAC (domain-based access control).
Discretionary access control is the most popular access control
mechanisms, and it is used on all UNIX/UNIX-like systems as well as
the Windows NT family of operating systems. DAC provides
granularity down to a user or group of users. The user’s identifier
associated with a process is compared to permission mode bits or an
access control list to determine what, if any, access can be had to the
object. DAC has been used and will continue to be used by modern
day operating systems.
Mandatory access control has been in use for over three decades.
MAC is most often thought of in connection with the control of
information flow in a multilevel secure (MLS) system, but has been
increasingly used commercial systems in highly hostile environments.
MAC requires a sensitivity label to be on both objects (files, ipc, etc.)
and subjects (processes). Access is allowed or denied based on the
relationship between the label of the subject and the object. Unlike a
discretionary policy, under a MAC policy the creator and owner of an
object does not have control over its security label, and thus cannot
allow access or distribute information outside the system security
policy.
Role-based access control is another mechanism that has become a
popular topic of study and research over the last decade. RBAC
systems grant permissions based on roles, which are properties of a
user’s account and current session. There can be a many-to-many
relationship between roles and user accounts, and a user’s role set may
be dynamic even within a single session. Roles may be used to allow a
user to perform high level functions, such as backup and restore, as
well as for access control to low level objects and records.

Domain-based access control is a relatively new type of access control
mechanism that is based on the concept of access domains (AD). Like
MAC, DBAC involves labeling both subjects and objects, can be used
to impose a security policy on users and programs, and can be used to
create compartments or partitions within the system. However, unlike
MAC, DBAC does not provide information flow protection, but it
does provide separate access rights for different access modes, and
permits users and processes to operate outside the control of the
DBAC mechanism entirely. DBAC forms the foundation of the Argus
Systems Group’s PitBull LX product line.
On a system with DBAC, a process can operate in a mode that does
not recognize any of the restrictions imposed by ADs. Once a process
shifts into “AD aware mode” (or it is created in that mode), all AD
access controls will be enforced. No process in AD aware mode can
shift out of that mode. This interesting property of DBAC systems
allow interesting architectures where certain users (such as
administrators) or processes (such as monitoring utilities) can operate
entirely outside the scope of users or applications that need to be
tightly controlled.
Although the Argus PitBull LX product implements two types of ADs,
those for files (FAD) and those for networks (NAD), only file ADs are
discussed here. File ADs provide access protection based on a domain
and the attributes of the domain. There are three attributes associated
with a AD: read, write, and execute access. These were modeled after
the DAC attributes to make understanding ADs easier. Processes and
files may exist in multiple access domains.
DAC, MAC, RBAC, and DBAC techniques all have their uses on an
OS. The quality of protection does differ for each type of access
control.
MAC and DBAC can enforce partitioning of systems and can control
privileged processes and accounts. These properties are particularly
important for systems in high-risk environments where the danger of
attack is very high (such as Internet sites) or the value of the assets
being protected is very high (such as with military intelligence
systems). For users at home who only need to keep from overwriting
their own files or system files, DAC seems most suitable. In large
distributed, networked systems RBAC mechanisms greatly simplify
the overhead of managing access to critical resources or applications.
DAC and DBAC mechanisms tend to be more intuitive and require
less expertise to manage than MAC or RBAC systems. For small
businesses, home users, and enterprise-wide deployment, DAC and
DBAC solutions may be the most cost-effective.

3. Summary
There is no one access control mechanism that provides the
greatest overall benefit to users. The user must decide what type
of protection is needed and to what degree it is needed. Each type
of access control mechanism has a place in today’s operating
systems. The degree to which protection is needed depends on the
requirements for that system. Trade-offs will have to be made as
to performance, compatibility, and ease of use for the quality of
protection needed for that system.

Copyright is held by the author/owner(s).
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA
ACM 1-58113-350-2/01/00005.

144

They Want Froot Loops
Why Industry Will Continue To Deliver Multi-Level Security

Casey Schaufler
SGI

Every parent in America is familiar with heavily sweetened, sugar
coated breakfast cereals.1 Every new parent knows, deep in their
heart, that their child will never ever, under any circumstances, be
feed that kind of junk. Nonetheless, there is no product market
more hotly contested than kid's cereals. How can it be that
products no one wants2 turn out to battle over supermarket shelf
space?

The truth of the matter is that parents buy Froot Loops, Capt’n
Crunch, Coco Puffs, and Trix3 for the same reason that computer
systems vendors make multi-level secure computer systems. The
only child less likely to melt down in a public place in the middle
of the morning than one stuffed with Choclat Frosted Shoogar
Bombs is the one who has had no breakfast at all. Similarly, the
customer you loose to a competitor even though you have a better
product is the one who won’t come to the table if you can't offer a
multi-level secure (MLS) system.4

Much has been made in the years since the publication of the Bell
and LaPadula sensitivity model about how it doesn't meet real
world needs. The commercial facility, the reasoning goes, isn’t
going to have Marine guards at the front desk stamping
documents with big imposing words done up in an intimidating
font. It’s a kinder, friendlier, world outside the U.S. DoD. If the
information stored on the CFOs computer is “accidentally” sent to
an investment house in New York it's not like anyone is going to
jail, right?5

We have a much better understanding of the value of intellectual
property now than we did in 1985, when the only people who
seemed to care about access control on computers were either
military, dealing with classified information, or academic, dealing
with undergraduates. Today everyone seems to appreciate the
value of their VISA number, in some cases much more so on
when it's on a disk drive than when it’s in the hands of an
underpaid waiter. The masses have discovered computer security,
and like the path finders who went before them have fallen head
over heals for the sexiest security technology of all, cryptography.

1 Parents who claim otherwise really need to spend more time with their

children!
2 The power of advertising is admittedly strong, however I have yet to have

my child ask twice for an inferior (in the jargon of parenthood, yucky)
product. Parents actually do the buying.

3 All this to get a product plug in, SGIs Trusted Irix product is called Trix by
its aficionados.

4 Customers act like spoilt children in may other ways as well. I will stick to
the topic at hand.

5 Yes, you're correct, this is sarcasm.

Copyright is held by the author/owner(s).
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA
ACM 1-58113-350-2/01/00005.

Even as American Express is pushing their latest crypto scheme
on national television there exists a set of computing facilities for
whom the radiant glow of cryptography is not enough. The
realization that you can encrypt messages for transmission, you
can encode them for storage, but that you have to bear all when
it's time to use them brings back the notion of access control, and
today that means strong access control.

When a computer buyer goes looking for a strong access control
scheme she doesn’t call the National Security Agency or the
Computer Science chair at Southeast Arizona State University,
she calls the same person who solves all of her information system
problems. When the head of systems administration finishes
laughing she calls the corporate preferred6 system Sales Rep, and
asks for their solution. The Sales Rep, having never dealt with this
kind of thing before, looks in the price book7 and finds that
trusted version they did for a government contract a couple years
ago. Problem solved.

Before we start tossing around terms like “Bill of Goods,” and
“Buggy Whip,” do consider that most cases in which strong
access control is desired there are a small number of groups who
wish to share one expensive8 resource. Also keep in mind that
these groups don’t trust each other, or they wouldn’t be going out
of their way to maintain separation. For these people, a simple
model access control is preferred over something with generality,
which offers addition configuration choices to confuse the
aforementioned, now actively hostile, head of systems
administration.

Recent experience in the market indicates that the ideal strong
access control scheme should protect the system from the users9
and separate the user groups either completely or such that one
group is superior to the others. The former scheme is an example
of MLS categories. The later scheme is MLS levels.

There are those who would have us abandon MLS systems in
favor of more general schemes. Alternatives suggested include
Domain Type Enforcement (DTE),10 Role Based Access Control
(RBAC), and Pluggable Policy Modules (PPM). Each of these
mechanisms secedes in the goal of generality.

Advocates of DTE claim, although they have not demonstrated an
implementation, that DTE can be used to emulate Bell &
LaPadula sensitivity. Fans of RBAC are inclined to explain why
it’s great, but don't seem to have put an entire system together

6 As in, I preferred the root canal to the extended staff meeting.
7 The Sales Rep looks in the price book whenever he has a problem as he has

no interest whatever in anything that does not have a commission attached
to it.

8 In 2001 terms, US$3,000,000 is a good lower bound
9 Trix uses Biba integrity for this, but B&LaP can be used instead
10 Some fine work done in the NSA to bring this out

145

using it. The internal issues of PPM, especially regarding locating
every place a policy decision might possibly be required, have
hampered the credibility of this approach in a real system.11

In the real world12 we find little interest in strong access controls. In
the cases where we do find it, the traditional13 MLS scheme, with it's
hierarchical and set based features, usually has one more feature than
the customer actually has use for. Would it be fun to experiment with
two-man switch, union seniority, or number of patches accepted by
Linus policies? Of course it would. But I can’t sign up to make whole-
grain, fruit juice sweetened, high fiber granola.
The customers are buying Froot Loops.

11 “You’ll never get this past Linus!”
12 As experienced by Dilbert and me
13 Classic, Old Fashioned, Stone Age, if you prefer.

146

Which Operating System Access Control Technique Will
Provide the Greatest Overall Benefit to Users?

Stephen Smalley
NAI Labs

Mandatory access controls that are flexible in their support for
security policies and that are directly integrated into the service-
providing components of the operating system will provide the
greatest overall benefit to users. Current mainstream operating
systems only provide discretionary access controls and place the
burden of security on the individual end users. Even worse, most
systems only provide a weak form of discretionary access control
in which the discretionary policy can be changed by any code
executed by users, regardless of the trustworthiness of that code.
These systems are incapable of enforcing the separation of
information based on confidentiality or integrity requirements, and
they are incapable of protecting users from malicious software. As
illustrated by the examples in [6], the absence of operating system
mandatory access controls leaves application security mechanisms
vulnerable to tampering and bypass, and malicious or flawed
applications can easily cause failures in system security when only
discretionary access controls are available.
Operating system mandatory access controls can be implemented
in a variety of ways. A technique that has gained popularity is the
use of kernel space wrappers [4, 5, 8]. Wrapper-based techniques
can offer several advantages over conventional implementations,
such as increased ease of integration and maintenance. They can
also be applied to closed source COTS systems that provide a
mechanism like loadable kernel modules.
However, wrapper-based techniques also have some serious
limitations. As discussed in Section 3.2 of [9], wrapper-based
techniques are limited by the existing functional interface that is
provided by the system. This limits the abstractions and services
that a wrapper-based technique can control. Such techniques are
also limited in their ability to make use of internal system state,
and frequently must maintain redundant state in order to make
decisions. The level of abstraction of the existing interface may
also cause difficulties in guaranteeing the uniqueness of objects or
in ensuring that the system remains consistent from the time that
checks are performed to the time that the service is provided. For
example, pathname-based system calls pose problems for wrappers
in the areas of object aliasing, multi-component pathnames, and
changes in the mapping from pathname to object. Wrapper-based
techniques also cannot address subsequent changes to the security
policy, particularly the revocation of permissions that are
implicitly retained in the state of the system such as open file
descriptions, established connections or in-progress operations.
Based on these limitations of wrapper-based techniques, it seems
preferable to directly integrate mandatory access controls into the
service-providing components of the operating system. Several
different kinds of mandatory access controls might be integrated
into an operating system. In traditional trusted operating systems,

mandatory access controls have been tightly coupled to lattice-
based models such as the Bell-LaPadula [1] (BLP) model of multi-
level security (MLS) and the parallel model for integrity provided
by Biba [2]. This tight coupling has limited their applicability,
since the mandatory access controls of these systems do not
address other important security requirements such as fine-grained
least privilege, protected subsystems and assured pipelines, or
dynamic separation of duty.
Abstractly, traditional mandatory access controls provide strong
guarantees for the separation of information based on its
confidentiality or integrity characteristics. However, these models
also require that many important system functions be placed into
trusted subjects that operate outside of the constraints of the policy
model. Hence, the security of the entire system typically devolves
to the security of the trusted subjects, and these systems frequently
require many trusted subjects for normal operation. Furthermore,
mechanisms for limiting these trusted subjects to least privilege are
typically coarse-grained and must be provided separately from the
ordinary mandatory access control mechanism.
A different form of mandatory access control known as Type
Enforcement [3] (TE) offers several advantages over the
traditional model. Security labels are not required to form a partial
order, so intransitive relationships can be defined to support
protected subsystems and assured pipelines. The security policy
logic is defined through a set of separate tables, so the security
policy can be easily customized. Controls over program execution
and changes in access rights (domains) are explicitly defined in the
TE tables, so no separate mechanism is required for this purpose.
No trusted subjects that can operate outside of the constraints of
the TE tables are needed, since the tables can be configured to
grant exactly those access rights that are required for privileged
subjects. Users and individual programs can be easily limited to
least privilege through the definition of domains and domain
transitions.
However, TE also has its limitations. Since the security policy
logic is defined through tables and there are no implicit
relationships among labels, it would be cumbersome to express a
complex BLP or Biba lattice using TE, and it is more difficult to
verify that TE tables provide the same guarantees for the
separation of information. TE also does not directly address
dynamic security policy requirements, which are often needed in
real-world environments.
Since no single model is likely to meet all user's needs, operating
systems must be flexible in their support for security policies.
Policy flexibility requires a mandatory access control architecture
that provides clean separation of policy from enforcement and
well-defined interfaces for obtaining policy decisions. In order to
support dynamic security policy requirements, this architecture
must provide a mechanism for supporting policy changes and in
particular for revoking permissions, including permissions that are

Copyright is held by the author/owner(s).
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA
ACM 1-58113-350-2/01/00005.

147

implicitly retained in the state of the system. The architecture and
any implementations of it must allow authorized users to easily
customize the security policy, including the addition of new policy
components, so that users can express security policies in the
manner that is most appropriate to their security requirements
rather than requiring all policies to be mapped into a single model.
The architecture must also address a number of acceptability
concerns for mandatory access controls. It must ensure that the
performance overhead of the mandatory access controls is
minimal. Unlike traditional implementations of mandatory access
controls, the architecture cannot take advantage of policy-specific
information to optimize the enforcement mechanism. The
mandatory access controls must operate transparently to
applications and users except when access failures occur.
Compatibility problems should only occur when the security
requirements of a particular security policy conflict with the
functional behavior of existing applications.
To provide a high quality of protection, an operating system access
control technique must be mandatory, must be directly integrated
into the operating system services, and must be able to support a
wide variety of real-world security requirements. To provide ease
of use, the technique must allow users to express security policies
in the manner most appropriate to their requirements. To be
acceptable to users, it must not impose a significant performance
overhead, and it must operate transparently to applications and
users except when access failures occur. A technique that meets
these requirements will be of the greatest overall benefit to users.
A working example of such an access control technique can be
found in NSA's Security-Enhanced Linux prototype[7]. This
prototype is an implementation of a flexible mandatory access
control architecture called Flask[9] in the Linux operating system.

References
[1] D.E. Bell and L.J. LaPadula. Secure Computer Systems:

Mathematical Foundations and Model. TR M74-244, The
MITRE Corporation, May 1973.

[2] K.J. Biba. Integrity Considerations for Secure Computer
Systems. TR-3153, The MITRE Corporation, May 1977.

[3] W.E. Boebert and R.Y. Kain. A Practical Alternative to
Hierarchical Integrity Policies. In Proceedings of the Eighth
National Computer Security Conference, 1985.

[4] T. Fraser, L. Badger, and M. Feldman. Hardening COTS
Software with Generic Software Wrappers. In Proceedings of
the 1999 IEEE Symposium on Security and Privacy, pages 2-
16, May 1999.

[5] D.P. Ghormley, D. Petrou, S.H. Rodrigues, and T.E.
Anderson. SLIC: An Extensibility System for Commodity
Operating Systems. In Proceedings of the USENIX 1998
Annual Technical Conference, June 1998.

[6] P.A. Loscocco et al. The Inevitability of Failure: The Flawed
Assumption of Security in Modern Computing
Environments. In Proceedings of the 21st National
Information Systems Security Conference, Oct 1998.

[7] P.Loscocco and S. Smalley. Integrating Flexible Support for
Security Policies into the Linux Operating System. Technical
Report, NSA and NAI Labs, Oct 2000.
http://www.nsa.gov/selinux/docs.html.

[8] T. Mitchem, R. Lu and R. O’Brien. Using Kernel
Hypervisors to Secure Applications. In Proceedings of the
13th Annual Computer Security Applications Conference,
Dec 1997.

[9] Spencer, R. et al. The Flask Security Architecture: System
Support for Diverse Security Policies. In Proceedings of the
Eighth USENIX Security Symposium, Aug 1999.

148

Statement for SACMAT 2001 Panel
Robert Watson

NAI Labs and the FreeBSD Project

A variety of mandatory access control technologies have been
developed and deployed in the past, in the form of research
prototype operating systems, extensions to commercial products,
and adaptations of open source systems. Up until now, trusted
systems have at best been a small niche market. However, we
appear to be at an interesting turning point, as the prospects for
improved accessibility of trusted systems seems to be on the rise as
a result of the open source movement. There are a number of
projects seeking to implement new access control mechanisms
based on a variety of free UNIX-like systems, both modeling the
systems after existing trusted OS products and exploring new
architectures.
One risk associated with the development of a variety of systems is
that their access control models will be incompatible, making it
difficult or impossible to write portable applications. Selecting a
single model for trusted system design would allow the
development of consistent APIs and well-integrated applications.
Yet despite years of research, we still don't know what the optimal
access control mechanism is. Some consumers believe strongly in
the MLS confidentiality policy, or Biba integrity policy. Type
Enforcement may offer a more flexible vehicle for policy
expression. Role-based access control may offer greater parallels
between the policy expression and real-world human activities.
And DTE offers us a low-management labeling solution building
on TE-like concepts. These and other mechanisms provide a wide
variety of options with only low levels of compatibility. And none
of this is helped by clear deficiencies in deployed discretionary
access control systems. The reality is that at this point, when
addressing a problem, we turn to a suite of possible solutions, or
discover that we’re fudging aspects of the application by
generalizing a single

insufficiently broad policy tool. The natural question that needs to
be asked is: what if there is no one right access control model for
everyone?
Past research has explored both flexible enforcement and access
control policy as a means to address the need for diverse access
control mechanisms in operating systems. Of particular interest are
those mechanisms that provide fixed enforcement points but
flexible policy; there has been increasing exploration of flexible
access control environments that offer to abstract the actual
policies and decision making away from the enforcement points.
These efforts include NSA’s Flask model, as well as recent interest
in GACI on the Linux platform.
However, the idea of an entirely flexible policy environment raises
both substantial challenges from the implementation perspective,
especially with a desire to maintain performance, and from the
perspective of providing a consistent and well-defined
environment to application writers. The inability of applications to
adapt to changing security environments has long been a problem
in traditional trusted operating systems: applications discover a
variety of new and unexpected failure modes, often failing poorly
and possibly failing open. Similarly, such over-arching flexibility
makes it difficult to develop, test, and deploy solutions due to user
and system manager expectations and experience. The problems of
too flexible an environment are similar to the problems of highly
divergent security solutions in the face of a desire for portable
applications. As a result, even if we don’t select one “true model”
for access control, it makes sense to try and explore and develop
constraints for viable models that applications writers will be able
to rely on.

Copyright is held by the author/owner(s).
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA
ACM 1-58113-350-2/01/00005.

149

