
An Access Control Model for Simplifying Constraint
Expression

Jonathon E. Tidswell
�

School of Computer Science & Engineering
University of New South Wales
Sydney, NSW 2052, Australia

jont@cse.unsw.edu.au

Trent Jaeger
IBM T. J. Watson Research Center

30 Saw Mill River Road
Hawthorne, NY 10532, USA

jaegert@watson.ibm.com

ABSTRACT
Assurance that an access control con�guration will not re-
sult in the leakage of a right to an unauthorized principal,
called safety, is fundamental to ensuring that the most basic
of access control policies can be enforced. Safety is achieved
either through the use of limited models or the veri�cation
of safety via constraints. Currently, almost all critical safety
requirements are enforced using limited models because con-
straint expression languages are far too complex for typical
administrators to use properly. We propose a new approach
to expressing constraints that has the following properties:
(1) an access control policy is expressed using a graphical
model in which the nodes represent sets (e.g., of subjects,
objects, etc.) and the edges represent binary relationships
on those sets and (2) constraints are expressed using a few,
simple set operators on graph nodes. While it is possible
to extend the semantics of the basic graph model in sev-
eral ways, and we propose some we found useful, the basic
result is that a wide variety of safety policies can be ex-
pressed with simple, binary constraints. We demonstrate
this model using several examples ranging from safety ex-
pression for multilevel security models to separation of duty.
Our hope is that this model can be a base for de�ning criti-
cal safety requirements for models that have more
exibility
that traditional multilevel models.

1. INTRODUCTION
An important feature of an access control model is the

ability to verify the safety of its con�gurations (i.e., the
policies expressed using the access control model). A con-
�guration is said to be safe if no rights can be leaked to
an unauthorized principal [12]. Obviously, the veri�cation
that a con�guration is safe is necessary to ensure any kind of
mandatory access control (MAC) policy, such as multilevel

�This work was done while this author was on an internship
at the IBM T. J. Watson Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS ’00 Athens, Greece
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

security or separation of duty. Unfortunately, safety cannot
be veri�ed for an arbitrary con�guration of a general access
control model (e.g., Lampson's protection matrix [15]).
To overcome this problem two approaches have been taken:

(1) restrict the access control model, such that safety can be
proven in general for that model, or (2) augment the access
control model with expressions, typically called constraints,
that describe the safety requirements of any con�guration,
such that the safety of each con�guration can be veri�ed
(i.e., ensure that no right is leaked to an unauthorized prin-
cipal). The �rst approach limits the
exibility of the access
control model, which results in models that either support
only coarse-grained policies [4, 8] or models that are diÆcult
to use because it is hard to ensure that the restrictions are
satis�ed [3]. The second approach su�ers from the fact that
constraint expression languages are generally complex (e.g.,
logical languages [1, 5]), so it is diÆcult to decide whether a
set of constraints really expresses the desired safety require-
ments properly.
The lack of a simple, comprehensive approach to con-

straints means that restrictive access control models are
used to enforce the most important security requirements
(e.g., secrecy). For example, Bell-LaPadula [4] and Domain
and Type Enforcement (DTE) [8] require completely trusted
principals to assign subjects and objects to types (or labels).
A slight generalization [16] enables limitation of a trusted
principal's ability to assign objects to types. In general,
the set of security types and the assignments of subjects to
types in these models is �xed, so if the trusted principals are
truly trusted then the con�gurations are safe by default. On
the other hand, dynamic models, such as role-based access
control (RBAC) are typically used to express least privilege
policies, such as Chinese Wall [9] and Separation of Duty
(SOD) [27]. These policies often require that a principal's
or role's rights change dynamically based on some behavior
to prevent an unauthorized action (e.g., signing a check).
We observe that there is a continuum in the trade-o� be-

tween the expressive power of an access control model and
the ease of safety enforcement. In a restricted model, such as
Bell-LaPadula, constraints are implicit in the model's de�-
nition (e.g., a subject of one label cannot write to any object
of a 'lower' security label). Therefore, safety enforcement is
trivial, but policy expression is limited. On the other hand,
general policy expression models, such as RBAC, make con-
straints explicit concepts and permit the de�nition of ar-
bitrary constraints. In this case, the expression of safety

154

requirements has proven to be diÆcult. However, we have
recently found that a variety of common access control poli-
cies can be enforced by a few, simple constraint types [30].
Therefore, we claim that an access control model which uses
these simple constraints can provide signi�cant expressive
power while reducing the complexity of access control pol-
icy speci�cation and safety evaluation.
In this paper, we propose a base access control model

which enables the de�nition of restricted access control mod-
els and extensions to a general model. The base model con-
sists of subjects, objects, authorization relations, and con-
straints. However, the subject, object, and authorization
relation sets relevant to constraints are expressed explicitly,
so constraints can be simply de�ned in terms of set rela-
tionships (e.g., disjoint and subset) on these sets. We then
introduce inheritance to the model, and show that variations
on typical role-based access control (RBAC) semantics for
inheritance are useful for simplifying the resulting models.
Further, we identify other modeling concepts that aid in
keeping the speci�cation of access con�gurations and con-
straints simple. Whether one believes that such concepts
may simplify access control modeling and the veri�cation
of safety is somewhat subjective, so we describe a number
of example constraints using the access control model. Our
hope is that with these concepts, access control con�gura-
tions with greater
exibility and dynamicism can be created
where straightforward safety veri�cation is feasible.
The paper is structured as follows. In Section 2, we

present background on safety enforcement and discuss the
e�ectiveness of previous approaches. In Section 3, we de-
scribe our approach to safety veri�cation. In Section 4, we
de�ne our access control model, including the constraint and
inheritance models, and demonstrate it on a variety of ex-
amples. In Section 5, we discuss the current status of this
access control model and how we plan to address some open
problems. In Section 6, we conclude and outline future work.

2. BACKGROUND
A wide variety of authorization policies and systems to

express those policies have been proposed over the years.
While a typical categorization of policies has been between
mandatory and discretionary policies, we prefer to distin-
guish between static and dynamic security policies. In a
static security policy, subjects and objects are associated
with one, �xed security type (or label). A subject's, or ob-
ject's, type implies the value of its authorization relations.
Examples of static security policies include multilevel secu-
rity (MLS) policies, such as Bell-LaPadula [4], and Domain
and Type Enforcement (DTE) [8]. These policies are safe by
de�nition, in that any change in an assignment of a subject
or object to a type (or label) can only be done by a fully
trusted principal. Mistakes in a change of assignment will
not be caught because of this full trust assumption.
These policies, although they have been moderately suc-

cessful, are quite restrictive. For example, the ability for
an object in one MLS category to be transferred to another
category is impossible unless it is done by a fully trusted
principal. Thus, various alternatives to static security poli-
cies have been proposed. A small, but signi�cant, exten-
sion of a static security policy is made in the SeaView pol-
icy [16] where the trust in downgrader tasks (i.e., those able
to change the type of an object) is limited to a subset of
the system types. On the one hand, this limits the possibil-

ity of error because downgraders can be specialized to their
task. On the other hand, more downgraders may violate
the safety requirements of the system, so safety veri�cation
becomes necessary.
A dynamic security policy permits the subjects and ob-

jects to be assigned to types and authorization relations as
desired, typically by the subjects's, or object's, owner or an
administrator. A wide variety of dynamic policies have been
de�ned, but, in general, those that permit system users to
control the distribution of access rights to their objects ar-
bitrarily cannot be used to enforce safety. In such cases, a
user can give any of their rights to a potentially unauthorized
user. Recent advances in security models, such as role-based
access control (RBAC) [26], propose enabling the adminis-
trators to control the distribution of rights according to their
'administrative rights'. Instead of trusting such adminis-
trators completely within the scope of their administrative
rights, these models include the concept of constraints to
verify that the assignment of a permission or user to a role
(i.e., authorization relation) is legal.
For dynamic policies, a variety of common restrictions

upon the possible values of authorization relations have been
identi�ed. First, Clark and Wilson [10] identi�ed the con-
cept of separation of duty. Basically, separation of duty
requires that each operation in a process be performed by
a di�erent person. Therefore, a user may hold the right to
execute all operations on a particular object, but it may
apply only one of those operations per object. There are
many variations on separation of duty, such as: (1) dynamic
separation of duty [21], in which a person is restricted from
assuming two or more particular roles simultaneously; (2)
operational separation of duty [27], in which a user may be
restricted from executing all operations in a set on any par-
ticular object; and (3) Chinese wall [9], in which accessing
an object from one set precludes the future access of objects
from a con
icting set. There are also constraints on users,
such as the permission sets of two users must be disjoint.
Safety veri�cation is necessary to ensure that none of these
policies is violated.
Since Harrison, Ruzzo, and Ullman showed that the safety

problem was undecidable, research has focused on two areas:
(1) determining whether safety could be decided for access
control models with limited, but practical, expressive power
and (2) de�ning constraint languages to express veri�able
safety requirements.
First, the take-grant model has a linear time safety algo-

rithm, but there is still a signi�cant di�erence in expressive
power between take-grant and HRU [28, 7, 22]. Sandhu et
al eliminates most of this di�erence in his models (SPM,
TAM, ESPM, and non-monotonic ESPM) [21, 3, 22, 2].
They demonstrated that an access control model could be
designed for which safety is eÆciently decidable (i.e., in poly-
nomial time) given a few restrictions, which were claimed to
be reasonable for almost any policy.
Ultimately, despite proven expressive power and safety

determination, these access control models have not been
adopted in practice. We claim that there are two primary
reasons for the lack of acceptance: (a) these models are
rather complex to use, both due to the subtlety of the re-
strictions and the complex relationship between SPM/TAM
types and capabilities and (b) it is diÆcult to both de�ne
the safety requirements and write practical algorithms that
enforce these requirements. Simply stating an initial con�g-

155

uration is diÆcult enough, but system administrators must
also de�ne the safety criteria and, thusfar, few, practical
safety algorithms have been implemented.
Second, constraints have been part of most RBAC mod-

els of recent years [25, 24, 17, 5, 6], but with a few excep-
tions highlighted below they have always been speci�ed us-
ing rule-based systems. Unfortunately rule-based systems,
while highly expressive, are harder to visualize and thus to
use; thusfar they have been avoided by practitioners.
Ahn and Sandhu [1] propose a limited logical language

called RSL99 for expressing separation of duty constraints
in a RBAC model. RSL99 still provides signi�cant expres-
sive power, but remains quite complex. The combination
of quanti�cation functions and modeling concept functions
makes the constraints expressed in the language diÆcult to
visualize.
Nyanchama and Osborn [18] de�ne a graphical model1

for role-role relationships which includes a combined view of
role inheritance and separation of duty constraints based on
roles. Recently Osborn and Guo [20] extended the model to
include constraints involving users. However neither the ba-
sic model nor the extended model distinguish between acci-
dental relationships and explicitly constructed relationships.
Thus these models do not support policies with a histori-
cal component. Furthermore (as Nyanchama and Osborn
noted) the lack of object typing in RBAC models makes
it hard to model work
ow constraints. Based on the Dy-
namically Typed Access Control model [29] we have demon-
strated [30] that it is possible to construct graphical rep-
resentations for most of these constraints in the context of
role-based access control. This paper extends and gener-
alizes these ideas focusing on the graphical expression of
constraints.

3. AN ALTERNATIVE SAFETY APPROACH
To be able to use constraints to ensure safety we must

�nd both a suitable way to express the constraints, and an
eÆcient algorithm for evaluating or verifying the constraints.
We make two general observations about constraint veri-

�cation: (1) constraint veri�cation is simply a series of set
comparisons and therefore the complexity is mostly depen-
dent on the amount of recursion and quanti�cation in the
constraint expressions (2) the complexity in constraint ex-
pression is mainly in the expression of the sets that are to
be compared.
First, as in the constraints described above, we either want

to verify that two sets contain no common members (i.e., are
disjoint) or that one set does not subsume another set (i.e., is
not a superset). An example of the latter case is a separation
of duty constraint in which a user may perform some, but
not all of the operations in a restricted set. The only other
type of relationship that we have found necessary is that of
a cardinality check. In our approach to safety, constraint
expression is built upon these basic concepts. Since con-
straints specify legal (or illegal) con�gurations based with-
out reference to the validity of other constraints there is no
recursion that dynamic programming (or caching) cannot
eliminate and since we do not provide any way to express
explicit quanti�cation it cannot be misused.
Second, if constraint veri�cation is a simple set compari-

1Their graphs are directed acyclic graphs with a top and a
bottom.

son, then the complexity of expressing constraints must be
due to the complexity of specifying these sets. Two major
causes of complexity are dynamic constraints (e.g., Chinese
Wall) and constraints on concepts implicit in the model (e.g.,
objects of a particular permission). In the �rst case, the
constraint is often speci�ed as a rule (e.g., if user can access
object A, then user cannot access object B). As described
above, even limited logical languages used to express such
rules are diÆcult to use. In the second case, the aggregation
of concepts in access control models, such as permissions,
which makes it simpler to express access control policy ac-
tually makes it more diÆcult to express constraints. For
example, in role-based access control (RBAC) models a con-
straint on a particular right to a particular object requires
the decomposition of permissions (an aggregate of objects
and rights) complicating constraint expression. In our ap-
proach, the dynamics of access control policy are captured
in the model, and it is possible to decompose aggregate con-
cepts such as permissions into their base concepts, when
necessary. For example, permissions are de�ned in terms of
objects and rights, but the administrator only needs to see
the objects and rights if they are relevant to some constraint.
We also have found that the typical expression of more

advanced access control concepts, in particular inheritance,
limits our ability to express constraints easily. In RBAC
models, inheritance is a set-subset relation on the permis-
sions of roles. However, we �nd it useful to de�ne inheritance
relations over all system concepts, including subjects and
constraints. This makes explicit the associations amongst
permissions, subjects, objects, and constraints. In addition,
we have found it useful for some policies to express limita-
tions on the permissions and direction of inheritance. For
example, in MLS policies only read and execute privileges
are inherited upwards, while write privileges are inherited
downwards. While Osborn [19] showed that MLS policies
can be expressed in a traditional RBAC model, the limi-
tations of inheritance added signi�cant complication to the
resulting role graph.
The last major way in which we attempt to simplify con-

straint expression is by using a graphical model for express-
ing constraints. That is, we extend the 'graphical role model'
used with signi�cant success in RBAC to enable the expres-
sion of constraints directly. Thus, our hope is that the need
for a completely separate logical language to express con-
straints can be eliminated. Constraints simply become re-
lations between access control concepts, as inheritance is a
relation between roles in RBAC. Obviously, the addition of
constraints to the role graph complicates the role graph, but
typically constraints only need to be made explicit when con-
straint speci�cation and analysis is being performed. That
is, constraints can be layered over an existing model inde-
pendently, so the e�ects of specifying constraints can be hid-
den when they are not the focus.
In the remainder of the paper, we de�ne and demonstrate

our approach to safety, using our model for the simple ex-
pression of constraints. We �rst de�ne the base concepts of
the access control model and de�ne the functions for com-
puting the sets upon which constraints will be based. This
base access control model consists of subjects, objects, and
authorization relations. Since subjects and objects quite of-
ten are aggregations themselves, we provide an extensible
approach to expressing these concepts, such that access pol-
icy and constraints can be e�ectively speci�ed. We next de-

156

�ne the constraint model which is based on the set operators
identi�ed above. Surprisingly, it has not been necessary to
extend these operators, although some extensions to inheri-
tance have helped limit the complexity of the model. Upon
review of a number of example policies, two further notions
seem important: (1) recurring relationship patterns can be
composed into higher-level concepts to further simplify the
model and (2) other constraints that limit assignment can
be used to simplify the veri�cation of constraints. Finally,
we discuss a set of ancillary issues to the application of the
graphical safety in practice.

4. OUR MODEL
In this section we introduce a basic access control model

consisting of subjects, objects and an authorisation relation,
and then using examples extend the basic model to include
nodes representing higher level concepts, such as users. Hav-
ing introduced concept nodes we can de�ne constraints be-
tween these nodes, and �nally inheritance between instances
of concept nodes.

4.1 A Basic Access Control Model
The most primitive access control (authorisation) relation

is the matrix identi�ed by Lampson [15]: subject�object!
rights. We do not assume that authorisation is decided
strictly on subjects and objects but take a slightly more
abstract view of the authorisation relation as shown in Fig-
ure 1, in which elements of the setX are assigned to elements
of the set Z, and elements of the set Y are also assigned to
elements of the set Z (the assignments are many-to-many).

ZX Y

security descriptor

identity

history

current

security descriptor

identity

assigned

Figure 1: Our basic authentication relationship.

In this model, Z is the authorisation relationship while X
and Y are the parameters of the relationship. In the most
primitive case X and Y may be subjects and objects (or
processes and �les); but they may also be multilevel security
policy labels; or type enforcement types; or simply user or
owner identities.
As a result of de�ning Z as a relation we can de�ne func-

tions to examine parts of the relationship. Thus we de�ne
X(z) to be the subset of X which is assigned to the element
z; z 2 Z; equally we can de�ne the set Y (z) to be the subset
of Y assigned to z; z 2 Z.
We also de�ne X(y); y 2 Y and Y (x); x 2 X to be the

subsets of X and Y that are indirectly connected to y and x
as X(y) � X(Z(y)) and Y (x) � Y (Z(x)). We use the fairly
standard shorthand X(Y) for

S
y2Y X(y).

Unfortunately, a simple authorisation relation is inade-
quate. As Harrison, Ruzzo and Ullman [12] e�ectively demon-
strated, the safety of an access control con�guration de-
pends more on the authorisations available in the future
than on the current authorisations. Furthermore, many se-
curity policies (such as Chinese Wall [9] and operational

separation-of-duty [27]) depend not only on the current au-
thorisation relationship but on the history of previous au-
thorisation decisions. Therefore we introduce two distinct
aspects to the authorisation relation Z: the authorisations
that have ever been activated (history), the authorisations
that are currently activated (current). We can also identify
the authorisations that have been assigned but not yet acti-
vated (assigned). With constraints de�ning potential incon-
sistencies between current activations, the set of assigned
but unactivated authorisations is a superset or worst-case
approximation of the authorisations that may be assigned.
We have not seen any use for the history of assigned but
unactivated authorisations.
For brevity of expression, we superscript the functions of

the authorisation relation to indicate whether we are talk-
ing about historic authorisations (ZH), current authorisa-
tions (ZC) or assigned authorisations (ZA); consequently we
must also superscript the functions derived from Z. Thus
we denote the X's that have ever been indirectly related to
y; y 2 Y by writing XH(y). Where it does not cause con-
fusion we omit the superscript (C) for currently activated
authorisations.

Example 1. We now have enough basics to introduce our
�rst example (see Figure 2), a simple Chinese Wall policy [9]
consisting of a set of x's (X) and two sets of y's (Y 1 and Y 2)
with the restriction that any particular x; x 2 X, may access
y's from only one set, not both. For a more concrete exam-
ple, consider the situation of a consultant in a large con-
sulting company which has competing companies as clients.
It is desirable that the consultant avoid con
ict-of-interest
(perceived or real) in giving any advice; this is normally
achieved by blocking the consultant from seeing con�dential
information from two or more clients that are, or are likely
to be, competing. Since the consultant is likely to remember
information previously read from a clients �les, consultants
must be blocked not only the basis of current clients but of
previous clients. It may help to think of X's as consultants
and Y 's as client �les. E�ectively a Chinese Wall requires
there to be no overlap in the subset of X that has ever had
active the authorisation to access an element of Y 1 with the
subset of X that has active the authorisation to access an el-
ement of Y 2 (and vice versa). Since the history of activated
authorisations is a (non-strict) superset of the current active
authorisations (X(A) � XH(A)) we can just compare the
historical activations of Y 1 and Y 2, thus we get the simple
constraint: XH(Y 1) \XH(Y 2) = ;.

ZX

Y2

Y1

history

Figure 2: A simple Chinese Wall policy be-
tween Y 1 and Y 2: the history of Xs acting on Y 1
should not overlap the history of Xs acting on Y 2
XH(Y 1) \XH(Y 2) = ;.

157

We will show how to specify this constraint graphically
when we introduce constraint concepts in Section 4.3.

4.2 Concept Nodes
In the previous section we stated that the parameters

(X and Y) to the authorisation relation are not necessar-
ily subjects and objects, and listed some concepts that are
commonly associated with X and Y . In Figure 3 subjects
and objects are assigned to a concept node which is then in
turn assigned to some authorisation relation; thus concept
nodes are aggregators and classi�ers of subjects and objects.
We refer to these as concept nodes because it is our intention
to allow security modellers to create nodes representative of
whatever concepts are in their security model. In this �gure
we show only one type of concept node between subjects and
objects and the authorisation relation, but as many types of
concept nodes may be used as are necessary to capture the
desired model.

identity
subject X Z

history

current

assignedconcept
...

Y identity
object

...
concept

Figure 3: The authentication relationship with one
concept node between subjects (objects) and the au-
thorisation relation.

The authorisation relation always reduces to the rights
subjects have to objects, so a graph without subjects and/or
without objects is incomplete. Thus, we extend our func-
tional notation in a natural manner, and may now denote the
subjects (objects) of a particular concept C by S(C) (O(C)),
and may even denote the objects of a particular subject
by S(O), and the inverse by S(O). Of course they must be
superscripted appropriately.
Intuitively, aggregation and classi�cation of subjects and

objects into concept nodes will make it easier to specify the
security policy in the model. The reason is that concept
nodes are then used to specify constraints. In some mod-
els, such as lattice based secrecy models, the constraints are
implicitly captured in the static initial assignment of per-
missions; while in more dynamic policies, such as role-based
access control, constraints are an explicitly formal part of
the policy speci�cation.
To identify the nodes necessary for a particular model it

is merely necessary to think about the concepts being used:

UBAC In user-based access control the only node that
needs to be introduced is one for users, subjects are
then assigned to users upon creation and access con-
trol is based upon user identity.

Capabilities In capability systems it is necessary to intro-
duce a capability node which captures the combination
of an access type (such as read or write) and a particu-
lar object, authorisation is then based on determining
whether the subject has a legitimate capability.

LBAC In lattice-based access control models we need to
introduce concept nodes for security labels and for ex-
ceptions (such as downgraders and assured pipelines).

RBAC In role-based access control it is necessary to in-
troduce concept nodes for users, for roles, for sessions
and for permissions (a capability style combination of
rights and object identity).

TE In type enforcement models it is necessary to introduce
nodes for subject domains and object types.

In addition to these nodes it is common to discuss and
think in terms of simple groups, such as groups of objects,
or groups of concepts such as groups of users or groups of ca-
pabilities (commonly called capability lists). In many cases
these groups do not require a distinct type of concept node,
however sometimes (such of groups of objects in a model
with permissions/capabilities) groups have important, but
subtly di�erent, semantics to singleton sets of that concept,
so they should be assigned to a di�erent type of concept
node.

subjects

permissionsRolesusers

objectssessions

Figure 4: The concept nodes in a classical RBAC
model.

Figure 4 shows the concepts and the assigment relation-
ships between them of the basic RBAC0 model of Sandhu
et al [25].
Permission or capability nodes are constructed from a

�xed, and a priori known, set of rights and a dynamic set
of objects. This makes it possible to consider known de-
compositions of permissions in advance. So in addition to
being able to describe the permissions that act on an object
(P (o); o 2 O), and the objects referenced by a particular
permission (O(p); p 2 P) we can decompose the permissions
and describe all the objects that are accessible by a particu-
lar right from some permission; for example, all the objects
readable (r) from some permission (Or(p); p 2 P), or all the
permissions that convey the authority to write (w) to an ob-
ject (Pw(o); o 2 O), or all the permissions which have ever
conveyed the right to an object (PH

w (o)).

4.3 Constraint Model
The approach we advocate for safety veri�cation is to de-

�ne an initial con�guration of authorisation relationships
and to place constraints that limit the ways that the con-
�guration can be modi�ed. The constraints are to ensure
that the authorisation relationships always remain accept-
able (i.e., are safe).
Since we de�ne our basic model using sets, the natural way

to de�ne constraints is as binary relationships between pairs
of sets. We chose to limit ourselves to binary relationships
for two major reasons. Firstly, they are easy to describe and
draw as labelled edges in a two-dimensional graph, which we
hope makes them easier to understand. Secondly, they are

158

simpler and more compact than ternary (or higher) rela-
tionships so the algorithms and data structures are more
eÆcient.
In addition to their algorithmic bene�ts, we believe that

the minor loss of expressive power of binary relationships
versus ternary relationships is bene�cial to modelling: it
simpli�es the construction of a �xed point, that point neces-
sary to construct constraints on constraints. Furthermore,
we have found that many common constraints can be ex-
pressed using only binary relationships [30].
There are two broad categories of constraints. The �rst

is based around the notion of subsets and set equality; thus
for example, we have test for equality (=), subset (�), and
not subset or equal (6�). In addition to the standard subset
operators we de�ne two sets to be incomparable (6�) if nei-
ther is a subset of the other (except in the degenerate case
in which one is empty).

A 6� B
def
= (A 6� B) ^ (B 6� A) _ (A = ;) _ (B = ;)

The second is based around the notion of overlap between
two sets when neither is necessarily a subset of the other,
and is de�ned by limiting maximal cardinality of their in-
tersection; so we write jA \ Bj � n for two sets A and B.
The notion of two sets having no overlap, which we refer
to as being disjoint, is so common that we give it a special
symbol (?), and write A ? B for jA \Bj = 0.
It is frequently convenient to denote the application of

the same function to both sides of a constraint operator by
subscripting the operator with the function name. Thus
instead of XH(A) ? XH(B) we may write A ?H

X B. The
most common usage of this is apply to constraints to the
objects assigned to a node (subscripted o), the rights held
by a node (subscripted r) or the inheritance relationships
[discussed in Section 4.4] (subscripted +).
The separation of duty constraint of our Chinese wall ex-

ample (see Figure 2) could be written jXH(Y 1) \XH(Y 2)j = 0
or XH(Y 1) ? XH(Y 2). By applying the function to the
disjoint comparison instead, we can write the constraint as
Y 1 ?H

X Y 2, or graphically as in Figure 5.

ZX

Y2

Y1

history

⊥H
X

Figure 5: The simple Chinese Wall policy of Figure 2
expressed using a graphical constraint.

To evaluate the the constraint Y 1 ?H
X Y 2 we need to �nd

XH(Y 1) and XH(Y 2). Due to the assignment from X
to Z it is possible to �nd XH(z); z 2 Z, and due to the
assignment of Y 1 to Z it is possible to calculate ZH(y1),
y1 2 Y 1, by combining these functions we can calculate
XH(z) where z 2 ZH(y1), and y1 2 Y 1 which is XH(Y 1).
Similarly we can calculate XH(Y 2), and thus we can evalu-
ate XH(Y 1) ? XH(Y 2).
We evaluate all constraints using the same pattern, so we

could de�ne an arbitrary constraint limiting each x; x 2 X's

to concurrently having rights to at most 5 Y 1's by using a
maximal cardinality constraint: 8x 2 X; jY 1(x)j � 5. This
would be draw graphically as an edge from X to itself la-
belled j5jY 1.

Example 2. In a RBAC user-user separation of duty con-
straint [27], it is forbidden for two users both to be assigned
to some particular role. The constraint is enforced by de�n-
ing a group to which all (both) the users to which the con-
straint is to apply are assigned and then by de�ning are con-
straint between this group and the role to limit the number
of users in common. We could write this as jUsers(Group)\
Users(Role1)j � 1, or using our standard rule of applying
functions to constraint operators in preference to both pa-
rameters of the operator we write Group j1jHUsers Role1, or if
we wished this to apply for all time based on the �rst activa-
tion of the role by a user in the group asGroup j1jHUsers Role1
for which is easy to construct the graph.

Group
Excluded

User A

Role 3

Role 2

Role 1

|1|
U

|1|
U

User B

User C

×

×
×

×

Figure 6: The graphical representation of a user-
user separation of duty constraint. Note UserB may
not be assigned to Role1, and UserC may not be as-
signed to Role1, or Role2.

In Figure 6 we have 3 users all belonging to a group with
a constraint in relation to 2 of the 3 roles. We could have
any number of users in the group and the group can have
constraint relationships with any number of roles. This is
an example of using concept nodes for aggregation, while it
may be possible to implicitly de�ne the group using some
quanti�cation or by simply enumerating the users, we be-
lieve creating an explicitly named group is clearer and sim-
pler. If it helps, the groups may be de�ned hierarchically
via a number of subgroups which may themselves directly
participate in some constraints.

Example 3. In a simple lattice2 security model information
may stay at the same level or
ow up the lattice, it may
not
ow down. So in a simple two-level lattice, subjects
at the high level may read objects at high or low security,
but only write objects at the high level; while low level sub-
jects may read objects only of the low level but may write
either low high level objects. For consistency, objects are
restricted to only have one level. This reduces to a simple

2See Denning [11] or Sandhu [23] for a more complete ex-
planation of lattice models.

159

constraint: that high subjects may not have permissions to
write any objects that low subjects have permissions to read,
O(Pw(High)) ? O(Prx(Low)), or Pw(High) ?O Prx(Low).
One representation of this is shown in Figure 7.

HIGH
⊥ r

⊥ r

O
⊥

HIGH

LOWSubject B

Subject A Object 1

Object 2

RX

W

W

RX

LOW

Figure 7: Lattice security implemented with con-
straints.

While this describes a safe interpretation of the lattice
model, the representation will not scale e�ectively to larger
lattices. Each node representing a subject label will have
permissions assigned to it for each node in the lattice that
dominates it and for each node that it dominates: the num-
ber of edges to each node is proportional to the overall size
of the lattice not to the local connectivity of each node. For
a simple fully ordered lattice of n nodes each node will have
n + 1 permissions assigned to it | it will have two for ob-
jects of its own level and one for every level above it (write
up) and one for every level below it (read down). Therefore
graphs representing even small lattices quickly become an
unintelligible tangle of edges. In the next section we de�ne
an inheritance mechanism that solves this problem.

4.4 Inheritance
Constraints (implicit or explicit) are a critical part of man-

aging the safety of a security model, but as we demonstrated
in the previous section it is easy to construct a representa-
tion that does not scale e�ectively. A large graph that is not
easily understood, and is thus hard to check for errors, does
not contribute to safety. Therefore we introduce inheritance
to support safe eÆcient reuse of subgraphs by constructing a
subset ordering within each concept node. The basic model
extended with inheritance is shown in Figure 8.
Inheritance (drawn as an arrow from parent to child la-

beled with a '+') between concept nodes grants to the child
the rights, constraints and other inheritance relationships of
the parent.
The inheritance mechanism solves the problem of too many

edges in the graph because permissions are implied transi-
tively across multiple inheritance links. Thus each subject
label in the lattice in Figure 9 will have a number of incom-
ing edges directly proportional to its local connectivity, not
to the overall size of the lattice. (two assignment for objects
on its own level and one inheritance each for the level above
(write up) and the level below (read down)). In Figure 10
we moved the inheritance to the permissions directly, but

Z

history

assigned

current

identity identity

security descriptor security descriptor

inherit inheritinherit

X Y

Figure 8: Our authentication relationship with in-
heritance on concept nodes.

the number of edges is related to the local connectivity of
the node not the overall size of the graph.
In Figure 9 we label the permission nodes in our lattice

example and inherit up the lattice hierarchy the permissions
P1 and inherit down the lattice the permissions P3. This
is consistent with the typical description of the
ow of per-
missions in lattice models, but the bidirectional inheritance
(High inherits from Low and Low inherits from High) con-
structs cycles, which is contrary to most other models of
inheritance in security models, such as that of RBAC3 [25].

HIGH

+P1+P3

LOW

RX

P4

W

P2

W

P3

⊥ r

RX
P1

⊥ r

O
⊥

HIGH

LOWSubject B

Subject A Object 1

Object 2

Figure 9: MultiLevel security implemented with
constraints and directed inheritance.

While this representation closely parallels the intuitive
understanding of permission
ows in a lattice, the cost of
dealing with cycles and the necessity of labelling arbitrary
nodes and edges in order to de�ne inheritance introduces
some technical complexity. Another approach is shown in
Figure 10 where we de�ne the inheritance relationship be-
tween the speci�c permissions, thus avoiding cycles and the
need to provide arbitrary labels for nodes and edges.
So far our examples of inheritance have focussed on in-

heriting assignments, speci�cally users and permissions, be-
tween nodes. However inheritance may be also be applied to
constraints, and since inheritance is transitive it naturally
applies to itself.
In Figure 11 solid arrows represent inheritance and the

dashed line represents some arbitrary symmetric constraint
�. Thus C inherits � from A then there is an implicit � re-

160

LOW

HIGH

LOWSubject B

Subject A Object 1

Object 2

RX

W

RX

W

⊥ r

O
⊥

⊥ rHIGH

+

+

Figure 10: MultiLevel security implemented with
constraints and inheritance.

lationship de�ned on C|B. Further, E inherits from C the
inheritance from A, so C inherits � from A creating an im-
plicit � relationship de�ned on E|B. Weaker relationships
may also be implied, such as between E|D or E|F , but
they are dependent on the speci�cs of �.

BA
ρ

ρρ

ρ

C D

++ ρ

+ +

FE

Figure 11: The inheritance of a (symmetric) con-
straint.

In Figure 12 solid arrows represent inheritance and the
dashed arrow represents an assignment from A to F . Then
there is an implicit assignment from A to D and from A
to B.

Example 4. A simple dynamic separation of duty exists
between a group of roles where a user is allowed to have ac-
tive only one role at a time. This is speci�ed, in Figure 13,
in terms of roles having incomparable sets of permissions
(if any role was a subset of another, the separation would
not make sense) and then having the user inherit this con-
straint. This ensures that even if the user attempts to ac-
quire those permissions via some other role an inconsistency
will be identi�ed and the acquisition rejected.

C D

FE

BA

++

+ +

Figure 12: The inheritance of assignment
ows from
child to parent.

~/

~/ ~/

R 1

R 3

R 2

p

p p

Permissions

Object 1

Object 3

Object 4

Object 6Permissions

Permissions

Permissions

Permissions

Permissions

Object 5

User A

Object 2

Figure 13: A simple dynamic separation of duty.

Here we have de�ned the roles to have incomparable sets
of permissions rather than disjoint sets of permissions, to
demonstrate that in addition to the traditional exclusive
de�nition of mutual exclusion constraints we can model the
shared rights mutual exclusion identi�ed by Kuhn [14]. When
the user is �rst assigned to one of the roles the user inherits
a constraint against the other roles, the user may not be as-
signed to any of the other roles as doing so would introduce
an inconsistency.

Example 5. Our last example of inheritance is an extended
Chinese Wall example, see Figure 14, showing the inheri-
tance of constraints. This �gure indicates that at some time
in the past the user was assigned to client-4 and therefore
had access to an object shared by client-3 and client-4. An
attempt to assign client-2 to the user would result in the user
inheriting a disjointness constraint on objects belonging to
client-3 (including those shared by other clients), since this
would introduce an inconsistency with the previous access

161

to an object shared by clients 2 and 3, client-2 may not be
assigned to the user.

⊥o

previous

current

client 2

client 4

client 3clients

clients

client 1

×

Object F

Object A

Object B

Object C

Object D

Object E

User

Figure 14: An extended Chinese Wall example
showing the inheritance of constraints

5. DISCUSSION
In this section, we discuss a variety of issues related to the

de�nition of an e�ective constraint model.

5.1 Expressive Power
We have purposefully limited the expressive power of the

constraint model to that necessary to express many of the
constraints that have been identi�ed in the literature (many
are not shown here). For example, constraints are binary
relations, but we leave open the possibility of de�ning n-
ary constraints, if necessary. Also, the expressive power of
a constraint language is typically compared to that of �rst
order predicate logic. In its current form, constraint ex-
pression uses universal rather than existential quanti�ers.
In general, the need for any explicit quanti�cation greatly
complicates the constraint language, so we also view this as
an extension that may be necessary, but is discouraged.

5.2 Conflict Resolution
Introducing inheritance naturally introduces the possibil-

ity of con
icting speci�cations. This has been studied before
[6; 13, for example] and we adopt the path override capabil-
ity and denials over grants policies by de�ning the inherited
relationships to be evaluated in a top down manner with
more recent \closer" de�nitions having precedence, and by
evaluating constraints after inheritance and assignment re-
lationships. These policies favour allowing denial-of-service
attacks (by denying too much) over breaches of integrity
and con�dentiality (by allowing too much). We feel this is
justi�ed because denial of service attacks are more likely to
be brought to an administrators attention, and can thus be
addressed, sooner than breaches of integrity and con�den-
tiality which are likely to go unnoticed even if they are not
actively hidden.

5.3 Intersection
The combination of security policies (e.g., secrecy and in-

tegrity) means that an authorization may require that mul-
tiple rights be available. We can solve this either by ex-
pressing two role authorization hierarchies, one for secrecy
and one for integrity, or by de�ning and relationships on
assignments. At present, we prefer the former option.

5.4 Preconditions
Preconditions are useful to limit the ways in which con-

straints can be violated. For example, if a permission can
only be assigned to a set of roles, then it is clear that a
constraint on the use of that permission can be de�ned in
terms of the roles, rather than users directly. Since the num-
ber of users may be signi�cant, the overhead to compute this
constraint is greatly reduced. Even more importantly, the
complexity of understanding the impact of that constraint
is also reduced. We plan to identify preconditions that can
simplify the complexity of individual constraints with the
goal of simplifying the overall model.

5.5 Algorithmic Issues
The complexity of verifying a constraint depends on the

path length of assignment relationships between the concept
nodes in the constraint (e.g., users to objects) and the size of
the individual sets. We envision that dynamic programming
will be valuable in caching the intermediate set values. Since
there may be a variety of di�erent sets, management of the
state of dynamically programmed data will need to be a
�rst-class issue in the implementation of this model.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a graphical access control

model that focuses on the expression of constraints. Previ-
ous constraint expression approaches appear to us to be too
complex for average system administrators, so we de�ne a
new access control model that uses a few basic set concepts
to de�ne constraints. Unlike previous e�orts we are open
to changes in the other modeling concepts, subjects, ob-
jects, authorization relations, and inheritance, in order to
simplify constraint expression. As a result, we demonstrate
a variety of access policies using simple binary relations for
constraints. For example, we demonstrate a Bell-LaPadula
policy without having to add any new roles, as was the case
if a traditional RBAC model was used [19], by generalizing
the de�nition of inheritance. Also, Chinese Wall and sepa-
ration of duty constraints on both users and permissions are
expressed using binary relations. Such relations are easy to
verify, and we hold out some hope that they will be sim-
ple enough for system administrators to use. We leave open
the option of extension of the language (e.g., to n-ary rela-
tions or to include existential quanti�cation), but we expect
that such extensions must be infrequent for the model to be
usable.

7. ACKNOWLEDGEMENTS
We would like to thank John Potter and the anonymous

referees for a number of corrections and for numerous sug-
gestions that have improved the readability of the paper.

162

8. REFERENCES
[1] G. Ahn and R. Sandhu. The rsl99 language for

role-based separation of duty constraints. In
Proceedings of the 4th Workshop on Role-Based Access
Control, 1999.

[2] P. Ammann and R. Sandhu. One-representative safety
analysis in the non-monotonic transform model. In
Proceedings of the 7th IEEE Computer Security
Foundations Workshop, pages 138{149, 1994.

[3] P. E. Ammann and R. S. Sandhu. Safety analysis for
the extended schematic protection model. In ???
Proceeding of the IEEE Symposium on Research in
Security and Privacy, 1991.

[4] D. Bell and L. La Padula. Secure Computer Systems:
Mathematical Foundations (Volume 1). Technical
Report ESD-TR-73-278, Mitre Corporation, 1973.

[5] E. Bertino, E. Ferrari, and V. Atluri. The speci�cation
and enforcement of authorization constraints in
work
ow management systems. ACM Transactions on
Information System Security, 1(2), Feb. 1999.

[6] E. Bertino, S. Jajodia, P. Samarati, and V. S.
Subrahmanian. A Uni�ed Framework for Enforcing
Multiple Access Control Policies. In Proceedings of
ACM SIGMOD Conference on Management of Data,
May 1997.

[7] M. Bishop and L. Synder. The transfer of information
and authority in a protection system. In Proceedings
of the 7th ACM Symposium on Operating System
Principles, pages 45{54, 1979.

[8] W. E. Boebert and R. Y. Kain. A Practical
Alternative to Hierarchical Integrity Policies. In
Proceedings of the 8th National Computer Security
Conference, Gaithersburg, Maryland, 1985.

[9] D. F. C. Brewer and M. J. Nash. The Chinese wall
security policy. In Proceedings of the Symposium on
Security and Privacy, pages 215{228, Oakland, CA,
May 1989.

[10] D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security policies. In
Proceeding of the IEEE Symposium on Security and
Privacy, Oakland, California, April 1987.

[11] D. E. Denning. A Lattice Model of Secure Information
Flow. Communications of the ACM, 19(5):236{242,
May 1976.

[12] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in operating systems. Communications of
the ACM, 19(8), August 1976.

[13] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A
Logical Language for Expressing Authorizations. In
Proceedings of the IEEE Symposium on Security and
Privacy, 1997.

[14] D. R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in a role-based access
control system. In Proceedings of the 2nd ACM
Role-Based Access Control Workshop, 1997.

[15] B. W. Lampson. Protection. In Proceedings Fifth
Princeton Symposium on Information Sciences and
Systems, March 1971. reprinted in Operating Systems
Review, 8, 1, January 1974, pages 18 { 24.

[16] T. Lunt, D. Denning, R. Schell, M. Heckman, and
W. Shockley. The SeaView security model. IEEE
Transactions on Software Engineering, 16(6), June
1990.

[17] E. C. Lupu and M. Sloman. A policy based role object
model. In Proceedings of the 1st IEEE Enterprise
Distributed Object Computing Workshop, October
1997.

[18] M. Nyanchama and S. Osborn. The role graph model
and con
ict of interest. ACM Transactions on
Information and System Security (TISSEC), 2(1), Feb
1999.

[19] S. Osborn. Mandatory access control and role-based
access control revisited. In Proceedings of 2nd ACM
Workshop on Role-Based Access Control, November
1997.

[20] S. Osborn and Y. Guo. Modelling users in role-based
access control. In Proceedings of the 5th ACM
Role-Based Access Control Workshop, July 2000.

[21] R. S. Sandhu. The Schematic Protection Model: Its
De�nition and Analysis for Acyclic Attenuating
Schemes. Journal of the ACM, 35(2):404{432, 1988.

[22] R. S. Sandhu. The Typed Access Matrix Model. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 1992.

[23] R. S. Sandhu. Lattice-Based Access Control Models.
IEEE Computer, 26(11):9{19, November 1993.

[24] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of
roles. ACM Transactions on Information System
Security, 1(2), Feb. 1999.

[25] R. S. Sandhu, E. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Acess Control Models. IEEE
Computer, 29(2):38{47, February 1996.

[26] R. S. Sandhu, E. J. Coyne, H. F. Feinstein, and C. E.
Youman. Role-based access control: A
multi-dimensional view. In Proceeding of the 10th

Annual Computer Security Applications Conference,
December 1994.

[27] R. Simon and M. E. Zurko. Mutual exclusion of roles
as a means of implementing separation of duty in a
role-based access control system. In Proceeding of the
10th IEEE Computer Security Foundations Workshop,
June 1997.

[28] L. Synder. On the synthesis and analysis of protection
systems. In Proceedings of the 6th ACM Symposium
on Operating System Principles, pages 141{150, 1977.

[29] J. Tidswell and J. Potter. A Dynamically Typed
Access Control Model. In Proceedings of the Third
Australasian Conference on Information Security and
Privacy, July 1998.

[30] J. E. Tidswell and T. Jaeger. Integrated Constraints
and Inheritance in DTAC. In Proceedings of the 5th

ACM Role-Based Access Control Workshop, July 2000.

163

