
Understanding and Developing
Role-Based Administrative Models

Jason Crampton
Information Security Group, Royal Holloway, University of London, England

ABSTRACT
Access control data structures generally need to evolve over
time in order to reflect changes to security policy and person-
nel. An administrative model defines the rules that control
the state changes to an access control model and the data
structures that model defines. We present a powerful frame-
work for describing role-based administrative models. It is
based on the concept of administrative domains and criteria
that control state changes in order to preserve certain fea-
tures of those domains. We define a number of different sets
of criteria, each of which control the effect of state changes
on the set of administrative domains and thereby lead to dif-
ferent role-based administrative models. Using this frame-
work we are able to identify some unexpected connections
between the ARBAC97 and RHA administrative models and
to compare their respective properties. In doing so we are
able to suggest some improvements to both models.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; H.2.7 [Database Management]: Database
Administration—Security, integrity and protection; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Theory

Keywords
role-based access control, role-based administration, admin-
istrative scope, administrative domain, RHA, ARBAC97

1. INTRODUCTION
An access control mechanism is a component of a com-

puter system that is used to limit the access that authenti-
cated and authorized users have to the resources provided
by that system. An access control model typically defines a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

collection of sets, functions and relations that represent ele-
ments of an access control mechanism. We will refer to such
sets as components of the access control model. The com-
ponents of the Harrison-Ruzzo-Ullman (HRU) model [10],
for example, are the set of objects O, the set of subjects
S, the set of access rights A, and the protection matrix
M : S × O → 2A.

A component can be static or dynamic: a static compo-
nent is one that doesn’t change over time, such as the set of
access rights A in the protection matrix model; conversely, a
dynamic component, such as the set of subjects S in the pro-
tection matrix model, does change over time. The state of a
model can be thought of as a tuple (C1, . . . , Cn), where Cj

is a dynamic component in the model. In the HRU model,
for example, the state is defined to be the tuple (S, O, M);
the set of access rights is static.

An administrative model for an access control mechanism
defines a decision process that determines whether a request
to change the state is permitted. Typically, an administra-
tive model is defined by a fixed set of commands, each com-
mand containing a conditional statement and a body that is
executed if the conditional statement evaluates to true. The
body will comprise a number of atomic operations each of
which changes a dynamic component of the associated access
control model. In the HRU model, for example, the condi-
tional statement checks for the presence of access rights in
the matrix and the atomic operations make changes to the
rows, columns or entries of the matrix.

Inspired by early work at MITRE Corporation [1] and
NIST [8], role-based access control (RBAC) has been the
subject of considerable research in recent years result-
ing in several important models, including the RBAC96
model [16], the role graph model [13], and the NIST
model [9]. Many of these ideas were recently consolidated
to form the basis for the ANSI RBAC standard [2]. A num-
ber of commercial products, such as Trusted Solaris, Win-
dows Authorization Manager, Oracle 9 and Sybase Adaptive
Server, implement RBAC.

Despite the enthusiasm for RBAC, the use of RBAC prin-
ciples to manage RBAC systems has been less widely stud-
ied. The models cited above, for example, rely on centralized
procedures to change dynamic components of the respective
models. The most mature decentralized role-based adminis-
trative models are ARBAC97 [15] and the RHA (role hier-
archy administration) model [6]. Both models are designed
to inter-operate with RBAC96, but could also be applied to
ANSI RBAC systems, and both models exploit the structure
of the role hierarchy to control changes. Nevertheless, the
motivation for the development and design of these models

158



has been somewhat vague: the creators of ARBAC97, for
example, talk of the need to prevent “anomalous side ef-
fects” arising from unconstrained changes to the hierarchy;
similarly, Crampton and Loizou state that RHA prevents
“unexpected side effects due to inheritance elsewhere in the
hierarchy”, although this notion is formalized to some ex-
tent.

In this paper, we undertake a rigorous analysis of the
properties that define the behaviour of role-based admin-
istrative models. The analysis is based on the notion of
an administrative domain, a self-contained sub-hierarchy of
the role hierarchy. Our first major result is to prove that
administrative domains are pairwise nested or disjoint. We
then define what it means for administrative domains to
be preserved. This enables us to define a number of sets
of criteria that impose constraints on the functionality of a
role-based administrative model. Each of these sets defines a
mode of operation for a role-based administrative model, en-
abling systems and application developers to choose the ad-
ministrative model best suited to their requirements. Each
set of criteria requires that administrative operations must
preserve certain structural properties of administrative do-
mains. We might insist, for example, that an administrative
role can make changes to its own administrative domain and
any domains contained within it. These criteria enable us to
classify role-based administrative models according to their
permissiveness, and to create a framework for developing
role-based administrative models.

One of the most striking consequences of our analysis is
to reveal a fundamental and hitherto unexpected connec-
tion between RHA and ARBAC97. In particular, we find
that RHA is the most permissive of administrative models,
whereas ARBAC97 is among the most restrictive. Infor-
mally, our analysis enables us to draw a road map from RHA
to ARBAC97, identifying interesting features (new models)
along the way. We also establish that ARBAC97 is more re-
strictive than is necessary and point out a number of weak-
nesses in the original formulation.

In the next section we briefly review the RBAC96 model
and some relevant mathematics. We also specify the op-
erational semantics of the operations used in a role-based
administrative model. In Section 3 we define administra-
tive scope, the central concept in RHA, and show how this
immediately leads to the concept of an administrative do-
main. We prove that administrative domains must be ei-
ther disjoint or nested and introduce the idea of a domain
tree. In Section 4 we formally define what it means for an
administrative domain to be preserved by an administra-
tive operation and introduce the idea of local, hierarchical
and universal domain preservation. We also define what
it means for an operation to be autonomy preserving. We
then introduce three different sets of criteria and state a
number of important results in relation to the preservation
of administrative domains. In Section 5 we introduce the
idea of an administrative role and define a template for con-
structing role-based administrative models. In this section
we note the connection between this template and RHA.
In Section 6 we describe the connection between our frame-
work and ARBAC97, and provide a concise characterization
of ARBAC97. We also identify a number of flaws in AR-
BAC97 and describe appropriate remedies. We conclude
with an appraisal of our framework and describe the numer-
ous opportunities for further research in this area.

2. PRELIMINARIES

2.1 RBAC96
RBAC96 is a family of access control models that assumes

the existence of a set of roles R, a set of permissions P , a set
of users U , and two relations UA ⊆ U ×R and PA ⊆ P ×R
that bind users and permissions to roles [16]. These sets
and relations form the basis for RBAC0, the simplest model
in the RBAC96 family. A request by a user u to invoke
permission p is granted if there exists a role r such that
(u, r) ∈ UA and (p, r) ∈ PA.

RBAC1 introduces the concept of a role hierarchy, which
is modelled as a partial order on the set of roles. The role hi-
erarchy permits a role r to inherit the permissions assigned
to any more junior role. This significantly reduces the ad-
ministrative burden by reducing the number of explicit as-
signments that need to be stored in the UA and PA relations.
A request by a user to invoke permission p is granted if there
exist roles r and r′ such that (u, r) ∈ UA, (p, r′) ∈ PA and
r � r′. (RBAC0 and RBAC1 have recently been superseded
by the core and hierarchical components of the ANSI RBAC
standard [2].)

2.2 Partial orders
Let 〈X, �〉 be a partially ordered set and let x, y ∈ X.

We write x < y if x � y and x �= y. We may write y � x
whenever x � y. We write x ‖ y if x �� y and y �� x. We say
Y is an antichain if for all y, z ∈ Z, y �= z implies that y ‖ z.
We write [x, y] to denote the range {z ∈ X : x � z � y}.

We say y covers x, or x is covered by y, denoted x � y, if
x < y and for all z ∈ X, x � z < y implies x = z. In other
words, x�y is shorthand for “y is an immediate parent of x”.
The Hasse diagram of X is the directed graph of the covering
relation (X, �): in other words, transitive relationships in
the poset are implied by paths in the Hasse diagram. In
the context of RBAC, the Hasse diagram represents the role
hierarchy.

We define �x = {y ∈ X : y�x} and �x = {y ∈ X : x�y}.
In other words, �x is the set of immediate children of x and
�x is the set of immediate parents of x. It is easy to show
that �x and �x are antichains for all x ∈ X. We define
↓x = {y ∈ X : y � x} and ↑x = {y ∈ X : x � y}. For
Y ⊆ X, we define

↓Y =
⋃

y∈Y

↓y and ↑Y =
⋃

y∈Y

↑y.

The interested reader is referred to the book by Davey and
Priestley for an introduction to lattice and order theory [7].

In the context of RBAC, ↓r represents the set of roles
available to a user assigned to r and ↑r represents the set of
roles to which the permission p is available if p is assigned
to r. The expression ↓r ∪ ↑r will be used extensively once
we introduce the concept of administrative scope, and will
be abbreviated to �r.

2.3 Administrative operations
Role-based access control models typically include a role

hierarchy, which is modelled as a partial order on the set of
roles. The role hierarchy is represented as the set of directed
edges in the Hasse diagram of R (an example is shown in
Figure 1). Hence, there are two dynamic components: R
and the covering relation on R. This gives rise to the four

159



hierarchy operations:1

• addEdge(a, c, p), which adds the directed edge (c, p) to
the hierarchy, where c, p ∈ R;

• deleteEdge(a, c, p), which deletes the directed edge
(c, p) from the hierarchy;

• addRole(a, r, C, P ), which creates the role r with imme-
diate children C ⊆ R and immediate parents P ⊆ R;

• deleteRole(a, r), which deletes the role r ∈ R.

In addition we have the following assignment operations,
each of which is assumed to be performed by administrative
role a.

• addUA(a, u, r), which adds the pair (u, r) to the UA
relation;

• deleteUA(a, u, r), which deletes the pair (u, r) from the
UA relation;

• addPA(a, p, r), which adds the pair (p, r) to the PA
relation;

• deletePA(a, p, r), which deletes the pair (p, r) from the
PA relation.

Collectively we refer to these eight operations as administra-
tive operations. In this paper, we will focus on the hierarchy
operations; experience has shown that it is straightforward
to incorporate the other operations [6].

Informally, the execution of a hierarchy operation will af-
fect one or more roles in the hierarchy. The set of roles that
are affected by an operation is not necessarily immediately
obvious, because of the transitivity implied by the role hi-
erarchy. It may be necessary, for example, to “repair” the
hierarchy relation following addEdge and deleteEdge opera-
tions in order to remove redundancy and to preserve inher-
itance, respectively. Table 1 summarizes the changes to R
and RH caused by hierarchy operations. The approach de-
scribed in this table assumes that only the covering relation
is stored.2

3. ADMINISTRATIVE SCOPE
The RBAC96 model does not provide any model for con-

trolling updates to the role hierarchy and the assignment
relations. This omission was addressed by the ARBAC97
model [15], which provides a role-based model for admin-
istering a role-based access control system. However, the
ARBAC97 model suffers from its inability to manage many
types of hierarchies [6, Section 8]. Crampton and Loizou
introduced the RHA model3 as a more flexible and widely
applicable alternative to ARBAC97 [6].
1In RBAC0, the only dynamic component is the set of roles
(since the set is unordered), so we only require two opera-
tions: one to add a role and one to delete a role.
2Of course, the full order relation could be stored, which
would make the deletion of an edge quite straightforward.
However, this approach would require several edges to be
added to the relation when a new edge or role is added, in
order to preserve transitivity. In short, there are a number
of ways of representing the role hierarchy, each of which
influences the complexity of different hierarchy operations
in different ways.
3In fact there are four different RHA models of differing
complexity. For convenience we will refer to the RHA model,
except in Section 5, when we discuss the particular members
of the family.

The RHA model is based around the idea of administra-
tive scope. Every role r ∈ R has an administrative scope,
which defines the set of roles that can be modified by r.
Administrative scope is determined by the structure of the
hierarchy. Informally, r′ is in the administrative scope of
r if any change to r′ will only be observed by r and roles
more senior than r. That is, any change to r′ made by r
will not have unexpected side effects due to inheritance else-
where in the hierarchy. More formally, we have the following
definition [6].

Definition 1. The administrative scope of a role r, de-
noted σ(r), is defined to be

σ(r) = {s ∈ ↓r : ↑s ⊆ �r}.
The strict administrative scope of r is defined to be
σ(r) \ {r} and is denoted σ̂(r). For A ⊆ R we define
σ(A) = {r ∈ ↓A : ↑r ⊆ �A} and σ̂(A) = σ(A) \ A.

Note that r ∈ σ(r) for all r, which motivates the definition
of strict administrative scope. In the role hierarchy depicted
in Figure 1, for example, σ(PL1) = {ENG1, PE1, QE1, PL1}.
3.1 Administrative scope and administrative

operations
The conditions that determine whether an administrative

operation is allowed to proceed in the RHA model are sum-
marized in Table 2. Note that each condition requires that
the arguments of the operation be contained in the admin-
istration scope of the role performing the operation.

3.2 Administrative domains
We will say D ⊆ R is an administrative domain, with

administrator r, if D = σ(r) for some r ∈ R. We will write
DR for the set of administrative domains in R. Henceforth
we will omit R when it is obvious from context.

In this section we establish a fundamental result concern-
ing administrative domains: namely, that each pair of do-
mains is either nested or disjoint. This leads naturally to the
concept of an administrative domain tree and of the small-
est domain containing a given role. These concepts will be
used extensively in the following section.

Lemma 2. Let a, b ∈ R. Then

σ(a) ∩ σ(b) =

⎧⎪⎪⎨
⎪⎪⎩

σ(a) if a ∈ σ(b),

σ(b) if b ∈ σ(a),

∅ otherwise.

Proof. Let r ∈ σ(a). We consider each of the three cases
in turn. (Note that σ(a)∩σ(b) = σ(a) is equivalent to saying
that σ(a) ⊆ σ(b).)

If a ∈ σ(b) then, by definition, a � b, ↓a ⊆ ↓b and
↑a ⊆ �b. Hence ↑r ⊆ �a ⊆ �b and r ∈ σ(b). By symme-
try, σ(a) ∩ σ(b) = σ(b) if b ∈ σ(a).

Now assume that a �∈ σ(b) and b �∈ σ(a). Note that a �= b.
If a ‖ b, then a �∈ �b; by definition, r ∈ σ(a) implies r � a
(that is, a ∈ ↑r) and hence r �∈ σ(b). Otherwise, we can
assume without loss of generality that a < b. Then since
a �∈ σ(b), there exists x ∈ ↑a such that x �∈ �b. Now given
that r ∈ σ(a), we have r � a, and hence r � x by transitiv-
ity. Therefore x ∈ ↑r and hence r �∈ σ(b).

Remark 3. Note that a � b does not imply that
σ(a) ⊆ σ(b). A counterexample is provided by ED and PL1

in Figure 1.

160



Operation Semantics

addEdge(a, c, p)

RH ← RH ∪ {(c, p)} \ {(x, p) : x ∈ �c ∩ �p} \ {(c, y) : y ∈ �c ∩ �p}
If (r, c), (r, p) ∈ RH and the edge (c, p) is added, then we no longer require the edge (r, p),
because (r, c) and (c, p) imply (r, p) by transitivity. Hence any role r that is an immediate
child of both c and p is affected by the operation as the edge (r, p) must be deleted from RH .
Similarly, any role r that is an immediate parent of both c and p is affected by addEdge(a, c, p)
as the edge (c, r) must be deleted from RH .

deleteEdge(a, c, p)
RH ← RH \ {(c, p)} ∪ {(x, p) : x ∈ �c} ∪ {(c, y) : y ∈ �p}
If (r, c) ∈ RH , then r � c � p and hence we may need to add the edge (r, p) to preserve the
inheritance. Similarly, if (p, r) ∈ RH , then c � p � r and we may need to add the edge (c, r).

addRole(a, r, C, P )

R ← R ∪ {r}
RH ← RH ∪ {(c, r) : c ∈ C} ∪ {(r, p) : p ∈ P} \ {(c, p) : c ∈ C, p ∈ P}
If (c, p) ∈ RH , where c ∈ C and p ∈ P , then the edge (c, p) becomes redundant following the
addition of role r (since (c, r) and (r, p) are added to the hierarchy, thereby implying c < p by
transitivity). Hence we remove (c, p) from RH .

deleteRole(a, r)

R ← R \ {r}
RH ← RH ∪ {(c, p) : c ∈ �r, p ∈ �r}
For any role c ∈ �r and any role p ∈ �r we have c � r � p, so we must add an edge (c, p) to
the hierarchy following the deletion of r.

Table 1: Operational semantics of hierarchy operations

Operation Conditions

addRole(a, r, C, P ) C ⊆ σ̂(a), P ⊆ σ(a)

deleteRole(a, r) r ∈ σ̂(a)

addEdge(a, c, p) c, p ∈ σ(a)

deleteEdge(a, c, p) c, p ∈ σ(a)

Table 2: Conditions for success of hierarchy operations in RHA

Lemma 2 states that administrative domains are either
nested or disjoint.4 An illustration of this result is given in
Figure 1(b); domains are enclosed by broken lines. The hi-
erarchy depicted in Figure 1(a) is adapted from an example
by Sandhu. Hence, for any partially ordered set of roles R,
the partially ordered set 〈D,⊆〉 is a tree. Figure 1(c) illus-
trates the administrative domain tree for the role hierarchy
depicted in Figure 1.

The administrative domain tree provides a natural order-
ing on the set of administrators. Specifically, if a and b are
administrators, we write a � b if σ(a) ⊆ σ(b). Figure 1(d)
shows the partial order defined on the set of administrators.

Note that {r} is an administrative domain (with admin-
istrator r) for any r that is non-maximal in another ad-
ministrative domain (as is the case with PE1, for example).
We call such administrative domains trivial. Note also that,
by the conditions in Table 2, the administrator of a trivial
administrative domain cannot perform any hierarchy oper-
ation. Henceforth, we confine our attention to non-trivial
administrative domains.

4ARBAC97 introduces the concept of authority ranges
which are defined by the administrator of the system. It
is required that authority ranges are either nested or dis-
joint. It is interesting that this property “comes for free”
with domains defined using administrative scope. We will
consider this in more detail in Section 6.

4. PRESERVING ADMINISTRATIVE
SCOPE

In Section 2.3 we observed that the effect of a hierarchy
operation is not necessarily limited to the parameters of the
operation. A consequence of this is that the administrative
scope of a role can change following a hierarchy operation.
If, for example, PL1 deletes the edge (PE1, PL1), a new edge
(PE1, DIR) is added to preserve inheritance and PE1 no longer
belongs to σ(PL1).

Of course, these operational semantics may be regarded
as acceptable in certain situations. However, if we assume
that it is desirable for a hierarchy operation to preserve ad-
ministrative scope, then it is necessary to impose some ad-
ditional conditions that must be satisfied if the operation is
to succeed. There are at least three different possibilities.
Specifically, if a performs a hierarchy operation we could
require that:

• σ(a) should be preserved;

• σ(a′) should be preserved for all a′ � a;

• σ(a′) should be preserved for all a′.

4.1 Scope preserving hierarchy operations
A hierarchy operation may cause a change to R or the

partial ordering defined on R. If S ⊆ R, we will write S′ or
(S)′ to denote the value of S following a hierarchy operation.
In particular, we will write σ(a)′ to denote the administra-
tive scope of a following an operation, but for clarity we

161



DIR

PL1

PE1 QE1 PE2

PL2

QE2

ENG2ENG1

ED

E

(a) Role names
(b) Administrative domains

{E,...,DIR}

{PE1} {QE1} {PE2}

{ENG2,PE2,QE2,PL2}

{ENG2,QE2}

{ENG2}

{ENG1}

{ED}

{E}

{ENG1,PE1,QE1,PL1}

(c) Administrative domain tree

DIR

PL2

QE2

EDPL1

(d) Administrator tree

Figure 1: An example role hierarchy

prefer to write (↑x)′, (↓x)′ and (�x)′ (rather than ↑x′, ↓x′

and �x′). Informally, we say S is preserved by a hierarchy
operation if anything in S prior to the operation remains in
S if it remains in R. More formally, we have the following
definition.

Definition 4. Let S ⊆ R. We say S is preserved by a
hierarchy operation if S ∩ R′ ⊆ S′.

Definition 5. We say an operation performed by a is

• locally scope preserving if it preserves σ(a);

• hierarchically scope preserving if it preserves σ(b) for
all b ∈ R such that σ(a) ⊆ σ(b);

• universally scope preserving if it preserves σ(b) for all
b ∈ R.

For convenience, we will say an operation is 0SP if it is
always locally scope preserving, 1SP if it is always hierar-
chically scope preserving, and 2SP if it is always universally
scope preserving. It is clear from the definition that if an
operation is 2SP then it is also 0SP and 1SP, and that if an
operation is 1SP then it is also 0SP.

Note that hierarchy operations are not, in general,
0SP. The operation deleteEdge(PL1, PE1, PL1) defined in Ta-
ble 2 is not 0SP, since σ(PL1) = {ENG1, QE1, PE1, PL1} and
σ(PL1)′ = {QE1, PL1}. Hence it is necessary to impose re-
strictions on the hierarchy operations that are permitted to
succeed (if we wish to preserve administrative scope). We
address these issues in the next section and also specify con-
ditions that define 0SP, 1SP and 2SP operations.

162



Definition 6. We say an operation performed by a is
autonomy preserving if there does not exist b � a such that
b is permitted to perform the same operation.

We say an operation is 3SP if it is autonomy preserv-
ing. An example will make this notion clear: let a and
b be administrators with σ(b) ⊆ σ(a) and r ∈ σ(b); then
deleteRole(a, r) succeeds if the operation is 2SP but fails if
it is 3SP. In other words, a 3SP operation will only succeed
if it is invoked by the most local administrator: senior ad-
ministrators cannot change nested administrative domains
within their scope.

4.2 Scope preserving administrative models
An administrative model M is part of the reference mon-

itor that determines whether requests to perform adminis-
trative operations should succeed. Typically, M specifies
conditions for each hierarchy operation that must be satis-
fied for that operation to succeed (as in Table 2, for exam-
ple). We say a hierarchy operation is M-permissible if the
condition(s) permit the operation to proceed. Some con-
ditions may only preserve the administrative scope of the
role that performs the operation, while others may preserve
the administrative scope of all roles. We now introduce a
classification scheme for administrative models by extend-
ing the definitions of 0SP, 1SP, 2SP and 3SP for hierarchy
operations in the natural way.

Definition 7. We say that M is iSP if all M-
permissible hierarchy operations are iSP, 0 � i � 3.

The RHA family of models is not 0SP. This is a potential
criticism of the RHA family of models, although it should be
noted that a role can never increase its own administrative
scope by performing a hierarchy operation. Nevertheless, we
believe this provides sufficient motivation for introducing the
idea of 0SP.

Informally, we note that one problem with the set of condi-
tions in Table 2 is that deleting an edge can “break” the ad-
ministrative scope of the role performing the deletion. This
problem arises because the operation affects roles outside
the administrative scope of the role performing the dele-
tion. In the case of the operation deleteEdge(PL1, PE1, PL1),
the operation affects DIR which is not in σ(PL1).

However, a 0SP model does not necessarily prevent a role
a from performing a hierarchy operation that preserves σ(a)
but does not preserve the administrative scope of a more
senior role. In many situations, we would not want this to
happen, hence the idea of 1SP models.

Note that a 1SP model would permit the operation
addRole(DIR, {QE1}, {DIR}), which does not preserve σ(PL1).
As a further example, deleteEdge(DIR, ENG1, QE1) is 2SP, but
deleteEdge(DIR, QE1, PL1) is not. There may be situations –
when we wish to guarantee the autonomy of administrative
domains, for example – where we want the administrative
scope of every role to be preserved by every hierarchy oper-
ation; hence the introduction of 2SP models. (We shall see
later that ARBAC97 is approximately 2SP, although it was
never characterized in this way when it was introduced.)

Finally, we note that a 2SP model would permit the op-
eration deleteRole(DIR, QE1). Although this operation pre-
serves σ(PL1), since σ(PL1) ∩ R′ = σ(PL1)′, we may wish to
strengthen the autonomy of domains by preventing more se-
nior administrators changing nested domains and hence we
introduce the idea of 3SP models.

4.3 Scope preserving conditions
In this section we provide several different sets of condi-

tions governing the success of hierarchy operations. We first
introduce a number of useful consequences of Lemma 2. We
then state without proof a number of results concerning the
scope preserving properties of each of these sets of condi-
tions.

A corollary of Lemma 2 is that for every role r ∈ R,
there exists a smallest (non-trivial) administrative domain
to which r belongs, which we will denote by [r].5 Since [r]
is an administrative domain, [r] = σ(a) for some role a,
and we will say that a is the line manager of role r. From
Figure 1(c) we see that [PE1] = {ENG1, PE1, QE1, PL1}, for
example, and hence that PL1 is the line manager of PE1.

Let X ⊆ R. We define �X� to be the largest administra-
tive domain D such that D ⊆ [x] for all x ∈ X, and �X� to
be the smallest administrative domain D such that [x] ⊆ D
for all x ∈ X. We have, for example, �{QE2, PL2}� = [QE2]
and �{QE2, PL2}� = [PL2]; and �{QE1, PL2}� = ∅ and
�{QE1, PL2}� = R. Note that if there exist x, y ∈ X such
that [x] ∩ [y] = ∅ then �X� = ∅.

Table 3 lists four different sets of conditions that must be
satisfied for hierarchy operations to be successful. We will
use these sets in the remainder of this section to prove the
existence of 0SP, 1SP, 2SP and 3SP administrative models:
Crha is the set of conditions used by the RHA family of
models, and is reproduced from Table 2 for convenience; Ci

gives rise to an iSP model, i = 0, 2, 3. We also prove that
C0 is sufficient to define a 1SP model.

Each column in the table specifies a set of conditions for
each hierarchy operation. The conditions become increas-
ingly restrictive from left to right. Each set of conditions
is derived in part from the previous set. Note the following
features of the table:

• A new condition has been introduced in order to make
deleteEdge 0SP;

• New conditions are required to define 2SP operations
when those operations may add edges to the hierar-
chy. Informally, the new conditions require that new
edges are directed from children within a larger admin-
istrative domain to parents in a smaller administrative
domain;

• New conditions are required to define 3SP operations.
Informally, these conditions require that the most lo-
cal administrator performs the operation to preserve
autonomy.

Henceforth we will write ox to denote that we are con-
sidering hierarchy operation o using conditions Cx from Ta-
ble 3. The operation addRole2(a, r, C, P ), for example, only
succeeds if C ⊆ σ̂(a), P ⊆ σ(a) and �P � ⊆ �C�.

Remark 8. It is worth noting that each of the conditions
in Table 3 can be easily checked using the domain tree. To
check that [c] = σ(a), for example, it is simply a matter of
confirming that a is the immediate parent of c in the tree.

Theorem 9. C0 is 0SP.

5This domain is simply the (unique) immediate parent of
r in the domain tree. ARBAC97 defines the concept of an
immediate authority range, which is analogous to this type
of administrative domain.

163



Operation Crha C0 C2 C3

addRole(a, r, C, P )
C ⊆ σ̂(a)

P ⊆ σ(a)

C ⊆ σ̂(a)

P ⊆ σ(a)

C ⊆ σ̂(a)

P ⊆ σ(a)

�P � ⊆ �C�

C ⊆ σ̂(a)

P ⊆ σ(a)

�C� = �C� = σ(a)

deleteRole(a, r) r ∈ σ̂(a) r ∈ σ̂(a) r ∈ σ̂(a)
r ∈ σ̂(a)

[r] = σ(a)

addEdge(a, c, p) c, p ∈ σ(a) c, p ∈ σ(a)
c, p ∈ σ(a)

[p] ⊆ [c]

c, p ∈ σ(a)

[c] = σ(a)

deleteEdge(a, c, p) c, p ∈ σ(a) c, p ∈ σ̂(a)
c, p ∈ σ̂(a)

��p� ⊆ [c]

c, p ∈ σ̂(a)

[c] = σ(a)

Table 3: Scope preserving conditions

Theorem 10. C0 is 1SP.

Theorem 11. C2 is 2SP.

Corollary 12. C3 is 2SP.

Theorem 13. C3 is 3SP.

Space constraints do not permit the inclusion of proofs
of these results. Theorem 9 is established by first proving
that RHA operations preserve both ↓a and ↑a, except for
deleteEdgerha. The proof of this preparatory result is con-
structive and yields the appropriate condition for deleteEdge
to be 0SP. (Notice that columns two and three of Table 3
only differ in the entry for the delete edge operation.) The-
orem 10 is proved by extending the proof method used for
Theorem 9. Theorem 11 is proved using the fact that do-
mains are either nested or disjoint and that C2 only permits
the addition of edges to the hierarchy if they are directed
into interior domains, thereby preserving the set of senior
roles of the child role. Corollary 12 is established by prov-
ing that if operation op3 succeeds then so does op2 and then
using Theorem 11, and again makes use of the fact that do-
mains are nested. Theorem 13 follows from the definition
of C3 and a simple proof by contradiction. Full proofs are
available in our technical report [5].

5. RBAT: A TEMPLATE FOR ROLE-
BASED ADMINISTRATIVE MODELS

We have introduced the idea of an administrative domain
and a number of criteria that can be used to control the
way in which administrative domains are affected by hier-
archy operations. In this section we briefly describe RBAT
(role-based administration template), which provides a de-
sign pattern for role-based administration models. We will
show how particular instances of the framework are related
to RHA4 and ARBAC97.

5.1 Components of RBAT
RBAT defines the following components:

• A non-empty set of administrative units U , each of
which contains a unique administrator role. Moreover,
for all U, U ′ ∈ U , one of the following conditions must
hold: (i) U ⊆ U ′ (ii) U ⊇ U ′ (iii) U ∩ U ′ = ∅;

• A set of hierarchy operations O;

• A set of conditions C, each of which determines the
success of a particular operation;

• A set of administrative roles RA, which may be empty;

• A relation can-administer ⊆ RA×R, which associates
an administrative role with the administrator of an
administrative unit. If RA = ∅, can-administer ⊆
R × R.

5.2 The can-administer relation
Instead of using roles in the hierarchy, we may define a dis-

tinct set of administrative roles and assign them to admin-
istrative domains within the role hierarchy. This is similar
to the approach taken in ARBAC97 and is a simplification
of the admin-auth relation in the RHA family of models.

Since an administrative domain is uniquely deter-
mined by its administrator, we can introduce a relation
can-administer ⊆ RA × R, where RA is the set of admin-
istrative roles. The meaning of (a, r) ∈ can-administer is
that a has administrative control of σ(r), the administrative
unit defined by its administrator r. (For simplicity, we con-
tinue to use σ(r) to denote the administrative unit defined
by an administrator r; we will also write σ(a) to denote the
set of administrative units controlled by an administrative
role a.) Hence (PSO1, PL1) ∈ can-administer, for example,
could be used to specify that PSO1 has been granted control
over the administrative unit σ(PL1) = {ENG1, PE1, QE1, PL1}.

Table 4 shows the conditions for success of hierarchy op-
erations within this general framework. In simple terms,
an operation performed by an administrative role a suc-
ceeds if all the arguments of the operation belong to a sin-
gle administrative unit (with administrator x) that is con-
trolled by a and x is permitted to perform the desired op-
eration within that administrative unit. The model can
be chosen to be 0SP, 1SP, 2SP or 3SP, simply by select-
ing the appropriate criteria for the operation to succeed
when performed by x. If (PSO1, PL1) ∈ can-administer, for
example, then deleteEdgerha(PSO1, PE1, PL1) succeeds, but
deleteEdge0(PSO1, PE1, PL1) fails.

5.3 The RHA4 model
It is natural to expect that RBAT has some similarity with

the RHA family of models, since administrative units are a
generalization of administrative domains (which are defined
by administrative scope). Note that RHA1 is a special case
of RBAT in which U is the set of administrative domains,
RA = ∅, can-administer = {(r, r) : r ∈ R} and C = Crha .

The can-administer relation is identical in structure to
the relation admin-auth ⊆ RA × R defined in RHA4, the
most complex model of the RHA family. In RBAT, we define
the administrative scope of an administrative role a to be the

164



Operation Conditions

addRole(a, r, C, P )

∃x ∈ R, (a, x) ∈ can-administer

addRole(x, r, C, P ) succeeds

deleteRole(a, r) deleteRole(x, r) succeeds

addEdge(a, c, p) addEdge(x, c, p) succeeds

deleteEdge(a, c, p) deleteEdge(x, c, p) succeeds

Table 4: Success of hierarchy operations in RBAT

union of the administrative units it controls and insist that
for any command to succeed, all arguments must belong to
a single one of those units. However, in RHA4, the adminis-
trative scope of a was defined in terms of the roles controlled
by a (that is, {r ∈ R : (a, r) ∈ admin-auth}). An example
should make the difference clearer: the RHA model would
permit (PSO1, PE1), (PSO1, QE1) ∈ admin-auth, meaning that
σ(PSO1) = {ENG1, PE1, QE1}, whereas these pairs are not per-
mitted in the can-administer relation because PE1 and QE1

are not administrators in R. Moreover, although we per-
mit (PSO1, PL1), (PSO1, PL2) ∈ can-administer, for example,
we do not permit the operation addEdge2(PSO1, ENG1, QE2).
Strictly speaking, then, RHA4 is not an instance of RBAT,
although an 0SP model that uses administrative domains as
administrative units is a close approximation to RHA4.

6. CONNECTIONS WITH ARBAC97
What is more surprising is that the ARBAC97 model

can be expressed in terms of the framework described
in the last section. ARBAC97 defines the relation
can-modify ⊆ RA × E , where E is the set of encapsulated
ranges in R (see Definition 14 below). Roughly speaking,
the administrative role a ∈ RA can perform a hierarchy
operation provided the arguments are contained in some en-
capsulated range E and (a, E) ∈ can-modify. In addition,
no hierarchy operation may violate the encapsulation of the
ranges contained in the can-modify relation: this is clearly
a kind of preservation property.

In this section we identify a strong link between encap-
sulated ranges and administrative domains and provide a
new formulation of ARBAC97. We also identify a couple
of weaknesses in the original formulation, which become ap-
parent when the ARBAC97 model is interpreted within our
framework.

The following definition is due to Sandhu et al [15, Defini-
tion 16], although it has been slightly modified as a result of
an observation made by Crampton and Loizou [6, Remark
7.3].

Definition 14. A range [x, y] is encapsulated if for all
z ∈ (x, y) and all w �∈ (x, y):

w > z iff w � y;

w < z iff w � x.

Lemma 15. For any encapsulated range [x, y],
�[x, y]� = σ(y).

Proof. Let [x, y] be an encapsulated range and let
z ∈ [x, y]. We will show that ↑z ⊆ �y. Let w ∈ ↑z. There are
two possibilities: (i) if w � y then w ∈ �y; (ii) if w �� y then
since z � w and [x, y] is encapsulated we have y � w and
w ∈ �y. Hence, for all z ∈ [x, y], z ∈ σ(y) and [z] ⊆ σ(y).
The result follows by observing that any smaller adminis-
trative domain does not contain y.

Corollary 16. Encapsulated ranges are either nested or
disjoint.

Proof. The result follows immediately from Lemma 2
and Lemma 15.

The converse of Lemma 15 is not true because an adminis-
trative domain is not necessarily a range. However, we have
the following definition and result.

Definition 17. An administrative range is a range
[b, t] ∈ R such that for all x ∈ [b, t], ↑x ⊆ �t and ↓x ⊆ �b.6

Note that the definition of administrative range is the
symmetric analogue of the definition of administrative
scope. We will use this fact later when deriving conditions
for an operation to preserve encapsulated ranges.

Proposition 18. The range [b, t] is encapsulated iff [b, t]
is an administrative range.

Proof. The result follows from the definition of admin-
istrative range and the proof method of Lemma 15.

Note that an encapsulated range does not include the end
points that define it. In other words, an encapsulated range
is analogous to strict administrative scope (which omits the
top element in an administrative domain). To avoid the
introduction of any further notation, we will write σ̂(a) to
denote the encapsulated range with top element a.

In ARBAC97, the ranges that appear in the can-modify

relation are called authority ranges. They are defined by the
system administrator and are required to be encapsulated
ranges. Moreover, it is required that each pair of authority
ranges be either nested or disjoint. Corollary 16 shows that
this requirement is redundant as encapsulated ranges are
either nested or disjoint by definition.

The success of many operations in ARBAC97 depends on
the notion of an immediate authority range. Since authority
ranges are nested or disjoint by definition, there exists a
smallest authority range to which any given role belongs.
The immediate authority range of a role r is analogous to
[r].

We now place ARBAC97 in the context of the frame-
work developed in this paper. In ARBAC97, every hierarchy
operation must preserve the encapsulation of all authority
ranges. The designers of ARBAC97 give no rules or method
for determining whether a hierarchy operation satisfies this
condition. It should come as no surprise by now that we are
able to express ARBAC97 using the approach described in
the previous section and that we can explicitly state suffi-
cient conditions for an operation to preserve encapsulated
ranges. Specifically, U is defined to be the set of encapsu-
lated ranges, C is the analogue of C2 for encapsulated ranges,
and can-modify is replaced by can-administer.

6b denotes “bottom” and t denotes “top”.

165



In Table 5 we summarize the conditions that must be sat-
isfied for a hierarchy operation to succeed in the ARBAC97
model. We write x ∈ σ(a) as an abbreviation for “there ex-
ists r ∈ R such that x ∈ σ(r) and (a, r) ∈ can-administer”.
Expressions such as X ⊆ σ(a) and x ∈ σ̂(a) have analogous
interpretations.

The second column restates the conditions given by
Sandhu in the original formulation of the model. Notice the
use of σ̂(a) in the second column, corresponding to the fact
that the basic unit of administration in ARBAC97 is the en-
capsulated range, which does not include the end points of
the range. We have simplified some of the conditions for the
addRole and addEdge operations, which were permitted in
the original formulation of ARBAC97 provided one of three
conditions was satisfied, one of which was that [c] = [p].
In fact, each of these conditions turns out to be equivalent.
By symmetry, and using C2 from Table 3, all encapsulated
ranges are preserved if [c] ⊆ [p] and [p] ⊆ [c]. Therefore,
addRole(a, r, {c}, {p}) succeeds if c, p ∈ σ̂(a) and [c] = [p].

The third column suggests some slight modifications to
these conditions that should yield an improved version
of ARBAC97. Specifically, we add a condition to the
deleteEdge operation that guarantees that all such opera-
tions preserve encapsulated ranges. Sandhu et al do not
comment on the fact that deleting an edge can destroy an
encapsulated range and make no effort to prevent this hap-
pening. In contrast, we introduced a new requirement into
C2 for the deleteEdge operation in order to preserve admin-
istrative domains. Correspondingly, ARBAC97 should in-
clude the following condition for the deleteEdge operation in
order to preserve all encapsulated ranges: [p] = [c], since we
require that [�p] ⊆ [c] and (by symmetry) [�c] ⊆ [p] in order
to preserve encapsulated ranges. We also make the definition
of addRole more general, in line with the addRole operation
used elsewhere in this paper. The ARBAC97 model requires
that a new role have a single child and parent role. There
is no theoretical reason for this restriction. Hence we sug-
gest that we use the operation addRole(a, r, C, P ), and that
it succeeds if C ⊆ σ̂(a), P ⊆ σ(a) and �C� = �C� = �P � =
�P �. (This latter condition simply says that there exists b
such that for all c ∈ C and all p ∈ P , [c] = [p] = σ(b).)

7. CONCLUSION
We have provided a characterization of role-based admin-

istrative models based on the extent to which the hierarchy
operations permitted by the model preserve administrative
domains. This characterization enables us to provide a con-
cise description of ARBAC97 and to identify and correct a
number of flaws in the original specification.

The success or otherwise of hierarchy operations is deter-
mined by the administrative scope of the role performing
the operation. The administrative scope of a role can be
determined directly and efficiently from the domain tree.
Hence it ought to be possible to produce an implementation
of ARBAC97 and a number of other models described in
this paper for evaluation purposes. Until now, it was not
obvious that such an implementation of ARBAC97 existed,
since there was no obvious way of testing the requirement
that the encapsulation of all authority ranges be preserved.

RBAT mandates the specification of a set of administra-
tive units, which must be either pairwise nested or disjoint.
The obvious choices for such a set are administrative do-
mains and encapsulated ranges (giving rise to RHA-style
and ARBAC97-style models respectively). However, these

are not the only choices and we may also consider the admin-
istration of disconnected hierarchies (such as those defined in
ERBAC96 [14] and TRBAC [3]). In this instance, it will be
necessary for systems administrators to define the adminis-
trative domains (that is, without reference to administrative
scope or encapsulated ranges) and then use an appropriate
set of conditions to determine the success of hierarchy op-
erations and preserve the integrity of those administrative
domains. Of course this will require some modification to
the conditions C0, C2 and C3, because in these conditions the
notion of preserving administrative domains could be neatly
captured using the administrative scope of a role. Instead,
the conditions will have to be specified in terms of preserv-
ing ↓r, where r is the administrator of the domain, and ↑x,
where x belongs to the domain of which r is the administra-
tor. This does not appear to present insuperable difficulties.
To date no administrative model exists for either ERBAC96
or TRBAC.

We can also build real ARBAC97 systems. This was not
obvious previously, since there existed a “chicken and egg”
situation, in which the can-modify relation was defined in
terms of the hierarchy, but the can-modify relation con-
trolled changes to the hierarchy [6, Section 8.3]. We know
that we can build RHA systems if we assume the existence of
a system administrator role that initially controls an empty
domain [6], which therefore suggests that we can also build
ARBAC97 systems.

Moreover, we can define more “relaxed” ARBAC97-style
models. The original version of the model is essentially a
2SP model, since it requires that all encapsulated ranges be
preserved. We now have a framework that enables us to
develop a set of less restrictive models based on authority
ranges, but with weaker preservation properties such as 0SP.

Finally, we note that this work may have a considerable
impact on the study of the safety problem in role-based sys-
tems [4, 11, 12]. The safety problem considers the propaga-
tion of access rights due to changes to access control data
structures and hence every administrative model gives rise to
an instance of the safety problem. The fact that we can order
administrative models according to the extent to which they
preserve domains may enable us to identify classes of role-
based administrative systems which have a decidable safety
problem. We anticipate that domain preservation will be a
feature of models for which the safety problem is decidable
in polynomial time.

We believe that this work will be of benefit to application
and systems developers, who wish to understand the mecha-
nisms of role-based administration better and to know what
properties will be preserved by the administrative model
they choose to implement. We also believe this work lays a
valuable theoretical foundation for the further development
of role-based administrative models and investigation of the
safety problem in role-based systems.

Future work will include the construction of administra-
tive models for ERBAC96 and TRBAC as suggested above.
We will also extend RBAT to include all administrative op-
erations (as defined in Section 2) and the administration of
the can-administer relation. A further interesting possibil-
ity is to introduce administrative permissions. This leads to
a two-phase checking process for administrative operations,
similar to that in the Bell-LaPadula model: the operation
should be both explicitly permitted by the assignment of
appropriate administrative permissions and should satisfy
the conditions for the operation to proceed. In this context,

166



Operation Sandhu et al Crampton

addRole(a, r, C, P )

C = {c}
P = {p}
c, p ∈ σ̂(a)

[c] = [p]

C ⊆ σ̂(a)

P ⊆ σ(a)

�C� = �C� = �P � = �P �
deleteRole(a, r) r ∈ σ̂(a) r ∈ σ̂(a)

addEdge(a, c, p)
c, p ∈ σ̂(a)

[c] = [p]

c, p ∈ σ(a)

[c] = [p]

deleteEdge(a, c, p) c, p ∈ σ̂(a)
c, p ∈ σ̂(a)

[c] = [p]

Table 5: Hierarchy operations in ARBAC97

the conditions form the mandatory element of the access
control checking process and the permissions form the dis-
cretionary element. The introduction of administrative per-
missions also suggests the possibility of administrative sepa-
ration of duty. We could, for example, insist that for a given
administrative domain, a human resources role is responsible
for the administration of the user-role assignment relation,
whereas some managerial or systems administrator role is
responsible for the administration of the permission-role as-
signment relation. Finally, we hope to investigate the notion
of role “visibility”, which we regard as being analogous to
the scope of a variable in block structured programming lan-
guages. Some roles and edges within a domain might only
be visible to roles within that domain, whereas other might
have global visibility. This concept may help to address the
fact that it is not always appropriate for all permissions to
be available to all more senior roles. Certainly, there is no
shortage of directions in which this work can be developed.

Acknowledgements. The author would like to thank the
anonymous reviewers for their constructive comments and
suggestions.

8. REFERENCES
[1] Abrams, M., LaPadula, L., and Olson, I. M.

Building generalized access control on UNIX. In
Proceedings of Second USENIX UNIX Security
Workshop (1990), pp. 65–70.

[2] American National Standards Institute. ANSI
INCITS 359-2004 for Role Based Access Control,
2004.

[3] Bertino, E., Bonatti, P., and Ferrari, E.
TRBAC: A temporal role-based access control model.
ACM Transactions on Information and System
Security 4, 3 (2001), 191–223.

[4] Crampton, J. Authorization and antichains. PhD
thesis, Birkbeck, University of London, London,
England, 2002. Available from
http://www.isg.rhul.ac.uk/∼jason.

[5] Crampton, J. Understanding and developing
role-based administrative models. Tech. Rep.
RHUL–MA–2005–6, Royal Holloway, University of
London, 2005.

[6] Crampton, J., and Loizou, G. Administrative
scope: A foundation for role-based administrative
models. ACM Transactions on Information and
System Security 6, 2 (2003), 201–231.

[7] Davey, B., and Priestley, H. Introduction to
Lattices and Order. Cambridge University Press,
Cambridge, United Kingdom, 1990.

[8] Ferraiolo, D., and Kuhn, D. Role-based access
control. In Proceedings of the 15th NIST-NSA
National Computer Security Conference (1992),
pp. 554–563.

[9] Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn,
D., and Chandramouli, R. Proposed NIST standard
for role-based access control. ACM Transactions on
Information and System Security 4, 3 (2001), 224–274.

[10] Harrison, M., Ruzzo, W., and Ullman, J.
Protection in operating systems. Communications of
the ACM 19, 8 (1976), 461–471.

[11] Li, N., and Tripunitara, M. Security analysis in
role-based access control. In Proceedings of the Ninth
ACM Symposium on Access Control Models and
Technologies (2004), pp. 126–135.

[12] Munawer, Q., and Sandhu, R. Simulation of the
augmented typed access matrix model (ATAM) using
roles. In Proceedings INFOSECU99 International
Conference on Information Security (1999).

[13] Nyanchama, M., and Osborn, S. The role graph
model and conflict of interest. ACM Transactions on
Information and System Security 2, 1 (1999), 3–33.

[14] Sandhu, R. Role activation hierarchies. In
Proceedings of Third ACM Workshop on Role-Based
Access Control (1998), pp. 33–40.

[15] Sandhu, R., Bhamidipati, V., and Munawer, Q.
The ARBAC97 model for role-based administration of
roles. ACM Transactions on Information and System
Security 1, 2 (1999), 105–135.

[16] Sandhu, R., Coyne, E., Feinstein, H., and
Youman, C. Role-based access control models. IEEE
Computer 29, 2 (1996), 38–47.

167


