
Mutual Exclusion of Roles as
Means of Implementing

Separation of Duty in
Role-Based Access Control

Systems

D. Richard Kuhn
National Institute of Standards and Technology

Gaithersburg, Maryland 20899

a

Abstract

Role based access control (RBAC) is attracting in-
creasing attention as a security mechanism for both
commercial and many military systems. Much of
RBAC is fundamentally different from multi-level se-
curity (MLS) systems, and the properties of RBAC sys-
tems have not been explored formally to the extent that
MLS system properties have. This paper explores some
aspects of mutual exclusion of roles as a means of imple-
menting separation of duty policies, including a safety
property for separation of duty; relationships between
different types of exclusion rules; properties of mutual
exclusion for roles; constraints on the role hierarchy in-
troduced by mutual exclusion rules; and necessary and
sufficient conditions for the safety property to hold. Re-
sults have implications for implementing separation of
duty controls through mutual exclusion of roles, and for
comparing mutual exclusion with other means of imple-
menting separation of duty policies.

1 Introduction

Role based access control (RBAC) is an alternative
to traditional discretionary (DAC) and mandatory ac-
cess control (MAC) policies that is attracting increasing
attention [l], particularly for commercial applications.
The principle motivation behind RBAC is the desire
to specify and enforce enterprise-specific security poli-
cies in a way that maps naturally to an organization’s
structure. With RBAC, security is managed at a level
that corresponds closely to the organization’s structure.
Each user is assigned one or more roles, and each role is
assigned one or more operations that are permitted to
users in that role. The RBAC emphasis on controlling
who has access to operations is fundamentally differ-
ent from information flow security in multi-level secure
systems.

Role based security has been used in a variety of
forms for computer system security for at least 20 years,
and several proposals for incorporating roles into exist-
ing access control mechanisms have been published [2],
[3], [4]. More recently, formal definitions for general-
purpose RBAC notions have been proposed [5], [6], [7].
While the properties of traditional lattice-based secu-
rity have been examined extensively in the literature,
relatively little has been done with RBAC beyond the
formal description of a variety of models. As RBAC
becomes supported on increasing numbers of systems,
it will be necessary to understand the implications of
security mechanisms associated with RBAC.

In particular, separation of duty is an important
requirement in many commercial systems, and one of
the most desired features of an RBAC system [l]. One
means of implementing separation of duty policies is
with mutual exclusion of roles [6], [7], [8]. This paper
explores some of the properties of mutual exclusion of
roles in RBAC systems. (Other means of implementing
separation of duty, such as transaction sequencing [9],
[lo], are not considered here.) The results presented in
the paper are useful in comparing mutual exclusion of
roles with other potential mechanisms for implementing
separation of duty controls, and for understanding the
implementation implications of various types of mutual
exclusion.

2 Formal Description

This section summarizes the basic rules of RBAC. A
number of different flavors of RBAC have been de-
scribed by various authors. Although it is not identical
to any of them, the abstract model defined in this paper
is intended to capture the essential features of RBAC as
described in models such as those presented in [5], [6],
and [7]. (Because of constraints in the treatment of the
active role set, the definition of role hierarchy in this
paper is in fact more strict than that in [7].) RBAC is
a mechanism that can implement a variety of policies,
but separation of duty policies are often closely tied to
RBAC models, because separation of duty is critical in
many commercial applications, and because RBAC is a
natural mechanism for implementing separation of duty.
The core RBAC mechanisms are summarized first, fol-
lowed by a discussion of various aspects of mutual ex-
clusion rules.

2.1 Basic Model

Variables used are shown with their types below:

s : subject
i, j, k : role

23

p, q : privilege
u : user

The following definitions are used:

Subjects:
U : subject - user
V[s] = user u associated with subject s

R : subject - 2”le
R[s] = the set of roles for which subject s is autho-

rized

A : subject - 2’Ole
A[s] = the current set of active roles for subject s

Roles:
M : role ---f 2uJe’
M[i] = the users authorized for role i

P[i] = the privileges that are authorized for role i

E : role x role = the set of role pairs (i, j) that are
mutually exclusive with each other

Access to privileges:
X : subject x privilege - boolean
X[s,p] = true if and only if subject s can execute

privilege p

The following invariants must be maintained by the
RBAC system.

Consistent subject: relates human users to subjects exe-
cuting on the users’ behalf. For any subject s associated
with user u, a role i is included in the authorized role
set R[s] if and only if the user is authorized for role i.

(Vs)(Vu)(Vi)IU[s] = u : u E M[i] G i E R[s] (1)

Role assignment: a subject
if the subject has selected
role:

can execute a privilege only
or been assigned an active

(‘ds)(vp) : X[S,PI =+ +I # 0 (2)

Role authorization: a subject’s active role must be in
the set of authorized roles for the subject:

(MS) : i E A[s] + i E R[s] (3)

Privilege authorization: a subject can execute a privi-
lege only if the privilege is authorized for a role in which
the subject is currently active:

(Vs)(Vp)(%) : X[s, p] 3 i E A[s] A p E P[i] (4)

With (2) and (3), th is rule guarantees that a subject
can execute a privilege only if the privilege is authorized
for that active role.

Role Hierarchy: Roles are organized into a partially or-
dered set (poset) so that if a role is included in the
authorized or active role sets, roles below it in the poset
are included also:

(Vi, j)(Vs) :

(i E A[s] A i >- j 3 j E A[s])

A(i E R[s] A i k j 3 j E R[s]) (5)

2.2 Separation of Duty through Role
Exclusion

When implemented using role exclusion rules, separa-
tion of duty can be analyzed along at least two dimen-
sions: when mutual exclusion is applied, and the oper-
ations to which it is applied. Two types of mutual ex-
clusion are considered, authorization-time exclusion and
run-time exclusion, that depend on whether the mutual
exclusion rule is applied at role authorization time, or
at run time, during a user session. These forms of exclu-
sion have been termed static and dynamic in [6], and
association conflict and activation conflict in [8]. Two
additional attributes - complete exclusion and partial
exclusion - indicate whether mutually exclusive roles
share no privilege or share some, but not all, privileges.

Safety Condition The purpose of separation of
duty rules is to prevent one person from doing all parts
of a task that should require two or more, in order to
prevent collusion or fraud. For example, many organi-
zations require that the request and approval of a major
expenditure be done by two separate people. If there are
only two privileges to such a task, then each privilege
can be assigned to separate roles and the roles made
mutually exclusive. If more than two privileges are in-
volved, then they can be split among two or more roles.

We define a safety condition that must be met to
ensure that separation of duty requirements are not vi-
olated. Let C[t] : task -+ 2pr”“lege be a mapping from
tasks requiring separation of duty to sets of privileges
required for those tasks (as in the previous example).
Then to ensure that no one person can accomplish all
parts of a task t, no user can have access to all privileges

24

in C[t]. The safety condition for separation of duty is
thus as below.

v4(wv~) : WI cl u PM) (6)
iErOlf!lUEM[i]

The term “mutual exclusion” has an intuitive mean-
ing, but some complications can arise when exploring
the implications of role exclusion in an RBAC system.
Does the mutual exclusion of roles occur when roles are
authorized for users, or only for a given user session?
Further complications arise if the privileges are made
available to other roles that may not be designated as
mutually exclusive. Care must be taken that some com-
bination of roles does not allow a user to have access to
privileges that should be mutually exclusive. For exam-
ple, suppose there are two roles, P and Q, which are
mutually exclusive, and role Q has access to privileges
b and c. Assume that role R has privilege b, role S has
privilege c. Then a user in role P could gain access to
the same capability provided by role Q through role R
and S. Therefore any discussion of role exclusion must
consider whether all, or only some, privileges in a role
are denied to a mutually exclusive role. Conceivably, the
privileges in a role that has been designated as mutually
exclusive with another role could be made available to
other roles not in the mutually exclusive pair. So an-
other consideration is whether privileges can be shared
by roles outside the pair of mutually exclusive roles. To
simplify analysis, privileges for which separation of duty
is required could be assgned to unique roles, then these
roles can be inherited by others. This section discusses
some of the alternatives for privilege sharing.

Authorization-time/Run-time Exclusion We
define authorization-time exclusion to mean that roles
which have been specified as mutually exclusive can-
not both be included in a user’s set of authorized roles.
With run-time exclusion, users may be authorized for
two roles that are mutually exclusive, but cannot have
both roles active at the same time in a session. In other
words, authorization-time exclusion enforces the mutual
exclusion rule at the time an administrator sets up role
authorizations, while run-time exclusion enforces the
rule at the time a user selects roles for a session. A
system may be configured to enforce authorization-time
or run-time exclusion.

Authorization-time exclusion:

(Vu)(V’i, j)li # j :

Authorization-time exclusion says that if two roles
are mutually exclusive, then a user can be authorized for
one role only if user is not authorized for the other role.

A similar but weaker form of exclusion is to allow users
to be authorized for roles that are mutually exclusive,
but allow them to be active in only one role at a time.
This will be referred to as run-time exclusion.

Run-time exclusion :

(Vu)(Vs)(V’;, j)li # j; V[s] = IL :

(i, j) E E 3 u E M[i] A u E M[j]

3 i E A[s] =+- j $ A[s] (8)

In addition to the time at which mutual exclusion
is applied, the degree to which privileges are shared
by mutually exclusive roles and by other roles must
also be considered. This dimension is independent of
authorization-time or run-time exclusion. Four possi-
bilities can be considered:

. Disjoint/disjoint (D/D): Privilege sets for mutually
exclusive roles are disjoint. That is, if two roles are
designated as mutually exclusive, then each privi-
lege is assigned to only one of them. In addition, if
a privilege is assigned to a role that has been desig-
nated as mutually exclusive with another role, then
it is not assigned to any other role.

(vi,jlIC)(vP)li#j,i#k:
(4 d E E * P 6 PM 3 P Fc PM A P $ WI

. Disjoint/shared (D/S): Privilege sets for mutually
exclusive roles are disjoint, but if a privilege is as-
signed to a role that has been designated as mu-
tually exclusive with another role, then it may also
be assigned to roles outside of the mutual exclusion
relationship.

(vi, #'~)li # j : (4 3 E E * P E WI * P G PM

. Shared/disjoint (S/D): Privileges may be shared
between roles that are mutually exclusive, with the
provision that each must have at least one privilege
not available to the other. In addition, if a privi-
lege is assigned to a role that has been designated
as mutually exclusive with another role, then it is
not assigned to any other role.

(6 j, k)(3P)(V’q)li # j, i # h j # h :
(i,j) E E 3 (P E P[il * P $ PM)
A (4 E P[il v 4 E WI * 9 e WC])

l Shared/shared (S/S): P rivileges may be shared be-
tween roles that are mutually exclusive, with the
provision that each must have at least one priv-
ilege not available to the other. If a privilege is
assigned to a role that has been designated as mu-
tually exclusive with another role, then it may also

25

il 0 il 0
S/D S/D s/s s/s

(partial) (partial)

Figure 1: Mutual Exclusion Rule Relationships Figure 1: Mutual Exclusion Rule Relationships

be assigned to roles outside of the mutual exclusion
relationship.

0% WP)li # j :
(it A E E * (P E P[4 *P $ WI)

From the definitions above, it can be seen that the
mutual exclusion rules have the relationships shown in
Figure 1. (Arrows in Figure 1 indicate logical impli-
cation.) Two of the above rule combinations are of
particular interest: disjoint/disjoint and shared/shared.
These will be referred to as complete exclusion and par-
tial exclusion respectively.

Complete/Partial Exclusion
The set of privileges accessible by roles to which

mutual exclusion is applied is a significant consideration
irl ensuring separation of duty. In the earlier example,
it may be desirable to prevent access to all privileges
available to role Q or only to some. The restriction of
all privileges available to a mutually exclusive role will
be referred to as complete exclusion, and restriction of
only some privileges available to a mutually exclusive
role as partial exclusion. A system may be configured
to enforce complete or partial exclusion.

Complete exclusion (disjoint/disjoint):

Complete exclusion says that if any role i is mutu-
ally exclusive with another role, then no privilege in i is
assigned to any other role

Partial exclusion (shared/shared):

(6 j)P~)li # j :

(i,j) E E -j P E Phil * P @’ PM (10)

Partial exclusion says that if any role i is mutu-
ally exclusive with another role, then at least one other
privilege in i is not assigned role j.

3 Separation of Duty Properties

The mutual exclusion rules (7) through (10) can be cou-
pled with invariants (1) through (5) to produce a variety
of RBAC systems with separation of duty. This section
explores some properties of mutual exclusion rules in a
role

.

.

.

0

3.1

based access control system, including:

desired properties of mutual exclusion for roles;

relationships between authorization-time and run-
time, and between complete and partial exclusion
rules;

constraints on the role hierarchy introduced by the
mutual exclusion rules, including the non-existence
of a “root” role that contains all roles;

necessary and sufficient conditions for the safety
condition to hold.

Basic Properties

The first two results are obvious from defini-
tions. From these results and definitions of rules
(7) through (lo), t i can be seen that combinations -
authorization-time complete (A/C), run-time complete
(R/C), authorization-time partial (A/P), and run-time
partial (R/P) - h ave the relationships shown in Figure
2.

Theorem 3.1 If authorization-time ezclusion holds,
then run-time exclusion is maintained.

Theorem 3.2 If complete exclusion holds, then partial
exclusion is maintained.

An essential property of any separation of duty im-
plementation is that roles designated as mutually ex-
clusive cannot be brought into the active set simulta-
neously. The next result establishes this property for
authorization-time and run-time exclusion in an RBAC
system.

Theorem 3.3 Mutually exclusive roles canmt be
brought into the active set A.

26

Figure 2: Separation of Duty Relationships

Proof:
Case I - Authorization-time exclusion. Assume that
roles i and j are mutually exclusive but are both part
of the active set for some subject s of user u (i.e.,
U[s] = 21):

(i, j) E E A i E A[s] A j E A[s],
Then by (3), we have

i E R[s] A j E Rjs],

and by (I),
u E M[i] A u E M[j].

So from (6), we have (i, j) @ E, which contradicts the
assumption.

Case II - Run-time exclusion. Again, assume
(i, j) E E A i E A[s] A j E A[s],

Then from (7) we have
21 $Z M[i] V 21 $$ M[j].

But by (311
i E R[s] A j E R[s],

so by (1)
u E M[i] Au E M[j],

which is a contradiction. Q.E.D.

The next result is an interesting consequence of the run-
time exclusion rule. The practical significance of this
result is that a role cannot inherit another role that has
been designated as mutually exclusive with it. This is
clearly a desirable property, and this result shows that
the rules are sufficient to ensure it.

Theorem 3.4 Two roles i and j can be mutually ex-
clusive only if they are incomparable within the role hi-
erarchy poset: (i, j) E E 3 T(i k j V j > i).

Proof: Suppose (i, j) E E A (i >- j V j k i). (The proof
will be shown for run-time exclusion only; it should be
clear that it can be shown for authorization-time exclu-
sion as above.) Arbitrarily choose i as the role which is
in the active role set, with i k j, i.e.,

i E A[s].
Then by (5),

j E 44
so by (81,

(4j) @ E,
which contradicts the assumption. Q.E.D.

An immediate corollary is that if there are any mu-
tually exclusive roles, then a role cannot be mutually
exclusive with itself. This might have been required as
one of the basic rules, but as it happens, it is a conse-
quence of them.

Corollary 3.5 A role cannot be mutually exclusive
with itself: Vi : (i, i) @ E

Proof: By the theorem above,
ik jVjki*(i,j)@E.

Substituting j := i gives
i t i j (i, i) @ E

By definition, i >- i, so for all i,
(i,i) 4’ E. Q.E.D.

3.2 Constraints Introduced by Mutual
Exclusion

If there are any mutually exclusive roles, then those roles
cannot have a common upper bound.

Theorem 3.6 If there is any pair (i, j) G E, then there
can be no role k such that k k i A k 5 j.

Proof: Suppose there is some role k, and mutually ex-
clusive roles i, j such that

k?iAkt jA(i,j)EE.
Then because

k?iAktj,
the role hierarchy rule (5) requires that

i E A[s] A j E A[s],
so by rule (7),

(4j) # E,
which contradicts the assumption. Q.E.D.

An immediate corollary is that the rules also pro-
hibit the existence of a “superuser” or “root” role that
contains all other roles on the system.

Corollary 3.7 For any pair (i, j) E E, then there can
be no role T such that foT all i, r k i.

The implication of this result is that a system en-
forcing authorization-time exclusion can have a “root”
user only if no roles are designated as mutually exclu-
sive, i.e., if separation of duty is not used. Note that
this holds even if run-time exclusion is used. Under
run-time exclusion, a single user could be authorized

27

for all roles, but they could not be active simultane-
ously. But because the “root” role inherits all other
roles, ‘?oot” could never be activated. If the system
is configured for authorization-time exclusion, then the
system would prevent any individual user from being
authorized for all roles.

However, note that the rules do not prevent two
mutually exclusive roles from having a common lower
bound. This is important since many systems will have
a basic role that all other roles inherit. For example,
a hospital system may have an “employee” role that is
used to allow other roles to inherit the basic privileges
that are available to all employees.

The separation of duty rules also have implications
for the cardinality of privilege sets.

Theorem 3.8 If (i, j) E E then either P[i] and P[j]
are disjoint sets or else #P[i] 2 2 and #P[j] 2 2.

Proof: If complete exclusion is in effect, then P[i] and
P[j] are disjoint sets by (9). If partial exclusion is in
effect, then either P[i] and Pjj] are disjoint sets or else
P[i] and P[j] overlap. If they overlap, they have at least
one privilege in common. But (10) requires that role i
has at least one privilege in P[;] that is not in P[j],
and role j has at least one privilege that is not in P[i].
Therefore neither P[i] 2 P[j] nor P[j] 2 P[i]. There-
fore each must have at least one additional privilege in
addition to the one or more privileges that they have in
common. Q.E.D.

3.3 Maintenance of Safety Condition

For any reasonable implementation, the separation of
duty rules must maintain the safety condition. This sec-
r&r, develops the relationships between the safety con-
dition and the various forms of mutual exclusion.

Theorem 3.9 If there are no empty privilege sets, then
authorization-time/complete exclusion is sufficient to
ensure the safety condition.

Proof: Assume that complete exclusion holds but the
safety condition does not. Then there must be some
user that is authorized for all privileges Cjt] that are
part of some task t:

(3uPt) : (W c. u WI 1
iEroleluEM[a]

Since C[t) represents a set of privileges that are required
for some critical task t, C[t] must be split up among
at least two mutually exclusive roles. (see Section 4.4)

Because C[t] has been split among 2 or more mutually
exclusive roles,

C[t] = P[i\] U P[iU] U . . .

To simplify the presentation we will consider only the
case where C[t] is split between two roles it and itt,
where (i/, i/r) E E.

Let Ru[u] represent the set of all roles authorized for a
user U, i.e., Ru[u] = UiEro,e,uEM,il P[i]. So the above
formula can be written as:

PUW) : (P[i’l U P[i”l C UiFRUIUI P[il)

Then all the mutually exclusive role privileges in i/ and
i/l must be in UiERUrul P[i], which is the set of all priv-
ileges available to the user u. So by definition of 2,

This is equivalent to:

But complete exclusion (9) ensures that privileges in
any role that is designated as mutually exclusive with
some other role are contained in only one privilege set,
so a privilege can be in P[ir] or P[ir!], but not both.
Therefore the only way that privileges in P[ir] and P[&]
could be available to a user is if both i\ and irr are in
the user’s authorized role set, but this is impossible by
rule (7). Q.E.D.

Authorization-time/complete exclusion thus en-
sures the safety condition across all RBAC users. It is
easy to see also that run-time/complete exclusion will
ensure a sort of “run-time safety condition” within a sin-
gle user session. This form of exclusion could be appro-
priate for organizations where it is impractical to rigidly
divide privileges among employees ([l l] and [12] have
discussed this problem).

The weakest of the four possible ways of assigning priv-
ileges (shared/shared), or partial exclusion, is a neces-
sary (but not sufficient) condition for safety.

Theorem 3.10 The safety condition can be met for a
subject s only if (at 1 east) partial exclusion is main-
tained.

Proof: We show this directly by showing that, given
subject s and role i E R[s], formula (6) implies formula

(10).

Rewriting (6), we have

28

Figure 3: Safety and Mutual Exclusion

(Vs)(Vi, j, Ic)li # j, le f j, k E R[s] :
i E R[s] A (i, j) E E

3 -(PP)P E WI 3 P E UW~I)

This is equivalent to
(Vs)(Vi, j, k)li # j, k # j, k E R[s] :
i E R[sl A (i, j) E E * ((3~1~ E WI A P ~2 U P[kl)

Because the only constraint on Ic is that k # j, there is
some k such that k = i, so this can be rewritten as

(Vs)(t’i, j, k)li # j, k # j, k E R[s] :
i E R[s] A (i, j) E E

3 ((~P)P E WI A P s;i PM A P @ U WI)

This immediately implies (10):

(Vi, j)Pp)li # j : (Cd E E * P @ WI VP ~2 PM
Q.E.D.

The significance of this result is that any system
that does not provide at least partial exclusion cannot
ensure the safety condition through mutual exclusion.
Since partial exclusion is not sufficient for safety, if a sys-
tem supports only partial exclusion, then other mecha-
nisms must be provided to ensure safety.

4 Conclusions

The results regarding relationships between various
types of mutual exclusion rules presented in this pa-
per can be summarized in Figure 3. Authorization-
time/complete exclusion is sufficient to ensure safety.
As noted earlier however, run-time/complete exclusion
will ensure separation of duty safety within a single user
session. This provides some flexibility in implementing
RBAC for organizations which are too small or other-
wise find it impractical to rigidly separate privileges. In
this case, audit mechanisms can be used in concert with

RBAC mechanisms to ensure (post-hoc) that separation
of duty requirements are being followed.

There does not seem to be any obvious problem with
implementing task sequencing mechansisms layered on
top of a role exclusion mechanism in an RBAC sys-
tem. Work-flow or other sequencing mechanisms might
be added as additional components on a basic system
implementing role exclusion.

5 Acknowledgements

I am very grateful to Serban Gavrilla and David Fer-
raiolo for pointing out some important clarifications.

References

[II

PI

PI

PI

PI

VI

PI

PI

29

R. Sandhu, E.J. Coyne, and C.E. Youman, editors.
Proceedings of the First ACM Workshop on Role
Based Access Control. ACM, 1996.

R.W. Baldwin. Naming and grouping privileges to
simplify security management in large databases.
In Proceedings, IEEE Computer Society Sympo-
sium on Research in Security and Privacy. IEEE
Computer Society, 1990.

D.J. Thomsen. Role-based application design and
enforcement. In Database Security IV: Status and
Prospects. North-Holland, 1991.

D.F. Sterne. A TCB subset for integrity and role-
based access control. In 15th National Computer
Security Conference. NIST/NSA, 1992.

D. Ferraiolo and D.R. Kuhn. Role based access
control. In 15th National Computer Security Con-
ference. NIST/NSA, 1992.

D. Ferraiolo, J. Cugini, and D.R. Kuhn. Role based
access control: Features and motivations. In An-
nual Computer Security Applications Conference.
IEEE Computer Society Press, 1995.

R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman. Role based access control models. IEEE
Computer, 29(2), February 1996.

D. Jonscher. Extending access control with duties:
realized by active mechanisms. In Workshop on
Database security. IFIP WG 11.3, 1992.

R. Sandhu. Transaction control expressions and
separation of duties. In Proceedings, IEEE Com-
puter Society Symposium on Research in Security
and Privacy. IEEE Computer Society, 1988.

[lo] L. Notargiacomo, B.T. Blaustein, and C.D. McCol-
lum. A model of integrity and dynamic separation
fo duty for a trusted DBMS. In Database Secu-
rity VII Workshop on Database security. IFIP WG
11.3, 1992.

1113 D. Clark and D.R. Wilson. Evolution of a model
for computer integrity. In Proceedings, 11th Na-
tional Computer Security Conference: a postscript.
NIST/NSA, 1988.

[12] M.J. Nash and K.R. Poland. Some conundrums
concerning separation of duty. In Proceedings, 1990
IEEE symposium on computer security and pri-
vacy. IEEE, 1990.

30

