
Correctness In Access Control* 

Gerald J. Popek, Harvard University 
Currently, University of California, Los Angeles 

ABSTRACT 

A number of approaches have been developed to 
modularize parts of multiuser computer systems so 
that access to each part can be controlled. The 
devices of rings and capabilities are two exan~les. 
However, today's systems are notably incomplete and 
subject to defeat by determined and clever users. 
A point of view is presented here which allows prov- 
ing that a logical design of an access control sys- 
tem is correct relative to a designer-specified set 
of criteria. Implementation questions are also 
discussed. 
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THE CONTEXT 

One part of the computer community is cur- 
rently concerned with security design problems of 
the following kind. Given that components of a com- 
puter system such as terminals, communications 
lines, files, processes, and other resources need 
to be safeguarded, these parts can at least partly 
be protected by designing proper modularity and 
access control mechanisms into a system. How is 
such a system best modularized and how are the con- 
trols that mediate access among modules best de- 
signed and implemented? This question affects 
both hardware and software architecture, and is 
receiving considerable research attention. See 
for example [5], [7], and [9]. 

Inventive solutions have resulted from this 
research. However, as time-sharing systems, util- 
ities, and networks have displayed greater and 
greater complexity, concern has arisen over the 
reliabilit Z of the implementation of the protec- 
tion system design, for whatever design is finally 
developed. What guarantee exists that the system 
actually provides the controlled protection that 
it claims? What guarantee exists that it is not 
possible for some clever user to circumvent the 
controls, gaining access to information, operations, 
or other resources which the design was intended to 
prohibit. 

*1"nis research was partially supported by the 
Advanced Research Projects Agency of the Department 
of Defense under Contract No. D~d~C-IS-69-C-0285. 

Currently, no protection system implementation 
of any major multiuser computer system is known to 
have withstood serious attempts at circumvention by 
deterrained and skilled users [i0]. 

Organizations such as the military have already 
begun to demand that the vendors of multiuser com- 
puters provide guarantees that their protection 
mechanisms actually do what they claim; verifica- 
tion, or certification of that part of the system 
is wanted. 

It has been suggested by the Military Security 
Panel [ii] that the first step in this problem is 
the development of a general model of access control 
systems that: 

(a) is applicable to a sizable group of useful 
protection systems; and 

(b) can be proven correct. 

The second step would then be to guarantee a 
faithful implementation of an access control system 
specified in terms of that model. Such a model is 
presented below in order to suggest that its devel- 
opment, while useful, is straightforward, and that 
on the level of abstraction of the model, correct- 
ness is easily provided. 

Here, access control is meant to refer simply 
to the problem of controlling access to specified 
units of information or other resources. No spe- 
cific attempt is made to include problems of infer- 
ence or statistical access. 

The inference problem concerns the desire to 
prevent a user or users from gaining access to a 
number of pieces of information, each innocuous, 
which together constitute or can be used to deduce 
information that it is desirednot be available. 
The statistical access proble m is the reverse. It 
refers to the desire to allow access to aggrega- 
tions or analyses of information with a guarantee 
that it is not possible to deduce a specific piece 
of information used in the aggregation. Attention 
is essentially restricted here instead to the de- 
sire for guaranteeing that solutions to the simpler, 
access control problem, are properly implemented. 

The following approach, in the spirit of pro- 
gram schemata, as a guide to the logical design of 
an access control system, applies to a wide class 
of systems, including many of those in use today. 

236 



BRIEF DESCRIPTION OF MODEL 

The model is described in set theoretic lang- 
uage, and has six major components. First is the 
set O of security objects: the elements of the 
model, reflecting those physical or logical parts 
of a computer system that need to be controlled, 
protected, or whose status needs to be guaranteed. 
The objects are partitioned into disjoint classes, 
each containing objects of similar characteristics. 
An incomplete list of examples includes terminals, 
communication lines, processes and files. 

Second, a set A of access types is presented. 
Each access type is a program which effects a par- 
ticular variety of access, such as read, write, or 
execute. An attempted access operation is then 
completely specified by an access type and some 
meaningful collection of objects, i.e., a particu- 
lar process being directed from a given terminal 
attempting to reference a specified page in memory. 

Third, a collection of descriptive data D[k], 
from the set of all possible descriptive data col- 
lections D is required. D[k] specifies the 
information that forms the basis by which security 
decisions will be made. The subscript k indi- 
cates a time dependency. 

Four th ,  an e v a l u a t i o n  program,  ~ d e c i d e s ,  
f o r  any mean ingfu l  g rouping  o f  o b j e c t s ,  what o p e r -  
a t i o n s  a re  to  be a l lowed.  

Fifth, an update program o2g is characterized 
separately. This program is the means by which 
the descriptive data are changed. Operationally, 
this is the manner by which access decisions may 
be altered. 

In many real implementations, the distinction 
between the evaluation program and update program 
may not be clear-cut, since the descriptive data 
are likely to be stored and protected like any 
other security object. Both programs are treated 
here so that their similar nature is apparent. 
Nevertheless, the distinction will be useful since 
implementations of the two programs may differ. ~, 
while likely to be software implemented, calls upon 
access programs to do its actual work, and these 
may be at least partly if not wholly built in hard- 
ware. ~ on the other hand in many cases will be 
almost exclusively software and actually changes 
the formatted descriptive data. 

Last, external correctness criteria are re- 
quired. These are a set of rules, or standards T, 
by which the system is to be adjudged correct. 
These standards must be external to the system 
description up to this point in order to be mean- 
ingful. 

A security system S is then specified by the 
six-tuple: S = (O, A, D, ~,@], T). 

THE COMPONENTS OF THE MODEL 

Security Objec t s  

The first component of the model, the security 
objects, is a finite set O: 

o = <o[I], 0[2] ..... o[z]}. 

These are the only objects to which access will 
be controlled by the-~del, and by a resulting im- 
plementation. They include, for example, both the 
subjects and objects of the Lampson model [41 . 

Access Types 

The second component of the model is a set of 
access types: 

A = {a[o], a[l], a[2] ..... a[w]}. 

Each a[i] is a program whose effect will be to 
provide a particular variety of access, read, write, 
or execute for example. The list of arguments for 
each a[i] must be finite and contain names of 
security objects. In addition, a[o] is desig- 
nated as the null access program. This program will 
be invoked when access is to be denied. It can keep 
audit trails, set up warnings to administrators, 
etc. 

D e s c r i p t i v e  Data 

The t h i r d  component,  t h e  d e s c r i p t i v e  d a t a ,  i s  
mere ly  a s e t  o f  t u p l e s :  

D[k] = {d[k ,  1 ] ,  d [ k , 2 ]  . . . .  d [ k , v ] } .  

with some finite upper bound set on v. 

We depart somewhat from our strict set theoretic 
notation by speaking of the structure of a tuple. 
Each tuple is only assumed to have a bounded number 
of entries, the first of which acts as a "data 
descriptor" to distinguish among tuples of differ- 
ent formats and content. 

For example, one type of tuple might be an 
encoding of a matrix entry in Lampson's model [41; 
the entry expressing an access relation between two 
security objects. Another might express a property: 
user x belongs to project y, or has clearance 
z. A property may also be valid only for several 
users jointly. Such circumstances do not fit natur- 
ally into a matrix representation of the descrip- 
tive data, so tuples are preferred here. 

Explicit use of the structure of the descrip- 
tive data will not be made in the following discus- 
sion of correctness, although it is necessary in 
the more detailed proof. The finiteness of both 
the length and number of tuples will be useful here, 
however. 

Let X* be the set of all possible tuples, 
and D = P(X*) the power set of X*. Then D[k] 
is some member of P(X*). 

Evaluation Program 

The third portion of the model is an evalua- 
tion program ~ which uses descriptive data to make 
decisions concerning access. For any evaluation 
program, the list of arguments is composed of some 
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fixed number of objects from each partition of the 
security objects O, and an access type; the name 
of an element in A. For convenience, those objects 
are denoted by 8. 

The task of the evaluation program is to decide 
whether or not the specified objects may be associ- 
ated in the manner expressed by the access type and 
to indicate an appropriate action. That indication 
is done by selecting the appropriate access program 
and specifying its proper arguments. 

The e v a l u a t i o n  program @ t a k e s  a l i s t  o f  
o b j e c t  names,  a p a r t i c u l a r  d e s c r i p t i v e  d a t a  c o n f i g -  
u r a t i o n ,  and t he  name o f  an a c c e s s  t ype  (names o f  
e l emen t s  a re  u n d e r l i n e d ) ;  and invokes  t he  a l lowed 
acces s  ~ ,  s u p p l y i n g  i t  w i th  t h e  a p p r o p r i a t e  
argument h s t .  

~is composed from an access rule E. E is a 
fairly arbitrary program that is assumed only to 
(i) terminate, returning true or false, and (2) be 
read only. 

The intent is that E describe conditions to 
be fulfilled in order to allow access. It may be 
an arbitrary function of its arguments, although 
often such programs are fairly simple. In any case 
E can be made an effective procedure, since all 
arguments are from finite sets. 

Than the program ~ may be written as follows: 

: p roc  (@, D [k ] ,  a [ j  ])  ; 

lock; 

i f  E(@, D[k] ,  a [ j ] )  

t hen  b e g i n  un lock ;  c a l l  a [ j ]  (0) end 

e l s e  b e g i n  u n l o c k ;  c a l l  a [ o ]  (8) end;  

end;  

The functions lock and unlock are understood 
to act on a single semaphore, as Dijkstra's oper- 
ators P(x), V[x]. It is necessary to coordinate 
the operation of ~ and °~ so that ~ is not read- 
ing D[k] while o~ is updating D[k]. Otherwise, 
it would not be possible to prove that ~ and ~g 
perform in all cases as claimed. 

Update Program 

The upda te  program i s  t h e  means by which 
d e s c r i p t i v e  d a t a  a re  changed.  Hence i t  i s  t h e  man- 
n e r  by which decisions that the evaluate program 
makes can be affected. Let 8' denote the set of 
arguments for the update program which are security 
objects, D[y] is the current descriptive data, 
and D[z] is the data to M%ieh it is desired to 
change. ~ yields either the original data, pro- 
hibiting the change, or the new data, having 
allowed the change. 

The updateprogram, too, is composed from some 
effective procedure U, similar in purpose t o  E, 
and so the update program o~ may be written as: 

~ / :  p roc  (@', D[y] ,  D[z])  r e t u r n s  e lement  o f  D; 

lock ; 

i f  U(@', D[yl ,  D[z])  

t hen  b e g i n  u n l o c k ;  r e t u r n  D[z] end 

e l s e  b e g i n  u n l o ck ;  r e t u r n  D[y] end 

end;  

The arguments for U are the same as for the pro- 
cedure itself. 

THE CORRECTNESS CRITERIA 

The security objectives of the access control 
system are the qualities that are necessary to 
guarantee. For a certain well-defined class of cri- 
teria, there is a straightforward method of taking 
a logical description of a security system and 
altering that model to provide a derived system 
model in which the given correctness criteria hold. 

The correctness criteria are expressed as a 
set T of predicates: 

T = { t [ l ] ,  t [ 2 1 ,  . . . ,  t [ q ] } .  

These are the predicates that must be proven true 
for the system. 

In this model, predicates may be expressed in 
one of two forms, and so T is partitioned into 
two subsets T1 and T2 corresponding to the two 
alternatives. 

If t[i] is in T1 then it may be any predi- 
cate expressible in the following functional form: 

t[i] : @ x D x A + {true, false}. 

The interpretation of predicates in T1 is that 
the object list from @ may be associated with 
access type a[j] in A and a given D[k] in 
only if t[i] is true. 

If t[i] is in T2, then it maybe any predi- 
cate expressible in the following functional form: 

t[i] : @' x D x D -F {true, false}. 

The interpretation is that the descriptive data 
represented by the second argument, say D[j], may 
be changed by the objects expressed by @' to that 
represented by the third argument, say D[k], only 
if t[i] is true. 

Let 

:9-1 = An_~d(t[i]) for all t[i] in T1 and 

let 
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dOr2 = An_~d(t[j]) f o r  a l l  t [ j ]  i n  T2. A s t a t e  D[n] o f  a sys tem 

Brl and g-2 t ake  t h e  same arguments  as t he  t [ i ]  
and t [ j ] ,  r e s p e c t i v e l y .  

To demonstrate that a system is correct, it is 
necessary to guarantee the truth of ~i and ~2. 
Below, a simple way is shown to take any security 
system S and derive from it a system S' for 
which the given ~rl and ~r2 are true. 

DERIVATION OF CORRECT SYSTEM 

System Specification 

As described, a security system S is a tuple: 

S = (0,  A, D[o] ,  ~,~_g, T) 

0 is the object set, A is the set of access 
types, D[o] is taken as the set of tuples which 
comprise the initial descriptive data, ~ is the 
evaluation program, 6~ is the update program, and 
T is the set of predicates to be guaranteed. 

For a particular system S, the entries A, 
~, @~', and T are fixed. The descriptive data 
D[k] may be varied by use of o~. Then the state 
of a security system S can he completely ex- 
pressed by its descriptive data D[k], for some 
k. The update program is the means by which a sys- 
tem S may change states and the compound predi- 
cate ~2 expresses the constraints on allowed 
state changes .  The evaluation program ~ "inter- 
prets" a particular state, and ~rl expresses the 
constraints on ~. 

Given a s e c u r i t y  sys tem S = CO, A, D[o] ,  ~ ,  
~ ,  T) ,  sys tem S'  = CO, A, D[o] ,  ~ ' , ~ " ,  T) i s  
produced by t h e  following inclusion s t e~ .  

~ '  i s  d e r i v e d  from ~ by t he  f o l l o w i n g  
change.  Replace 

"E ( . . . ) "  

by 

change:  

"EC...) and ,ff'l (0, D[k], a[j])". 

is derived from o T[ by the following 
Replace 

"U(...)" 

by 

" U ( . . . )  and ~ 2  CQ', D[y] ,  D [ z ] ) "  

Correctness Proof 

First it is helpful to define a few terms. 

s = (o,  A, D i e ] ,  ~ ,  ~ ,  T) 

is valid if and only if D[n] can be obtained from 
D[o] by a finite number of applications of o~ and, 
for each such transition from state D[k] . to 
D[k+l], 

T2(O ' ,  D[k] ,  D[k+l ] )  = t r u e  

for some G ) . 

Second,  a s t a t e  D[k] i s  a c c u r a t e l y  i n t e r -  
p r e t e d  i f  and on ly  i f  f o r  any 8 and any j :  

~(@, D[k] ,  a [ j ] )  i nvokes  a[o](@) 
whenever  

,~lC@, D[k] ,  a [ j ] )  = f a l s e  

(where a[o] is the null access type). 

Then to say that a system S is correct is 
meant the following: 

(i) Every state obtainable from D[o] is 
valid, and 

(2) every valid state is accurately inter- 
preted. 

We now state the following (system correctness) 
theorem; 

Given a security system 

S = (0,  A, D[o] ,  ~ ,  ~ , ,  T) w i t h  T p a r t i t i o n e d  

into TI and T2; 

and S' = (0, A, D[o], ¢', ~/', T) derived from S 

by the inelusion ste P 

then S' is correct. 

Proof  Sketch  

An easy way to prove the theorem is by contra- 
diction. Suppose the theorem false. Then, by 
definition of correct, S' reaches an invalid 
state, or a valid state is inaccurately interpreted. 

Case I: Assume an invalid state. Label that 
inval~-d state D[k]. Then there must exist a se- 
quence of states D[o], D[I], D[2] ..... D[k] such 
that ~'C [i], D[i], D[i+l]) = D[i+l] for all 
i<k, since ~'makes the transition from state to 
state. 

Now D[o] is valid by definition. D[k] is 
invalid by assumption. Then there must exist a 
non-negative integer j, less than k, such that 
D[j] is valid and D[j+l]) is invalid. Hence, by 
definition of valid, ~'2C0, D[j], D[j+l]) is 
false. But ~/'(0, D[j], D[j+l]) = m[j+l]. By in- 
spection.of ~/!, these two conditions cannot hold, 
and hence a contradiction is reached. 
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Case 2: Assume an ina(zcurately interpreted 
valid' state. Call that valid state D[k]. Then by 
definition of an accurate interpretation, for some 
O[i] and a[j], the following is true. 

~ l ( O [ i ] ,  D[k] ,  a [ j ] )  = f a l s e  and 

~ ' ( O [ i ] ,  D[k],  a [ j ] )  does n o t  invoke  a[o](O) 

By i n s p e c t i o n  o f  @' ,  t h i s  i s  a c o n t r a d i c t i o n .  
Hence ev e ry  v a l i d  s t a t e  i s  a c c u r a t e l y  i n t e r p r e t e d .  

Both c a s e s  a re  i m p o s s i b l e .  Hence t h e  theorem 
cannot  be f a l s e .  

qed 

Th i s  p r o o f  i s  o f  cou r se  n e a r l y  t a u t o l o g i c  i n  n a t u r e .  

DISCUSSION OF APPLICABILITY 

The utility of this model depends on several 
criteria not yet addressed. First, the access con- 
trol model was purposely constructed in an extremely 
general way, so that many access control systems can 
be placed into its broad framework. As an example, 
a ring structure may be modeled by tuples in D 
which contain the ring brackets of a segment or 
program. An active process has its current ring 
changed by an a g e n t ,  o r  g a t e k e e p e r ,  which u s e s  t h e  
upda te  program ~g. A d i s c u s s i o n  o f  c u r r e n t  a c c e s s  
c o n t r o l  s y s t e m s  a p p e a r s ,  f o r  example ,  i n  [4] .  

The second assumption that affects applicabil- 
ity primarily concerns the correctness predicates: 
the members of the set T. For the given charac- 
terizations, effective procedures exist for the 
update and evaluation programs, the predicates 
from which they are composed, and the predicates 
which make up the correctness criteria. This fact 
is a result of the finiteness of all the sets in- 
volved in the model. It is further argued that the 
descriptive data can be structured to make those 
procedures relatively efficient. That efficient 
procedures exist for all the predicates in the 
predicate set T makes the inclusion step meaning- 
ful. The assumption is that desired correctness 
criteria can be placed in the specified form. 
However, no meaningful correctness criteria have 
been suggested to the author that cannot be so 
handled. 

Those c r i t e r i a  s u g g e s t e d  have  been s i m i l a r  to  
t h e  f o l l o w i n g :  Users  o f  c l a s s  so and so may no t  
pe r fo rm  a c e r t a i n  s e t  o f  o p e r a t i o n s  on i n f o r m a t i o n  
marked i n  such  and such  a way. They a re  g e n e r a l l y  
n e g a t i v e  r e q u i r e m e n t s ,  i n  t h e  s e n s e  t h a t  c e r t a i n  
c o n d i t i o n s  or  o p e r a t i o n s  a re  t o  be g u a r a n t e e d  f o r -  
b i d d en .  A m i l i t a r y  r e q u i r e m e n t  migh t  be t h a t  
u s e r s  wi th  c l e a r a n c e  l e v e l  x canno t  a c c e s s  i n f o r -  
ma t ion  wi th  c l a s s i f i c a t i o n  y > x. In h e a l t h  r e c -  
o r d s ,  i t  migh t  be d e s i r a b l e  t o  g u a r a n t e e  t h a t  mem- 
b e r s  o f  t h e  a c c o u n t i n g  depa r tmen t  be u n a b l e  to  
d e t e r m i n e  t h e  r e a s o n s  f o r  a d m i t t a n c e  o f  a p a t i e n t ,  
t h e  c l a s s i c  case  b e i n g  v e n e r e a l  d i s e a s e .  C l e a r l y ,  
any o f  t h e s e  r e q u i r e m e n t s  can be i n c l u d e d  i n  a 
number o f  ways. 

It may often be possible, of course, to more 
efficiently enforce certain theorems through the 

logical structure of the system rather than by what 
amounts here to run time checks. 

Third, the model must include all mechanisms 
that any part might require for its proper opera- 
tion. Additional apparatus needed must be local to 
a single module and not require any further inter- 
connections between elements of the model if the 
discussion of correctness is to be meaningful and a 
properly structured system constructed. Each 
module may then, essentially in isolation, be the 
subject of a correctness investigation itself. To 
fulfill this criterion a locking mechanism is in- 
cluded at the top level. 

One of the conclusions to be drawn from this 
security model is that the task of providing a cor- 
rect model is simple, even for a model that can 
describe most contemporary systems. Hence the 
major problem is the implementation. 

IMPLEMENTATION IMPLICATIONS 

In order to construct a computer access con- 
trol system in which there exists a high degree of 
confidence that the logical guarantees are properly 
implemented, the following strategy is proposed. 
Isolate that part of the operating system respons- 
ible for security and place it in a protected part 
of the system, in a manner analogous to the manner 
in which current supervisors are segregated from 
user programs through the mechanism of separate 
hardware states. 

Cal l  t h i s  i s o l a t e d  p o r t i o n  t h e  k e r n e l .  I t  
w i l l  be n e c e s s a r y  t o  d e m o n s t r a t e  t h a ~  s e g r e g a -  
t i o n  i s  pe r fo rmed  in  such  a manner t h a t  g u a r a n t e e s  
t h e  k e r n e l ' s  i n t e g r i t y  and a l s o  g u a r a n t e e s  t h a t  t he  
k e r n e l  i s  a lways invoked to  a r b i t r a t e  a t t e m p t e d  
r e f e r e n c e s .  These  t a s k s  a re  eased  by t h e  f a c t  t h a t  
the kernel can aid in protecting itself. For 
example, descriptive data can be grouped as security 
data. 

Then a great deal of attention can be paid to 
providing a correct implementation of the kernel. 
Later, as changes are made to other parts of the 
operating system, it is not necessary to revalidate 
the kernel. This point is more than a motherhood 
call for modularity. It argues that the security 
kernal should be isolated at the center of a system; 
it is to arbitrate and control al~-~6~vity. In a 
hardware ring environment for example, the kernel 
alone should occupy the innermost ring. (See [5] 
for a discussion of rings.) 

One o f  t he  v a l u e s  o f  t h i s  s e c u r i t y  model i s  
t h a t  i t  can h e l p  s p e c i f y  what i s  n e c e s s a r y  to  i n -  
e lude  in  a k e r n e l .  I t  i s  i n t e n d e d  t h a t  t h e  k e r n e l  
o f  a computer  s y s t e m  i n c l u d e  e v e r y t h i n g  t h a t  t h i s  
model c o n t a i n s ,  and n o t h i n g  e l s e .  Hence t he  model 
d e f i n e s  t h e  b o u n d a r i e s  o f  t h e  k e r n e l ,  and t h e  a b i l -  
i t y  t o  u se  t h e  k e r n e l  t o  p r o t e c t  p a r t s  o f  i t s e l f  
a l l ows  one to  p r o v i d e  c a r e f u l l y  c o n t r o l l e d  a c c e s s  
to the kernel i t s e l f .  

The need t o  have  t he  k e r n e l  a r b i t r a t e  e ve ry  
r e f e r e n c e  r a i s e s  t he  i s s u e  o f  e f f i c i e n c y .  S u r e l y  
one could  c o n s t r u c t  a k e r n e l  which i s  e s s e n t i a l l y  
i n t e r p r e t i v e .  That  i s ,  each  a c c e s s  program a [ i ]  
pe r fo rms  t h e  d e s i r e d  o p e r a t i o n  f o r  t he  o b j e c t s  t h a t  
r e q u e s t  i t .  
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As an illustrative example, a system might 
require as arguments to the evaluation program 
two security objects; a terminal and a j o b ,  and the 
name of an access type. Then an interpretive ver- 
sion of write would be invoked by ~ to do that 
single op--~-~ion, each time it is attempted. 

From a practical viewpoint, t h e  overhead of 
such an implementation of a security system would 
be very high. The current solution to this effi- 
ciency problem appears quite satisfactory, and its 
spirit seems in retrospect almost obvious. The 
hardware is designed so that all accesses must pass 
through a few fast registers where hardware checks 
on address bounds and the like are performed. An 
access program a[i] just sets these registers 
and returns control to the job, allowing a whole 
class of operations to he performed without further 
~ntervention; operations such as reads on any loca- 
tion between x and x + k. In the general access 
control model, such an implementation can be easily 
described by making the segment a security object-- 
a member of the set O. 

It was pointed out that by grouping the tuples 
which compose descriptive data and also making each 
such group a security object, this model also in- 
cludes the ability to protect access to that data 
itself, allowing a controlled way of changing ac- 
cess decisions. Multics uses this strategy. A 
directory contains protection information about 
other directories and segments. 

In addition to aiding the isolation and speci- 
fication of that portion of a system relevant to 
sehurity, this model attempts to urge upon system 
theoreticians, designers and implementers the fol- 
lowing tenets: 

(i) security mechanisms can and should be 
isolated at the heart of a system; 

(2) by doing so, it is possible to t ake  
great care toproduce a faithful imple- 
mentation of that resulting kernel; and 

(3) since the kernel is small and isolated, 
its operation can be verified and cer- 
tified. 

This general access control model is meant as 
a first step toward these goals. 
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