A Compositional Framework for Access Control Policies
Enforcement

Frangois Siewe
fsiewe @ dmu.ac.uk

Antonio Cau
acau@dmu.ac.uk

Hussein Zedan
hzedan@dmu.ac.uk

Software Technology Research Laboratory
De Montfort University
The Gateway, Leicester
LE1 9BH, UK

ABSTRACT

Despite considerable number of work on authorization mod-
els, enforcing multiple policies is still a challenge in order to
achieve the level of security required in many real-world sys-
tems. Moreover current approaches address security settings
independently, and their incorporation into systems devel-
opment lifecycle is not well understood. This paper presents
a formal model for the specification of access control policies.
The approach can handle the enforcement of multiple poli-
cies through policies composition. Temporal dependencies
among authorizations can be formulated. Interval Temporal
Logic (ITL) is our underlying formal framework and policies
are modeled as safety properties expressing how authoriza-
tions are granted over time. The approach is compositional,
and can be used to specify other system’s properties such as
functional and temporal requirements. The use of a common
formalism eases the integration of security requirements into
system requirements so that they can be reasoned about uni-
formly throughout the development lifecycle. Furthermore
specification of policies are executable in Tempura, a simu-
lation tool for ITL.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; K.6.5 [Management of computing and In-
formation Systems]: Security and Protection

General Terms

Security, Verification

Keywords

Authorization, delegation, policy composition, access con-
trol

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FMSE’03, October 30, 2003, Washington, DC, USA.

Copyright 2003 ACM 1-58113-781-8/03/0010 ...$5.00.

32

1. INTRODUCTION

Recently, researchers have become increasingly interested
in developing authorization models which are flexible and
expressive enough so as to handle the specification and en-
forcement of multiple policies. In practice, a single policy is
not general enough to achieve the level of protection required
in many real-world applications. Rather a combination of
such policies applies.

Woo and Lam [20] have proposed a general framework to
specify authorization rules based on default logic. Positive
and negative authorization rules can be specified in their
model. However the approach provides no mechanisms to
handle conflicting authorizations which might be derived
using the rules. Jajodia et al. [12] have addressed this
problem and provided specific rules (decision rules) to re-
solve conflicts among authorizations. However the validity
periods of authorization rules cannot be specified nor can
temporal dependencies among authorizations be expressed
in their framework.

As pointed out in [4], permissions are often limited in time
or may hold for specific periods of time. A temporal model
for access control has been proposed by Bertino et al. [4,
3]. A time interval is associated with each authorization
to determine the period of time in which the authorization
holds. Temporal dependencies among authorizations can
be expressed. However their framework cannot handle the
enforcement of multiple policies. Neither can delegation of
access rights be expressed. Ponder [8] is a high-level policy
specification language in which authorization and delegation
policies, among others, can be specified. But it does not
support formal reasoning.

A compositional formal framework for access control which
can support delegation, timing and the enforcement of mul-
tiple policies has not yet been investigated. On the other
hand current access control models treat security concerns
independently, and their actual incorporation into systems
development lifecycle is not well understood. Similar remark
has been made by Devanbu et al. [9]. We argue that security
requirements must be integrated with the system require-
ment so that the properties of the system can be reasoned
about in a uniform manner throughout the development life-
cycle. We believe that this will significantly contribute to
the development of secure systems.

This paper presents a compositional formal framework for
the specification of access control policies. The approach can

handle the enforcement of multiple policies through policies
composition. Interval Temporal Logic (ITL) [14] is our un-
derlying formal framework. Authorization rules and dele-
gation rules are formulated as safety properties. Schneider
[19] showed that access control can be expressed as safety
properties. However other security policies such as informa-
tion flow and availability are not, in general, safety proper-
ties [19, 13]. Both information flow and availability are not
addressed in this paper. The approach combines temporal
modalities and boolean connectives for policies composition.
This provides a higher degree of expressiveness and can sup-
port the specification of several protection requirements that
cannot be expressed in traditional authorization models. For
example, policies can be composed in sequence to express a
complex policy which evolves over periods of time. More-
over policies specifications are executable in Tempura, a
simulation tool for ITL.

ITL provides a compositional proof system based on assum-
ptions-commitments paradigm for reasoning about functional
and temporal properties of systems [15, 21]. As we aim to
handle both security requirements as system requirements,
it is useful to specify them in the same formal notation. This
has motivated our choice of framework. Furthermore, a re-
finement calculus is provided for transforming a high-level
abstract specification (written in I'TL) into a more concrete
specification executable in Tempura [7]. It follows that ITL
can be used to describe a system at different levels of ab-
straction. However security requirements must be consid-
ered at the early phase of the development lifecycle.

The remainder of the paper is organised as follows. Sec-
tion 2 gives an overview of ITL. The access control model
is presented in Section 3. Section 4 formalises a mechanism
for access control deployment. Implementation issues are
addressed in Section 5 using an example. The paper ends
with a discussion in Section 6.

2. INTERVAL TEMPORAL LOGIC

ITL is a linear-time temporal logic with a discrete model
of time. An interval is considered to be a (in)finite, nonempty
sequence of states ooo1 ..., where a state o; is a mapping
from the set of variables to the set of values (integers). The
length |o| of a finite interval o is equal to the number of
states in the interval minus one. An empty interval has ex-
actly one state and its length is equal to 0.

The syntax of ITL is defined as follows, where u is a con-
stant, a is a static variable (does not change within an inter-
val), A is a state variable (can change within an interval), v
a static or state variable, g is a function symbol, and p is a
predicate symbol.

e Expressions

e u= pla|A|gler,...,en) |2a:f

e Formulas

f o= ple,..,en) | f | finfa| Vo[

skip | fi; fo | f*

The informal semantics of the most interesting constructs
are stated as follows. The expression ua : f denotes a value a
such that the formula f holds. The formula skip denotes the
unit interval (length equal to 1). The formula f1; f2 holds for
an interval if the interval can be decomposed (“chopped”)
into a prefix and a suffix interval, such that f; holds over

33

the prefix and f2 holds over the suffix, or if the interval is
infinite and fi holds for that interval. Finally the formula
f* holds for an interval if the interval is decomposable into
finite number of intervals such that for each of them f holds,
or the interval is infinite and can be decomposed into an
infinite number of finite intervals for which f holds.

Note that there are three primitive temporal operators in
ITL: skip, ”;” (chop), and “*” (chopstar). A state formula,
commonly denoted by w, is a formula with no temporal
operators in it. Following are some samples of formulas with
their informal meaning.

o I =1 holds for an interval if I’s value in the interval’s
initial state is equal to 1.

e skip; I = 5 holds for an interval if I's value in the
interval’s second state is equal to 5.

e I = 1;1 = 3 holds for an interval if I's value in the
initial state is equal to 1 and the value of I is equal
to 3 in some other state (not necessary the second) of
the interval.

e —(true; I = 0) holds for an interval if I's value is never
equal to 0 within the interval.

The formal semantics of expressions and formulas are sum-
marized in Table 1 and Table 2 respectively. Readers are
referred to [7, 6] for details on the logic. The semantics of a
statement X over an interval ¢ is denoted by [X],. We also
denote by x a choice function which maps any nonempty
set to some element in the set. We write 0 ~, o’ if the
intervals o and o’ are identical with the possible exception
of their mappings for the variable v, i.e |0| = |o'| and for all
i, 0< i< o] and v' # v, o:(v') = ol(v).

Table 1: Formal semantics of expressions

1o = u.
[vle = oo(v).
[[g(ela R e")]]lf = g(l[el]‘fﬁ vy |[€n]]a)-

x(u) if v # {}

x(a) otherwise

la: flo =

where u = {0'(a) | o ~a o’ and [f],/ = 1t}

Obviously common temporal modalities such as O (al-
ways) and O (sometime) can be expressed. Some frequently
used abbreviations are given in table 3. In particular, if f is
a formula then the formula

e Of holds for an interval if f holds for any suffix of the
interval.

e Of holds for an interval if f holds for some suffix of
the interval.

e Bf holds for an interval if f holds for any subinterval
of the interval.

e &f holds for an interval if f holds for some subinterval
of the interval.

Table 2: Formal semantics of formulas

[[p(el, N
[-flc =ttiff [fle = F.

[skip]o = ¢t iff lo| = 1.
[f1; fo]o = tt iff

,en)]e = tt iff p([e1]o, - -

- [ealo).

[[f1 A fz]]a = ¢t iff |If1:|]a' = tt and I[fz]]o- = tt.
[Vu.flo = tt iff for all o’ s.t. 0~y oy [flor = tt.

(exists k, s.t. [f1]og...c, = tt and

((o is infinite and [f2]s,... = tt) or

(o is finite and k < |o| and [f2]oy...0,,, = 1))
or (o is infinite and [fi]s = £t).

[f*]o = tt iff
if o is infinite then
(exist lo, ..., ln s.t. lo = 0 and [f],, .. = ¢t and
forall 0 <i<mn, I; <liy: and [f]]ali_i_t,li+1 =tt.)
or
(exist an infinite number of ; s.t. lo = 0 and [f],, ... = t¢ and
forall 0 <i<n, I; <liy1 and Ilf]]ali"'ali+1 =tt.)
else
(exist lo,...,ln 8.t. lo = 0 and I,, = |¢| and
forall0<i<n, l; <liy1 and [[f]l,,li__.(,,i+1 = it.)

3. ACCESS CONTROL POLICY

Access control is a security measure that consist of ensur-
ing that only authorized accesses can take place in a system.
An access control policy specifies the access rights, that is
who is authorized to access the system and what actions he
is allowed to perform on the system’s resources. Ensuring
security is tricky and formal notations are increasingly used
to specify security policies [2, 1, 5]. This section describes
our formal framework for the specification of policies, based
on Interval Temporal Logic presented in the previous sec-
tion. We assume a finite set S of subjects s, a finite set O of
objects o, and a finite set A of actions a. A subject denotes
any entity capable to perform actions on objects. Objects
denotes systems resources under protection, while actions
are operations that can be performed on them. Hierarchi-
cal relationships can be defined within any of these sets to
describe dependencies among their elements. For example
subjects can be organized into groups or roles [18].

3.1 Authorization Model

" A positive authorization is generally denoted by a triple
(s, 0, +a) meaning that the subject s is authorized to execute
the action a on the object 0. On the contrary, a negative
authorization denoted by (s, 0, —a) means that the subject
s is not authorized to execute the action a on the object o.
These two concepts are usually used to specify access control
policies.

3.1.1 Formalising Authorization

In ITL we use two boolean arrays authot and autho™
to model positive and negative authorizations respectively.
Therefore a positive authorization (s,o0,+a) is denoted by
autho™ (s,0,a), where s, o, and @ are indices. This autho-

34

rization holds if the value of autho™ (s,0, a) equals true and
does not hold otherwise. Similarly, autho™ (s, 0,a) models a
negative authorization (s, 0, —a). Positive and negative au-
thorizations are used at the specification level to state who
is or is not allowed to do what. As we will show in the se-
quel, the use of signed (i.e positive/negative) authorizations
gives more flexibility in handling authorization rules. For
example, negation can be banned in consequences of rules
without lost of generality (cf. Section 3.1.2). A signed au-
thorization model is more expressive in that it can specify
different kind of policies such as open, closed and hybrid
policies (see [12] for more details).

On the other hand, a mechanism is needed to infer from
the specification (based on signed authorizations) the ac-
tual access rights of each subject. A simple example is a
mechanism to resolve conflicts that might occur (e.g. when
autho™ (s,0,a) and autho™(s,0,a) hold at the same time)
within the specification. Hence, we consider another boolean
array autho in which the final decision is taken as who is al-
lowed to do what. The value of autho is computed from
those of authot and autho™ used to describe the access
rights. This means that autho can be thought of as the
access control matrix which is used to enforce security. An-
other boolean array error is needed to signal errors or unde-
sired behaviours within the specification so that the security
manager can be aware and fix them timely. For example,
when conflicting authorizations are not allowed, the variable
error is used to signal any occurence of these.

A security policy must determine at any time the ac-
cess rights of each subject with respect to any object and
any action. Writing a complete specification to state this
can be very complex and cumbersome. It is convenient
to have a specification that contains only variables which

Table 3: Frequently used abbreviations

inf = true; false infinite interval
Of = skipif

empty = —~more

next f

empty interval

fin f = O(empty D f) final state
if fo then fi else fo =
(foAf1)V (—fo A f2) if then else

finite = —inf
Qe=1wa:Oe=a)

more = () true

Of = finite; f sometimes f | Of = O f always f
&f = finite; f;true subinterval | Bf = -0 f all subintervals
fidf2=-f1V fa implies | Bf = O(more D f) all mostly

len = 1a : intlen(a)
€] = €2 = (Oel) = €2

intlen(e) = AL(I = 0) AB(I := I + 1) A fin(I = e))

finite interval
value of e at the next state

non-empty interval

length of interval

assignment

are constrained to change eventually, other variables be-
ing assumed stable in the scope of the specification. This
situation is known as the frame problem [10] and is in-
tensively addressed in artificial intelligence settings. Al-
though the concept of frame variables is a suitable so-
lution to the problem, it is not convenient to our frame-
work as it is not flexible enough. We will rather follow the
idea of Hale [10] which uses the concept of default values.
The intuition is that when a variable is not explicitly as-
signed a value, it is implicitly assigned a default value. We
assume that autho™(s,o0,a), autho™(s,0,a), autho(s,o,a),
and error(s,o,a) for all s, 0, and a, have default values and
their default value is false for security reason, viz to signal
that no permission is granted and no error has occured.

3.1.2 Authorization rules

Current authorization models express a policy in terms of
authorization rules. In our case, a policy can be specified
as a safety formula expressing how access rights are granted
over time. However the use of rules makes the specification
clearer and easier to understand. In this respect we define
the operator — over formulas as

fow=8(f D 0(fiw) 0y

where f stands for any temporal formula, and w is a state
formula. The formula f — w states that any subinterval
satisfying f such that f does not hold on any of its prefixes
(other than itself) ends in a state satisfying w. Intuitively
this means that if f holds then w must follow. If f is a
state formula then the formula (1) is a (authorization) rule
in the sense of [3, 12], where f is the premise and w is the
consequence.

In our framework the premise can be any temporal for-
mula. This allows the specification of complex authorization
rules, such as those expressing time dependencies among au-
thorizations. Samarati et al. in [16] suggested to attach
more general conditions to authorization rules in order to
specify their validity based on the system state, the state of
objects or the history of authorizations. In formula (1), f
can be used to express those features, for example f can be a
temporal formula specifying some property on the execution
history. We distinguish two kinds of rules: signed autho-
rization rules and authorization enforcement rules. Signed

35

authorization rules state how positive/negative authoriza-
tions are inferred as formulated in Definition 1. They are
used by the security manager to specify the access rights to
the system. Note that negation is not allowed in the conse-
quences of these rules. This is not restrictive and constitutes
an advantage of using signed authorizations because contra-
dictions can thus be avoided without loss of generality.

Definition 1. (Signed authorization rule)
A signed authorization rule has one of the following forms

e f+ autho® (s,0,a) (positive authorization rules)

o f s autho™ (s,0,a) (negative authorization rules)

for some subject s, object o and action a, where f stands
for any (temporal) formula.

Example 1 shows some samples of signed authorization
rules in which in(s1, s2) means that subject s1 is a member
of the group ss.

Ezxample 1.

e Permissions for a group propagate to members

(in(s1, s2) A autho™ (s2,0,a)) — autho™ (s1,0,a)

e Permissions are limited in time

(autho™ (s,0,a) Alen = 5) > autho™ (s,0,a)

Enforcement rules are devised to specify the enforcement
mechanism, i.e how the access rights are derived from posi-
tive and negative authorizations specifications. Inconsisten-
cies amongst signed authorizations are resolved using these
rules. The general form of enforcement rules is given in
Definition 2.

Definition 2. (Enforcement rule)
An (authorization) enforcement rule is a formula of the
form
f — autho(s, 0, a)

for some subject s, object o and action a, where f stands
for any (temporal) formula.

Jajodia et al. in [12] identified three main categories of
policies: closed policies, open policies and hybrid policies.
Closed policies allowed only positive authorization in the
specifications. They are enforced by the rules

autho™ (5,0, a) — autho(s, o, a)

which means that only privileges explicitly stated are granted.

Open policies in which only negative authorizations are al-
lowed in the specifications are enforced by the rule

—autho™ (s, 0, a) — autho(s, 0, a).

Therefore privileges are granted if not explicitly denied. Hy-
brid policies allow positive and negative authorizations to be
specified. Conflicts among authorizations in these policies
can be handled using enforcement rules as follows.

e Permissions take precedence, viz.

autho® (s, 0,a) — autho(s, 0, a)

e Denials take precedence, viz.

(autho® (s,0,a) A ~autho™ (s,0,a)) — autho(s, 0,a)

e No conflicts allowed, viz.

autho™ (s,0,a) — autho(s, 0, a)
N
(autho™ (s, 0,a) A autho™ (s, 0,a)) — error(s,o,a)

More sophisticated enforcement mechanisms (such as sub-
groups/path overriding) can be devised using enforcement
rules. Another important issue in (discretionary) access con-
trol concerns the delegation of access rights which is ad-
dressed in the following section.

3.2 Delegation Model

Delegation is a mechanism which enables a subject to del-
egate some of its rights to another subject for it to act on its
behalf. In discretionary access control delegation of rights is
at the discretion of subjects. This means that the initiative
to delegate is taken by subjects and not the policy man-
ager. However it should be possible to control delegations
through access control policy to ensure security, especially
in systems allowing cascaded delegations. A delegation pol-
icy specifies the ability of subjects (the grantors) to delegate
access rights to other subjects (the grantees) to perform ac-
tions on their behalf. Positive delegation policies grant the
right to delegate while negative delegation policies forbid
delegation.

Similarly as authorization policies (presented in the previ-
ous section) we model positive delegation by a boolean array
candeleg™ such that candeleg™ (s1, 52, 0, a) (where s1, 82,0, a
are indices) is equal to true if subject s1 can be permitted to
delegate to subject sz the right to perform action @ on ob-
ject o. In the same way, the boolean array candeleg”™ mod-
els negative delegations, i.e candeleg™(s1, s2,0,a) is true if
s1 cannot be permitted to delegate to subject sz the right
to perform action a on object 0. We use another array
candeleg that plays the same role as autho for authoriza-
tions. Thus the value of candeleg(s1,s2,0,a) is equal to
true if subject s1 is permitted to delegate to subject s2
the right to perform action @ on object o, and false oth-
erwise. For similar reason as for authorization policies, we
assume that candeleg(s1,s2,0,a), candeleg™(s1,s2,0,a),

36

and candeleg(s1, s2,0,a) for all s1, s2, o, a, have default
values and their default value is false. Signed delegation
rules and delegation enforcement rules are defined in the
same way as for authorizations. Errors are handled in the
similar way as well.

However, a subject should also be able to revoke a right it
has delegated to another. Moreover a delegated right should
be automatically revoked if the grantor loses that right. This
mechanism is formulated by the following rule

autho(s1,0,a)

A
candeleg(sy, s2,0,a)
A
deleg(s1, 82,0, a)

— autho(sz, 0,a)

()

where deleg is a boolean array used as follows. The element
deleg(s1, s2,0,a) of the array is used by the grantor s; to
delegate to (by setting the variable to true) and revoke from
(by setting the variable to false) the grantee sz the right
to perform action a on object 0. This rule is added to any
policy which allows delegation.

The following section describes simple policies which are
merely conjunction of rules, and some mechanisms for ma-
nipulating them.

3.3 Simple Policy

In practice, security policies are not static but rather
evolve continuously to fix new security breaches or to meet
new security requirements. This dynamics might lead to
some rules being withdrawn from and new ones added to the
policy. An authorization model must provide a mechanism
to ease the task of the security manager on these matters. In
this section we show how rules can be activated/deactivated
and how new rules can be added to policies.

The general form of a simple policy is defined as

PZwA AetRi A finw'

where P stands for policy, w is a state formula that holds
for the initial state of any interval on which the policy holds,
R;, i € I are (authorization/delegation) rules and I a finite
set of natural numbers, and w' is a state formula that holds
for the final state of any interval on which the policy holds.
The intuition is that the rules ensure security in any interval
satisfying P, while the state formulas w and w’ g)ntrol its
boundaries. In the sequel we denote by P and P, respec-
tively the initial state w and the final state w’ of a policy
P.

3.3.1 Adding a rule to a policy
A rule R can be added to a policy P by simple conjunction
to form a new policy
PAR

which enforces both P and R. This provides a way for incre-
mental development of a security policy. Note that R cannot
clash with other rules in P since negation is not allowed in
the consequences of rules.

3.3.2 Activation/deactivation of rules within policy

A mechanism to activate/deactivate rules within a policy
might consist of adding a flag (which is a state formula) in
the premises of rules, viz.

R; = (fu A flag:) = fio.

The rule is “activated” when the flag holds and “deacti-
vated” otherwise. For example to deactivate the rule R;
in a policy P, we just take the conjunction of P with the
formula O(—flag;), viz.

P AO(=flag;).
This feature can be generalized to the configuration of poli-
cies.

3.3.3 Configuration of policy

A configuration is a mechanism that allows us to deter-
mine (dynamically) which rules apply and which ones do not
within a policy. We call a configuration rule a rule of one
of the following forms

e f— flag
o fi =flag

where f stands for any formula and flag is a state formula.
A configuration C is then a conjunction of configuration
rules ¢;, i € I, for some finite set of indices I, viz.

(activation)

(deactivation)

C = Aierci.

If P is a policy and C a configuration then P A C is the
policy obtained by configuring P with C.

Complex policies are devised by policies composition as
discussed in the following section.

3.4 Policy Composition

Policies are closed under the following operators. Let P,
P, and P stand for policies, and w for a state formula. The

initial state P and the final state B of a compound policy
are defined inductively in Table 4.

Table 4: Initial and final states

—_— - —_— —
P;P=P P Po=P

— _—_— > =
PAVPR=PVP PVP,=P, VP
— e _— >
PAANP, =P AP, PINP, =P AP,

Pr="F P =P

=
if wthen Pj else P, = | if wthen Py else P, =P, VP,

— —
if w then P; else P

3.4.1 Parallel
The parallel composition of P, and P» is the policy
P AP,

which holds if both P; and P, hold. A system which en-
forces the policy Py A P> enforces both the policies P; and
P, simultaneously.

3.4.2 Sequence

Two policies P; and P> can be composed in sequence to
form the policy

P P

37

which behaves like P; for some time, then like P> afterwards,
provided that }_3; D j‘; That is Py and P> must agree at the
transition state where the behavior related to P, ends and
that related to P, commences. In general, organisations ap-
ply different policies for specific periods of time. Universities
distinguish between terms time and vacations. Banks render
restricted services in the week-end and holidays if they are
not merely closed. Traditional authorization models cannot
express sequential composition of policies.

3.4.3 Conditional
In certain conditions one policy say P;, might apply and
not the other say P». The conditional allows to express such
a policy as
if wthen Py else P

where the guard w determines which of P; and P, applies.
When w holds P; applies otherwise P» applies. A typical
example, in any organisation, might be P; applies for staff
and P, for non-staff. Note that P, and/or P» might also be
conditionals, refining staff and non-staff further into differ-
ent subcategories.

3.4.4 Disjunction

By contrast to conditional, disjunction specifies a policy
denoted by

AV P
which non-deterministically behaves like P; or like P>. The

choice between P; and P, is made internally at run-time by
the system, and cannot be pre-computed.

3.4.5 [Iteration

In some organisations, a policy say P, is adopted for a
given period of time (days, weeks, months, etc), then re-
peated successively over consecutive periods. Such a pro-
tection requirement can be formulated as

P+
(i.e P; P*) meaning that the policy P is iterated over non-
-

empty finite sequence of periods of time, provided that P O
b
P.

3.4.6 Scope

The scope of a policy say P, can be limited in time, i.e
PAlen=d

for some duration d.

4. ACCESS CONTROL DEPLOYMENT

Access control can be thought of as a security component
whose role is to control access to data. Such a component
must be able to handle all the requests from subjects (users)
in accessing information and check their access rights w.r.t
the security policy that applies. In this section we formalise
the security requirement for access control and investigate
its implementation in Tempura.

4.1 Security Requirement for Access Control

The requirement of access control is well understood and
states that only authorized parties can access the system’s
resources. This is formulated in our model as

req = O(access(s, a,0) D autho(s, a,0))

(3)

where access(s,a,0) is equal to true if subject s has per-
formed action a on object 0. The authorization matrix autho
is set by the access control policy, as described in the previ-
ous section. Instead, the array access is set by the reference
monitor in response to access requests.

4.2 Implementation

A simplified model for access control deployment is de-
picted in Figure 1. The reference monitor is responsible for
enforcing security. All the subjects’ requests for accessing
data are sent to the reference monitor, which authenticates
the senders and checks their access permissions. If a sender
has the required access right for its request, then its request
is successful otherwise it is rejected.

The behaviour of the reference monitor is formalised as

Vs, a,o0. if request(s,a,o0) A autho(s,a, o)
then access(s, a,0) = true
else access(s,a,0) = false

rm =0

%)
where request is a boolean array set by subjects so that
request(s, a,0) is equal to true if subject s requests to per-
form action a on object 0. Authentication protocols are not
addressed in this paper.

Lemma 1 states that the reference monitor sets the value
of access(s,a,0) to false if subject s does not request or is
not allowed to perform action a on object o.

LEMMA 1.
Frm D O((-request(s, 0, a) V ~autho(s, 0, a)} D —access(s,0,a))

ProOF. The proof of Lemma 1 is straightforward from
the definition of rm (formula (4)). O

Similarly the behaviour of subjects w.r.t their requests in ac-
cessing objects can be formulated as an ITL formula users.
Let policy denotes the access control policy. The following
theorem states the correctness of the design.

THEOREM 1.
F (users A rm A policy) D req

Proor. The proof is carried out by contradiction. So
suppose that users A rm A policy A —~req holds for some in-
terval o. It follows that o satisfies both formulas rm and
Olaccess(s,0,a) A —autho(s,0,a)). From Lemma 1, this
leads to a contradiction. [J

This access control mechanism is executable in Tempura as
we show in the following example.

S. AN EXAMPLE

We consider an institution in which the process of making
exams is fully controlled by a secure computer system. The
exams are stored on a server which controls the access to
them. Fach exam is assigned an examiner, a moderator and
an external examiner. The process comprises seven phases
and each phase i lasts at most d; time units (say days), and
covers a specific task as follows.

Phase 1 The examiner prepares the first draft of the exam.
In this phase he is the only one allowed to access the
exarmnt.

38

Phase 2 The moderator can access the exam and comment
it. The examiner cannot access the exam in this phase,
neither can the external examiner and students.

Phase 3 The examiner can access the exam to revise it
w.r.t the moderator’s comments and suggestions. No
one else is allowed to access it.

Phase 4 It is the turn to the external examiner to assess
the exam. So he accesses the exam and comments it.
However he is the only one to access the exam in this
phase.

" Phase 5 The examiner can access the exam for the final

revision.

Phase 6 The final release is kept securely. No one can ac-
cess it until the time the exam takes place.

Phase 7 Exam period. Students who attend the exam can
read it. So can the examiner, the moderator and the
external examiner. No write access is allowed.

5.1 Signed authorization rules
Following authorization rules apply.

e Examiner can read:

exzaminer T = ezaminer(s, o) — autho™ (s, 0, read)

e Examiner can write:

+

examiner w’ = examiner(s,o0) — autho’ (s, 0, write)

¢ Examiner cannot read:

ezaminerr = examiner(s,o) — autho™ (s,o,read)

e Examiner cannot write:

— o~

examiner_w examiner(s,o) — autho™ (s, o0, write)

where examiner(s,o) means that s is the examiner assigned
to the exam o.
In the sequel the abbreviations

+

examiner” = ezamineror™ A examiner.aw”’

and

examiner = examiner.r A examiner_w

will be used for simplicity. Similar rules can be defined for
moderators, external examiners, and students.

5.2 Enforcement rule

Each phase can apply specific enforcement mechanism.
Yet for simplicity, we will consider a single conflict resolu-
tion mechanism that denials take precedence in the event of
conflict, viz.

denialsTakePrec =

((autho™ (s, 0,a) A—autho™ (s, 0,a)) — autho(s,0,a))

§ requests

=

o

=

o
Reference

Subjects monitor

Policy

access

Objects

Figure 1: A model for access control deployment

5.3 Policy

As described above, each phase enforces specific access
control policy. Thus the policy for the system can be ex-
pressed as the sequential composition of the policies enforced
in the phases. These policies are defined in Table 5 such that
p1 is enforced in phases 1, 3, and 5, while ps, p3, ps, and ps
apply respectively in phase 2, 4, 6 and 7. Then the access
control policy for the exam system is

(len = d1 A p1);skip; (len = d2 A p2);
skip; (len = d3 A p1); skip; (len = d4 A p3);
skip; (len = ds A p1); skip; (len = ds A pa);

skip; (len = d7 A ps)

policy =

5.4 Simulation

We will consider the following scenario, describing the be-
haviour of users who request to access the exams. To sim-
plify the discussion, we have just one examiner (Bob), one
moderator (Alice), one external examiner (Dave), and one
student (Carol). Each phase lasts 2 time units. The users
behave as follows, where T stands for time.

e Bob requests to write the exam in phases 1, 3, 4, and
5. That is
bobReq£D< if(T=0vT=7vT=9VvT=13))

then request(bob, ezam, write)

However, as an examiner he is not allowed to access
the exam in phase 4.

e Alice requests to read the exam in phase 1 and to write

it in phases 2 and 5. That is

ifT=2

then request(alice, exam, read)
aliceReqg = 0| A

if (T=3vT=13)

then request(alice, exam, write)
However, as a moderator, she is not allowed to access

the exam in phase 1.

e Dave requests to write the exam in phases 4 and 7.
That is

daveRquD(if (T=10vT =18))

then request(dave, exam,write)

39

e Carol is a student and requests to read the exam in
phases 6 and 7. That is

if (T =15V T =18) ')

=0
carolReq (then request(carol, exam, read)

Let
users = bobReq A aliceReq N daveReq A carolReq.
Then the simulation of the formula
users A rm A policy

in Tempura gives the following monitoring of the requests
in accessing the exam.

State 0:

State 0: Subjects Objects Actions Request ...
State 0:

State 0: Bob Exam write accepted
State 2: Alice Exam read rejected
State 3: Alice Exam write accepted
State 7: Bob Exam write accepted
State 9: Bob Exam write rejected
State 10: Dave Exam write accepted
State 13: Bob Exam write accepted
State 13: Alice Exam write rejected
State 15: Carol Exam read rejected
State 18: Dave Exam write rejected
State 18: Carol Exam read accepted
Done! Computation length: 20. Total Passes: 24.

Total reductions: 47170 (46706 successful).

The access control matrix can also be visualized and checked
w.r.t the policy specification. For example this is the access
control matrix in state 0.

State 0:

State 0: Subjects Objects Actions Authorization
State 0:

State 0: Bob Exam read permitted
State 0: Bob Exam write permitted
State 0: Alice Exam read denied
State 0: Alice Exam write denied
State 0: Dave Exam read denied
State 0: Dave Exam write denied
State 0: Carol Exam read denied
State 0: Carol Exam write denied
State 1: Bob Exam read permitted

Table 5: Policy for each phase

ezaminert A
moderator™ A
external™ A
student™ A
denialsTakePrec

I

examiner- A
moderator™ A
externalt A
student™ A

i

D3

denialsTakePrec
examinerrt A
moderator_rt A
externalrt A
student_rt A

D2

D4

examiner_w- A
moderator_w™ A
externalw™ A
student_w™ A
denialsTakePrec

examiner A
moderator™ A
external™ A ,
student™ A
dentalsTakePrec

It

examiner” A
moderator™ A
external™ A R
student™ A
denialsTakePrec

1

6. DISCUSSION

We have developed a compositional framework for the
specification of access control policies using ITL. Autho-
rization and delegation rules are formulated as ITL formu-
las. The use of positive/negative authorizations and posi-
tive/negative delegations made it possible to avoid negation
in the consequences of rules without loss of generality. As
a result, contradiction cannot be derived from rules. While
signed rules are used for the specification of access rights, en-
forcement rules are provided for the specification of policy
enforcement mechanisms. Conflicts between positive and
negative authorizations/delegations can be resolved using
enforcement rules.

Simple policies are defined as conjunction of rules and ad-
ditional elements to ensure security at the beginning (when
the policy begins) and the end (when it terminates). Rules
can be added, activated/deactivated to policies. However
we do not allow dynamic creation/deletion of subjects, ob-
jects or actions. Dealing with such dynamics is known to be
difficult [11, 13]. Then complex policies are devised by com-
position using several operators such as chop or chopstar,
which are not supported by traditional approaches. Multiple
policies can so be enforced through composition, and their
properties reasoned about. Furthermore, specifications of
policies are executable in Tempura. Since I'TL can be used
to reason about functional and temporal properties of sys-
tems, our approach provides a uniform formal framework
to incorporate security policy specifications and system re-
quirements. We recommend to consider security concerns
at the early stage of the development lifecycle.

6.1 Run-time Verification

We aim to develop technologies and tool support for the
continual enforcement of security policies. Such a support
will be based on our SANTA Workbench depicted in Figure
2. Currently, SANTA consists of two major agents: Moni-
tor and Validator, where the later validates safety properties
expressed in an executable subset of ITL. We propose to (a)

40

Monitor

Policies &
Properties

Validator
(Tempura)

Figure 2: Architecture of SANTA.

conservatively extend ITL to provide a rich notation for ex-
pressing a variety of security policies, and (b) enhance the
Validator to cater for security policies. The Monitor agent
controls the information flow between the system and the
Validator. The tool and model will be evaluated on a vari-
ety of case studies drawn from both military (e.g. Security
policies related to NGOs) and civilian (Finance and Retail-
ing) domains.

6.2 Compositionality

Compositionality is a desirable attribute for any formal
method. It allows to decompose a large system into more
manageable pieces and to prove the correctness of the whole
system from that of its immediate components. In addition
it supports early reasoning of designs, i.e one can reason
with the specification of the components without knowing
their implementation.

In ITL, compositionality is provided through assumptions-
commitments paradigm whose general form is illustrated as
follows.

FwAAsASys D CoA finw'.

This states that if the (state) formula w is true in the
initial state and the assumption As holds over the interval
in which the system Sys is operating, then the commitment
Co will hold over the interval and the (state) formula w’ is
true in the interval’s final state or is vacuously true if the
interval is infinite.

In general, the assumption As and the commitment Co
can be arbitrary temporal formulas. However, special forms
of these suit better for reasoning about sequential or parallel
composition of systems. For sequential composition, for ex-
ample, it is useful to require that As and Co be respectively
fixpoints of the ITL operator @ (read boz-a) and * (read
chop-star), viz.

As = B As, Co=Co".

The first equivalence ensures that if the assumption As is
true on an interval, it is also true in all subintervals. The
second ensures that if zero or more sequential instances of
the commitment Co span an interval, Co is also true on the
interval itself. For assumption and commitment obeying the
above, the following proof rule is sound.

FwAAsA Sys D CoA fin v
Fw' AAsASys' D CoA fin w”
FwA As A Sys; Sys’ D CoA finw”.

Here is an analogous rule for decomposing a proof for zero
or more iterations of a formula Sys:

FwAAsA Sys D CoA finw
FwA As A Sys* D CoA fin w.

Readers are referred to [15] for further details.

6.3 Related Work

Over the years, researchers have proposed a vast variety
of access control policies and models [1, 2, 17, 18, 5]. A gen-
eral formalism for expressing authorization rules has been
proposed by Woo and Lam [20]. Their framework is based
on default logic and provides interesting properties such as
non-monotonicity of authorizations. That is, if a set of au-
thorization rules is augmented by a new rule, a subject who
was previously allowed access to an object may no longer
be allowed the same access. Such a property can be ex-
pressed easily using defaults. However default rules might
not be conclusive. As a consequence the model can lead to a
situation in which an authorization request has no answer.
Another limitation of their framework is the management
of conflicts among authorizations, that is handled in the se-
mantics of the authorization language.

We use the concept of default value which is conclusive
compared to default rules. The idea is that when a variable
is not explicitly assigned a value, it implicitly takes the de-
fault value. For example the default value for autho™ (s, 0,a)
is false meaning that if the specification does not set its
value to true (to say explicitly that s is denied the right to
perform action a on object o) then its value is set to false (to
say that s is not explicitly denied the right to perform action
a on object 0). In addition conflicts among signed authoriza-
tions/delegations are resolved through policies enforcement
mechanisms which are specified using enforcement rules.

41

Jajodia et al. [12] have proposed an access control model
in which inconsistencies among authorizations can be re-
solved using rules. Their approach is more flexible and
several design decisions can be chosen to handle conflicts.
We follow a similar approach but provide additional mecha-
nisms to handle delegation which cannot be specified in their
framework. Their model provides a library of policies (called
FAM library) from which policies can be extracted and en-
forced concurrently. However the management of the FAM
library is not well understood. Moreover policies compo-
sition cannot be expressed in their authorization language.
By contrast, our framework allows the enforcement of mul-
tiple policies through policies composition. This provides
a way of specifying complex policies and to reason about
their properties. Additionally their approach cannot specify
temporal dependancies among authorizations.

Bertino et al. [3, 4] have developed a temporal model
for access control. In their model time intervals are asso-
ciated with authorizations to determine their validity peri-
ods. Rules are expressed using temporal relationships be-
tween authorizations. However the approach cannot handle
the enforcement of multiple policies. Neither can delegation
of authorization be formulated. Our framework can handle
delegation and policies composition while allowing tempo-
ral reasoning about policies. Delegation is largely addressed
in Ponder (8], a high-level specification language for policies
management. However, as mentioned in the introduction
Ponder does not support formal reasoning.

7.
(1}

REFERENCES

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin.
A calculus for access control in distributed systems.
ACM Transactions on Programming Languages and
Systems, 15(3):1-29, September 1993.

D. Bell and L. Lapadula. Secure computer system
unified exposition and multics interpretation.
Technical Report MTR-2997, MITRE, Bedford, MA,
1975.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A
Temporal Access Control Mechanism for Database
systems. IEEE Transactions on knowledge and data
engineering, 8(1):67-80, February 1996.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An
Access Control Model Supporting Periodicity
Constraints and Temporal Reasoning. ACM
Transaction on Database Systems, 23(3):213-285,
September 1998.

P. Bonatti, S. Vimercati, and P. Samarati. An algebra
for composing access control policies. ACM
Transaction on Information and System security,
5(1):1-35, February 2002.

A. Cau, B. Moszkowski, and H. Zedan. Interval
Temporal Logic.

http://www.cse.dmu.ac.uk/ cau/itthomepage/.

A. Cau and H. Zedan. Refining Interval Temporal
Logic Specifications. In M. Bertran and T. Rus,
editors, Transformation-Based Reactive Systems
Development, volume 1231 of LNCS, pages 79-94,
AMAST, 1997. Sprinrg-Verlag.

N. C. Damianou. A Policy Framework for
Management of Distributed Systems. PhD thesis,

Bl

(8]

[10]

[11]

[12]

13]

4]

[15]

Imperial College of Science, Technology and Medicine,
University of London, February 2002.

P. Devanbu and S. Stubblebine. Software engineering
for security: a roadmap. In A. Finkelstein, editor, The
Future of Software Engineering, pages 225-239. ACM
Press, 2000. Special Volume (ICSE 2000).

R. W. S. Hale. Programming in Temporal Logic. PhD
thesis, Trinity College, University of Cambridge,
October 1988.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in Operating Systems. Communications of
the ACM, 19(8):461-471, 1976.

S. Jajodia, P. Samarati, V. S. Subrahmanian, and

E. Bertino. A unified framework for enforcing multiple
access control policies. ACM transaction on Database
Systems, 26(2):214-260, June 2001.

J. McLean. Security Models. In J. Marciniak, editor,
Encyclopedia of Software Engineering. Wiley Press,
1994.

B. Moszkowski. Executing Temporal Logic Programs.
Cambridge University Press, England, 1986.

B. Moszkowski. Compositional reasoning using
interval temporal logic and tempura. In W.-P. d.
Roever, H. Langmaack, and A. Pnueli, editors,

42

[16]

[17]

(18]

[19]

20]

[21]

Compositionality: The Significant Difference, volume
1486 of LNCS, pages 439-464, Berlin, 1998. Springer
Verlag.

P. Samarati and S. Vimercati. Access Control:
Policies, Models, and Mechanisms. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis
and Design (Tutorial Lectures), pages 137-196.
Springer-Verlag, September 2000.

R. Sandhu. Transaction Control Expressions for
Separation of Duties. IEEE, pages 282-286, 1988.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE
Computer, 29(2):38-47, 1996.

F. B. Schneider. Enforceable Security Policies. ACM
Transactions on Information and System Security,
3(1):30-50, February 2000.

T. Y. C. Woo and S. S. Lam. Authorization in
distributed systems: A new approach. Journal of
Computer Security, 2(2,3):107-136, 1993.

H. Zedan, A. Cau, and B. Moszkowski. Compositional
Modelling: The Formal Perspective. In D. Bustard,
editor, Workshop on Systems Modelling for Business
Process Improvement, pages 333-354. Artech House,
2000.

