
A Compositional Framework for Access Control Policies
Enforcement

Francois Siewe Antonio Cau Hussein Zedan
fsiewe @ dmu.ac.uk acau @ dmu.ac.uk hzedan @ dmu.ac.uk

Software Technology Research Laboratory .
De Montfort University

The Gateway, Leicester
LE1 9BH, UK

ABSTRACT
Despite considerable number of work on authorization mod-
els, enforcing multiple policies is still a challenge in order to
achieve the level of security required in many real-world sys-
tems. Moreover current approaches address security settings
independently, and their incorporation into systems devel-
opment lifecycle is not well understood. This paper presents
a formal model for the specification of access control policies.
The approach can handle the enforcement of multiple poli-
cies through policies composition. Temporal dependencies
among authorizations can be formulated. Interval Temporal
Logic (ITL) is our underlying formal framework and policies
are modeled as safety properties expressing how authoriza-
tions are granted over time. The approach is compositional,
and can be used to specify other system's properties such as
functional and temporal requirements. The use of a common
formalism eases the integration of security requirements into
system requirements so that they can be reasoned about uni-
formly throughout the development lifecycle. Furthermore
specification of policies are executable in Tempura, a simu-
lation tool for ITL.

Categories and Subject Descriptors
D.4.6 [O p e r a t i n g S y s t e m s] : Security and Protection--Ac-
cess controls; K.6.5 [M a n a g e m e n t of c o m p u t i n g a n d In -
f o r m a t i o n S y s t e m s] : Security and Protection

General Terms
Security, Verification

Keywords
Authorization, delegation, policy composition, access con-
trol

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE'03, October 30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-781-8/03/0010 ...$5.00.

1. INTRODUCTION
Recently, researchers have become increasingly interested

in developing authorization models which are flexible and
expressive enough so as to handle the specification and en-
forcement of multiple policies. In practice, a single policy is
not general enough to achieve the level of protection required
in many real-world applications. Rather a combination of
such policies applies.

Woo and Lain [20] have proposed a general framework to
specify authorization rules based on default logic. Positive
and negative authorization rules can be specified in their
model However the approach provides no mechanisms to
handle conflicting authorizations which might be derived
using the rules. Jajodia et al. [12] have addressed this
problem and provided specific rules (decision rules) to re-
solve conflicts among authorizations. However the validity
periods of authorization rules cannot be specified nor can
temporal dependencies among authorizations be expressed
in their framework.

As pointed out in [4], permissions are often limited in time
or may hold for specific periods of time. A temporal model
for access control has been proposed by Bertino et al. [4,
3]. A time interval is associated with each authorization
to determine the period of time in which the authorization
holds. Temporal dependencies among authorizations can
be expressed. However their framework cannot handle the
enforcement of multiple policies. Neither can delegation of
access rights be expressed. Ponder [8] is a high-level policy
specification language in which authorization and delegation
policies, among others, can be specified. But it does not
support formal reasoning.

A compositional formal framework for access control which
can support delegation, t iming and the enforcement of mul-
tiple policies has not yet been investigated. On the other
hand current access control models treat security concerns
independently, and their actual incorporation into systems
development lifecycle is not well understood. Similar remark
has been made by Devanbu et al. [9]. We argue that security
requirements must be integrated with the system require-
ment so that the properties of the system can be reasoned
about in a uniform manner throughout the development life-
cycle. We believe that this will significantly contribute to
the development of secure systems.

This paper presents a compositional formal framework for
the specification of access control policies. The approach can

32

handle the enforcement of mult iple policies th rough policies
composit ion. Interval Tempora l Logic (ITL) [14] is our un-
derlying formal framework. Author iza t ion rules and dele-
gat ion rules are formulated as safety properties. Schneider
[19] showed tha t access control can be expressed as safety
properties. However o ther security policies such as informa-
tion flow and availability are not, in general, safety proper-
ties [19, 13]. Both informat ion flow and availabili ty are not
addressed in this paper. The approach combines t empora l
modal i t ies and boolean connectives for policies composit ion.
This provides a higher degree of expressiveness and can sup-
port the specification of several protect ion requirements tha t
cannot be expressed in t radi t ional author izat ion models. For
example, policies can be composed in sequence to express a
complex policy which evolves over periods of time. More-
over policies specifications are executable in Tempura, a
simulat ion tool for ITL.

ITL provides a composi t ional proof system based on assum-
ptions-commitments paradigm for reasoning about funct ional
and tempora l propert ies of systems [15, 21]. As we aim to
handle bo th security requirements as system requirements ,
it is useful to specify them in the same formal notat ion. This
has mot iva ted our choice of framework. Fur thermore , a re-
f inement calculus is provided for t ransforming a high-level
abstract specification (wri t ten in ITL) into a more concrete
specification executable in Tempura [7]. It follows tha t ITL
can be used to describe a system at different levels of ab-
stract ion. However security requirements must be consid-
ered at the early phase of the development lifecycle.

The remainder of the paper is organised as follows. Sec-
t ion 2 gives an overview of ITL. The access control model
is presented in Section 3. Section 4 formalises a mechanism
for access control deployment . Implementa t ion issues are
addressed in Section 5 using an example. The paper ends
wi th a discussion in Section 6.

2. I N T E R V A L T E M P O R A L L O G I C
ITL is a l inear- t ime tempora l logic wi th a discrete model

of t ime. An interval is considered to be a (in)finite, nonempty
sequence of states ~0crl . . . , where a s ta te a~ is a mapping
from the set of variables to the set of values (integers). The
length [a[of a finite interval a is equal to the number of
states in the interval minus one. An empty interval has ex-
actly one s ta te and its length is equal to 0.

The syntax of ITL is defined as follows, where # is a con-
stant, a is a stat ic variable (does not change within an inter-
val), A is a s ta te variable (can change within an interval), v
a stat ic or s ta te var iable g is a funct ion symbol, and p is a
predicate symbol.

• Expressions

e : := # l a A l g (e l , . . ,en) l m : f

• Formulas

f : := p(el ,en) I - q f l A f2 IVv . f I

s k i p I f l; f2 I f *

The informal semantics of the most interest ing constructs
are s ta ted as follows. The expression za : f denotes a value a
such tha t the formula f holds. The formula s k i p denotes the
unit interval (length equal to 1). The formula f l ; f2 holds for
an interval if the interval can be decomposed ("chopped")
into a prefix and a suffix interval, such tha t f l holds over

the prefix and f2 holds over the suffix, or if the interval is
infinite and f l holds for tha t interval. Final ly the formula
f* holds for an interval if the interval is decomposable into
finite number of intervals such tha t for each of t hem f holds,
or the interval is infinite and can be decomposed into an
infinite number of finite intervals for which f holds.

Note tha t there are three pr imit ive t empora l operators in
ITL: sk ip , ";" (chop), and "*" (chopstar). A state formula,
commonly denoted by w, is a formula wi th no t empora l
operators in it. Following are some samples of formulas wi th
their informal meaning.

• I = 1 holds for an interval if I ' s value in the interval 's
initial s ta te is equal to 1.

• sk ip; I = 5 holds for an interval if I ' s value in the
interval 's second s ta te is equal to 5.

• I = 1; I = 3 holds for an interval if I ' s value in the
initial s ta te is equal to 1 and the value of I is equal
to 3 in some other s ta te (not necessary the second) of
the interval.

• -~(true; I = 0) holds for an interval if I ' s value is never
equal to 0 wi thin the interval.

The formal semantics of expressions and formulas are sum-
marized in Table 1 and Table 2 respectively. Readers are
referred to [7, 6] for details on the logic. The semantics of a
s ta tement X over an interval a is denoted by [X ~ . We also
denote by X a choice funct ion which maps any nonempty
set to some element in the set. We write a ~v a ~ if the
intervals a and cr' are identical wi th the possible except ion
of their mappings for the variable v, i.e Icr I = la ' I and for all
i, 0 < i _< [a I and v' ¢ v, cr~(v') = a~(v').

T a b l e 1: F o r m a l s e m a n t i c s o f e x p r e s s i o n s

M~ = o0(v).

[g(el, . . . , en)]~ = g([ell~, . . . , [e ~) .

X(U) if u # { }

~za: f i g = x(a) otherwise

= a' and I f] a ' = tt} where u {a ' (a) I a ~ a

Obviously common tempora l modal i t ies such as [] (al-
ways) and ~ (sometime) can be expressed. Some frequently
used abbrevia t ions are given in table 3. In part icular , if f is
a formula then the formula

• D f holds for an interval if f holds for any suffix of the
interval.

• ~ f holds for an interval if f holds for some suffix of
the interval.

• N f holds for an interval if f holds for any subinterval
of the interval.

• ~ f holds for an interval if f holds for some subinterval
of the interval.

33

T a b l e 2: Formal s e m a n t i c s o f f ormulas

~o(~1,..., ~)]~ = t t iff p(l~l]~,. . . , ie~]~).

[-~f]~ = t t iff [f]o = f t .

If1 A f2]~ : t t iff [f l i p : t t and [f2]~ = tt.

~Vv.f]~ = t t iff for all or' s.t. cr ,,~, a ' , I f]o , = tt.

[skip]~ = t t iff Icrl = 1.

~fl ; f2]o = t t iff
(exists k, s.t. [fl]~o k = t t and

((a is infinite and [f2]~k... = t t) or
(a is finite and k _< lal and [f2]~k t~1 = t t)))

or (a is infinite and [f l]~ = t t) .

[f*]~ = t t iff
if a is infinite then

(e x i s t / 0 , . . . , In s.t. 10 = 0 and [f]ot~... = t t and
for all 0 _< i < n, li < l i+l and [f] ~ ~+~ = t t .)

o r

(exist an infinite number of l~ s.t. 10 = 0 and [f] ~ . . . = t t and
for all 0 _< i < n, l~ _< l i+l and [f]~t~ ~+~ = t t .)

else
(e x i s t / 0 , . . . , I n s.t. 10 = 0 and l~ = lal and

for all 0 < i < n, l~ _< l~+~ and [f] ~ z~+~ = t t .)

3. A C C E S S C O N T R O L P O L I C Y
Access control is a security measure tha t consist of ensur-

ing tha t only author ized accesses can take place in a system.
An access control policy specifies the access rightsl tha t is
who is author ized to access the system and what actions he
is allowed to perform on the sys tem's resources. Ensur ing
security is t r icky and formal nota t ions are increasingly used
to specify security policies [2, 1, 5]. This section describes
our formal framework for the specification of policies, based
on Interval Tempora l Logic presented in the previous sec-
tion. We assume a finite set S of subjects s, a finite set (9 of
objects o, and a finite set ..4 of actions a. A subject denotes
any ent i ty capable to perform actions on objects. Objec ts
denotes systems resources under protect ion, while actions
are operat ions tha t can be performed on them. Hierarchi-
cal relat ionships can be defined within any of these sets to
describe dependencies among their elements. For example
subjects can be organized into groups or roles [18].

3.1 A u t h o r i z a t i o n M o d e l
A posit ive author iza t ion is generally denoted by a tr iple

(s, o, + a) meaning tha t the subject s is author ized to execute
the act ion a on the object o. On the contrary, a negat ive
author iza t ion denoted by (s, o , - a) means tha t the subject
s is not author ized to execute the act ion a on the object o.
These two concepts are usual ly used to specify access control
policies.

3.1 .1 F o r m a l i s i n g A u t h o r i z a t i o n

In ITL we use two boolean arrays autho + and a u t h o -
to model posi t ive and negat ive author iza t ions respectively.
Therefore a posi t ive author iza t ion (s, o, + a) is denoted by
au tho+(s ,o ,a) , where s, o, and a are indices. This autho-

r izat ion holds if the value of autho+(s , o, a) equals t rue and
does not hold otherwise. Similarly, a u t h o - (s , o, a) models a
negat ive author iza t ion (s, o , - a) . Posi t ive and negat ive au-
thor izat ions are used at the specification level to s ta te who
is or is not allowed to do what . As we will show in the se-
quel, the use of signed (i.e pos i t ive /nega t ive) author iza t ions
gives more flexibility in handl ing author iza t ion rules. For
example, negat ion can be banned in consequences of rules
wi thou t lost of general i ty (cf. Section 3.1.2). A signed au-
thor iza t ion model is more expressive in tha t it can specify
different kind of policies such as open, closed and hybrid
policies (see [12] for more details).

On the o ther hand, a mechanism is needed to infer from
the specification (based on signed authorizat ions) the ac-
tua l access rights of each subject . A simple example is a
mechanism to resolve conflicts tha t might occur (e.g. when
au tho+(s ,o ,a) and a u t h o - (s , o , a) hold at the same t ime)
wi th in the specification. Hence, we consider another boolean
array autho in which the final decision is taken as who is al-
lowed to do what . The value of autho is computed from
those of autho + and a u t h o - used to describe the access
rights. This means tha t autho can be thought of as the
access control ma t r ix which is used to enforce security. An-
o ther boolean array error is needed to signal errors or unde-
sired behaviours wi th in the specification so tha t the security
manager can be aware and fix them timely. For example,
when conflicting author iza t ions are not allowed, the variable
error is used to signal any occurence of these.

A securi ty policy must de te rmine at any t ime the ac-
cess rights of each subject wi th respect to any object and
any action. Wri t ing a complete specification to s ta te this
can be very complex and cumbersome. I t is convenient
to have a specification tha t contains only variables which

34

T a b l e 3: F r e q u e n t l y u s e d a b b r e v i a t i o n s

in f ~ true; fa lse infinite interval

O f ~ skJ.p;f next f

empty ~ ~more empty interval

O f ~ finite; f sometimes f

<~f ~ f inite; f; true subinterval

f l D f2 ~ -~f~ V f2 implies

f i n f ~ O(empty D f) final s ta te

if f0 then f l else f2

(f0 A f l) V (-~f0 A f2) if then else

f in i t e ~ ~ i n f

O e ~ ~a : O(e = a)

more ~ 0 true

[]f ~ -~o~f

~ f ~ -~-~f

~ f ~ D(more D f)

lea ~ za : intlen(a)

e l : = e2 ~- (O e l) = e2

finite interval

value of e at the next s ta te

non-empty interval

always f

all subintervals

all most ly

length of interval

assignment

intlen(e) ~ 31.((1 = O) A [](I := I + 1) A f i n (I = e))

are constrained to change eventually, o ther variables be-
ing assumed stable in the scope of the specification. This
s i tuat ion is known as the frame problem [10] and is in-
tensively addressed in artificial intelligence settings. Ai-
though the concept of frame variables is a suitable so-
lut ion to the problem, it is not convenient to our frame-
work as it is not flexible enough. We will ra ther follow the
idea of Hale [10] which uses the concept of default values.
The intui t ion is tha t when a variable is not explicit ly as-
signed a value, it is implici t ly assigned a default value. We
assume tha t autho + (s, o, a), autho- (s, o, a), autho(s, o, a),
and error(s, o, a) for all s, o, and a, have default values and
their default value is fa lse for security reason, viz to signal
tha t no permission is granted and no error has occured.

3 . 1 . 2 Authorization rules
Current author izat ion models express a policy in terms of

author izat ion rules. In our case, a policy can be specified
as a safety formula expressing how access rights are granted
over t ime. However the use of rules makes the specification
clearer and easier to unders tand. In this respect we define
the opera tor ~ over formulas as

f ~ w ~ [] (f D O (f ; w)) (1)

where f s tands for any tempora l formula, and w is a s ta te
formula. The formula f ~ w states tha t any subinterval
satisfying f such tha t f does not hold on any of its prefixes
(other than itself) ends in a s ta te satisfying w. Intui t ively
this means tha t if f holds then w must follow. If f is a
s ta te formula then the formula (1) is a (authorizat ion) rule
in the sense of [3, 12], where f is the premise and w is the
consequence.

In our framework the premise can be any tempora l for-
mula. This allows the specification of complex author iza t ion
rules, such as those expressing t ime dependencies among au-
thorizat ions. Samara t i et al. in [16] suggested to a t tach
more general condit ions to author izat ion rules in order to
specify their validity based on the system state, the s ta te of
objects or the history of authorizat ions. In formula (1), f
can be used to express those features, for example f can be a
t empora l formula specifying some proper ty on the execut ion
history. We distinguish two kinds of rules: signed autho-
rization rules and authorization enforcement rules. Signed

author izat ion rules s ta te how pos i t ive /nega t ive authoriza-
t ions are inferred as formulated in Definit ion 1. They are
used by the security manager to specify the access rights to
the system. Note tha t negat ion is not allowed in the conse-
quences of these rules. This is not restr ict ive and const i tu tes
an advantage of using signed author izat ions because contra-
dictions can thus be avoided wi thout loss of generality.

Definition 1. (Signed authorization rule)
A signed author iza t ion rule has one of the following forms

• f ~-~ autho + (s, o, a) (positive author izat ion rules)

• f ~ autho- (s, o, a) (negative author izat ion rules)

for some subject s, object o and action a, where f s tands
for any (temporal) formula.

Example 1 shows some samples of signed author izat ion
rules in which in(s1, s2) means tha t subject s l is a member
of the group s2.

Example 1.

• Permissions for a group propagate to members

(in(s1, s2) A autho+(s2, o, a)) ~ autho+(sl, o, a)

• Permissions are l imited in t ime

(autho+ (s, o, a) A len = 5) ~ autho- (s, o, a)

Enforcement rules are devised to specify the enforcement
mechanism, i.e how the access rights are derived from posi-
t ive and negat ive author izat ions specifications. Inconsisten-
cies amongst signed authorizat ions are resolved using these
rules. The general form of enforcement rules is given in
Definit ion 2.

Definition 2. (Enforcement rule)
An (authorizat ion) enforcement rule is a formula of the

form

f ~ autho(s, o, a)

for some subject s, object o and action a, where f s tands
for any (temporal) formula.

35

Jajodia et al. in [12] identified three main categories of
policies: closed policies, open policies and hybrid policies.
Closed policies Mlowed only positive authorization in the
specifications. They are enforced by the rules

autho+ (s, o, a) ~ autho(s, o, a)

which means that only privileges explicitly stated are granted.
Open policies in which only negative authorizations are al-
lowed in the specifications are enforced by the rule

-~autho- (s, o, a) ~ autho(s, o, a).

Therefore privileges are granted if not explicitly denied. Hy-
brid policies allow positive and negative authorizations to be
specified. Conflicts among authorizations in these policies
can be handled using enforcement rules as follows.

• Permissions take precedence, viz.

autho + (s, o, a) ~ autho(s, o, a)

• Denials take precedence, viz.

(autho + (s, o, a) A -~autho- (s, o, a)) ~ autho(s, o, a)

• No conflicts allowed, viz.

autho+(s, o, a) ~ autho(s, o, a)
A

(autho+(s, o, a) A autho-(s , o, a)) ~ error(s, o, a)

More sophisticated enforcement mechanisms (such as sub-
groups/path overriding) can be devised using enforcement
rules. Another important issue in (discretionary) access con-
trol concerns the delegation of access rights which is ad-
dressed in the following section.

3.2 Delegation Model
Delegation is a mechanism which enables a subject to del-

egate some of its rights to another subject for it to act on its
behalf. In discretionary access control delegation of rights is
at the discretion of subjects. This means that the initiative
to delegate is taken by subjects and not the policy man-
ager. However it should be possible to control delegations
through access control policy to ensure security, especially
in systems allowing cascaded delegations. A delegation pol-
icy specifies the ability of subjects (the grantors) to delegate
access rights to other subjects (the grantees) to perform ac-
tions on their behalf. Positive delegation policies grant the
right to delegate while negative delegation policies forbid
delegation.

Similarly as authorization policies (presented in the previ-
ous section) we model positive delegation by a boolean array
candeleg + such that candeleg+ (sl , s2, o, a) (where sl , s2, o, a
are indices) is equal to true if subject sl can be permitted to
delegate to subject s~ the right to perform action a on ob-
ject o. In the same way, the boolean array candeleg- mod-
els negative delegations, i.e candeleg-(sl , s2, o, a) is true if
sl cannot be permitted to delegate to subject s~ the right
to perform action a on object o. We use another array
candeleg that plays the same role as autho for authoriza-
tions. Thus the value of candeleg(sl ,s2,o,a) is equal to
true if subject sl is permitted to delegate to subject s2
the right to perform action a on object o, and fa lse oth-
erwise. For similar reason as for authorization policies, we
assume that candeleg+(sl, s2, o, a), candeleg-(sl , s~, o, a),

and candeleg(sl,s2, o,a) for all sl, s2, o, a, have default
values and their default vMue is false. Signed delegation
rules and delegation enforcement rules are defined in the
same way as for authorizations. Errors are handled in the
similar way as well.

However, a subject should also be able to revoke a right it
has delegated to another. Moreover a delegated right should
be automatically revoked if the grantor loses that right. This
mechanism is formulated by the following rule

autho(sl, o, a) \
A) candeleg(sl, s2, o, a) H autho(s2, o, a) (2)
A

deleg(sl, s2, o, a)

where deleg is a boolean array used as follows. The element
deleg(sl, s~, o, a) of the array is used by the grantor sl to
delegate to (by setting the variable to true) and revoke from
(by setting the variable to false) the grantee s2 the right
to perform action a on object o. This rule is added to any
policy which allows delegation.

The following section describes simple policies which are
merely conjunction of rules, and some mechanisms for ma-
nipulating them.

3.3 Simple Policy
In practice, security policies are not static but rather

evolve continuously to fix new security breaches or to meet
new security requirements. This dynamics might lead to
some rules being withdrawn from and new ones added to the
policy. An authorization model must provide a mechanism
to ease the task of the security manager on these matters. In
this section we show how rules can be activated/deactivated
and how new rules can be added to policies.

The general form of a simple policy is defined as

P ~ w A AiezRi A f i n w I

where P stands for policy, w is a state formula that holds
for the initial state of any interval on which the policy holds,
Ri, i E I are (authorization/delegation) rules and I a finite
set of natural numbers, and w' is a state formula that holds
for the final state of any interval on which the policy holds.
The intuition is that the rules ensure security in any interval
satisfying P, while the state formulas w and w' control its
boundaries. In the sequel we denote by P and P , respec-
tively the initial state w and the final state w' of a policy
P.

3.3.1 Adding a rule to a policy
A rule R can be added to a policy P by simple conjunction

to form a new policy

P A R

which enforces both P and R. This provides a way for incre-
mental development of a security policy. Note that R cannot
clash with other rules in P since negation is not allowed in
the consequences of rules.

3.3.2 Activation/deactivation of rules within policy
A mechanism to activate/deactivate rules within a policy

might consist of adding a flag (which is a state formula) in
the premises of rules, viz.

Ri ~ (fil A flagi) ~ f~2.

36

The rule is "activated" when the flag holds and "deacti-
vated" otherwise. For example to deactivate the rule Rj
in a policy P, we just take the conjunction of P with the
formula C~(-~flagj), viz.

P A C3(-~flagj).

This feature can be generalized to the configuration of poli-
cies.

3.3.3 Configuration o f policy
A configuration is a mechanism that allows us to deter-

mine (dynamically) which rules apply and which ones do not
within a policy. We call a configuration rule a rule of one
of the following forms

• f ~ f l a g (activation)

• f ~ -~flag (deactivation)

where f stands for any formula and f l ag is a state formula.
A configuration C is then a conjunction of configuration

rules ci, i E I, for some finite set of indices I, viz.

C ~ AieI ci.

If P is a policy and C a configuration then P A C is the
policy obtained by configuring P with C.

Complex policies are devised by policies composition as
discussed in the following section.

3.4 Policy Composition
Policies are closed under the following operators. Let Pi,

P2 and P stand for policies, and w for a state formula. The
initial state P and the final state P of a compound policy
are defined inductively in Table 4.

Tab l e 4: I n i t i a l a n d f inal s t a t e s

P~ ; P2 = P 1
(~ t - - -

P~ v P2 = P~ v P2

P~AP2 = Pt A P2

Y =T
(

if w then P1 else P2 =

if w then P1 else P2

P~ ; P2 = P2

P~ V 2 = P 1 V P2

P~ A 2 = P~ A P2

) ~

if w then P1 else P2 = P1 V P2

3.4.1 Parallel
The parallel composition of P1 and P2 is the policy

P1A P2

which holds if both P1 and P2 hold. A system which en-
forces the policy P1 A P2 enforces both the policies P1 and
P2 simultaneously.

3.4.2 Sequence
Two policies P1 and P2 can be composed in sequence to

form the policy

P1; P2

which behaves like P1 for some time, then like P2 afterwards,
----0

provided that P1 D P2. That is P1 and P2 must agree at the
transition state where the behavior related to P1 ends and
that related to P2 commences. In general, organisations ap-
ply different policies for specific periods of time. Universities
distinguish between terms time and vacations. Banks render
restricted services in the week-end and holidays if they are
not merely closed. Traditional authorization models cannot
express sequential composition of policies.

3 .4 .3 C o n d i t i o n a l

In certain conditions one policy say P1, might apply and
not the other say P2. The conditional allows to express such
a policy as

i f w then P1 else P2

where the guard w determines which of P1 and P2 applies.
When w holds P1 applies otherwise P2 applies. A typical
example, in any organisation, might be P1 applies for staff
and P2 for non-staff. Note that Pt and/or P~ might also be
conditionals, refining staff and non-staff further into differ-
ent subcategories.

3.4.4 Disjunction
By contrast to conditional, disjunction specifies a policy

denoted by

P 1 v P2

which non-deterministically behaves like P1 or like P2. The
choice between P1 and P2 is made internally at run-time by
the system, and cannot be pre-computed.

3.4.5 Iteration
In some organisations, a policy say P, is adopted for a

given period of time (days, weeks, months, etc), then re-
peated successively over consecutive periods. Such a pro-
tection requirement can be formulated as

p+

(i.e P; P*) meaning that the policy P is iterated over non-

empty finite sequence of periods of time, provided that P D
P .

3.4.6 Scope
The scope of a policy say P, can be limited in time, i.e

P A l e n = d

for some duration d.

4. ACCESS CONTROL DEPLOYMENT
Access control can be thought of as a security component

whose role is to control access to data. Such a component
must be able to handle all the requests from subjects (users)
in accessing information and check their access rights w.r.t
the security policy that applies. In this section we formalise
the security requirement for access control and investigate
its implementation in Tempura.

4.1 Security Requirement for Access Control
The requirement of access control is well understood and

states that only authorized parties can access the system's
resources. This is formulated in our model as

req ~ C3(access(s, a, o) D autho(s , a, o)) (3)

37

where access(s ,a, o) is equal to t r ue if sub jec t s has per-
formed ac t ion a on ob jec t o. T h e a u t h o r i z a t i o n m a t r i x autho
is set; by t he access cont ro l policy, as descr ibed in t he previ-
ous section. Ins t ead , t he a r ray access is set by t he reference
m o n i t o r in response to access requests .

4.2 Implementation
A simplif ied model for access cont ro l d e p l o y m e n t is de-

p ic ted in F igure 1. T h e reference m o n i t o r is respons ib le for
enforc ing security. All t he sub jec t s ' r eques t s for accessing
d a t a are sent to t h e reference moni to r , which a u t h e n t i c a t e s
t he senders a n d checks the i r access permiss ions . If a sender
has t he requ i red access r ight for i ts request , t h e n its r eques t
is successful o the rwise i t is re jected.

T h e b e h a v i o u r of the reference m o n i t o r is formMised as

Vs, a, o. if request(s , a, o) A autho(s , a, o)
r m ~- [] t h e n access(s, a, o) = t rue) else access(s, a, o) : f a l s e

(4)
where request is a boo lean a r ray set by sub jec t s so t h a t
request(s , a, o) is equal to t r ue if s ub j ec t s r eques t s to per-
form ac t ion a on ob jec t o. A u t h e n t i c a t i o n pro tocols are no t
addressed in th i s paper .

L e m m a i s t a t e s t h a t t he reference m o n i t o r sets t he value
of access(s, a, o) to f a l s e if sub jec t s does no t reques t or is
no t allowed to pe r fo rm ac t ion a on ob jec t o.

LEMMA 1.

~- rm D D((~request(s, o, a) V ~autho(s, o, a)) D ~access(s, o, a))

PROOF. T h e p roof of L e m m a 1 is s t r a igh t fo rward f rom
the def in i t ion of r m (formula (4)). []

S imi lar ly t h e b e h a v i o u r of sub jec t s w.r . t t he i r r eques t s in ac-
cessing o b j e c t s can be fo rmu la t ed as an ITL fo rmula users.
Let policy deno tes t h e access cont ro l policy. T h e following
t h e o r e m s t a t e s t he cor rec tness of t he design.

THEOREM 1.

(users A r m A policy) D req

PROOF. T h e p roof is car r ied ou t by con t rad ic t ion . So
suppose t h a t users A r m A policy A -~req holds for some in-
t e rva l a . I t follows t h a t o- satisfies b o t h formulas r m a n d
O(access(s, o,a) A -~autho(s,o, a)). From L e m m a 1, th i s
leads to a con t rad ic t ion . []

Th i s access cont ro l m e c h a n i s m is execu tab le in T e m p u r a as
we show in t h e following example .

5. AN EXAMPLE
We cons ider an i n s t i t u t i o n in which t he process of m a k i n g

exams is fully cont ro l led by a secure c o m p u t e r sys tem. T h e
exams are s to red on a server which cont ro ls t he access to
t h e m . Each e x a m is ass igned a n examiner , a m o d e r a t o r a n d
an ex t e rna l examiner . T h e process compr ises seven phases
a n d each phase i las ts a t mos t di t ime un i t s (say days) , and
covers a specific t a sk as follows.

P h a s e 1 T h e examine r p repa res t he first d ra f t of t he exam.
In th i s phase he is t h e only one allowed to access the
exam.

Phase 2 The moderator can access the exam and comment

it. The examiner cannot access the exam in this phase,

neither can the external examiner and students.

P h a s e 3 T h e e x a m i n e r can access t he e x a m to revise i t
w.r . t t h e m o d e r a t o r ' s c o m m e n t s and suggest ions. No
one else is al lowed to access it.

P h a s e 4 I t is t h e t u r n to th e ex t e rna l examine r to assess
the exam. So he accesses t he e x a m a n d c o m m e n t s it.
However he is t h e only one to access t he e x a m in th i s
phase.

Phase 5 The examiner can access the exam for the final
revision.

P h a s e 6 T h e final release is kep t securely. No one can ac-
cess it un t i l t h e t ime t he e x a m takes place.

P h a s e 7 E x a m per iod. S t u d e n t s who a t t e n d t h e e x a m can
read it. So can t he examiner , t he m o d e r a t o r a n d t h e
ex t e rna l examiner . No wri te access is allowed.

5.1 Signed authorization rules
Following a u t h o r i z a t i o n rules apply.

• E x a m i n e r can read:

examiner_r + ~ examiner (s , o) ~ autho+ (s, o, read)

• Examiner can write:

examiner_w + ~ examiner (s , o) ~ autho + (s, o, wr i te)

• Examiner cannot read:

e x a m i n e r _ r - ~- examiner (s , o) ~ a u t h o - (s, o, read)

• E x a m i n e r c a n n o t write:

e x a m i n e r _ w - ~ examiner (s , o) ~ a u t h o - (s, o, wri te)

where examiner (s , o) m e a n s t h a t s is t he e x a m i n e r ass igned
to th e e x a m o.

In t he sequel t h e a b b r e v i a t i o n s

e x a m i n e r + ~ examiner_r + A exarniner_w +

a n d

e x a m i n e r - ~ e x a m i n e r _ r - A e x a m i n e r _ w -

will be used for simplicity. Similar rules can be def ined for
mode ra to r s , ex t e rna l examiners , a n d s tuden t s .

5.2 Enforcement rule
Each phase can app ly specific en fo rcemen t mechan i sm.

Yet for simplicity, we will consider a single confl ict resolu-
t ion m e c h a n i s m t h a t denia ls t ake p recedence in t he even t of
conflict, viz.

d e n i a l s T a k e P r e c
((autho+(s, o, a)A-~autho-(s , o, a)) H autho(s , o, a))

38

Subjects

Reference
monitor

Policy

~C
~C
~C
xj

~C
~C

~C
xj
xj
~C
~C

access

F i g u r e 1: A m o d e l for access contro l d e p l o y m e n t

Objects

5.3 Policy
As described above, each phase enforces specific access

control policy. Thus the policy for the system can he ex-
pressed as the sequential composition of the policies enforced
in the phases. These policies are defined in Table 5 such that
pl is enforced in phases i, 3, and 5, while p2, p3, p4, and p5
apply respectively in phase 2, 4, 6 and 7. Then the access
control policy for the exam system is

(fen : dl A Pl); skip; (len = d2 A P2);
policy ~ skip; (len = d3 A pl) ; skip; (fen = d4 A P3);

skip; (len = d5 A pl) ; skip; (len = d6 A Pa);
skip; (len = dr A Ps)

5.4 Simulation
We will consider the following scenario, describing the be-

haviour of users who request to access the exams. To sim-
plify the discussion, we have jus t one examiner (Bob), one
modera to r (Alice), one external examiner (Dave), and one
s tudent (Carol). Each phase lasts 2 t ime units. The users
behave as follows, where T stands for time.

• Bob requests to wri te the exam in phases 1, 3, 4, and
5. T h a t is

(if (T = 0 V T = 7 V T = 9 V T = 1 3))
bobReq ~- [] then request(bob, exam, wri te)

However, as an examiner he is not allowed to access
the exam in phase 4.

• Alice requests to read the exam in phase 1 and to wri te
it in phases 2 and 5. T h a t is

then request(alice, exam, read)
aliceReq ~ [] A

if (T = 3 V T = 1 3)
then request(alice, exam, wri te)

However, as a moderator , she is not allowed to access
the exam in phase 1.

• Dave requests to write the exam in phases 4 and 7.
T h a t is

(if (T = i 0 V T = 1 8))
daveReq ~ [] then request(dave, exam, wri te)

• Carol is a s tudent and requests to read the exam in
phases 6 and 7. T h a t is

caroIReq ~ [] then request(carol, exam, read)

Let

users ~ bobReq A aliceReq A daveReq A carolReq.

Then the s imulat ion of the formula

users A r m A policy

in Tempura gives the following moni tor ing of the requests
in accessing the exam.

.

Subjects Objects Actions Request . ..
..

State O:

State O:

State O:
State O: Bob Exam write accepted

State 2: Alice Exam read rejected

State 3: Alice Exam write accepted

State 7: Bob Exam write accepted
State 9: Bob Exam write rejected

State 10: Dave Exam write accepted

State 13: Bob Exam write accepted

State 13: Alice Exam write rejected

State 15: Carol Exam read rejected

State 18: Dave Exam write rejected

State 18: Carol Exam read accepted

Done! Computation length: 20. Total Passes: 24.

Total reductions: 47170 (46706 successful)

The access control matrix can also be visualized and checked
w.r.t the policy specification. For example this is the access
control matrix in state 0.

State

State
State

State

State

State

State

State

State
State

State
State

O: ..
O: Subjects Objects Actions Authorization

O: ..
O: Bob Exam read permitted

O: Bob Exam write permitted

O: Alice Exam read denied

O: Alice Exam write denied

O: Dave Exam read denied

O: Dave Exam write denied

O: Carol Exam read denied

O: Carol Exam write denied
I: Bob Exam read permitted

39

Table 5: Po l i cy for each p h a s e

pl

p3

p5

I

xanerA)(
m o d e r a t o r - A

e x t e r n a l - A ~ P2
s t u d e n t - A

d e n i a l s T a k e P r e c

m o d e r a t o r - A

e x t e r n a l + A , p4 ~

s t u d e n t - A
d e n i a l s T a k e P r e e

e x a m i n e r _ r + A e x a m i n e r _ w - A
m o d e r a t o r _ r + A m o d e r a t o r _ w - A

e x t e r n a l _ r + A e x t e r n a l _ w - A
s t u d e n t _ r + A s t u d e n t _ w - A

d e n i a l s T a k e P r e c

e x a m i n e r - A

m o d e r a t o r + A
e x t e r n a l - A

s t u d e n t - A
d e n i a l s T a k e P r e c

e x a m i n e r - A

m o d e r a t o r - A

e x t e r n a l - A
s t u d e n t - A

d e n i a l s T a k e P r e c

6. DISCUSSION
We have developed a compositional framework for the

specification of access control policies using ITL. Autho-
rization and delegation rules are formulated as ITL formu-
las. The use of positive/negative authorizations and posi-
tive/negative delegations made it possible to avoid negation
in the consequences of rules without loss of generality. As
a result, contradiction cannot be derived from rules. While
signed rules are used for the specification of access rights, en-
forcement rules are provided for the specification of policy
enforcement mechanisms. Conflicts between positive and
negative authorizations/delegations can be resolved using
enforcement rules.

Simple policies are defined as conjunction of rules and ad-
ditional elements to ensure security at the beginning (when
the policy begins) and the end (when it terminates). Rules
can be added, activated/deactivated to policies. However
we do not allow dynamic creation/deletion of subjects, ob-
jects or actions. Dealing with such dynamics is known to be
difficult [11, 13]. Then complex policies are devised by com-
position using several operators such as chop or chops tar ,
which are not supported by traditional approaches. Multiple
policies can so be enforced through composition, and their
properties reasoned about. Furthermore, specifications of
policies are executable in Tempura. Since ITL can be used
to reason about functional and temporal properties of sys-
tems, our approach provides a uniform formal framework
to incorporate security policy specifications and system re-
quirements. We recommend to consider security concerns
at the early stage of the development lifecycle.

6.1 Run-time Verification
We aim to develop technologies and tool support for the

continual enforcement of security policies. Such a support
will be based on our S A N T A Workbench depicted in Figure
2. Currently, SANTA consists of two major agents: Moni-
tor and Validator, where the later validates safety properties
expressed in an executable subset of ITL. We propose to (a)

SANTA

Monitor

Validator]
(Tempura)

F i g u r e 2: A r c h i t e c t u r e o f S A N T A .

conservatively extend ITL to provide a rich notation for ex-
pressing a variety of security policies, and (b) enhance the
Validator to cater for security policies. The Monitor agent
controls the information flow between the system and the
Validator. The tool and model will be evaluated on a vari-
ety of case studies drawn from both military (e.g. Security
policies related to NGOs) and civilian (Finance and Retail-
ing) domains.

6.2 Compositionality
Compositionality is a desirable at tr ibute for any formal

method. It allows to decompose a large system into more
manageable pieces and to prove the correctness of the whole
system from that of its immediate components. In addition
it supports early reasoning of designs, i.e one can reason
with the specification of the components without knowing
their implementation.

40

In ITL, compositionality is provided through assumptions-
commitments paradigm whose general form is illustrated as
follows.

~- w A As A Sys D Co A f i n w ~.

This states that if the (state) formula w is true in the
initial state and the assumption As holds over the interval
in which the system Sys is operating, then the commitment
Co will hold over the interval and the (state) formula w' is
true in the interval's final state or is vacuously true if the
interval is infinite.

In general, the assumption As and the commitment Co
can be arbitrary temporal formulas. However, special forms
of these suit better for reasoning about sequential or parallel
composition of systems. For sequential composition, for ex-
ample, it is useful to require that As and Co be respectively
fixpoints of the ITL operator [] (read box-a) and * (read
chop-star), viz.

As _= []As, Co =- Co*.

The first equivalence ensures that if the assumption As is
true on an interval, it is also true in all subintervals. The
second ensures that if zero or more sequential instances of
the commitment Co span an interval, Co is also true on the
interval itself. For assumption and commitment obeying the
above, the following proof rule is sound.

F- w A As A Sys D Co A f i n w'
~- w' A As A Sys' D Co A f i n w"
~- w A As A Sys; Sys' D Co A f i n w".

Here is an analogous rule for decomposing a proof for zero
or more iterations of a formula Sys:

F- w A As A Sys D Co A f i n w
~- w A As A Sys* D Co A f i n w.

Readers are referred to [15] for further details.

6.3 Related Work
Over the years, researchers have proposed a vast variety

of access control policies and models [1, 2, 17, 18, 5]. A gen-
eral formalism for expressing authorization rules has been
proposed by Woo and Lam [20]. Their framework is based
on default logic and provides interesting properties such as
non-monotonicity of authorizations. That is, if a set of au-
thorization rules is augmented by a new rule, a subject who
was previously allowed access to an object may no longer
be allowed the same access. Such a property can be ex-
pressed easily using defaults. However default rules might
not be conclusive. As a consequence the model can lead to a
situation in which an authorization request has no answer.
Another limitation of their framework is the management
of conflicts among authorizations, that is handled in the se-
mantics of the authorization language.

We use the concept of default value which is conclusive
compared to default rules. The idea is that when a variable
is not explicitly assigned a value, it implicitly takes the de-
fault value. For example the default value for autho-(s , o, a)
is fa lse meaning that if the specification does not set its
value to true (to say explicitly that s is denied the right to
perform action a on object o) then its value is set to fa lse (to
say that s is not explicitly denied the right to perform action
a on object o). In addition conflicts among signed authoriza-
tions/delegations are resolved through policies enforcement
mechanisms which are specified using enforcement rules.

Jajodia et al. [12] have proposed an access control model
in which inconsistencies among authorizations can be re-
solved using rules. Their approach is more flexible and
several design decisions can be chosen to handle conflicts.
We follow a similar approach but provide additional mecha-
nisms to handle delegation which cannot be specified in their
framework. Their model provides a library of policies (called
FAM library) from which policies can be extracted and en-
forced concurrently. However the management of the FAM
library is not well understood. Moreover policies compo-
sition cannot be expressed in their authorization language.
By contrast, our framework allows the enforcement of mul-
tiple policies through policies composition. This provides
a way of specifying complex policies and to reason about
their properties. Additionally their approach cannot specify
temporal dependaneies among authorizations.

Bertino et al. [3, 4] have developed a temporal model
for access control. In their model time intervals are asso-
ciated with authorizations to determine their validity peri-
ods. Rules are expressed using temporal relationships be-
tween authorizations. However the approach cannot handle
the enforcement of multiple policies. Neither can delegation
of authorization be formulated. Our framework can handle
delegation and policies composition while allowing tempo-
ral reasoning about policies. Delegation is largely addressed
in Ponder [8], a high-level specification language for policies
management. However, as mentioned in the introduction
Ponder does not support formal reasoning.

o

[1]

REFERENCES

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin.
A calculus for access control in distributed systems.
A CM Transactions on Programming Languages and
Systems, 15(3):1-29, September 1993.

[2] D. Bell and L. Lapadula. Secure computer system
unified exposition and multics interpretation.
Technical Report MTR-2997, MITRE, Bedford, MA,
1975.

[3] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A
Temporal Access Control Mechanism for Database
systems. IEEE Transactions on knowledge and data
engineering, 8(1):67-80, February 1996.

[4] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An
Access Control Model Supporting Periodicity
Constraints and Temporal Reasoning. A CM
Transaction on Database Systems, 23(3):213-285,
September 1998.

[5] P. Bonatti, S. Vimercati, and P. Samarati. An algebra
for composing access control policies. ACM
Transaction on Information and System security,
5(1):1-35, February 2002.

[6] A. Cau, B. Moszkowski, and H. Zedan. Interval
Temporal Logic.
http://www.cse.dmu.ac.uk/~cau/itlhomepage/.

[7] A. Cau and H. Zedan. Refining Interval Temporal
Logic Specifications. In M. Bertran and T. Rus,
editors, Transformation-Based Reactive Systems
Development, volume 1231 of LNCS, pages 79-94,
AMAST, 1997. Sprinrg-Verlag.

[8] N. C. Damianou. A Policy Framework for
Management of Distributed Systems. PhD thesis,

41

Imperial College of Science, Technology and Medicine,
University of London, February 2002.

[9] P. Devanbu and S. Stubblebine. Software engineering
for security: a roadmap. In A. Finkelstein, editor, The
Future of Software Engineering, pages 225-239. ACM
Press, 2000. Special Volume (ICSE 2000).

[10] R. W. S. Hale. Programming in Temporal Logic. PhD
thesis, Trinity College, University of Cambridge,
October 1988.

[11] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in Operating Systems. Communications of
the ACM, 19(8):461-471, 1976.

[12] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. A CM transaction on Database
Systems, 26(2):214-260, June 2001.

[13] J. McLean. Security Models. In J. Marciniak, editor,
Encyclopedia of S@ware Engineering. Wiley Press,
1994.

[14] B. Moszkowski. Executing Temporal Logic Programs.
Cambridge University Press, England, 1986.

[15] B. Moszkowski. Compositional reasoning using
interval temporal logic and tempura. In W.-P. d.
Roever, H. Langmaack, and A. Pnueli, editors,

Compositionality: The Significant Difference, volume
1486 of LNCS, pages 439-464, Berlin, 1998. Springer
Verlag.

[16] P. Samarati and S. Vimercati. Access Control:
Policies, Models, and Mechanisms. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis
and Design (Tutorial Lectures), pages 137-196.
Springer-Verlag, September 2000.

[17] R. Sandhu. Transaction Control Expressions for
Separation of Duties. IEEE, pages 282-286, 1988.

[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE
Computer, 29(2):38-47, 1996.

[19] F. B. Schneider. Enforceable Security Policies. ACM
Transactions on Information and System Security,
3(1):30-50, February 2000.

[20] T. Y. C. Woo and S. S. Lam. Authorization in
distributed systems: A new approach. Journal of
Computer Security, 2(2,3):107-136, 1993.

[21] H. Zedan, A. Cau, and B. Moszkowski. Compositional
Modelling: The Formal Perspective. In D. Bustard,
editor, Workshop on Systems Modelling for Business
Process Improvement, pages 333-354. Artech House,
2000.

42

