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ABSTRACT 
Despite considerable number of work on authorization mod- 
els, enforcing multiple policies is still a challenge in order to 
achieve the level of security required in many real-world sys- 
tems. Moreover current approaches address security settings 
independently, and their incorporation into systems devel- 
opment lifecycle is not well understood. This paper presents 
a formal model for the specification of access control policies. 
The approach can handle the enforcement of multiple poli- 
cies through policies composition. Temporal dependencies 
among authorizations can be formulated. Interval Temporal 
Logic (ITL) is our underlying formal framework and policies 
are modeled as safety properties expressing how authoriza- 
tions are granted over time. The approach is compositional, 
and can be used to specify other system's properties such as 
functional and temporal requirements. The use of a common 
formalism eases the integration of security requirements into 
system requirements so that they can be reasoned about uni- 
formly throughout the development lifecycle. Furthermore 
specification of policies are executable in Tempura, a simu- 
lation tool for ITL. 
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1. INTRODUCTION 
Recently, researchers have become increasingly interested 

in developing authorization models which are flexible and 
expressive enough so as to handle the specification and en- 
forcement of multiple policies. In practice, a single policy is 
not general enough to achieve the level of protection required 
in many real-world applications. Rather a combination of 
such policies applies. 

Woo and Lain [20] have proposed a general framework to 
specify authorization rules based on default logic. Positive 
and negative authorization rules can be specified in their 
model  However the approach provides no mechanisms to 
handle conflicting authorizations which might be derived 
using the rules. Jajodia et al. [12] have addressed this 
problem and provided specific rules (decision rules) to re- 
solve conflicts among authorizations. However the validity 
periods of authorization rules cannot be specified nor can 
temporal dependencies among authorizations be expressed 
in their framework. 

As pointed out in [4], permissions are often limited in time 
or may hold for specific periods of time. A temporal model 
for access control has been proposed by Bertino et al. [4, 
3]. A time interval is associated with each authorization 
to determine the period of time in which the authorization 
holds. Temporal dependencies among authorizations can 
be expressed. However their framework cannot handle the 
enforcement of multiple policies. Neither can delegation of 
access rights be expressed. Ponder [8] is a high-level policy 
specification language in which authorization and delegation 
policies, among others, can be specified. But it does not 
support formal reasoning. 

A compositional formal framework for access control which 
can support delegation, t iming and the enforcement of mul- 
tiple policies has not yet been investigated. On the other 
hand current access control models treat security concerns 
independently, and their actual incorporation into systems 
development lifecycle is not well understood. Similar remark 
has been made by Devanbu et al. [9]. We argue that  security 
requirements must be integrated with the system require- 
ment so that  the properties of the system can be reasoned 
about in a uniform manner throughout the development life- 
cycle. We believe that this will significantly contribute to 
the development of secure systems. 

This paper presents a compositional formal framework for 
the specification of access control policies. The approach can 
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handle  the  enforcement  of mult iple  policies th rough  policies 
composit ion.  Interval  Tempora l  Logic (ITL) [14] is our un- 
derlying formal framework. Author iza t ion  rules and dele- 
gat ion rules are formulated as safety properties.  Schneider 
[19] showed tha t  access control can be expressed as safety 
properties.  However o ther  security policies such as informa- 
tion flow and availability are not, in general, safety proper-  
ties [19, 13]. Both  informat ion flow and availabili ty are not  
addressed in this paper.  The  approach combines t empora l  
modal i t ies  and boolean connectives for policies composit ion.  
This  provides a higher degree of expressiveness and can sup- 
port  the  specification of several protect ion requirements  tha t  
cannot  be expressed in t radi t ional  author izat ion models.  For 
example,  policies can be composed in sequence to express a 
complex policy which evolves over periods of time. More- 
over policies specifications are executable  in Tempura, a 
simulat ion tool  for ITL.  

ITL  provides a composi t ional  proof  system based on assum- 
ptions-commitments paradigm for reasoning about  funct ional  
and tempora l  propert ies  of systems [15, 21]. As we aim to 
handle bo th  security requirements  as system requirements ,  
it is useful to specify them in the  same formal notat ion.  This  
has mot iva ted  our choice of framework. Fur thermore ,  a re- 
f inement calculus is provided for t ransforming a high-level 
abstract  specification (wri t ten in ITL) into a more concrete  
specification executable  in Tempura  [7]. It  follows tha t  ITL 
can be used to describe a system at different levels of ab- 
stract ion.  However security requirements  must  be consid- 
ered at the  early phase of the  development  lifecycle. 

The  remainder  of the  paper  is organised as follows. Sec- 
t ion 2 gives an overview of ITL. The  access control  model  
is presented in Section 3. Section 4 formalises a mechanism 
for access control deployment .  Implementa t ion  issues are 
addressed in Section 5 using an example.  The  paper  ends 
wi th  a discussion in Section 6. 

2. I N T E R V A L  T E M P O R A L  L O G I C  
ITL is a l inear- t ime tempora l  logic wi th  a discrete model  

of t ime. An interval  is considered to be a (in)finite, nonempty  
sequence of states ~0crl . . . ,  where a s ta te  a~ is a mapping  
from the  set of variables to the  set of values (integers). The  
length [a[ of a finite interval  a is equal  to the  number  of 
states in the  interval  minus one. An empty  interval  has ex- 
actly one s ta te  and its length is equal  to 0. 

The  syntax  of ITL is defined as follows, where # is a con- 
stant,  a is a stat ic  variable (does not  change within  an inter- 
val), A is a s ta te  variable (can change within  an interval),  v 
a stat ic  or s ta te  var iable  g is a funct ion symbol, and p is a 
predicate  symbol. 

• Expressions 

e : := # l a  A l g ( e l , . .  ,en) l m : f  

• Formulas  

f : := p(el . . . .  ,en) I - q  f l  A f2 IVv .  f I 

s k i p  I f l; f2 I f *  

The  informal semantics  of the  most  interest ing constructs  
are s ta ted  as follows. The  expression za : f denotes a value a 
such tha t  the  formula f holds. The  formula s k i p  denotes the  
unit  interval  (length equal to 1). The  formula f l ; f2  holds for 
an interval  if the  interval  can be decomposed ("chopped")  
into a prefix and a suffix interval,  such tha t  f l  holds over 

the  prefix and f2 holds over the  suffix, or if the  interval  is 
infinite and f l  holds for tha t  interval.  Final ly the  formula 
f* holds for an interval  if the  interval  is decomposable  into 
finite number  of intervals such tha t  for each of t hem f holds, 
or the  interval  is infinite and can be decomposed into an 
infinite number  of finite intervals for which f holds. 

Note  tha t  there  are three pr imit ive  t empora l  operators  in 
ITL: sk ip ,  ";" (chop), and "*" (chopstar). A state formula, 
commonly  denoted  by w, is a formula wi th  no t empora l  
operators  in it. Following are some samples of formulas wi th  
their  informal meaning.  

• I = 1 holds for an interval  if I ' s  value in the  interval 's  
initial s ta te  is equal  to 1. 

• sk ip;  I = 5 holds for an interval  if I ' s  value in the  
interval 's  second s ta te  is equal  to 5. 

• I = 1; I = 3 holds for an interval  if I ' s  value in the  
initial s ta te  is equal  to 1 and the  value of I is equal  
to 3 in some other  s ta te  (not necessary the  second) of 
the  interval. 

• -~(true; I = 0) holds for an interval  if I ' s  value is never 
equal  to 0 wi thin  the  interval.  

The  formal semantics of expressions and formulas are sum- 
marized in Table 1 and Table 2 respectively. Readers  are 
referred to [7, 6] for details on the  logic. The  semantics  of a 
s ta tement  X over an interval  a is denoted by [ X ~ .  We also 
denote  by X a choice funct ion which maps  any nonempty  
set to some element  in the  set. We write a ~v  a ~ if the  
intervals a and cr' are identical  wi th  the  possible except ion 
of their  mappings  for the  variable v, i.e Icr I = la '  I and for all 
i, 0 < i _< [a I and v' ¢ v, cr~(v') = a~(v'). 

T a b l e  1: F o r m a l  s e m a n t i c s  o f  e x p r e s s i o n s  

M~ = o0(v). 

[g(el, . . . ,  en)]~ = g([ell~, . . . ,  [ e ~ ) .  

X(U) if u # { }  

~za: f i g  = x(a)  otherwise 

= a' and I f ] a '  = tt} where u {a ' (a )  I a ~ a  

Obviously  common tempora l  modal i t ies  such as [] (al- 
ways) and ~ (sometime) can be expressed. Some frequently 
used abbrevia t ions  are given in table  3. In part icular ,  if f is 
a formula then  the  formula 

• D f  holds for an interval  if f holds for any suffix of the  
interval.  

• ~ f  holds for an interval  if f holds for some suffix of 
the  interval. 

• N f  holds for an interval  if f holds for any subinterval  
of the  interval. 

• ~ f  holds for an interval  if f holds for some subinterval  
of the  interval.  
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T a b l e  2: Formal  s e m a n t i c s  o f  f ormulas  

~o(~1,..., ~ ) ]~  = t t  iff p(l~l]~,. . . ,  ie~]~). 

[-~f]~ = t t  iff [ f ]o  = f t .  

If1 A f2]~ : t t  iff [ f l i p  : t t  and [f2]~ = tt. 

~Vv.f]~ = t t  iff for all or' s.t. cr ,,~, a ' ,  I f ]o ,  = tt. 

[skip]~ = t t  iff Icrl = 1. 

~fl ; f2]o = t t  iff 
(exists k, s.t. [fl]~o .... k = t t  and 

((a is infinite and [f2]~k... = t t )  or 
(a is finite and k _< lal and [f2]~k .... t~1 = t t ) ) )  

or (a is infinite and [ f l ]~  = t t ) .  

[f*]~ = t t  iff 
if a is infinite then  

( e x i s t / 0 , . . . ,  In s.t. 10 = 0 and [f]ot~... = t t  and 
for all 0 _< i < n, li < l i+l  and [ f ] ~  .... ~+~ = t t .)  

o r  

(exist an infinite number  of l~ s.t. 10 = 0 and [ f ] ~ . . .  = t t  and 
for all 0 _< i < n, l~ _< l i+l  and [f]~t~ .... ~+~ = t t . )  

else 
( e x i s t / 0 , . . . , I n  s.t. 10 = 0 and l~ = lal and 

for all 0 < i < n, l~ _< l~+~ and [ f ] ~  .... z~+~ = t t . )  

3. A C C E S S  C O N T R O L  P O L I C Y  
Access control is a security measure  tha t  consist of ensur- 

ing tha t  only author ized accesses can take place in a system. 
An access control  policy specifies the  access rightsl tha t  is 
who is author ized to access the  system and what  actions he 
is allowed to perform on the  sys tem's  resources. Ensur ing  
security is t r icky and formal nota t ions  are increasingly used 
to specify security policies [2, 1, 5]. This  section describes 
our formal framework for the  specification of policies, based 
on Interval  Tempora l  Logic presented in the  previous sec- 
tion. We assume a finite set S of subjects  s, a finite set (9 of 
objects  o, and a finite set ..4 of actions a. A subject  denotes 
any ent i ty  capable to perform actions on objects.  Objec ts  
denotes systems resources under  protect ion,  while actions 
are operat ions  tha t  can be performed on them.  Hierarchi- 
cal relat ionships can be defined within  any of these sets to 
describe dependencies  among their  elements.  For example  
subjects  can be organized into groups or roles [18]. 

3.1 A u t h o r i z a t i o n  M o d e l  
A posit ive author iza t ion  is generally denoted  by a tr iple 

(s, o, + a )  meaning  tha t  the  subject  s is author ized to execute  
the  act ion a on the  object  o. On the  contrary, a negat ive 
author iza t ion  denoted  by (s, o , - a )  means  tha t  the  subject  
s is not  author ized to execute  the  act ion a on the  object  o. 
These  two concepts  are usual ly used to specify access control  
policies. 

3.1 .1  F o r m a l i s i n g  A u t h o r i z a t i o n  

In ITL we use two boolean arrays autho + and a u t h o -  
to model  posi t ive and negat ive author iza t ions  respectively. 
Therefore  a posi t ive author iza t ion  (s, o, + a )  is denoted by 
au tho+(s ,o ,a ) ,  where s, o, and a are indices. This  autho- 

r izat ion holds if the  value of autho+(s ,  o, a) equals t rue  and 
does not  hold otherwise.  Similarly, a u t h o - ( s ,  o, a) models  a 
negat ive author iza t ion  (s, o , - a ) .  Posi t ive and negat ive au- 
thor izat ions  are used at the  specification level to s ta te  who 
is or is not  allowed to do what .  As we will show in the  se- 
quel, the  use of signed (i.e pos i t ive /nega t ive)  author iza t ions  
gives more flexibility in handl ing author iza t ion  rules. For 
example,  negat ion can be banned  in consequences of rules 
wi thou t  lost of general i ty (cf. Section 3.1.2). A signed au- 
thor iza t ion  model  is more expressive in tha t  it can specify 
different kind of policies such as open, closed and hybrid  
policies (see [12] for more details).  

On  the  o ther  hand,  a mechanism is needed to infer from 
the  specification (based on signed authorizat ions)  the  ac- 
tua l  access rights of each subject .  A simple example  is a 
mechanism to  resolve conflicts tha t  might  occur  (e.g. when 
au tho+(s ,o ,a )  and a u t h o - ( s , o , a )  hold at the  same t ime)  
wi th in  the  specification. Hence, we consider another  boolean 
array autho in which the  final decision is taken as who is al- 
lowed to do what .  The  value of autho is computed  from 
those of autho + and a u t h o -  used to describe the  access 
rights. This  means  tha t  autho can be thought  of as the  
access control  ma t r ix  which is used to enforce security. An- 
o ther  boolean array error  is needed to signal errors or unde- 
sired behaviours  wi th in  the  specification so tha t  the  security 
manager  can be aware and fix them timely. For example,  
when conflicting author iza t ions  are not  allowed, the  variable 
error  is used to signal any occurence of these. 

A securi ty policy must  de te rmine  at any t ime  the  ac- 
cess rights of each subject  wi th  respect  to any object  and 
any action. Wri t ing  a complete  specification to  s ta te  this 
can be very complex and cumbersome.  I t  is convenient  
to have a specification tha t  contains  only variables which 
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T a b l e  3: F r e q u e n t l y  u s e d  a b b r e v i a t i o n s  

in f ~ true; fa lse  infinite interval  

O f  ~ skJ.p;f next  f 

empty ~ ~more empty  interval  

O f  ~ finite; f sometimes f 

<~f ~ f inite; f; true subinterval  

f l  D f2 ~ -~f~ V f2 implies 

f i n  f ~ O(empty D f )  final s ta te  

if f0 then  f l  else f2 

(f0 A f l )  V (-~f0 A f2) if then  else 

f in i t e  ~ ~ i n f  

O e  ~ ~a : O(e = a) 

more ~ 0 true 

[]f ~ -~o~f 

~ f  ~ -~-~f  

~ f  ~ D(more D f )  

lea ~ za : intlen(a) 

e l  : =  e2 ~- ( O e l )  = e2 

finite interval  

value of e at the next  s ta te  

non-empty  interval  

always f 

all subintervals  

all most ly  

length of interval  

assignment  

intlen(e) ~ 31.((1 = O) A [](I :=  I + 1) A f i n ( I  = e)) 

are constrained to change eventually,  o ther  variables be- 
ing assumed stable in the  scope of the  specification. This  
s i tuat ion is known as the  frame problem [10] and is in- 
tensively addressed in artificial intelligence settings. Ai- 
though the  concept  of frame variables is a suitable so- 
lut ion to the  problem, it is not  convenient  to our frame- 
work as it is not  flexible enough. We will ra ther  follow the 
idea of Hale [10] which uses the  concept  of default values. 
The  intui t ion is tha t  when a variable is not  explicit ly as- 
signed a value, it is implici t ly assigned a default  value. We 
assume tha t  autho + (s, o, a), autho- (s, o, a ), autho( s, o, a), 
and error(s, o, a) for all s, o, and a, have default  values and 
their  default  value is fa lse  for security reason, viz to signal 
tha t  no permission is granted and no error has occured. 

3 . 1 . 2  Authorization rules 
Current  author izat ion models express a policy in terms of 

author izat ion rules. In our case, a policy can be specified 
as a safety formula expressing how access rights are granted 
over t ime. However the use of rules makes the  specification 
clearer and easier to unders tand.  In this respect  we define 
the opera tor  ~ over formulas as 

f ~ w ~ [ ] ( f  D O ( f ; w ) )  (1) 

where f s tands for any tempora l  formula, and w is a s ta te  
formula. The  formula f ~ w states tha t  any subinterval  
satisfying f such tha t  f does not  hold on any of its prefixes 
(other than  itself) ends in a s ta te  satisfying w. Intui t ively  
this means  tha t  if f holds then  w must  follow. If f is a 
s ta te  formula then  the formula (1) is a (authorizat ion)  rule 
in the  sense of [3, 12], where f is the  premise and w is the  
consequence.  

In our framework the  premise can be any tempora l  for- 
mula. This  allows the  specification of complex author iza t ion  
rules, such as those expressing t ime dependencies  among au- 
thorizat ions.  Samara t i  et al. in [16] suggested to a t tach  
more general condit ions to author izat ion rules in order to 
specify their  validity based on the  system state,  the  s ta te  of 
objects  or the  history of authorizat ions.  In formula (1), f 
can be used to express those features, for example  f can be a 
t empora l  formula specifying some proper ty  on the  execut ion 
history. We distinguish two kinds of rules: signed autho- 
rization rules and authorization enforcement rules. Signed 

author izat ion rules s ta te  how pos i t ive /nega t ive  authoriza-  
t ions are inferred as formulated in Definit ion 1. They  are 
used by the  security manager  to specify the  access rights to 
the  system. Note  tha t  negat ion is not  allowed in the  conse- 
quences of these rules. This  is not  restr ict ive and const i tu tes  
an advantage of using signed author izat ions  because contra- 
dictions can thus be avoided wi thout  loss of generality. 

Definition 1. (Signed authorization rule) 
A signed author iza t ion  rule has one of the  following forms 

• f ~-~ autho + (s, o, a) (positive author izat ion rules) 

• f ~ autho-  (s, o, a) (negative author izat ion rules) 

for some subject  s, object  o and action a, where f s tands 
for any ( temporal)  formula. 

Example  1 shows some samples of signed author izat ion 
rules in which in(s1, s2) means tha t  subject  s l  is a member  
of the  group s2. 

Example 1. 

• Permissions for a group propagate  to members  

(in(s1, s2) A autho+(s2, o, a)) ~ autho+(sl, o, a) 

• Permissions are l imited in t ime  

(autho+ (s, o, a) A len  = 5) ~ autho- (s, o, a) 

Enforcement  rules are devised to specify the  enforcement  
mechanism, i.e how the  access rights are derived from posi- 
t ive and negat ive author izat ions  specifications. Inconsisten- 
cies amongst  signed authorizat ions  are resolved using these 
rules. The  general form of enforcement  rules is given in 
Definit ion 2. 

Definition 2. (Enforcement rule) 
An (authorizat ion) enforcement  rule is a formula of the  

form 

f ~ autho(s, o, a) 

for some subject  s, object  o and action a, where f s tands 
for any ( temporal)  formula. 
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Jajodia et al. in [12] identified three main categories of 
policies: closed policies, open policies and hybrid policies. 
Closed policies Mlowed only positive authorization in the 
specifications. They are enforced by the rules 

autho+ (s, o, a) ~ autho(s, o, a) 

which means that only privileges explicitly stated are granted. 
Open policies in which only negative authorizations are al- 
lowed in the specifications are enforced by the rule 

-~autho- ( s, o, a) ~ autho(s, o, a). 

Therefore privileges are granted if not explicitly denied. Hy- 
brid policies allow positive and negative authorizations to be 
specified. Conflicts among authorizations in these policies 
can be handled using enforcement rules as follows. 

• Permissions take precedence, viz. 

autho + (s, o, a) ~ autho(s, o, a) 

• Denials take precedence, viz. 

(autho + (s, o, a) A -~autho- (s, o, a)) ~ autho(s, o, a) 

• No conflicts allowed, viz. 

autho+(s, o, a) ~ autho(s, o, a) 
A 

(autho+(s, o, a) A autho-(s ,  o, a)) ~ error(s, o, a) 

More sophisticated enforcement mechanisms (such as sub- 
groups/path overriding) can be devised using enforcement 
rules. Another important issue in (discretionary) access con- 
trol concerns the delegation of access rights which is ad- 
dressed in the following section. 

3.2 Delegation Model 
Delegation is a mechanism which enables a subject to del- 

egate some of its rights to another subject for it to act on its 
behalf. In discretionary access control delegation of rights is 
at the discretion of subjects. This means that the initiative 
to delegate is taken by subjects and not the policy man- 
ager. However it should be possible to control delegations 
through access control policy to ensure security, especially 
in systems allowing cascaded delegations. A delegation pol- 
icy specifies the ability of subjects (the grantors) to delegate 
access rights to other subjects (the grantees) to perform ac- 
tions on their behalf. Positive delegation policies grant the 
right to delegate while negative delegation policies forbid 
delegation. 

Similarly as authorization policies (presented in the previ- 
ous section) we model positive delegation by a boolean array 
candeleg + such that  candeleg+ ( sl , s2, o, a) (where sl , s2, o, a 
are indices) is equal to true if subject sl can be permitted to 
delegate to subject s~ the right to perform action a on ob- 
ject o. In the same way, the boolean array candeleg- mod- 
els negative delegations, i.e candeleg-(sl ,  s2, o, a) is true if 
sl cannot be permitted to delegate to subject s~ the right 
to perform action a on object o. We use another array 
candeleg that plays the same role as autho for authoriza- 
tions. Thus the value of candeleg(sl ,s2,o,a) is equal to 
true if subject sl is permitted to delegate to subject s2 
the right to perform action a on object o, and fa lse  oth- 
erwise. For similar reason as for authorization policies, we 
assume that candeleg+(sl, s2, o, a), candeleg-(sl ,  s~, o, a), 

and candeleg(sl,s2, o,a) for all sl, s2, o, a, have default 
values and their default vMue is false.  Signed delegation 
rules and delegation enforcement rules are defined in the 
same way as for authorizations. Errors are handled in the 
similar way as well. 

However, a subject should also be able to revoke a right it 
has delegated to another. Moreover a delegated right should 
be automatically revoked if the grantor loses that right. This 
mechanism is formulated by the following rule 

autho(sl,  o, a) \ 
A ) candeleg(sl, s2, o, a) H autho(s2, o, a) (2) 
A 

deleg(sl, s2, o, a) 

where deleg is a boolean array used as follows. The element 
deleg(sl, s~, o, a) of the array is used by the grantor sl to 
delegate to (by setting the variable to true) and revoke from 
(by setting the variable to false) the grantee s2 the right 
to perform action a on object o. This rule is added to any 
policy which allows delegation. 

The following section describes simple policies which are 
merely conjunction of rules, and some mechanisms for ma- 
nipulating them. 

3.3 Simple Policy 
In practice, security policies are not static but rather 

evolve continuously to fix new security breaches or to meet 
new security requirements. This dynamics might lead to 
some rules being withdrawn from and new ones added to the 
policy. An authorization model must provide a mechanism 
to ease the task of the security manager on these matters. In 
this section we show how rules can be activated/deactivated 
and how new rules can be added to policies. 

The general form of a simple policy is defined as 

P ~ w A AiezRi A f i n  w I 

where P stands for policy, w is a state formula that  holds 
for the initial state of any interval on which the policy holds, 
Ri, i E I are (authorization/delegation) rules and I a finite 
set of natural  numbers, and w' is a state formula that  holds 
for the final state of any interval on which the policy holds. 
The intuition is that the rules ensure security in any interval 
satisfying P, while the state formulas w and w' control its 
boundaries. In the sequel we denote by P and P ,  respec- 
tively the initial state w and the final state w' of a policy 
P. 

3.3.1 Adding a rule to a policy 
A rule R can be added to a policy P by simple conjunction 

to form a new policy 

P A R  

which enforces both P and R. This provides a way for incre- 
mental development of a security policy. Note that  R cannot 
clash with other rules in P since negation is not allowed in 
the consequences of rules. 

3.3.2 Activation/deactivation of rules within policy 
A mechanism to activate/deactivate rules within a policy 

might consist of adding a flag (which is a state formula) in 
the premises of rules, viz. 

Ri ~ (fil A flagi) ~ f~2. 
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The rule is "activated" when the flag holds and "deacti- 
vated" otherwise. For example to deactivate the rule Rj 
in a policy P, we just take the conjunction of P with the 
formula C~(-~flagj), viz. 

P A C3(-~flagj). 

This feature can be generalized to the configuration of poli- 
cies. 

3.3.3 Configuration o f  policy 
A configuration is a mechanism that allows us to deter- 

mine (dynamically) which rules apply and which ones do not 
within a policy. We call a configuration rule a rule of one 
of the following forms 

• f ~ f l a g  (activation) 

• f ~ -~flag (deactivation) 

where f stands for any formula and f l ag  is a state formula. 
A configuration C is then a conjunction of configuration 

rules ci, i E I,  for some finite set of indices I, viz. 

C ~ AieI ci. 

If P is a policy and C a configuration then P A C is the 
policy obtained by configuring P with C. 

Complex policies are devised by policies composition as 
discussed in the following section. 

3.4 Policy Composition 
Policies are closed under the following operators. Let Pi,  

P2 and P stand for policies, and w for a state formula. The 
initial state P and the final state P of a compound policy 
are defined inductively in Table 4. 

Tab l e  4: I n i t i a l  a n d  f inal  s t a t e s  

P~ ; P2 = P 1  
( ~ t - - -  

P~ v P2 = P~ v P2 

P~AP2 = Pt  A P2 

Y =T 
( 

if w then P1 else P2 = 

if w then P1 else P2 

P~ ; P2 = P2 

P~ V 2 = P 1 V  P2 

P~ A 2 = P~ A P2 

) ~ 

if w then P1 else P2 = P1 V P2 

3.4.1 Parallel 
The parallel composition of P1 and P2 is the policy 

P1A P2 

which holds if both P1 and P2 hold. A system which en- 
forces the policy P1 A P2 enforces both the policies P1 and 
P2 simultaneously. 

3.4.2 Sequence 
Two policies P1 and P2 can be composed in sequence to 

form the policy 

P1; P2 

which behaves like P1 for some time, then like P2 afterwards, 
----0 

provided that  P1 D P2. That  is P1 and P2 must agree at the 
transition state where the behavior related to P1 ends and 
that related to P2 commences. In general, organisations ap- 
ply different policies for specific periods of time. Universities 
distinguish between terms time and vacations. Banks render 
restricted services in the week-end and holidays if they are 
not merely closed. Traditional authorization models cannot 
express sequential composition of policies. 

3 .4 .3  C o n d i t i o n a l  

In certain conditions one policy say P1, might apply and 
not the other say P2. The conditional allows to express such 
a policy as 

i f  w then  P1 else P2 

where the guard w determines which of P1 and P2 applies. 
When w holds P1 applies otherwise P2 applies. A typical 
example, in any organisation, might be P1 applies for staff 
and P2 for non-staff. Note that Pt and/or  P~ might also be 
conditionals, refining staff and non-staff further into differ- 
ent subcategories. 

3.4.4 Disjunction 
By contrast to conditional, disjunction specifies a policy 

denoted by 

P 1 v  P2 

which non-deterministically behaves like P1 or like P2. The 
choice between P1 and P2 is made internally at run-time by 
the system, and cannot be pre-computed. 

3.4.5 Iteration 
In some organisations, a policy say P,  is adopted for a 

given period of time (days, weeks, months, etc), then re- 
peated successively over consecutive periods. Such a pro- 
tection requirement can be formulated as 

p+  

(i.e P; P*) meaning that the policy P is iterated over non- 

empty finite sequence of periods of time, provided that P D 
P .  

3.4.6 Scope 
The scope of a policy say P, can be limited in time, i.e 

P A l e n  = d 

for some duration d. 

4. ACCESS CONTROL DEPLOYMENT 
Access control can be thought of as a security component 

whose role is to control access to data. Such a component 
must be able to handle all the requests from subjects (users) 
in accessing information and check their access rights w.r.t 
the security policy that applies. In this section we formalise 
the security requirement for access control and investigate 
its implementation in Tempura. 

4.1 Security Requirement for Access Control 
The requirement of access control is well understood and 

states that only authorized parties can access the system's 
resources. This is formulated in our model as 

req ~ C3(access(s, a, o) D autho(s ,  a, o)) (3) 
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where  access(s ,a,  o) is equal  to  t r ue  if sub jec t  s has  per-  
formed ac t ion  a on  ob jec t  o. T h e  a u t h o r i z a t i o n  m a t r i x  autho 
is set; by  t he  access cont ro l  policy, as descr ibed  in t he  previ-  
ous section.  Ins t ead ,  t he  a r ray  access is set  by  t he  reference 
m o n i t o r  in response  to  access requests .  

4.2 Implementation 
A simplif ied model  for access cont ro l  d e p l o y m e n t  is de- 

p ic ted  in F igure  1. T h e  reference m o n i t o r  is respons ib le  for 
enforc ing security.  All t he  sub jec t s '  r eques t s  for accessing 
d a t a  are sent  to  t h e  reference moni to r ,  which  a u t h e n t i c a t e s  
t he  senders  a n d  checks the i r  access permiss ions .  If  a sender  
has  t he  requ i red  access r ight  for i ts  request ,  t h e n  its r eques t  
is successful o the rwise  i t  is re jected.  

T h e  b e h a v i o u r  of the  reference m o n i t o r  is formMised as 

Vs, a, o. if request(s ,  a, o) A autho(s ,  a, o) 
r m  ~- [] t h e n  access(s, a, o) = t rue  ) else access(s,  a, o) : f a l s e  

(4) 
where  request  is a boo lean  a r ray  set by  sub jec t s  so t h a t  
request(s ,  a, o) is equal  to  t r ue  if s ub j ec t  s r eques t s  to  per-  
form ac t ion  a on  ob jec t  o. A u t h e n t i c a t i o n  pro tocols  are no t  
addressed  in th i s  paper .  

L e m m a  i s t a t e s  t h a t  t he  reference m o n i t o r  sets  t he  value  
of access(s,  a, o) to  f a l s e  if sub jec t  s does  no t  reques t  or is 
no t  allowed to  pe r fo rm ac t ion  a on  ob jec t  o. 

LEMMA 1. 

~- rm D D((~request(s, o, a) V ~autho(s, o, a)) D ~access(s, o, a)) 

PROOF. T h e  p roof  of L e m m a  1 is s t r a igh t fo rward  f rom 
the  def in i t ion  of r m  ( formula  (4)). [ ]  

S imi lar ly  t h e  b e h a v i o u r  of sub jec t s  w.r . t  t he i r  r eques t s  in ac- 
cessing o b j e c t s  can  be  fo rmu la t ed  as an  ITL fo rmula  users.  
Let  policy deno tes  t h e  access cont ro l  policy. T h e  following 
t h e o r e m  s t a t e s  t he  cor rec tness  of t he  design. 

THEOREM 1. 

(users  A r m  A policy) D req 

PROOF. T h e  p roof  is car r ied  ou t  by  con t rad ic t ion .  So 
suppose  t h a t  users  A r m  A policy A -~req holds  for some in- 
t e rva l  a .  I t  follows t h a t  o- satisfies b o t h  formulas  r m  a n d  
O(access(s,  o,a) A -~autho(s,o, a)). From L e m m a  1, th i s  
leads to  a con t rad ic t ion .  [ ]  

Th i s  access cont ro l  m e c h a n i s m  is execu tab le  in T e m p u r a  as 
we show in t h e  following example .  

5. AN EXAMPLE 
We cons ider  an  i n s t i t u t i o n  in which  t he  process  of m a k i n g  

exams  is fully cont ro l led  by  a secure c o m p u t e r  sys tem.  T h e  
exams  are s to red  on  a server  which  cont ro ls  t he  access to  
t h e m .  Each  e x a m  is ass igned a n  examiner ,  a m o d e r a t o r  a n d  
an  ex t e rna l  examiner .  T h e  process  compr ises  seven phases  
a n d  each phase  i las ts  a t  mos t  di t ime  un i t s  (say days) ,  and  
covers a specific t a sk  as follows. 

P h a s e  1 T h e  examine r  p repa res  t he  first d ra f t  of t he  exam.  
In th i s  phase  he is t h e  only  one allowed to  access the  
exam.  

Phase 2 The moderator can access the exam and comment 

it. The examiner cannot access the exam in this phase, 

neither can the external examiner and students. 

P h a s e  3 T h e  e x a m i n e r  can  access t he  e x a m  to  revise i t  
w.r . t  t h e  m o d e r a t o r ' s  c o m m e n t s  and  suggest ions.  No 
one else is al lowed to  access it. 

P h a s e  4 I t  is t h e  t u r n  to  th e  ex t e rna l  examine r  to  assess 
the  exam.  So he accesses t he  e x a m  a n d  c o m m e n t s  it. 
However  he  is t h e  only  one to  access t he  e x a m  in th i s  
phase.  

Phase 5 The examiner can access the exam for the final 
revision.  

P h a s e  6 T h e  final  release is kep t  securely. No one can  ac- 
cess it un t i l  t h e  t ime  t he  e x a m  takes  place. 

P h a s e  7 E x a m  per iod.  S t u d e n t s  who  a t t e n d  t h e  e x a m  can  
read  it. So can  t he  examiner ,  t he  m o d e r a t o r  a n d  t h e  
ex t e rna l  examiner .  No wri te  access is allowed. 

5.1 Signed authorization rules 
Following a u t h o r i z a t i o n  rules  apply. 

• E x a m i n e r  can  read:  

examiner_r  + ~ examiner ( s ,  o) ~ autho+ (s, o, read) 

• Examiner can write: 

examiner_w + ~ examiner ( s ,  o) ~ autho + (s, o, wr i te )  

• Examiner cannot read: 

e x a m i n e r _ r -  ~- examiner ( s ,  o) ~ a u t h o -  (s, o, read) 

• E x a m i n e r  c a n n o t  write: 

e x a m i n e r _ w -  ~ examiner ( s ,  o) ~ a u t h o -  (s, o, wri te)  

where  examiner ( s ,  o) m e a n s  t h a t  s is t he  e x a m i n e r  ass igned 
to  th e  e x a m  o. 

In t he  sequel  t h e  a b b r e v i a t i o n s  

e x a m i n e r  + ~ examiner_r  + A exarniner_w + 

a n d  

e x a m i n e r -  ~ e x a m i n e r _ r -  A e x a m i n e r _ w -  

will be  used for simplicity.  Similar  rules  can  be  def ined for 
mode ra to r s ,  ex t e rna l  examiners ,  a n d  s tuden t s .  

5.2 Enforcement rule 
Each  phase  can  app ly  specific en fo rcemen t  mechan i sm.  

Yet  for simplicity,  we will consider  a single confl ict  resolu- 
t ion  m e c h a n i s m  t h a t  denia ls  t ake  p recedence  in t he  even t  of 
conflict,  viz. 

d e n i a l s T a k e P r e c  
((autho+(s,  o, a)A-~autho-(s ,  o, a)) H autho(s ,  o, a)) 
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Subjects 

Reference 
monitor 

Policy 

~C 
~C 
~C 
xj  

~C 
~C 

~C 
xj  
xj  
~C 
~C 

access 

F i g u r e  1: A m o d e l  for access  contro l  d e p l o y m e n t  

Objects 

5.3 Policy 
As described above, each phase enforces specific access 

control policy. Thus the policy for the system can he ex- 
pressed as the sequential composition of the policies enforced 
in the phases. These policies are defined in Table 5 such that 
pl is enforced in phases i, 3, and 5, while p2, p3, p4, and p5 
apply respectively in phase 2, 4, 6 and 7. Then the access 
control policy for the exam system is 

(fen : dl A Pl);  skip; (len = d2 A P2); 
policy ~ skip; (len = d3 A pl) ;  skip; (fen = d4 A P3); 

skip; (len = d5 A pl) ;  skip; (len = d6 A Pa); 
skip; (len = dr A Ps) 

5.4 Simulation 
We will consider the  following scenario, describing the  be- 

haviour of users who request  to access the exams. To sim- 
plify the  discussion, we have jus t  one examiner  (Bob), one 
modera to r  (Alice), one external  examiner  (Dave), and one 
s tudent  (Carol). Each phase lasts 2 t ime units. The  users 
behave as follows, where T stands for time. 

• Bob requests  to wri te  the  exam in phases 1, 3, 4, and 
5. T h a t  is 

( if ( T = 0 V T = 7 V T = 9 V T = 1 3 ) )  
bobReq ~- [] then  request(bob, exam, wri te)  

However, as an examiner  he is not  allowed to access 
the  exam in phase 4. 

• Alice requests  to read the  exam in phase 1 and to wri te  
it in phases 2 and 5. T h a t  is 

then  request(alice, exam,  read) 
aliceReq ~ [] A 

if ( T = 3 V T = 1 3 )  
then  request(alice, exam,  wri te)  

However, as a moderator ,  she is not  allowed to access 
the  exam in phase 1. 

• Dave requests to write the exam in phases 4 and 7. 
T h a t  is 

( if ( T = i 0 V T = 1 8 )  ) 
daveReq ~ [] then  request(dave, exam,  wri te)  

• Carol is a s tudent  and requests  to read the  exam in 
phases 6 and 7. T h a t  is 

caroIReq ~ [] then  request(carol, exam, read) 

Let 

users  ~ bobReq A aliceReq A daveReq A carolReq. 

Then  the  s imulat ion of the  formula 

users  A r m  A policy 

in Tempura  gives the following moni tor ing of the requests  
in accessing the  exam. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Subjects Objects Actions Request . .. 
............................................ 

State O: 

State O: 

State O: 
State O: Bob Exam write accepted 

State 2: Alice Exam read rejected 

State 3: Alice Exam write accepted 

State 7: Bob Exam write accepted 
State 9: Bob Exam write rejected 

State 10: Dave Exam write accepted 

State 13: Bob Exam write accepted 

State 13: Alice Exam write rejected 

State 15: Carol Exam read rejected 

State 18: Dave Exam write rejected 

State 18: Carol Exam read accepted 

Done! Computation length: 20. Total Passes: 24. 

Total reductions: 47170 (46706 successful) .... 

The access control matrix can also be visualized and checked 
w.r.t the policy specification. For example this is the access 
control matrix in state 0. 

State 

State 
State 

State 

State 

State 

State 

State 

State 
State 

State 
State 

O: .............................................. 
O: Subjects Objects Actions Authorization 

O: .............................................. 
O: Bob Exam read permitted 

O: Bob Exam write permitted 

O: Alice Exam read denied 

O: Alice Exam write denied 

O: Dave Exam read denied 

O: Dave Exam write denied 

O: Carol Exam read denied 

O: Carol Exam write denied 
I: Bob Exam read permitted 
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Table  5: Po l i cy  for each  p h a s e  

pl 

p3 

p5 

I 

xanerA)( 
m o d e r a t o r -  A 

e x t e r n a l -  A ~ P2 
s t u d e n t -  A 

d e n i a l s T a k e P r e c  

m o d e r a t o r -  A 

e x t e r n a l  + A , p4 ~ 

s t u d e n t -  A 
d e n i a l s T a k e P r e e  

e x a m i n e r _ r  + A e x a m i n e r _ w -  A 
m o d e r a t o r _ r  + A m o d e r a t o r _ w -  A 

e x t e r n a l _ r  + A e x t e r n a l _ w -  A 
s t u d e n t _ r  + A s t u d e n t _ w -  A 

d e n i a l s T a k e P r e c  

e x a m i n e r -  A 

m o d e r a t o r  + A 
e x t e r n a l -  A 

s t u d e n t -  A 
d e n i a l s T a k e P r e c  

e x a m i n e r -  A 

m o d e r a t o r -  A 

e x t e r n a l -  A 
s t u d e n t -  A 

d e n i a l s T a k e P r e c  

6. DISCUSSION 
We have developed a compositional framework for the 

specification of access control policies using ITL. Autho- 
rization and delegation rules are formulated as ITL formu- 
las. The use of positive/negative authorizations and posi- 
tive/negative delegations made it possible to avoid negation 
in the consequences of rules without loss of generality. As 
a result, contradiction cannot be derived from rules. While 
signed rules are used for the specification of access rights, en- 
forcement rules are provided for the specification of policy 
enforcement mechanisms. Conflicts between positive and 
negative authorizations/delegations can be resolved using 
enforcement rules. 

Simple policies are defined as conjunction of rules and ad- 
ditional elements to ensure security at the beginning (when 
the policy begins) and the end (when it terminates). Rules 
can be added, activated/deactivated to policies. However 
we do not allow dynamic creation/deletion of subjects, ob- 
jects or actions. Dealing with such dynamics is known to be 
difficult [11, 13]. Then complex policies are devised by com- 
position using several operators such as chop or chops tar ,  
which are not supported by traditional approaches. Multiple 
policies can so be enforced through composition, and their 
properties reasoned about. Furthermore, specifications of 
policies are executable in Tempura. Since ITL can be used 
to reason about functional and temporal properties of sys- 
tems, our approach provides a uniform formal framework 
to incorporate security policy specifications and system re- 
quirements. We recommend to consider security concerns 
at the early stage of the development lifecycle. 

6.1 Run-time Verification 
We aim to develop technologies and tool support for the 

continual enforcement of security policies. Such a support 
will be based on our S A N T A  Workbench depicted in Figure 
2. Currently, SANTA consists of two major agents: Moni- 
tor and Validator, where the later validates safety properties 
expressed in an executable subset of ITL. We propose to (a) 

SANTA 

Monitor 

Validator ] 
(Tempura) 

F i g u r e  2: A r c h i t e c t u r e  o f  S A N T A .  

conservatively extend ITL to provide a rich notation for ex- 
pressing a variety of security policies, and (b) enhance the 
Validator to cater for security policies. The Monitor agent 
controls the information flow between the system and the 
Validator. The tool and model will be evaluated on a vari- 
ety of case studies drawn from both military (e.g. Security 
policies related to NGOs) and civilian (Finance and Retail- 
ing) domains. 

6.2 Compositionality 
Compositionality is a desirable at tr ibute for any formal 

method. It allows to decompose a large system into more 
manageable pieces and to prove the correctness of the whole 
system from that of its immediate components. In addition 
it supports early reasoning of designs, i.e one can reason 
with the specification of the components without knowing 
their implementation. 
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In ITL, compositionality is provided through assumptions- 
commitments paradigm whose general form is illustrated as 
follows. 

~- w A As A Sys D Co A f i n  w ~. 

This states that if the (state) formula w is true in the 
initial state and the assumption As holds over the interval 
in which the system Sys is operating, then the commitment 
Co will hold over the interval and the (state) formula w' is 
true in the interval's final state or is vacuously true if the 
interval is infinite. 

In general, the assumption As and the commitment Co 
can be arbitrary temporal formulas. However, special forms 
of these suit better for reasoning about sequential or parallel 
composition of systems. For sequential composition, for ex- 
ample, it is useful to require that  As and Co be respectively 
fixpoints of the ITL operator [] (read box-a) and * (read 
chop-star), viz. 

As _= []As, Co =- Co*. 

The first equivalence ensures that if the assumption As is 
true on an interval, it is also true in all subintervals. The 
second ensures that if zero or more sequential instances of 
the commitment Co span an interval, Co is also true on the 
interval itself. For assumption and commitment obeying the 
above, the following proof rule is sound. 

F- w A As A Sys D Co A f i n  w' 
~- w' A As A Sys'  D Co A f i n  w" 
~- w A As A Sys; Sys'  D Co A f i n  w". 

Here is an analogous rule for decomposing a proof for zero 
or more iterations of a formula Sys: 

F- w A As A Sys  D Co A f i n  w 
~- w A As A Sys* D Co A f i n  w. 

Readers are referred to [15] for further details. 

6.3 Related Work 
Over the years, researchers have proposed a vast variety 

of access control policies and models [1, 2, 17, 18, 5]. A gen- 
eral formalism for expressing authorization rules has been 
proposed by Woo and Lam [20]. Their framework is based 
on default logic and provides interesting properties such as 
non-monotonicity of authorizations. That  is, if a set of au- 
thorization rules is augmented by a new rule, a subject who 
was previously allowed access to an object may no longer 
be allowed the same access. Such a property can be ex- 
pressed easily using defaults. However default rules might 
not be conclusive. As a consequence the model can lead to a 
situation in which an authorization request has no answer. 
Another limitation of their framework is the management 
of conflicts among authorizations, that  is handled in the se- 
mantics of the authorization language. 

We use the concept of default value which is conclusive 
compared to default rules. The idea is that when a variable 
is not explicitly assigned a value, it implicitly takes the de- 
fault value. For example the default value for autho-(s ,  o, a) 
is fa lse  meaning that if the specification does not set its 
value to true (to say explicitly that  s is denied the right to 
perform action a on object o) then its value is set to fa lse  (to 
say that s is not explicitly denied the right to perform action 
a on object o). In addition conflicts among signed authoriza- 
tions/delegations are resolved through policies enforcement 
mechanisms which are specified using enforcement rules. 

Jajodia et al. [12] have proposed an access control model 
in which inconsistencies among authorizations can be re- 
solved using rules. Their approach is more flexible and 
several design decisions can be chosen to handle conflicts. 
We follow a similar approach but provide additional mecha- 
nisms to handle delegation which cannot be specified in their 
framework. Their model provides a library of policies (called 
FAM library) from which policies can be extracted and en- 
forced concurrently. However the management of the FAM 
library is not well understood. Moreover policies compo- 
sition cannot be expressed in their authorization language. 
By contrast, our framework allows the enforcement of mul- 
tiple policies through policies composition. This provides 
a way of specifying complex policies and to reason about 
their properties. Additionally their approach cannot specify 
temporal dependaneies among authorizations. 

Bertino et al. [3, 4] have developed a temporal model 
for access control. In their model time intervals are asso- 
ciated with authorizations to determine their validity peri- 
ods. Rules are expressed using temporal relationships be- 
tween authorizations. However the approach cannot handle 
the enforcement of multiple policies. Neither can delegation 
of authorization be formulated. Our framework can handle 
delegation and policies composition while allowing tempo- 
ral reasoning about policies. Delegation is largely addressed 
in Ponder [8], a high-level specification language for policies 
management. However, as mentioned in the introduction 
Ponder does not support formal reasoning. 
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