
On the Increasing Importance of Constraints

Trent Jaeger
IBM T. J. Watson Research Center

Hawthorne, NY 10532
jaegert@watson.ibm.com

Abstract

In this paper, we examine how the addition of role-
based access control (RBAC) model features af-
fect the complexity of the RBAC constraint mod-
els. Constraints are used in RBAC models to con-
strain the assignment of permissions and principals
to roles (among other things). Historically, it was
assumed that the role assignments would change
rather infrequently, so only a few constraints were
necessary. Given new RBAC features, such as
context-sensitive roles, the complexity of the re-
strictions that can be required is increasing be-
cause the role definitions may depend on appli-
cation state. As application state changes, so do
the role assignments. We examine the RBAC con-
straint problem using an example of a virtual uni-
versity. We propose RBAC model features for sim-
plifying the representation of constraints given our
experience with this example.

1 Introduction

In this paper, we identify the increasing impor-
tance of constraints in role-based access control
(RBAC) models and examine the features of con-
straint models that can be brought to bear to
handle this complexity. Constraints ensure that

Permission to make digital or hard copies of all or part of this work for
personal or ClaSSroom use is granted without fee provided that
copies are not made or distributed for profit or commercial a&an-
tage and that copies bear this notice and the full citation on the first page
To COPY otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

RBAC ‘99 10199 Fairfax, VA, USA
0 1999ACM 1.58113-180-1/99/0010...$5.00

the role specifications that have been made actu-
ally enforce the access control requirements. A typ-
ical RBAC model consists of roles to which prin-
cipals and permissions may be assigned [12]. The
assignment of principals and permissions to roles is
limited by constraints (e.g., user-role assignment
and permission-role assignment constraints [lo]).
While the assignments limit the actions that can
be performed, the constraints are the final line of
defense. Any specified action can be taken as long
as it does not violate some constraint.

In fact, the demand on constraints is becoming
greater as new features are being added to RBAC
models. Consider the addition of parameterized
roles to RBAC models [4, 81. In a parameterized
role, the role and its permissions are indexed by
parameters, so the same role definition may apply
to multiple contexts. Of course, each of these con-
texts may involve constraints, and it is not true in
general that the constraints can simply be param-
eterized as well. It is possible that some embodi-
ments of the roles may be more or less constrained
than others. For example, one role may allow cer-
tain objects to be part of the role’s permissions that
another would not allow. Thus, a means to control
the complexity of constraints will be necessary.

Our investigation of constraints vacillates be-
tween two goals: (1) trying to enable proofs of
various safety properties (i.e., can a principal ob-
tain a particular permission) so that administra-
tors can make statements about the effectiveness of
the roles they have defined and (2) trying to define
RBAC model primitives to simplify these proofs.
Historically, constraints in RBAC models are repre-

33

Figure 1: Fundamental RBAC Concepts:
Roles associate the principals that can assume
them with the permissions assigned to the role.
Constraints may limit either the assignment of
principals to roles or the assignment of permissions
to roles.

sented as general constraint predicates. While this
enables flexibility in constraint specification, con-
sistent constraint specification using predicates is
hard. Constraints are not fail-safe in general. Our
hope is to simplify the safety problem through some
careful decomposition where the compositions can
be in the form of the union of permission sets. Due
to tenuous nature of composing security properties,
we ask more questions than we answer at present.

The remainder of the paper is structured as fol-
lows. In Section 2, we aim to demonstrate the im-
portance of constraints to the development of an
effective RBAC model specification. While Sandhu
et a2 [12] have stated that constraints are “some-
times argued to be the principal motivation for
RBAC,” it was the functionality of constraints that
they motivated. Here, we are also interested in
the management of constraints themselves and the
safety of a system controlled by constraints. In
Section 4 we describe the constraint requirements
of an example problem, a virtual university. In
Section 3, we examine related work in the defini-
tion of constraint models for RBAC. In Section 5,
we describe how the constraint requirements of our
example could be satisfied. In Section 6, we try to
generalize the approach specified in Section 5 while
still enabling administrators to easily determine the
permissions that are available to a principals and
those that could be obtained by a principal. In
Section 7, we conclude and state future work.

2 Security Constraints

The basic RBAC model consists of principals, per-
missions, roles, and constraints [lo] as shown in
Figure 1. Principals obtain access rights by being
assigned to roles or having permissions added to
the roles they belong to. The union of the permis-
sions of a principal’s roles describe its authorized
access rights. In general, the access rights of a sys-
tem need not be static, so it may be necessary to
add principals to new roles and add permissions to
existing roles. However, such additions must not
enable a principal to obtain the access rights nec-
essary to obtain unauthorized access rights. For
example, if two principals are in a separation of
duty, but an access right is added to a role that
enables one principal to read data written by the
other, then the that addition provides an unautho-
rized access right. That is, the addition of such a
right would violate the access control policy asso-
ciated with these two principals.

Constraints express
restrictions, such as principal-role and permission-
role assignment restrictions, to prevent such policy
violations r . In general, if a principal can obtain
a permission that would violate the system’s ac-
cess control policy, then the access control specifi-
cation is said to be unsafe. In an RBAC model,
it is the job of the constraints to prevent admin-
istrators from assigning principals and/or permis-
sions to roles such that a principal’s permissions
may become unsafe. Toward this end, when any
permission or principal is added to a role, the rel-
evant constraints must be checked to determine if
the addition is unsafe. In the case above, a separa-
tion of duty constraint between the two principals
would prevent the addition of a right that enables
the principals to communicate.

Historically, RBAC models were applied to en-
vironments in which assignments changed infre-
quently and there were few roles, so few constraints
were necessary. However, advances in the develop-
ment of RBAC model concepts are increasing the
demand on constraints. First, the concept of a
context-sensitive (or parameterized) role [4, 81 en-
ables roles to depend on application state. The
applicability of such an RBAC model has been
demonstrated for database, medical, and general

lWe will ignore other types of constraints, such as cardi-
nality and activation, for the moment.

34

collaborative applications [7]. The main demand
added to the constraint model is that since roles are
indexed by application state, each time the appli-
cation state changes a change in permissions may
result. Since permissions can be controlled at a
finer granularity, more constraints may be neces-
sary.

Second, since parameterized roles enable fine-
grained, the level of abstraction between con-
straints can vary, thus making analysis difficult.
Instead of basic separation of duty, constraints may
now focus on separation of a specific subset of the
principal’s access rights. Therefore, if there are two
specifications for assigning permissions, the con-
straints under which these specifications are re-
stricted must be consistent and complete.

Lastly, we examine the relationship between
RBAC constraints and the safety problem [5]. The
safety problem is to find an (reasonably efficient)
algorithm to determine whether a particular right
can be obtained given an initial protection state
and operations for changing that state. Harri-
son et al. show that the safety problem is unde-
cidable for general access control models. How-
ever, others have identified access control models
in which safety is both decidable and reasonably
efficient [14, 91. In the RBAC approach, it is the
conditions of the constraint that determine whether
the addition is acceptable or not. In general, such
conditions may attempt to verify the safety of the
resulting protection state. No public statement on
the decidability of safety in general RBAC mod-
els has been made, but given the complexity of the
general model we expect safety to be undecidable.

Thus, given the importance of constraints to the
RBAC model and the complexity of verifying that a
set of constraints are sufficient to ensure the safety
of the system, we conclude that, like previous work
in access control models, simplifications of the gen-
eral RBAC constraint model will be necessary to
enable verification that the system is safe. How-
ever, it is unclear if this can be done in a way that
preserves enough of the flexibility of the present
model. An alternative is to simplify the use of con-
straints to enable the verification of safety for each
particular system (e.g., because the number of con-
straints is small). In this paper, we investigate such
simplifications.

3 Related Work

Constraints have been envisioned since some of the
earliest RBAC models were proposed 115, 13, II].
In these models, the concept of constraints was
identified to restrict the assignment of users and
permissions to roles in order to enforce common
security policies, such as separation of duty. How-
ever, constraint models themselves were not in-
cluded in these RBAC models.

The earliest RBAC constraint model that we
have identified is that of Chen and Sandhu [2]. The
constraint model consists of a number of functions
for extracting role state and a language for express-
ing constraints using that role state. The language
enables expressions of constraint predicates that
may be tested as invariants or as preconditions to
changes in role state. The functions and language
primitives are policy-independent, so they may be
applicable to a wide range of scenarios.

Later, Bertino et al defined a constraint model
for workflow systems [I]. The difference between
this model and that of Chen and Sandhu is mainly
that the state functions act on the workflow tasks
and role state, not just the state of the role system.
The constraint language itself is again based on the
expression of constraint predicates.

Constraint predicates are a general approach
to expressing constraints, but as described in the
previous section, even a system with only a few
constraint predicates can be difficult to evaluate
for safety. Thus, to date, practical application
of constraint predicates has generally been lim-
ited to static and dynamic separation of duty con-
straints [3].

A goal is to find constraint representations that
enable simpler analysis of safety. As has been typi-
cal of RBAC model development, researchers have
re-applied RBAC concepts to solve new RBAC
problems. An important example is the creation
of administrative roles [lo]. An administrative role
is a kind of role that describes the ability of the
principals that belong to that administrative role
to administer regular roles. An administrative role
describes the principal and permission assignments
that administrators can make to the roles they can
administer and the conditions under which those
assignments can be made. Thus, administrative
roles constrain the role assignments that can be
made.

35

Another example of administrative roles are
transform timits [7]. Each regular role is associated
with a set of administrators for that role and the
rights that those administrators can manage. The
advantage of basic transform limits are that it is
easy to compute various safety properties, such as
the maximal set of rights a principal could obtain.
Parameterized roles may be used for transform lim-
its, so it is envisioned that some evolution may oc-
cur. Similarly to administrative roles, constraints
restrict the evolution of transform limits. A prob-
lem with this approach is that one transform limit
may preclude, by a constraint, the change in an-
other transform limit even though the rights that
embody the conflict have not been assigned yet.
This is a trade-off between having complex safety
analysis (administrative roles) and complex conflict
resolution of safety constraints (transform limits).
Since fail-safety is often a goal of secure systems,
some form of conflict resolution may not be unrea-
sonable, but the trade-off is not clear-cut.

4 Example

We now examine the requirements on constraints
in a specific RBAC example. We have been in-
vestigating the application of RBAC to a virtual
university setting [S]. The advantages of RBAC in
this domain are that: (1) it enables the rights of
principals to depend on the courses in which they
participate and their role in these courses and (2)
it enables a single instructor role and student role
to be defined that confers the default permissions
for any course. Using context-sensitive roles [4, 81,
a student role and an instructor role can be defined
whose rights depend on the course to which they
are associated. All the default rights of students
and instructors in a course can be defined using
these roles. Thus, it is not necessary for instruc-
tors or students to administer the default rights
of any course. However, a significant amount of
ad hoc delegation is possible, so principal-role and
permission-role assignment constraints are neces-
sary to control these delegations. However, veri-
fying that the specified constraints actually ensure
the application’s security policy is enforced is a con-
cern.

In the virtual university application, all course
information are represented electronically as course

objects. The default operations in a course are
as follows. First, instructors create activities 2,
including homework and examinations and assign
them to the course students. Students must only
work on their own activities, although it is possi-
ble that a group of students may collaborate. The
course students respond to the activities which are
then graded by the course instructors.

The default security requirements of this appli-
cation are as follows:

0 Instructors:

- Create (i.e., read and write) student ac-
tivities

- Create supporting materials for activities

- Assign students in their courses to activ-
ities

- Read committed student responses

- Create grades for committed student re-
sponses

l Students:

- Read assigned activities

- Create responses to activities, either in-
dividually or in groups

- Commit responses (which then become
read only)

- Read committed graded responses

Instructors create and assign student activities
to groups of one or more students in the courses
they teach. This results in the individual student
groups obtaining a new response object in which
they may respond to the activity. Students may
only access a response for the student group to
which they are assigned. Once a response is com-
pleted, the student group creates a committed re-
sponse, and they may no longer modify it. Instruc-
tors may not modify the committed response ei-
ther. Instructors create a graded response which
they then commit before the students can read it.

However, courses are not quite as well-
structured as we have portrayed in the default case.

2We use the term activitl~ to refer to the descriptions of
the tasks that instructors assign to students. We initially
called them assignments, but since we also discuss the as-
signment of users and permissions to roles that term became
ambiguous.

36

For example, a student may wish that an instruc-
tor review an uncommitted response. This requires
that the student give the instructor read access to
an uncommitted response. However, this is gener-
ally not considered to be dangerous because nature
of the instructors’ job requires that they help the
student. This may even be made into a default
right where it is assumed that the instructor will
only use this privilege when requested by a student.

A problem would occur if an instructor can make
an access control decision that could lead to an un-
safe situation (i.e., a particular right may be leaked
to a particular subject who should not obtain that
right). For example, an instructor may choose to
have the students devise different activities for the
course. However, giving students write access to
activities may lead to problems, such as other ac-
tivities changing after their assignment (due to er-
rors in administration).

Using the RBAC approach, we would hope
to identify fundamental constraints that any
principal-role and permission-role assignment must
obey. For the system to work properly the con-
straints must meet two requirements: (1) the con-
straints are sufficient to enumerate all the necessary
restrictions in order for the system to be safe and
(2) the algorithms that evaluate the conditions of
these constraints must be reasonably efficient (i.e.,
polynomial).

The informal statement of the fundamental con-
straints in this example are given below.

l Permission-role constraints

- A student may only obtain write access to
an object if an instructor does not have
write access and vice versa

- A response cannot be read by principals
other than the students that submitted it
and the instructor until a grade has been
given to it

0 Principal-role constraints

- A student may not, belong to multiple
groups for a single activity

- A principal cannot be both a student and
an instructor of the same course

- All students in a student group of a
course must be students in the course

Fortunately, it appears that the conditions of
these constraints can be computed in polynomial
time. However, it is not clear that the specified
constraints are sufficient to ensure a safe system,
even in such a simple example. Unlike fail-safety
in security, where only positive rights are specified
so no rights are gained tacitly, it is not clear that a
positive specification of constraints will ensure the
right policy is enforced. For example, if the first
constraint is stated such that a write permission is
only granted to a student if the instructor does not
possess a write permission to the same object, this
is a necessary, but perhaps not sufficient, condi-
tion for expressing the full policy. That is, perhaps
other conditions must also be tested before the per-
mission is granted.

In particular, we can see that the default re-
quirement that students cannot read activities un-
til they are assigned is not captured in the fun-
damental constraints listed above. Of course, this
constraint can be added, but clearly mixing con-
straints of different levels of abstraction makes it
difficult to determine the overall safety of the sys-
tem. It is difficult to tell if the combination of con-
straints always yields roles that obey the intended
access policy. Specification of constraints is often
complex, and forgetting a constraint can result in
an error.

5 Constraint Design

In this section, we examine the expression of the se-
curity requirements of the VITC example. In par-
ticular, we look at three things: (1) how the basic
rights of the instructors and students are estab-
lished and maintained consistently with the course
status; (2) how the instructors may manage the as-
signment of students to student groups to perform
activities jointly; and (3) how exceptions to the ba-
sic rights are created and controlled. In the next
section, we try to make some generalizations for
constraint model design based on the experience of
this example.

The RBAC model uses parameterized roles and
controls role assignments using transform limits.
Transform limits specify the administrators and a
set of permission or principal specifications which
define the permissions or principals that the ad-
ministrator may assign to the role. Principals are

37

defined in terms of a set of principals. Permissions
are defined in terms of a set of permissions. In
addition, a single permission may refer to a set of
objects if the target object of the permission is an
object group. Roles are parameterized by parame-
terizing the principals and permissions in the role.
Therefore, changes in transform limits are largely
a result of changes in application state.

5.1 Default Course Permissions

We first define the default course permissions of
the instructors and students. By default, we sim-
ply mean that we expect that all courses will use
the same permission specification, so the permis-
sion definitions will apply to each course. Param-
eterized roles enable a single permission specifica-
tion to apply to multiple courses because the object
groups can be indexed by course.

The architecture of the VITC system consists of
the following principals: a security server, a VITC
server, and VITC clients. The security server main-
tains the permissions of the system’s principals

(i.e., it can support other applications besides the
VITC). The VITC server administers the rights of
the VITC clients. This job entails defining the roles
available to VITC clients (e.g., instructors and stu-
dents) and keeping the permissions of these roles
consistent with the state of the VITC application.
The VITC clients are students and instructors.

Next, we define the useful object groups for
defining role permissions in Figure 2. The main
groups of objects are activities, responses, and
grades. Each of these objects goes through a
phase of development where only the people cre-
ating them should have access, followed by a phase
of availability where others can read the objects. In
the case of responses, when the are committed (i.e.,
made available), they become immutable. Figure 2
shows the object groups and where transitions be-
tween groups occur. For example, a student cre-
ates a response object which is placed in the in-
terim response group initially. Upon commitment,
a new response object is created in the committed
response object group.

We now examine the permission-role assignment
policy for the VITC clients. Since the VITC appli-
cation is the sole administrator in this example, it
is the only principal that can define the member-
ship of these object groups. However, multiple ad-

ministrative principals are possible in general (see
Section 5.2). The permission-role assignment for
a role is defined by the permission transform lim-
its for the role. The course instructor’s permission
transform limits are specified as follows 3:

l Role: instructors (course)

l Administrator: VITC

0 Permission Transform Limits:

- {VITC, VITC obj, rw, activities(course)}

- {VITC, VITC obj, rw, supplemen-
tals(course)}

- {VITC, VITC obj, rw, grades(course))

- {VITC, VITC obj, r, committed re-
sponses(course)}

Thus, for a particular course, the instructors can
use the VITC to create activities, supplemental ma-
terials, and grade sheets for student responses. In-
structors cannot read the responses as they are be-
ing developed.

Note that the addition of a new grade object
does not change the transform limits. The object
group can specify all objects in a certain location
in the name space, so simply creating the object
makes it available without changing the transform
limit. Only the VITC can create objects in these
name space locations (not shown in the specifica-
tion).

The role definition of course students is specified
as follows:

l Role: students (course)

l Administrator: VITC

0 Permission Transform Limits:

- {VITC, VITC obj, r, public activi-
ties(course)}

- {VITC, VITC obj, r, public supplemen-
tals(course)}

3A permission in the permission transform limits are de-
fined by its: server, object type, operations, and object
group specification.

38

Activities

‘--ii-j

Responses

Interim

II

Committed
Responses Responses

--

Grades

Figure 2: VITC Object Groups

The specified permissions enable students to
read the course materials prepared by the instruc-
tor after they are released.

Additionally, students need to be able to create
responses to activities, but, students must only be
able to access their own responses. Therefore, we
define a role student-groups(course, group-id) to
define a group of one or more students in a course.
The role definition of student groups is specified as
follows:

l Role: student groups (course, group id)

l Administrator: VITC

0 Permission Transform Limits:

- (VITC, VITC obj, rw, interim re-
sponses(course, group id)}

- {VITC, VITC obj, r, committed re-
sponses(course, group id)} p

- (VITC, VITC obj, r, committed
grades(course, group id)}

Instructors use the VITC to create response ob-
jects for activities (i.e., to complete assignments)
and assign them to student groups. Only the stu-
dents in the student group for which the interim re-
sponse is generated may examine or modify it. The
interim response is committed to the VITC where-
upon a committed response is created. Instructors
commit grades to a specific student group, so only
that student group can see the grade.

5.2 User-Role Administration

Another issue is how to manage the assignment of
students to student groups. VITC server admin-

istrators add students and instructors to a course
(e.g., at registration time). Since instructors de-
termine the membership of student groups, they
must be able to manage the user-role assignment
for these roles.

Using the RBAC model, it is possible to define
the user transform limits for the student groups
role. The VITC can define that instructors have
the following rights to assign students to roles.

l Role: student groups (course, group id)

l Administrator: instructors (course)

0 User Transform Limits:

- students(course)

The constraint that must be enforced here is
that the instructors can only assign the students
in their courses to student groups for that course.

5.3 Exceptional Course Permissions

In addition to the default course permissions, the
VITC clients may wish to distribute some of their
rights. For example, an instructor may wish to
make an exemplary response available to all stu-
dents in the course or perhaps in another course.
Also, it may be permissible for students to dis-
tribute their own committed responses, so they
can study for an upcoming exam in a group. The
RBAC model can support these exceptions by en-
abling students and instructors to also act as dele-
gators. However, we want the VITC to be able to
properly administer the system, so the fundamen-
tal constraints are not violated.

39

To enable these additional permissions to be del-
egated, we add the following permission transform
limits for the course students.

Role: students (course)

Administrator: VITC

. . . (as above)

Administrator: instructors(course)

Permission Transform Limits:

- {VITC, VITC obj, r, graded responses}
- {VITC, VITC obj, r, activities}

Administrator: students(course)

Permission Transform Limits:

- {VITC, VITC obj, r, graded re-
sponses(course)}

- {VITC, VITC obj, r, committed
grades(course)}

This role definition enables both instructors and
students to delegate access to the committed re-
sponses and grades to all course students. Instruc-
tors may be able to provide students with activi-
ties and responses from other courses, but students
may only distribute responses and grades from the
current course.

The VITC must ensure that the delegation does
not violate the fundamental access control con-
straints. Recali the fundamental constraints form
Section 4. Since these exceptions add permissions,
permission-role constraints need to be checked.
Since write access is not propagated by these del-
egations, the first fundamental constraint cannot
be violated. The second constraint prevents stu-
dents from distributing responses before the sub-
mission date. This restriction can be enforced by
preventing an instructor from delegating access to a
committed response until after it has been graded.
Since students cannot have access to all commit-
ted responses by default, the membership of ob-
jects to the permission transform limit is changed
dynamicalIy. Therefore, a constraint predicate is
necessary to verify the modification of the trans-
form limit (e.g., specified using first-order logic).
Again, a transform is necessary to actually confer
the permission to the students (i.e., the permission
transform limits only permit the delegation of the
right).

6 Constraint Model

From this example, three useful generalizations
that can aid in the simplification of safety analysis
are apparent. First, it is useful to identify the sets
of permissions and principals that can be assigned
to a role unconditionally, which we will call con-
straint sets. In the example, these are referred to as
the default permission and principal assignments.
The creation of such constraint sets enables some
safety analysis to be performed at role initiation
time. The permissions defined by these constraint
sets can be checked directly.

Second, an additional by-product of the con-
straint set approach in this example is that the
lower-level constraints are largely removed by the
constraint sets. This appears to be an artifact of
the creation of disjoint object groups for the default
rights. Since the object groups are disjoint, the de-
fault constraint sets do not change. Focusing on
management of the exceptional cases simplifies the
safety analysis, but may not be as broadly practical
in other examples.

Third, in this example, all constraints on assign-
ments to regular roles can be represented as con-
straint sets. For example, the current constraint
sets for permissions and principals can be asso-
ciated with each regular role (i.e., instructor and
student). Actual assignments can be made within
these constraint sets by the students, instructors,
and the VITC. Changes to the constraint sets are
made by administrative roles, and these changes
may be limited by constraint predicates. Since all
changes to constraint sets in this example are ex-
ceptional, approval may also require a second au-
thority.

Therefore, we extend the definition of a regular
role to a tuple, {n, P, R, CS, C} where: (1) n is the
name of the role; (2) P is the set of principals as-
signed to the role; (3) R is the set of permissions
assigned to the role; (4) CS is the constraint sets of
the role; and (5) C is the set of other constraints,
such as cardinality, that do not affect assignment.
A constraint set is also a tuple, {A, P, R} where:
(1) A is the set of administrators of this constraint
set; (2) P is the set of principals that may be as-
signed in this constraint set; and (3) R is the set
of permissions that may be assigned in this con-
straint set. An administrator can make any as-
signment within his principal and permission sets.

40

Thus, constraint sets can provide some degree of
dynamicism because a variety of assignments can
be made within them.

Other common role constraints, such as role car-
dinality (number of permissions or principals in a
role) and role activation (number of roles that can
be activated), would have to be captured by other
types of constraints. However, both of these are
distinct types of constraints from those about per-
missions, so they could perhaps be handled as or-
thogonal constraints. Our example problem does
not use such constraints, so more research is neces-
sary here.

Of course, constraint sets themselves are like
administrative roles, and similarly, constraints are
necessary to manage administration. Such man-
agement of changes to the membership of the con-
straint sets will require some form of higher-level
constraints. That is, the recursive application of
constraint sets to constraint sets does not appear
to yield any benefit: a constraint set already de-
fines administrative limits. At present, two ap-
proaches come to mind: (1) common higher-level
constraints, such as separation of duty, and (2) gen-
eral constraint predicates. Traditional RBAC ap-
plications can be supported by general constraints,
such as separation of duty. Examples, such as
VITC, need support for the definition of general
predicates on constraint sets.

7 Summary

In this paper, we examine the affect of new fea-
tures in role-based access control (RBAC) models
on the complexity of the RBAC constraint model.
While constraints have been a part of RBAC mod-
els since the very beginning, the number and com-
plexity of constraints originally was small. Typi-
cally, few administrative changes to roles were envi-
sions, and only separation of duty constraints have
been needed. With the advent of RBAC model
features, such as context-sensitive roles, it is pos-
sible for fine-grained management of permissions,
and with that comes the need for fine-grained con-
trol via constraints. We have examined a specific
example of a virtual university and the constraints
it requires. Based on this example, we have identi-
fied three ideas unconditional role assignment con-
straints in terms of sets of permissions and princi-

pals can be used for all regular roles. Only admin-
istrative roles may require constraints in the form
of constraint predicates. Thus, safety verification
for regular roles can be simplified, and the focus
can move to administration actions that change
role assignment constraints. In the future, we plan
to investigate the constraint model requirements of
other examples if they exhibit similar properties.

References

PI

PI

PI

PI

PI

PI

PI

PI

E. Bertino, E. Ferrari, and V. Atluri. The
specification and enforcement of authorization
constraints in workflow management systems.
ACM Transactions on Information System Se-
curity, l(2), February 1999.

F. Chen and R. Sandhu. Constraints for role-
based access control. In Proceedings of the
1st Workshop on Role-Based Access Control,
1995.

D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn.
A role based access control model and refer-
ence implementation within a corporate in-
tranet. ACM Transactions on Information
System Security, 2(l), February 1999.

L. Giuri and P. Iglio. Role templates for
content-based access control. In Proceedings
of the Second ACM Role-Based Access Con-
trol Workshop, November 1997.

M. A. Harrison, W. L. RUZZO, and J. D. Ull-
man. Protection in operating systems. Com-
munications of the ACM, 19(8):461-471, Au-
gust 1976.

T. Jaeger, T. Michailidis, and R. Rada. Access
control in a virtual university. In Proceedings
of the Fourth International Workshop on En-
terprise Security, 1999. To appear.

T. Jaeger, A. Prakash, 5. Liedtke, and N. Is-
lam. Flexible control of downloaded exe-
cutable content. ACM Transactions on Infor-
mation System Security, 2(2), May 1999.

E. C. Lupu and M. Sloman. Reconciling role-
based management and role-based access con-
trol. In Proceedings of the Second ACM RoJe-
Based Access Control Workshop, November
1997.

41

[9] R. S. Sandhu. The typed access control model.
In Proceedings of IEEE Symposium on Secu-
rity and Privacy, pages 122-136, 1992.

[lOJ R. S. Sandhu, V. Bhamidipati, and Q. Mu-
nawer. The ARBAC97 model for role-based
administration of roles. A CM Transactions on
Information System Security, l(2), February
1999.

[ll] R. S. Sandhu, E. J. Coyne, H. L. Feinstein,
and C. E. Youman. Role-based access con-
trol: a multi-dimensional view. In Proceedings
of the Tenth Computer Security Applications
Conference, pages 54-62, 1994.

[12] R. S. Sandhu, E. J. Coyne, H. L. Feinstein,
and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38-47, Febru-
ary 1996.

[13] D. F. Sterne, M. A. Branstad, B. S. Hubbard,
B. A. Mayer, and D. M. Wolcott. An analy-
sis of application specific security pohcies. In
Proceedings of the 14th National Computer Se-
curity Conference, pages 25-36, 1991.

[14] L. Synder. On the synthesis of protection sys-
tems. In Proceedings of the Sixth ACM Sym-
posium on Operating System Pm’nciples, pages
141-150, November 1977.

[15] D. J. Thomsen. Role-based application design
and enforcement. In Database Security, IV:
Status and Prospects, pages 151-168, 1991.

42

