
Managing Security Policies in a Distributed Environment
Using eXtensible Markup Language (XML)*

Nathan N. Vuong, Geoffrey S. Smith
Florida International University
School of Computer Science

Miami, Florida USA

{nvuong01, smithg}@cs.fiu.edu

Yi Deng
University of Texas at Dallas

School of Engineering and Computer Science
Embedded Software Center

Richardson, Texas USA

yideng@utdallas.edu

ABSTRACT
In light of the growth of the Internet, much research has been
done on application-level distributed authorization systems.
Another area of research that is just as important, but has received
little attention, is the management of security policies in a
distributed environment. This paper describes practical concepts
that can be employed in an enterprise environment for managing
security policies using eXtensible Markup Language (XML). An
example is given using our proposed concepts with Java1 and
Role-Based Access Control (RBAC) policies.

Keywords
Managing security policies, RBAC, XML, Java, distributed
authorization, meta-language.

1. INTRODUCTION
An authorization system regulates and enforces access of
principals to computing resources according to a prescribed
policy. Its services are critical in ensuring the confidentiality,
integrity, and accountability of shared data in a computing
environment. It is useful to separate authorization into two sub-
categories, policy and mechanism [4] as depicted in Figure 1. An
access control policy specifies the authorized accesses of a
principal whereas an access control mechanism implements or
enforces the policy. The advantages of this separation are:

(1) It allows researchers to address each sub-category
independently.

(2) A security policy can be enforced by different protection
mechanisms.

(3) A single protection mechanism can enforce multiple security
policies.

Historically, practitioners’ approach toward providing
authorization has been to code the authorization logic as part of
the application. The reasons behind this approach are:

(1) Most operating systems, which the application resides on,
provide minimal support for business authorization logics.

(2) The lack of a distributed authorization framework.

(3) Developers failed to abstract business logics from
authorization logics, and to clearly separate authorization
policy from enforcement mechanisms.

Figure 1. Authorization Model

But the above practices give rise to obvious problems in
interoperability and scalability.

Realizing the need for a distributed authorization system that
is interoperable, flexible, and manageable, researchers have
proposed frameworks such as OMG Resource Authorization
Decision (RAD) Specification [12], CORBA Security Services
[11], and Secure European System in A Multi-vendor
Environment (SESAME) [1] as a solution. These proposed
frameworks provide a means to architect distributed authorization
systems that separate security logics from application logics.
Other research such as [3][8][16] provides notations, logics, and
calculi for expressing and reasoning about security policies. But
these works mainly concern modeling policies and enforcement
mechanisms and put little emphasis on managing security policies.

The little research [2][5][7] that addresses managing security
policies employs translating agents or software modules for
communicating between disparate policies to achieve a cohesive
corporate-wide security policy implementation. This concept
requires a translating agent for each different access control
implementation. Here, the granularity of an access control

*This work was supported in part by NSF under grant No.
 HDR-9707076.
1Java is a trademark of Sun Microsystems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2001, Las Vegas, NV
© 2001 ACM 1-58113-324-3/01/02...$5.00

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC 2001, Las Vegas, NV
© 2001 ACM 1-58113-287-5/01/02…$5.00

405

system depends on the native implementations, which implies that
the lowest common denominator of all the systems must be
adopted.

Our research proposes concepts that facilitate managing
security policies in a distributed environment and can complement
any distributed authorization framework. Our concepts explore a
structured language model for expressing security policies. Our
observation is that a structured language is more expressive than a
traditional access control list (ACL). We employ a meta-
language to define a grammar that can precisely and effectively
represent the desired security policies. While the developed
grammar provides the syntactic representation of security policies,
a separate application programmer interface (API) is used to
provide semantics to the grammar, and is used to maintain the
integrity and consistency of the authority state [9]. This
separation allows the semantics of security policies to be
independently defined and to be separated from policy
representations. The concept of a standardized policy schema is
adopted for enforcing consistent policy representation. This
requires all participating systems to validate the security policy
structure against the specified schema. Additionally, it will allow
a single administration tool, built according to the standardized
schema, to be able to load, manage, and administrate security
policies for the entire enterprise. With these proposals, an
organization could effectively model, implement, and manage its
security policies with confidence that interoperability, flexibility,
and manageability are achieved.

The remainder of this paper is organized as follows. Section
2 provides the necessary background on Role-Based Access
Control (RBAC) and eXtensible Markup Language (XML) to
understand our work. Section 3 provides details on our proposed
concepts to include designs and implementation. Finally, Section
4 concludes the paper.

2. BACKGROUND
We present here some basic concepts of Role-Based Access
Control reference models, and then a brief overview of eXtensible
Markup Language (XML) technology.

2.1 Role-Based Access Control (RBAC)
Role-Based Access Control (RBAC), a policy neutral access
control mechanism, is widely known as being an inherently easier
and less error-prone way of administrating access control policies.
The basic principle of RBAC is the separation of permission
assignments (PA) and user assignments (UA). With RBAC,
permissions are assigned to roles and roles are assigned to users.
A user thereby acquires the permissions assigned to that specific
role. A user’s permissions are limited to the roles in which he or
she is authorized to function. The separation facilitates the
administration of security policy, where each process can then be
administered independently. Since permissions are de-coupled
from users, changes to permission or user assignments have
minimal isolated impact on administration.

The RBAC security model is abstract and general. This is
indicated by the many interpretations of the RBAC model
provided by researchers. Of the existing interpretations, Sandhu
et al. [13] provide the most comprehensive and intuitive
interpretation, capturing the vital and salient features of RBAC.

They identify a family of RBAC reference models: RBAC0 – base
model, RBAC1 – hierarchical model, RBAC2 – constraints model,
and RBAC3 – all-inclusive model. RBAC0 is the base reference
model consisting of the basic essential elements for providing an
RBAC service, with RBAC1 through RBAC3 built on RBAC0
with added functionality such as role hierarchies and constraints.
Figure 2 shows the RBAC models hierarchy.

Figure 2. RBAC Models Hierarchy

Sandhu et al. formalize RBAC as follows:

• U, R, P, and S represent the finite set of users, roles,
permissions, and sessions respectively within the system.

• PA ⊆ P x R represents the finite set of permission to role
assignments. This is a many-to-many relationship.

• UA ⊆ U x R represents the finite set of user to role
assignments. This is a many-to-many relationship.

• user: S → U, a function that maps a session si to a user.

• RH ⊆ R x R is a partial order on R, called the role hierarchy
or role dominance relation, also written as ≥.

• For RBAC0, roles: S → 2R, a function that maps a session si
to a set of roles, where roles(si) ⊆ {r | (user(si), r) ∈ UA},
and each session si has the permissions ∪r ∈ roles(si) {p | (p, r)
∈ PA}; that is, the permissions available to the user are the
union of permissions from all roles activated in that session.

• For RBAC1, roles: S → 2R is modified from RBAC0 to
require roles(si) ⊆ {r | (∃r’ ≥ r)[(user(si), r’) ∈ UA]} and
each session has the permissions ∪r ∈ roles(si) {p | (∃r’ ≤ r)[(p,
r’) ∈ PA]}.

• RBAC2 adds constraints in the form of restrictive functions
that operate on RBAC components to meet the specific needs
of an organization’s protection policies. Typical constraints
include separation of duties (also known as mutually
exclusive roles) and cardinalities to limit the number of
authorized roles.

Figure 3 provides a graphical depiction of the RBAC
reference models. An abstract representation, permission is
commonly understood as an approval for a particular mode of
access to one or more objects in the system. Terms such as
authorization, access right, privilege, and transaction have also
been used in related literature to denote permission. From the
RBAC perspective, the exact nature of permissions in a system is
left open to implementation.

406

Figure 3. RBAC Reference Models

2.2 eXtensible Markup Language (XML)
The XML specification [17] is the work of the World Wide Web
Consortium (W3C) Standard Generalized Markup Language
(SGML) Working Group. It is designed as a meta-language for
Internet use. Its objectives are to overcome the rigid HyperText
Markup Language (HTML) tagging scheme while providing Web
users with a means for defining their own domain specific tags
and attributes.

2.2.1 XML Documents
An XML document has both a logical and a physical structure.
The logical structure is composed of declarations, elements,
comments, character references, and processing instructions, all of
which are indicated in the document by explicit markup. The
physical structure is composed of storage units called entities. An
entity may reference other entities to cause their inclusion in the
document. A document begins in a “root” or document entity,
and all the logical and physical structures can be nested properly
inside the document entity. An XML document may also be a
well-formed and/or valid document. A well-formed document, in
its entirety and expanded state, must conform to the production
labeled document. A valid document must conform to the
referenced schema, Document Type Definition (DTD). These two
features can be employed to enforce the conformity and
consistency of documents.

2.2.1.1 Logical Structure
Each XML document contains one or more elements, the
boundaries of which are either delimited by start-tags and end-
tags, or an empty-element tag. Each element has a type identified
by name and may have a set of attribute specifications. Each
attribute specification is made up of a name-value pair. The
element structure of an XML document may be constrained by
using element type and attribute-list declarations. An example
element type declaration is:

<!ELEMENT memo (header, text) >

Here the memo element is composed a header and a text
element. Element type declarations dictate which element types
can appear as children of the element. Element declarations are
logically grouped inside a DTD. An example of attribute-list
constraints is:

<!ELEMENT header EMPTY>
<!ATTLIST header
from CDATA #REQUIRED
to CDATA #REQUIRED
subject CDATA #REQUIRED>

Here a <header> tag must provide attribute value for the from,
to, and name attributes.

2.2.1.2 Physical Structure
An XML document may consist of one or more storage units
called entities. Each entity consists of a content and a name. All
XML documents have the document entity that serves as the
starting point for the XML parser and may contain the whole
document. A parsed entity’s contents are referred to as its
replacement text and are considered an integral part of the
document. Entities are commonly used for physical modeling.
An example of an entity definition is as follows:

<!ENTITY % text_type " TYPE (PARAGRAPH |
SUMMARY | ABSTRACT) #REQUIRED ">

where text_type denotes the entity’s name, and "TYPE
(PARAGRAPH | SUMMARY | ABSTRACT) #REQUIRED"
denotes the entity’s content. Then the text_type entity can be
referenced as follow:

<!ELEMENT text EMPTY>
<!ATTLIST text %text_type;>

When the XML parser parses %text_type, it replaces the
referenced entity with the actual text_type content.

3. OUR WORK
Our research provides concepts for managing security policies in
a distributed environment to include representation and
administrative evaluation. Our concept for representing security
policy is to use a structured language model. A structured
language is more expressive and flexible than a traditional access
control list (ACL). Properly designed, a structured language is
closer to natural language than any other method for representing
security policies. For evaluating and ensuring a consistent
authority state, we propose an administrative application program
interface (API) as an interface between an administrative
application and the authority state. For consistent policy
representation and ease of policy administration, we propose a
standardized policy schema.

3.1 Implementing RBAC Policy Using Java
and XML Technologies
Our research employs XML for syntactic representation of
knowledge. XML, being a meta-language, provides accessible
notations and means for us to describe an RBAC conceptual
model. The developed RBAC grammar, based on Sandhu’s
RBAC reference models [13], is a domain specific grammar that
can effectively represent various RBAC policies.

3.1.1 XML Logical Model
We model each RBAC component as an XML element:
A User is represented as

<!ELEMENT USER EMPTY>
<!ATTLIST USER

407

NAME ID #REQUIRED>

The above syntax defines a new XML tag of type USER with a
required NAME attribute of type ID that by default is unique.

A Role is represented as

<!ELEMENT ROLE EMPTY>
<!ATTLIST ROLE

TITLE ID #REQUIRED>

A Permission is implementation-specific; therefore, we
model it as an abstract representation that requires definition
when defining policies. A Permission is represented as

<!ELEMENT PERMISSION EMPTY>
<!ATTLIST PERMISSION %DEFINITION;>

A Permission Assignment assigns a set of permissions to a
role; it is represented as

<!ELEMENT PERMISSION_ASSIGNMENT EMPTY>
<!ATTLIST PERMISSION_ASSIGNMENT

ROLE IDREF #REQUIRED
PERMISSIONS IDREFS #REQUIRED>

Using attribute constraints, the above definition requires that both
ROLE and PERMISSIONS attribute must reference predefined
values.

A Role Assignment assigns a set of users to a role; it is
represented as

<!ELEMENT ROLE_ASSIGNMENT EMPTY>
<!ATTLIST ROLE_ASSIGNMENT

ROLE IDREF #REQUIRED
USERS IDREFS #REQUIRED>

A Role Hierarchy is represented as a set of INHERITS
elements, each of which associates a set of junior roles to a senior
role:

<!ELEMENT INHERITS EMPTY>
<!ATTLIST INHERITS

FROM IDREFS #REQUIRED
TO IDREF #REQUIRED>

With the defined RBAC components as XML elements, then an
instance of an RBAC model is the composition of various RBAC
components. For example, an RBAC1 security model is
represented as a production rule.

<!ELEMENT RBAC1_MODEL (USER+, ROLE+,
INHERITS*,PERMISSION+,
PERMISSION_ASSIGNMENT*,
ROLE_ASSIGNMENT*)>

Here, the RBAC1_MODEL production is composed of one or more
USER elements, one or more ROLE elements, zero or more
INHERITS elements, one or more PERMISSION elements, zero
or more PERMISSION_ASSIGNMENT elements, and zero or
more ROLE_ASSIGNMENT elements. The above declarations
constitute the RBAC1 model grammar.

3.1.2 Representing a Hypothetical RBAC Policy
To demonstrate the practicality of our concepts, we’ve developed
a hypothetical RBAC policy for a health care institution. For
clarity and due to the lack of RBAC notations for expressing
RBAC policies, we employed tables and graphs to informally

describe the RBAC policy. Figure 4, Table 1, Table 2, and Table
3 depicts the hypothetical RBAC policy.

Figure 4. Role Hierarchy Relation

Table 1. User to Role Assignment (UA) Relation

Table 2. Resource Description

408

Table 3. Permission to Role Assignment (PA) Relation

Using the developed RBAC grammar, the abbreviated XML
representation is as follows:

<?xml version="1.0" encoding="UTF-8"
standalone="no" ?>

<!DOCTYPE RBAC1_MODEL SYSTEM
"htpp://www.cs.fiu.edu/~nvuong01/
RBAC1_MODEL.dtd">

<RBAC1_MODEL TYPE_NAME="RBAC1_POLICY">

<!-- User set definition -->
<USER NAME="a"></USER>
<USER NAME="b"></USER>
...

<!-- Role set definition -->
<ROLE TITLE="Caregiver"></ROLE>
<ROLE TITLE="Nurse"></ROLE>
...

<!-- Role hierarchy definition -->
<INHERITS FROM="Caregiver"
TO="Registrar"></INHERITS>

<INHERITS FROM="Caregiver"
TO="Nurse"></INHERITS>

...

<!-- Permission set definition -->
<PERMISSION PERMID="P1"
OPERATION="RW" RESOURCE="AMD">

</PERMISSION>
<PERMISSION OPERATION="R" PERMID="P2"
RESOURCE="PST"></PERMISSION>

...

<!-- Permission assignment -->
<PERMISSION_ASSIGNMENT
ROLE="Psychiatrist"
PERMISSIONS="P1">

</PERMISSION_ASSIGNMENT>
<PERMISSION_ASSIGNMENT
PERMISSIONS="P2 P4 P6 P10 P11"
ROLE="Physician">

...

<!-- Role assignment -->
<ROLE_ASSIGNMENT ROLE="Psychiatrist"

USERS="a"></ROLE_ASSIGNMENT>
<ROLE_ASSIGNMENT ROLE="Technician"
USERS="d f"></ROLE_ASSIGNMENT>
...

</RBAC1_MODEL>

3.1.3 Standardized Schema
For consistent policy representation, we propose a standardized
policy schema. This ensures that the represented policy used by
participating systems is consistent across the enterprise; therefore
interoperability can be assured. Additionally, the standardized
schema allows us to maintain a single administration tool. This
tool, built in accordance to the schema, is able to load, manage,
and administrate security policies for the entire enterprise.

We employed valid and well-formed features of XML to
implement the proposed concept. This requires the participating
XML document to conform to a specified DTD or schema located
at the specified Uniform Resource Identifiers (URI) [10]. At
runtime, the XML parser validates the policy’s structure against
the schema and reports any violations confronted. For our RBAC
representation, the schema was referenced using a secured
HyperText Transport Protocol (HTTPS).

3.1.4 Semantics Through an Application Program
Interface (API)
XML was used to develop the RBAC grammar that provides the
syntactic representation of knowledge. To provide semantics to
the represented data, we propose a separate application program
interface (API). This layered approach allows us to separate data
representation from its semantics, and allows us to independently
modify each layer’s implementation without affecting the other
layer. Additionally, the API also implements a list of
administrative operations that serves as the interface for an
external administrative application. The concept of pre-
conditions and post-conditions were used to ensure that the
integrity and consistency of the RBAC authority state [9] are
maintained. Through the interface, the administration tool can
safely and transparently manipulate the represented information.
Our API implementation is an extension of NIST work [6] that
includes operations such as addRole(), removeRole(),
assignRole(), removeAssignedRole(), etc.

Our prototype of the API is in Java; therefore the
implementation can run on any platform that supports the Java 2
virtual machine (VM). Figure 4 is an architectural depiction of
our current implementation; Figure 5 provides a closer look at our
prototyped Administration Tool.

Figure 4. Administration Tool Architecture

409

Figure 5. Administration Tool Interface

3.2 Managing Security Policies
By employing code and data mobility from Java and XML
respectively, the administration tool is capable of loading an
RBAC policy, located by a URI, from across a network. This
enables a centrally located administrator to administer security
policies for the entire enterprise. The underlying XML
representation is transparent to the administrator; this allows for
various administrative views to be built on top of the represented
data. Additionally, the tool provides a less error prone and ease of
administration by enforcing consistent policy administration.
These are ideal attributes for an enterprise that requires large and
complex security policies.

4. CONCLUSION
We have presented a new approach to managing security policies
in a distributed environment. We claim that by adopting a
structured language, a separate semantics API, and a standardized
policy schema model to represent and implement security polices,
we can achieve properties such as interoperability, flexibility, and
manageability. Unlike most existing implementations, with our
approach the semantics of authorization is independently defined
and is separated from policy representation and from
implementation mechanisms. We have demonstrated our
concepts using XML and Java. XML, a meta-language, provides
a very accessible notation for expressing the key elements in a
conceptual model for an application domain. The flexibility and
simplicity of the XML format allows researchers to design new
domain-specific markup languages.

We believe that our concept can be applied to develop a
generalized security language for expressing any security policy
for a distributed environment, similar to [14][15]. With the
proliferation of XML in the industry, there is a high probability
that future systems will be equipped with an XML parser. This
will help in realizing our views and concepts.

To further extend the proposed concept, we are
experimenting with Java’s ability to load Java class files across a
network. This will allow us to maintain a centralized semantic
implementation of the semantics API, which is in line with the
concept of mandatory access control (MAC).

5. REFERENCES
[1] P. Ashley and B. Broom. 1997. An Implementation of the

SESAME Security Architecture for Linux. Australian Unix
and Open Systems Group Technical Conference.

[2] Roland Awischus. 1998. Access Control with the Security
Administration Manager (SAM). 2nd ACM Workshop on
Role-Based Access Control. Fairfax, Va.

[3] Y. Bai and V. Varadharajan. 1997. A Logic for State
Transformations in Authorization Policies. Proceedings of
the IEEE Computer Security Foundations Workshop. June
1997.

[4] Dorothy E. Denning. 1982. Cryptography and Data
Security. Addison-Wesley Publishing Company, 191-259.

[5] W. Essmayr, E. Kapsammer, R. R. Wagner, G. Pernul, A. M.
Tjoa. 1998. Enterprise-Wide Security Administration.
Annual IEEE Computer Application Security Conference.

[6] Serban I. Gavrila and John F. Barkley. 1998. Formal
Specification for Role Based Access Control User/Role and
Role/Role Relationship Management. 3rd ACM Workshop
on Role-Based Access Control. Fairfax, Va.

[7] John Hale, Pablo Galiasso, Mauricio Papa, and Sujeet
Shenoi. 1999. Security Policy Coordination for
Hetergeneous Information Systems. Annual IEEE Computer
Application Security Conference.

[8] S. Jajodia, P. Samarati, and V.S. Subrahmanian. 1997. A
Logical Language for Expressing Authorizations.
Proceedings of the IEEE Symposium on Security and
Privacy. May 1997.

[9] Jonathan D. Moffett and Emil C. Lupu. 1999. The Uses of
Role Hierarchies in Access Control. 4th ACM Workshop on
Role-Based Access Control. Fairfax, Va.

[10] Internet Engineering Task Force, Network Working Group.
RFC 2396 – Uniform Resource Identifiers (URI): Generic
Syntax. 1998. http://www.ietf.org.

[11] OMG CORBAservices Common Object Services
Specification: CORBA Security Services v1.2. December
1998.

[12] OMG CORBAmed DTF. Resource Access Decision (RAD),
Revised Submission. 26 April 1999.

[13] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. 1996. Role-Based Access Control
Models. IEEE Computer, 29(2):38-47.

[14] Mark Vandenwauver, René Govaerts, Joos Vandewalle.
1997. How Role Based Access Control is implemented in
SESAME. Proceedings of the 6-th Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
pages 293-298. IEEE Computer Society Press.

410

[15] Vijay Varadharajan, Chris Crall, and Joe Pato. 1998.
Authorization in Enterprise-wide Distributed System, A
Practical Design and Application. 14th Annual Computer
Security Application Conference.

[16] T.Y.C. Woo and S.S. Lam. 1992. Authorizations in
Distributed Systems: A Formal Approach. Proceedings of
the IEEE Symposium on Research in Security and Privacy.
1992, pp. 33-50.

[17] Extensible Markup Language (XML) 1.0 – W3C
Recommendation 10-Feb-98.
HTTP://www.w3.org/TR/1998/REC-xml-19980210.

411

