
Observations on the Role Life-Cycle in the Context of
Enterprise Security Management

Axel Kern & Martin Kuhlmann
Systor GmbH & Co. KG

Hermann-Heinrich-Gossen-Str. 3
50858 Cologne, Germany

{axel.kern|martin.kuhlmann}@systor.com

Andreas Schaad & Jonathan Moffett
Department of Computer Science

University of York
York, YO10 5DD, UK

{andreas|jdm}@cs.york.ac.uk

ABSTRACT
Roles are a powerful and policy neutral concept for facilitating
distributed systems management and enforcing access control.
Models which are now subject to becoming a standard have
been proposed and much work on extensions to these models
has been done over the last years as documented in the recent
RBAC/SACMAT workshops. When looking at these extensions
we can often observe that they concentrate on a particular stage
in the life of a role. We investigate how these extensions fit into
a more general theoretical framework in order to give
practitioners a starting point from which to develop role-based
systems. We believe that the life-cycle of a role could be seen as
the basis for such a framework and we provide an initial
discussion on such a role life-cycle, based on our experiences
and observations in enterprise security management. We
propose a life-cycle model that is based on an iterative-
incremental process similar to those found in the area of
software development.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing and
Information Systems

Keywords
Security Administration Manager (SAM), role life-cycle, role
management, role engineering, security administration,
distributed system management, enterprise user administration
(EUA), process model, enterprise security management (ESM)

1 INTRODUCTION
Over the last few years, a number of large organisations have
introduced role concepts for enterprise security management.
These concepts rely on roles which are defined at the enterprise
level.

Our practical experience, as well as the recent research on roles
as a system management concept, indicates that roles evolve
according to a life-cycle model, similar to those found in the
area of software engineering process models. When a new role-
based system is introduced within an organisation, we are rarely
able to immediately identify and transform ‘natural’
organisational roles into roles as they are required by the system.
Analysis of the organisational structures and further design of
the identified roles allow us to transform such roles for use in
the enterprise role repository and in the target systems. Once the
roles are part of our system, role management activities
comprise the daily administrative duties. As any information
system is subject to a continuous organisational change process,
role maintenance is another vital part of the life-cycle of a role.

Steady progress has been made over the last years in
establishing a framework for roles in the general area of
distributed systems management with particular progress in the
area of role-based access control. However, no life-cycle model
has yet been identified, nor have the theoretical and practical
benefits that would arise out of such an approach been
discussed.

2 MOTIVATION
We believe that our work on the life-cycle of roles provides
researchers and practitioners alike with a better understanding of
the technical and organisational dimensions of roles beyond the
traditional notion of being an intermediate construct to relate
users and permissions.

While the importance of roles for security management and
access control has been recognised, research has so far neglected
the use of rigorous software engineering techniques to support
the development and management of role-based systems. This
aspect is even more important when considering the complexity
of the systems and environments in which roles are employed.

The motivation to initiate the discussion on a role life-cycle
particularly includes:

• A role life-cycle provides a framework for identifying the
connection between existing and future work on roles.

• A role life-cycle supports a structured process for the
development of role-based systems.

• A role life-cycle supports the efficient employment of roles
within the context of organisational change.

• A role life-cycle is the basis for role engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’02, June 3-4, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-496-7/02/0006…$5.00.

43

The discussion on such a role life-cycle model is based on the
following two main points:

• A role life-cycle must be sufficiently abstract to
acknowledge a role as being a context-dependent construct
with varying semantics.

• When establishing a role life-cycle the (re)-use of
techniques from the discipline of software engineering
needs to be investigated.

3 OUTLINE
Evidence for the existence of a role life-cycle comes from the
research and industrial areas. We provide a review of selected
theoretical work on roles (Section 4.1) which indicates certain
stages of the life-cycle. This is followed by a description of the
process model that we will later adopt for our purposes (Section
4.2). The industrial enterprise user administration tool SAM
(Security Administration Manager) which uses roles as one
concept for facilitating security management is then described
(Section 4.3). This is followed by a more detailed discussion on
enterprise roles (Section 4.4).

Before we identify an initial role life-cycle, we discuss how and
why our practical experience with developing and configuring
role-based systems influenced this paper (Section 5). We
specifically address the complexity of real-world systems and
present our proven implementation method (Section 5.1);
industrial goals and challenges (Section 5.2); and the importance
of structured role engineering (Section 5.3). We then discuss the
stages of a simple role life-cycle model (Section 6) based on the
process model described previously. Specific emphasis will be
put on the life-cycle phase of role design and our practical
experiences (Section 6.2), before we conclude our paper.

4 Related Work
4.1 The Role Life-Cycle
Although the concept of a role has been used by researchers [1],
[2] and practitioners [3] for many years, the establishment of the
RBAC96 model [4] and subsequent RBAC workshops provided
an initial basis for the research area of access control models and
technologies. It is within this context that some work has already
indirectly described the stages of a role life-cycle.

A methodical approach to determine role rights from use cases is
described in [6]. All use cases for a specific system are
established and role rights are determined from this collection,
thus following the principle of least privilege.

In [7] a UML based approach to Role Engineering is described.
Role Engineering is seen as the discipline to develop RBAC
components such as role hierarchies, permissions and their
respective assignment, and constraints. The applicability of the
Unified Modelling Language (UML) for these activities is
described in the context of the Role Based Access Control
Framework for Network Enterprises [8].

A process-oriented approach for role-finding is discussed in [9].
It follows a top-down approach deriving business roles from
enterprise process models. This approach is described in the
context of a more general case-study outlining the experiences
of finding, implementing and changing roles in a large industrial
organisation.

The need for supporting role-based access control management
in rapidly changing heterogeneous environments is outlined in

[10]. The implementation of a role-based access control
maintenance system is described. This system is mostly target
independent and thus allows for efficient adoption to new access
control requirements as they result out of continuous
organisational change.

Considering the concept of roles in distributed systems
management, Lupu [5] describes the life-cycle of a role in the
context of a state machine specification following a simple
DORMANT / DISABLED / ENABLED / DELETED pattern. In
this context the actual state depends on whether a manager
subject has been assigned to that role and must thus not be
confused with the RBAC96 session concept.

4.2 Software Life-Cycle and Process
Models

It is important to understand that any software process model
can only illustrate a certain perspective on a development
process. This perspective could be technical, managerial or
dependent on some other paradigm and for reasons of space we
will only be able to present a limited review on process models.

Within the area of software engineering, a ‘life-cycle’ is an
abstract description of the structured and methodical
development and modification process of a piece of software
[11]. The term ‘process model’ is often used synonymously and
some of the most well-known representatives are the waterfall,
V, and spiral model [12], [13]. More recently, new process
models based on advances made in the area of object-oriented
analysis and design have been developed and provide an
integrated approach to software development [14].

Traditional approaches like the waterfall model consist of the
following steps:

• Requirements Analysis

• Design

• Implementation

• Testing

• Maintenance

These steps are processed in a sequential order. The main
assumption is that it is possible to define the requirements at the
beginning of the project and that they will be more or less stable
over development time. If requirements change or new ones
occur, the development team has to go back to the analysis
phase and perform the subsequent steps again. The same is true
for errors, if an error is found the team has to go back to the step
where its origin lies (e.g. design step for design errors which are
found during testing).

One main drawback of traditional approaches to software
development is that they aim at developing a ‘complete’
product. As a result, the development process will take a long
time before the product is released. This viewpoint does not
reflect the pressure of the market to deliver results as quickly as
possible. It has also been realised that in many cases product
requirements are only uncovered with the actual employment of
the product itself. Furthermore, the requirements will normally
change during development so that the assumption of a complete
and stable requirements analysis at the beginning of the project
becomes obsolete.

44

Modern software development therefore uses an incremental
development process [15] (Figure 1). After an initial analysis a
product model is defined which is as complete as possible. This
basic model is then divided into several parts. For each of these
parts the design, implementation and test phases are performed,
resulting in a partial, but functionally complete product which
can then be deployed. The advantages of this process are
twofold:

• The software is already used in production with a partial
functionality after a shorter time period, providing much
earlier return on investment.

• The users of the product can provide real feedback which
can already be integrated in the next development
increments, after using the first versions of the product

After the software is in production the software process is
supplemented by the maintenance phase thus leading to a
complete software life-cycle.

Figure 1: Incremental Process Model (as in [15])

4.3 The Security Administration Manager
The Security Administration Manager (SAM) is an Enterprise
User Administration (EUA) product developed by Systor. It
provides a central access rights repository and a unified
management of users and resources in distributed heterogeneous
systems. SAM specifically makes use of the role concept. The
general working of SAM has been described in a previous paper
[16] and we only provide a brief summary of the general context
of commercial security administration and the role of a product
like SAM.

The general notion of SAM is to manage different systems from
a single point of control. In order to do so SAM is based on a
“manager of managers” architecture. Interfaces to the specific
systems and applications allow for consolidating information in
a system-independent conceptual model.

The administration of users and their access rights in the IT
environment of medium and large companies is a complex and
expensive task. Most companies operate a large number of
applications running on several different operating systems.
According to Gartner Group, the number and variety of

platforms continues to grow in most enterprises. As most
applications and platforms have their own administration
product, this results in the need for increased platform-specific
know-how. When these systems are connected to SAM,
administrators work only with the SAM environment. This not
only consolidates the administration work but also reduces the
need for in-depth knowledge about all underlying systems.

To further reduce the EUA cost, most enterprises want to
automate the administration. The most accurate information
about its employees can often be found in the human resources
database. Extracted information like employee number,
organisational unit, location or job description can be used to
automatically add and delete users as well as update their roles.
If a new employee starts with the company or changes his job
within the company, this information is transferred directly from
the human resources database to SAM, which automatically
transforms the information to role assignments and makes the
corresponding updates in the connected target systems. In
addition, when an employee leaves the company, all accounts
and access rights of this employee are automatically deleted,
thus greatly reducing security risks (See also figure 2).

A prerequisite for this automation is the usage of roles that
correspond to organisational structures, job descriptions etc.
(See section 6).

4.4 Enterprise Roles
The IT environment of large enterprises consists of a variety of
platforms and applications. These include a number of operating
systems (e.g. OS/390, Windows NT/2000 and UNIX), databases
(e.g. Oracle), SAP’s R/3 and a large number of individual
business applications. Most of these components have a built-in
security component (like Windows NT or Oracle) or are secured
by an external security product (like RACF for OS/390). The
mechanisms used by these security components are quite
different. Some of them have already introduced roles.

A typical enterprise user must have access to a variety of
applications on different platforms. However, current existing
role concepts are mainly application and operating system
specific, causing overheads in the administration. For example,
when accessing an application, a user can have parallel sessions
at different layers such as Windows NT, OS/390 and a database,
requiring access rights for all of them. These rights have to be
administered separately in the participating systems as currently
no common RBAC support is implemented. There are currently
some developments to broaden the scope of operating system
security. Operating systems like Netware and Windows 2000
allow administration of other systems and applications using
their directories. However, those approaches are restricted to
only a subset of the systems operated by a typical enterprise;
especially the support of mainframe and midrange systems is
normally very restricted.

Because of the variety of different systems on the market and
their dynamic behaviour this extended administration support
will not be comprehensive enough in the near future. The EUA
product SAM helps to mitigate the situation by introducing
Enterprise Roles. In the SAM role concept of Enterprise Roles,
roles span over more than one target system.

Enterprise Roles in SAM consist of permissions in one or more
target systems. These permissions are specific to the target
system and can be of various natures (See example in figure 3).

Define

if X= 0
X=0 X=X+1

if X>0

Complete
Product Model

Develop
Version X

Implement
Version X

Partial
Architecture

Product
Version X

Operation
Version X

Requirements

Changes

Changes

Changes

Define Changes

Modified Model

45

User
Enterprise

Role

Ressource
(TS)

Permission
User

Assignment

Account
(TS)

Permission

Assignment
SAM

Propagation

Target System
Authorisation

Role Hierarchy

Figure 2: Enterprise RBAC Model (ERBAC)

There may be groups of authorisations like a group in UNIX; an
authorisation to a specific resource like the access right to a
shared resource in Windows NT; the read permission of a data set
in RACF; or even a role like in Oracle. Enterprise Roles can also
contain other enterprise roles thus inheriting their permissions. In
contrast to the administered target systems, SAM – like the other
EUA products – does not actively take part in authentication and
authorisation of a user. Instead, it represents a layer above the
existing security systems and controls them.

User
(SAM)

Enterprise
Role (SAM)

Role
(Oracle)

Permission
(SAM)

Group
(Win NT)

Account
(Oracle)

Account
(Win NT)

Authorisation
(Oracle)

User

Assignment

Permission

Assignment
User

(SAM)
Enterprise

Role (SAM)

Role
(Oracle)

Permission
(SAM)

Group
(Win NT)

Account
(Oracle)

Account
(Win NT)

Authorisation
(Oracle)

User

Assignment

Permission

Assignment

Fig. 3: Enterprise Role Example

Figure 2 shows the resulting model which we call Enterprise
RBAC model (ERBAC). It is based on RBAC96 [4] and the NIST
role standard draft [17]. The basic ERBAC model is analogous to
core RBAC. Enterprise roles collect all permissions which are
needed to perform a specific role. Users are assigned to these
roles. The difference between ERBAC and the RBAC96 lies in
the notion of sessions. EUA tools like SAM administer all
systems of an enterprise but do not control the actual sessions of
users. Therefore sessions can not be part of ERBAC. Instead, the
definitions in SAM are propagated to the administered systems
which we call "target system" (TS). The Enterprise user definition
in SAM leads to the creation of user accounts in the TS. A
permission can be any authorisation (called operation in core
RBAC) to a resource in one of the underlying TS. The definition
of a permission or the assignment of a permission to a role does
not lead to any update in the TS. Only when a role is assigned to a
user, the permissions of the role are propagated and the accounts
of the user get the associated permissions in the respective TS.

In addition to the core RBAC features, a general role hierarchy [4]
is supported. Enterprise roles can be assigned to other roles in a
directed acyclic graph. Child roles inherit all permissions from
their parent roles (including all permissions these roles inherit). A

user who is assigned to a child role thus gets all permissions
assigned to this role plus all permissions which this role inherits
from its ancestors. Role hierarchies allow structuring roles in an
easy manner and reduce redundancy. This leads to a smaller
number of roles to be defined in an enterprise and less
administrative effort.

Of course, it is possible to enhance ERBAC by defining
constraints (e.g. separation of duty) but this topic can not be
addressed in the scope of this paper.

5 Enterprise Role Implementation in the
"Real World"

As shown in section 4.1, the notion of roles and their advantages
are now quite well understood in the research community. An
increasing number of new applications are building its access
control mechanism on roles. The overall usage of roles, however,
is not as widespread as it might be assumed. Based on our
experience during the development of the Security Administration
Manager (SAM) and its implementation within some large
enterprises, we emphasise that defining and implementing roles is
by no means trivial and calls for the rigorous usage of a role
engineering process.

5.1 Implementation Method
In this section we briefly describe a proven method for the
implementation of enterprise roles in organisations which employ
from 10,000 to more than 100,000 users.

2 7.11 .20 01

Enterprise Security M anagement

Methods

Consolidate

Automate

Streamline

M anage

SAM Implementation
User ID and Group ID Consolidation
Policy Consolidation
Unified Administration
Consolidated View
Definition/Identification of Roles

Connection with H R Database
Connection with other Organization Databases
Role Mining

O ptimize Processes
SAM /RM
SAM /DSSO
SAM /PS
Role-based Security M anagement

Administration, W orkflow
M aintenance
Audit, Reporting
O peration
Change M anagement
Continuous Improvement

Figure 4: Implementation Method

46

We relate this method to the role life cycle and divide the
implementation into four steps: Consolidation, automation,
streamlining and management (Figure 4).

One element of the consolidation step is role analysis which is
discussed in section 6.1. Parallel to that, the role administration
software is implemented and the basic consolidation tasks are
carried out: the user and group IDs in the different systems which
will be connected with the enterprise roles are harmonised where
necessary, the security policies (e.g. password policies) are
consolidated, the administration is unified. The auditor gets a
consolidated view of the organisation’s access rights.

The second phase is dedicated to automation. This involves role
design (see section 6.2) and the connection of the administration
tool with the HR database and other organisational databases.

The streamlining step comprises the roll-out of the role-based
administration in the organisation and the possible introduction of
additional tools for the optimisation of administration, like a
password synchronisation tool, a single-sign-on tool or an
administration workflow system.

The last management phase stands for the operation, management
and maintenance of the introduced system. This includes the
establishment of regular reporting and auditing structures as well
as the implementation of change management processes for
software and the data. Consequently, the role management and
maintenance steps of the role life cycle belong here (see sections
6.3 and 6.4).

To further illustrate the dimensions and types of organisations our
method was applied in, we provide more figures on the number of
roles and users of some of the customers of Systor in the
following table (Figure 5). These numbers are consistent with the
numbers given in [3].

Organisation Type Figures

Insurance company A 17000 users

120 roles

Bank A 30000 users (user has on average 10
roles)

400 roles

Bank B 31000 users

450 roles (1 role is assigned to 70
users on average)

Figure 5: User/Role Figures

5.2 Goals and Challenges
The main goals that companies want to achieve in security
administration are enhanced security at a low cost, while coping
with the challenges of an increasingly complex IT environment. A
high level of security is important to prevent possible losses
through fraud and unauthorised disclosure of confidential
information. Internal audits often encounter severe security
weaknesses which oblige the IT security department to take
appropriate countermeasures.

An increasingly dynamic economy is an additional challenge
within this context. The most important issues here are the rapid
growth of companies, large-scale mergers, the ubiquity of the
internet and continuous organisational change:

• As most companies intensify their business of the internet,
they are dealing with very large numbers of users. A large
insurance company, for example, estimates the number of
customers who will have access to its IT resources via the
internet during the next three years at some 20 million. Of
course, such numbers cannot be administered manually.

• During the past years and most likely also in the near future a
lot of mergers take place between large enterprises. Such
mergers normally involve the integration of both different IT
infrastructures and different organisational structures, thus
increasing their complexity and their user population.

However, the primary goal of any public sector enterprise today is
to reduce its operational costs. Thus, in order to enhance the
security level while dealing with the aforementioned challenges,
the productivity of security management must be increased
dramatically. We see a rigorous role engineering process, as
described in the next sections, as a good way to reach this goal.

5.3 Role Engineering
We believe that an efficient enterprise security management is
based on:

• the usage of enterprise roles,

• automation of enterprise user administration (EUA) using an
appropriate tool,

• a well-structured role engineering process.

The concept of a role helps to bridge the gap between the
technical and the business side of security administration. The
specialists in the IT department can group permissions with roles
which represent all the authorisations that are needed for a
specific job or are connected to an organisational unit. Given this
abstraction, the actual role assignment to users can be done by
business people who understand much better which person
performs which job. It also dramatically reduces the need for
system specific know-how and allows the decentralisation of user
administration to the business units thus reducing the need (and
cost) for a large central administration group. Role-based access
control management software takes over the task of transforming
business language (i.e. roles) into technical language (i.e. access
rights of accounts to IT resources).

As pointed out in the previous section (5.1), the best way to
increase the productivity of security administration is automation,
e.g. by using data from the HR database. Prerequisites for this
automation are:

• The data of the HR database must be accurate and
maintained on time. Users who are not employees (e.g.
consultants) will probably not be defined in the HR system.
Thus, additional databases need to be accessed for obtaining
the relevant information.

• Enterprise-wide "business roles" must be defined and
implemented which can be unequivocally mapped to jobs,
organisational units etc.

• An EUA tool like SAM must be implemented so that the
roles can be propagated to all target systems.

An automatic process can then extract all new and leaving users,
as well as changes of job or organisation, from the HR or other
databases, compute the corresponding assignments or de-
assignments of roles to/from the corresponding users, and

47

communicate this information to SAM which in turn updates the
actual target systems.

However, roles do not appear out of nowhere. To obtain roles
which fit the business requirements of the enterprise and support
easier administration, a thorough analysis and design of the role
structure is required before implementing roles. This has to be
done in a well-structured role engineering process which must be
based on the life-cycle of a role. Such a life-cycle is similar to
well-known iterative-incremental software engineering processes.

6 The Role Life-Cycle
The life-cycle of a role provides an abstract description of the
structured, methodical development, modification and
maintenance of roles in role-based systems.

The role life-cycle as we perceive it, is based on our previous
literature analysis and the practical work with roles during the
implementation of the Security Administration Manager (SAM) in
large enterprises.

The structure of our role life-cycle is shown in figure 6. We
identified the four stages of:

• role analysis,

• role design,

• role management and

• role maintenance.

The stages are described in detail in the following sections. The
arrows between the process steps indicate an iterative process
model that allows us to move forwards and backwards from any
stage.

Figure 6: The Role Life-Cycle

According to the iterative-incremental development process as
described in section 4.2, these steps are not performed at once in a
sequential order. Instead, after having defined the basic role
structure, analysis and design will be performed incrementally in
cycles for different areas (e.g. a specific organisational unit).
Normally one area will be designated for a prototypical cycle
which is used to show the validity of the design so that corrections
can be made before the complete deployment of roles in the whole
enterprise. Afterwards, additional development cycles will be
performed for the other areas. This iterative-incremental process
has the following advantages:

• The design is validated early after implementation in a small
part of the enterprise so that in case of problems it is not
necessary to redesign the complete enterprise role structure.

• Having implemented roles for one area, these can already be
used productively so that easier administration and
automation lead to a return on investment at an early stage in
the role development process.

Although the role life-cycle we describe is partly based on our
experience with SAM, it is not dependant on a specific product or
system environment, but can be used for any role development
process.

6.1 Role Analysis
Role analysis is the activity of identifying roles as they occur
within the target domain in which the system will be placed.
During the role identification process, several points are essential
to achieve a robust and practical role model:

• The basic prerequisite for enterprise roles is the possibility to
describe jobs and tasks which require access rights to IT
resources by formal criteria, using structural information
about the organisation.

• The structure of the role hierarchy reflects ”natural”
organisational structures of the enterprise. Examples from
large implementations are a cost centre structure, a
departmental structure or a geographic structure. The chosen
structures should be relatively constant over time. The
consequence of frequent structural changes would be
increased role management effort.

• The role analysis process should ideally be a mixed bottom-
up and top-down approach. A top-down approach was
described in [9]. A bottom-up approach means that, starting
from the total set of permissions which exist in the
organisation, one tries to find clusters of permissions which
represent roles. While a top-down approach ignores existing
permissions, a pure bottom-up approach would not take
organisational structures into account.

• Complexity has to be balanced. Administrators have to be
able to master the system. Too high complexity can result in
lower security due to a lack of control. On the other hand, the
role model has to be granular enough to ensure that all users
get access to a set of resources which fits as exactly as
possible to their position in the organisation. However, a
compromise is sometimes unavoidable in which the principle
of least privilege is broken: there are large implementations
where the set of permissions granted by the user’s standard
role is usually bigger than the smallest set of permissions that
would be sufficient for job execution. If, for example, a
bottom-up role finding process is applied, permission clusters
will rarely map exactly 100% of the permissions of a group
of users with the same or a similar task profile.

Role analysis is performed by domain specialists with explicit
knowledge about the organisational aspects of a role as well as by
the system engineers.

6.2 Role Design
While role analysis is mainly targeted at acquiring knowledge
about the current organisational context of a role, role design has
to convert this knowledge into concepts that can be used by the
later system. This process includes the mapping of roles and
design of roles for later administration.

Role
Analysis

Role
Management

Role
Design

Role
Maintenance

48

6.2.1 Mapping Roles
For the implementation of a role model, the organisational
structures which reflect the roles have to be mapped onto the
syntax and semantics required by the enterprise role
administration tool.

We take the most common approach in which the role hierarchy is
a directed acyclic graph. Accordingly, the mapping process can be
divided into the following steps:

• Identification of the organisational structure(s) which (parts
of) the role model should represent. The ground work for this
should have been done during role analysis.

• Definition of an (injective) mapping from each structure to
the role model which maps the organisational structure onto
roles and role-role relationships.

• Definition of a user-role relation with the help of user
attributes attached to the user, for example in a digital
certificate or in the HR database of the organisation. Such
user attributes could be the user’s location or job code. If for
example each branch location of the organisation is
represented by a role, then the rule “a user is connected with
a role if the user’s location corresponds with the location that
the role represents” can be part of the user-role relation
definition. By this rule, an employee in Munich is connected
with the “Munich Branch” role and a Hamburg employee is
connected with the “Hamburg Branch” role. This definition
of a user-role relation is essential for automated
administration of user-role relations.

• Definition of a role-permission relation using permission
attributes as described above.

• Specification of an algorithm which transforms all
organisational changes to changes in the role model, having
the above mentioned mapping as an invariant. This step is
required for automated administration; the algorithm
provides the description for the automated processing. If, for
example, an algorithm for changes in the role-permission
relation as a result of organisational changes cannot be given,
then this part cannot be automated.

6.2.2 Designing Roles for Administration
The following situations can be observed in practical
implementations when roles are designed for later administration.

1. It may be desired that parts of the role model are
administered manually, and parts are administered
automatically (See figure 7).

Subgraph representing
1st organizational

structure

Subgraph representing
2nd organizational

structure

Manual
administration

only

Figure 7: Manual/Automatic Administration

2. Several organisational structures are part of the role model
and are mapped as disjoint subgraphs of the role graph (See
figures 8 and 9).

North

Bank

South

Munich Frankfurt Hamburg Cologne

Region

City

Figure 8: Admin. according to geograph. structure

All employees

Front Office

Teller Loan Manager

....

Figure 9: Admin. according to org. structure

3. Information from several organisational structures is needed
to define a single role. Example: The access rights of a user
depend on the location (i.e. geographic structure) and on his
job function; a teller in Munich is allowed to use teller
applications to access accounts from Munich customers and
is allowed to have access to folders on the Munich branch
file server.

It is easy to deal with the first situation. The parts of the model
which lie “outside” the mapping(s) mentioned above (i.e. the parts
which are not controlled by the transformation algorithm) can be
administered manually. The procedure for the second situation is
straightforward as well, here each subgraph is treated separately in
terms of automation. In the third situation, some problems arise
for which we will give solution approaches. For a better
illustration, let us take the example of a geographic structure and a
job function structure:

If GEO denotes the set of roles in the geographic structure, JOB
denotes the set of roles in the job function structure, then we can
derive a set of total roles R as a subset of the direct product GEO

JOB of the two sets.The following problems arise:

• The result is usually a large number of roles (especially if
each structure is large or if there are more than two
structures).

• It has to be defined how the job function graph and the
geographic structure graphs are merged to build a role graph.

For the construction of a merged graph, standard methods from
graph theory could be used. However, the resulting graph will be
very complex, unless one of the structures is very small. A
practical example with one of the structures being small is the
merge of a job function graph with a “staff – chief” distinction on
the lowest level (See figure 10):

49

Front Office

Teller Loan Manager

staff

chief

...

Front Office

Teller Loan Manager

Chief Teller Chief Loan Manager

Figure 10: Merge of job functions

Another approach which has proven to be successful avoids
increasing complexity. Only one structure is chosen as the role
structure and the other structures are used as constraints. As an
example we take the job function structure as the role graph and
use the geographic limitations as constraints by adding the
geographic limitation of a user as an attribute to the user-role
relationship. In the figure below, we see that Charles works
sometimes in Hamburg City as a teller and sometimes (let us
assume in a substitute function) as a loan manager in the Hamburg
North branch of a bank (See figure 11).

The disadvantages of this approach are:

• No possibility to assign authorisations to the objects of the
“dropped” structures.

• Relations between the objects of the “dropped” structures
(i.e. edges of the graphs) are lost.

One special situation is covered by the “Team based access
control (TBAC)” model [18]. In TBAC, a situation is described
where, in terms of our example, a user carries out the same job in
each location.

Charles

Hamburg City

Loan Manager Teller

Hamburg North

Figure 11: geographic limitations as constraints

Similar to role analysis, role design is performed by the relevant
domain specialists, by the system engineers and the later
administrators.

6.3 Role Management
By role management we understand the routine role
administration within an organisation. Role management builds on
an existing role model and requires the role design phase as
described above as a prerequisite.

To give a precise definition, we consider as role management the
following operations:

1. Changes in the role model as a result of organisational
changes, as described by an algorithm that has already been
specified in the design phase.

2. Creation or deletion of a user or a permission.

3. Connection/disconnection of a user and a role according to
the definition of the user-role relationship in the role design
phase.

4. Connection/disconnection of a role and a permission
according to the definition of the role-permission relationship
in the role design phase.

In practical implementations, the following role operations are of
special importance:

a) Split of one role into two roles. This happens if for example a
complex assignment is split into two jobs which are carried
out by two different persons, or if one cost centre is split into
two cost centres.

b) The inverse operation of merging two roles into one role.

These operations can be described easily by standard graph
theoretic means.

Thus, role management comprises all activities which are carried
out within the designed role concept. Role management leaves the
concept untouched. Activities that require a change to the concept
relate to role maintenance (Section 6.4).

Role management is performed solely by the system
administrators.

6.4 Role Maintenance
Organisations are subject to a continuous change process. The
reasons for this change vary and some examples would be
mergers, acquisitions or business process re-engineering activities.
A role structure which was designed and implemented is unlikely
to stay unchanged for a long time.

The correct functioning of information systems often relies on the
exact matching of the system’s conceptual model with the existing
organisational structure. So in the case of an accounting system,
departments and projects must be identified. In a similar manner a
material planning system will have to reflect the basic steps of a
production process.

In the worst case, a system will not be adjustable to the
organisational change. These kind of systems are often custom-
built and it is not feasible to change their conceptual model.

In the case of enterprise-wide access control administration
systems, the use of RBAC models provides a high flexibility and
allows for easier response to organisational changes. The adoption
of organisational changes which we will discuss as “role
maintenance” in this section is the only way to reach an optimal
exploitation of the advantages of RBAC.

By Role Maintenance we understand changes in the chosen role
concept. Such changes occur if, for example, the geographic
structure of an organisation which is used as part of the role
hierarchy is at a certain point of time not regarded as useful for
this purpose any more.

Role Maintenance activities comprise changes in the mapping of
organisational structures to roles and changes in the definition of
user-role and role-permission relationships.

50

At least a partial redesign of the role concept is necessary. But
there are considerable differences to the initial role design phase:

1. Roles do not have to be created from the scratch; the existing
role concept can be used and a migration strategy to the new
role concept may be developed.

2. Parts of the existing role concept may stay untouched.

Depending on the kind of required role maintenance activities,
domain experts, system engineers and administrators will be
involved.

7 Conclusion
In the course of this paper we have discussed the evolution of
roles in role-based systems and provided an initial outline of an
abstract iterative-incremental life-cycle model. This discussion
was based on existing research on roles and our practical
experience with the development and customisation of a specific
role-based system called SAM. We focused on providing a more
realistic picture of implementing enterprise roles before
discussing the stages of the proposed role life-cycle in detail.

We believe that the life-cycle of a role is an important concept
that must be further investigated in order to:

a) categorise existing work and identify open issues in the area
of role-based research.

b) give practitioners a framework for role-based systems
development and maintenance.

Our work is by no means complete and we could only provide an
initial motivation for, and coarse description of a role life-cycle
model, mainly adapting existing work from the area of software
process models. What is needed now is to continue work on a
more complete role life cycle model, probably looking at research
in the area of software process modelling [19]. In order to be able
to validate such a future model we must establish a set of design
criteria, which should be ideally supported by a more formal
technique such as provided by the E3 language [20].

8 Acknowledgements
The UK Engineering and Physical Sciences Research Council has
provided funding for Andreas Schaad under EPSRC Scholarship
number 99311141.

9 REFERENCES
[1] Biddle B. and E. Thomas, Role Theory: Concepts and

Research. New York: Robert E. Krieger Publishing
Company, 1979.

[2] Ferraiolo D. and R. Kuhn, "Role-Based Access
Control." presented at 15th NCSC National Computer
Security Conference, Baltimore, 1992.

[3] Schaad A., J. Moffett, and J. Jacob, "The access control
system of a European bank - a case study." presented at
Sixth ACM Symposium on Access Control Models and
Technologies (SACMAT), Chantilly, VA, USA, 2001.

[4] Sandhu R., E. Coyne, H. Feinstein, and C. Youman,
"Role-based access control models." IEEE Computer,
vol. 29, no. 2, pp. 38-47, 1996.

[5] Lupu E., "A Role-Based Framework for Distributed
Systems Management." PhD Thesis: Department of
Computing. London, Imperial College, 1998.

[6] Fernandez E. and J. Hawkins, "Determining role rights
from use cases." presented at Second ACM Workshop
on Role-Based Access Control, Fairfax, VA, USA,
1997.

[7] Epstein P., Sandhu, R., "Towards a UML based
approach to role engineering." presented at Fourth ACM
Workshop on Role-Based Access Control, Fairfax, VA,
USA, 1999.

[8] Thomsen D., D. O'Brian, and J. Bogle, "Role Based
Access Control for Network Enterprises." presented at
14th Annual Computer Security Applications
Conference, Gaithersburg, MD, USA, 1998.

[9] Roeckle H., G. Schimpf, and R. Weidinger, "Process-
Oriented Approach for Role-Finding to Implement
Role-Based Security Administration in a Large
Industrial Organisation." presented at Fifth ACM
Workshop on Role-Based Access Control, Berlin,
Germany, 2000.

[10] Moenkeberg A. and R. Rakete, "Three for One: Role-
Based Access Control Management in Rapidly
Changing Heterogeneous Environments." presented at
Fifth ACM Workshop on Role-Based Access Control,
Berlin, Germany, 2000.

[11] McDermid J., Software Engineer's Reference Book:
Butterworth Heinemann, 1990.

[12] Pressman R., Software Engineering: A Practitioner's
Approach: McGrawHill, 2000.

[13] Sommerville I., Software Engineering: Addison-
Wesley, 2001.

[14] Booch G., I. Jacobson, and J. Rumbaugh, The Unified
Software Development Process: Addison Wesley, 1998.

[15] Balzert H., “Lehrbuch der Software-Technik II”,
Spektrum Akademischer Verlag, Heidelberg/Berlin,
1998.

[16] Awischus R., "Role based access control with the
security administration manager (SAM)." presented at
the Second ACM Workshop on Role-Based Access
Control, Fairfax, USA, 1997.

[17] Ferraiolo D., R. Sandhu, S. Gavrila, R. Kuhn and R.
Chandramouli, "Proposed NIST standard for role-based
access control", ACM Transactions on Information and
System Security (TISSEC), vol. 4, no. 3, 2001.

[18] Georgiadis C., I. Mavridis, G. Pangalos and R. Thomas,
“Flexible Team-Based Access Control Using Contexts”
presented at Sixth ACM Symposium on Access Control
Models and Technologies (SACMAT), Chantilly, VA,
USA, 2001.

[19] Finkelstein A., J. Kramer, and B. Nuseibeh, Software
Process Modelling and Technology. Taunton, UK:
Research Studies Press Ltd., 1994.

[20] Jaccheri M., G. Picco, and P. Lago, "Eliciting Software
Process Models with the E3 Language." ACM
Transactions on Software Engineering and
Methodology, vol. 7, pp. 368-410, 1998.

51

