
A Logical Framework for Reasoning about
Access Control Models

ELISA BERTINO
DSI, Università di Milano
BARBARA CATANIA
DISI, Università di Genova
ELENA FERRARI
DSCFM, Università dell’Insubria
and
PAOLO PERLASCA
DSI, Università di Milano

The increased awareness of the importance of data protection has made access control a relevant
component of current data management systems. Moreover, emerging applications and data models
call for flexible and expressive access control models. This has led to an extensive research activity
that has resulted in the definition of a variety of access control models that differ greatly with
respect to the access control policies they support. Thus, the need arises for developing tools for
reasoning about the characteristics of these models. These tools should support users in the tasks
of model specification, analysis of model properties, and authorization management. For example,
they must be able to identify inconsistencies in the model specification and must support the
administrator in comparing the expressive power of different models. In this paper, we make a
first step in this direction by proposing a formal framework for reasoning about access control
models. The framework we propose is based on a logical formalism and is general enough to model
discretionary, mandatory, and role-based access control models. Each instance of the proposed
framework corresponds to a C-Datalog program, interpreted according to a stable model semantics.
In the paper, besides giving the syntax and the formal semantics of our framework, we show some
examples of its application. Additionally, we present a number of dimensions along which access
control models can be analyzed and compared. For each dimension, we show decidability results
and we present some examples of its application.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration—
Security, integrity, and protection

Author’s addresses: E. Bertino and P. Perlasca, Dipartimento di Scienze dell’Informazione,
Università degli Studi di Milano, via Comelico 39/41, 20135 Milano, Italy; email: {bertino,
perlasca}@dsi.unimi.it; B. Catania, Dipartimento di Informatica e Scienze dell’Informazione, Uni-
versità di Genova, via Dodecaneso 35, 16146 Genova, Italy; email: catania@disi.unige.it; E. Ferrari,
Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Università dell’Insubria, via Valleggio
11, 22100 Como, Italy; email: Elena.Ferrari@uninsubria.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1094-9224/03/0200-0071 $5.00

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003, Pages 71–127.

72 • E. Bertino et al.

General Terms: Security

Additional Key Words and Phrases: Access control framework, access control models analysis, logic
programming

1. INTRODUCTION

Access control is usually performed against a set of authorizations stated by
security administrators or users according to some security policies [Castano
et al. 1995]. An authorization in general is specified on the basis of three pa-
rameters 〈o, s, p〉. This triple specifies that subject s is authorized to exercise
privilege p on object o. Access control models based on the 〈o, s, p〉 paradigm
are appropriate for traditional database environments and applications but are
not adequate to meet the requirements of new database models and emerging
applications that call for more flexible and expressive access control models.
Over the last decade this need has resulted in various extensions to traditional
data access control models that can be classified into three main categories:

— Extensions of access control models used in conventional relational database
systems. Recent research proposals have extended the capabilities of these
models with a variety of features, such as negative authorizations [Bertino
et al. 1997], role-based and task-based authorizations [Sandhu et al. 1996],
and temporal authorizations [Bertino et al. 1998]. Moreover, multipolicy au-
thorization models [Bertino et al. 2000] have been proposed, that is, models
able to support a variety of access control policies.

— Development of access control models for advanced DBMSs, like object-
oriented [Fernandez et al. 1994; Millen and Lunt 1992; Rabitti et al. 1991],
object-relational, and active DBMSs [Haas et al. 1990]. These DBMSs are
characterized by data models that are richer than the relational model.
Therefore, authorization models developed for relational DBMSs must be
properly extended to deal with the additional modeling concepts contained
in such advanced data models. For instance, in object-oriented data mod-
els, classes can be organized in hierarchies and can contain not only data
but also methods performing operations on data. All these features must be
taken into account when defining an access control model for object-oriented
databases.

— Development of access control models for advanced applications, such as ap-
plications in the context of the World Wide Web (WWW) [Samarati et al.
1996; Winslett et al. 1997], Digital Libraries (DLs) [Adam et al. 2002], Work-
flow Management Systems (WFMSs) [Atluri and Huang 2000; Bertino et al.
1999; Thomas and Sandhu 1997], and Data Warehousing Systems. These
advanced application environments are characterized by new access control
requirements, such as for instance the support for a flexible subject qualifi-
cation, authorization constraints, content-dependent access control, and new
access privileges. All these requirements cannot be adequately supported by
current access control mechanisms, which are tailored to few, specific policies.
In most cases, either the organization is forced to adopt the specific policy

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 73

built-in into the access control mechanism at hand, or access control policies
must be implemented as application programs. Both situations are clearly
unacceptable.

These research efforts have resulted in the definition of a variety of access
control models, that greatly differ with respect to their basic components and
the access control policies they support. Thus, an important issue is how to
evaluate and compare the expressive power of all those models. We believe that
this is a crucial requirement since sometimes it is difficult to understand if
new requirements and applications really need the definition of another access
control model or the models already defined could be enough. The term expres-
sivity is a broad term which may have different meanings and may take into
account different aspects of an access control model. In this paper, along the
lines pointed out by Sandhu [1992b], by expressive power we mean the ability
of the models to support a variety of access control policies. In other words, the
expressivity of an access control model is a measure of the range of policies it
can support.

Based on the previous considerations, we believe that there is a strong need
for a framework that makes it possible to reason about the expressive power
and the features of access control models and to compare them on a formal basis.
The framework must be flexible enough to accommodate both traditional and
advanced access control models. The goal of this paper is thus not to present yet
another access control model but to make a step towards the development of
a formal foundation for access control models. We propose a logical framework
able to model discretionary, mandatory, and role-based access control models.
Each instance of the framework is a logical program, composed of C-Datalog
rules [Greco et al. 1992], representing a specific instance of an access control
model, for a given application domain. The framework is flexible enough to
represent objects, subjects, privileges, possibly organized into hierarchies, and
sessions, as well as positive and negative authorizations. The framework allows
one to specify both explicit and derived authorizations, that is, authorizations
that can be inferred from those explicitly specified. Additionally, the framework
allows the specification of constraints on basic components of the framework.
An important and innovative characteristic of our framework is that it does
not impose any specific conflict resolution policy to deal with the simultaneous
presence of both a positive and a negative authorization for the same object,
subject, and privilege. Rather, it supports the specification of arbitrary conflict
resolution policies and provides a semantics that is parameterized with respect
to such a policy.

In the paper, besides giving the syntax and the formal semantics of our frame-
work, we demonstrate its applicability by showing how some access control
models can be mapped onto it. Moreover, we define a set of dimensions for the
analysis of access control models and for comparing their expressive power,
and we show how the analysis along these dimensions can be performed using
our framework. Additionally, we present decidability results for these dimen-
sions. The proposed dimensions can be taken as the basis for developing ad-
vanced tools for the specification and the analysis of access control models. For

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

74 • E. Bertino et al.

example, they must be able to identify inconsistencies in the model specification
and must support the administrator in comparing the expressive power of the
models.

The remainder of the paper is organized as follows. Section 2 surveys related
work, whereas Section 3 provides a possible scenario for the proposed frame-
work and analysis dimensions. Section 4 introduces the basic components of our
framework, whereas Section 5 gives the formal semantics. In Section 6 we show
some examples of the framework applicability. Section 7 presents the proposed
dimensions for the analysis of access control models. Section 8 concludes the
paper. Appendix A shows how a C-Datalog program can be transformed into an
equivalent Datalog program, whereas formal proofs of the proposed results are
reported in Appendix B.

2. RELATED WORK

Although no comprehensive solution to the problem of comparing and analyz-
ing access control models has been proposed so far, recent researchers have
recognized the importance of this issue and some proposals have been pre-
sented [Jaeger and Tidswell 2001; Jajodia et al. 1997; 2001; Koch et al. 2000;
2001]. Those proposals mainly differ in the kind of approach (graph-based
vs. logical) they use for representing access control models, policies, and con-
straints. Graph-based approaches rely on the use of graph transformations
[Rozenberg 1997], whereas logical approaches are based on the use of logic
programming [Lloyd 1987]. In graph-based approaches, access control models
are modeled through graphs whose state changes upon the application of graph
transformations. Graph transformations are techniques for modeling the evo-
lution of graph structures according to a graph grammar1 and are used for mod-
eling the basic components of access control models and constraints. In logical
approaches, such components are expressed through logic programs. According
to the semantics chosen for these programs, the set of authorizations entailed
by a given access control model instance corresponds to a certain set of facts
contained in the models of the constructed logic program. By representing ac-
cess control models as logic programs, the problem of comparing and analyzing
access control models is reduced to the problem of comparing and analyzing
logic programs. The advantage of this equivalence is that one can exploit the
theoretical results obtained in logic programming for reasoning about access
control models.

Although the two approaches have almost the same expressive power, they
are complementary with respect to the purpose of use. In particular, a logical
approach provides a precise mathematical foundation for reasoning about ac-
cess control models. However, logical programs are not intuitive to most users.
A graph-based approach, by contrast, provides user-friendly notation and, as
such, it could be used as an effective tool for representing logical programs.
Therefore, we believe that the main usage of the graph representation is to
help in the specification, design, and presentation of access control policies and

1A graph grammar can be viewed as a generalization of the formal language theory based on string
grammars, and of the theory of rewriting terms using trees [Rozenberg 1997].

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 75

constraints, rather than as a pure computational model. By contrast, a logical
representation allows one to use a declarative approach for representing ac-
cess control models and for computing the entailed set of access authorizations.
Moreover, a logical approach is better supported than a graph-based approach
by a wide variety of techniques and environments for computation.

Several languages, tools, and applications exist for both approaches. Among
the languages and tools based on a graph representation, we recall PRO-
GRES [Ehrig et al. 1999; Schurr 1991], DACTL [Glauert et al. 1991], and
AGG [Ehrig et al. 1999; AGG]. Those tools provide graph editors for managing
graphs and interpreters for supporting graph transformations. In general, all
those tools provide several functions such as the generation and the manage-
ment of different graph views, of different sections of a given graph, and of differ-
ent representations of a graph. The interpreter applies rules for graph transfor-
mations and, in most cases, the user can choose to activate, either interactively
or automatically, these rules. For the logic programming approach, Prolog is
the most widely used language and several Prolog implementations have been
developed. We recall, among the others: Strawberry Prolog [STRAWBERRY
PROLOG], a 32-bit Prolog compiler supporting object oriented programming;
ECLiPSe [ECLiPSe] (ECLiPSe Common Logic Programming System), a Pro-
log based system whose aim is to serve as a platform for integrating various
Logic Programming extensions, in particular Constraint Logic Programming
(CLP); XSB [XSB], a Prolog based system that extends standard Prolog with
an implementation of OLDT2 and HiLog terms (higher-order programming in
which predicate symbols can be variable or structured). All those tools provide
interfaces towards C, C++, or Java environments, and various DBMSs, such as
Oracle, through ODBC or JDBC. From the side of specific logic programming
database systems we recall, among the others, CORAL [CORAL] developed at
the University of Wisconsin-Madison.

Among the graph-based approaches to the specification of access control
models, we recall the one by Koch, Mancini, and Parisi-Presicce [Koch et al.
2001]. The framework they propose is expressive enough to model classical ac-
cess control policies—mandatory, discretionary, and role-based access control
policies—as well as constraints on the basic components of access control mod-
els. However, the goal of this framework is different from ours in that its goal
is mainly to provide a tool for policy integration and evolution. By contrast,
the problem of analyzing and comparing the expressive power of existing ac-
cess control models is not considered. In a previous work [Koch et al. 2000],
Koch, Mancini and Parisi-Presicce provide a formalization of role-based access
control models using graph transformations which allows one to specify and
verify consistency requirements. The goal of that work is different from ours
since the framework they propose is focused on role-based access control mod-
els only and, in particular, on the issues of administration and revocation of
user-role assignments. By contrast, we do not focus on a specific access control

2OLDT is a resolution strategy that avoids redundant computation by remembering subcomputa-
tions and reusing their results to respond to later requests.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

76 • E. Bertino et al.

model, rather we propose a general framework for representing a large variety
of access control models.

The use of graph models has also been proposed by Jaeger and Tidswell [2001]
as an approach to simplify the specification and the verification of safety via
constraints, that is, with expressions able to specify the safety requirements
of any access control configuration. An access control configuration is safe if
does not happen that unexpected rights are granted to subjects not possessing
the requirements needed for exercising those rights. In Jaeger and Tidswell
[2001], constraints are expressed by using a small set of operators on graph
nodes. The constraint language is expressive enough to model the most widely-
used classes of constraints, such as static and dynamic separation of duty. Some
preliminary results on the complexity of safety verification are also presented,
which demonstrate the applicability of the approach. However, this work does
not address the problem of comparing the expressive power of access control
models and analyzing their characteristics.

For the logical formalism approach, Jajodia et al. [1997; 2001] have pro-
posed a logical language for specifying authorization rules and have shown
how this language can express several discretionary access control policies.
Programs that can be written in this language are a subset of stratified Dat-
alog programs. Thus, each program generates a unique set of authorizations.
Moreover, the set of predicates that can be used in those programs is fixed and
specifically conceived to express traditional discretionary access control mod-
els. By contrast, in this paper we propose a more general formalism able to
model a variety of authorization specifications without syntactic restrictions,
like stratification. Each program can therefore generate more than one set of
authorizations (one for each stable model of the program). Hence, we do not
restrict ourselves to the consideration of programs having a unique model, like
stratified Datalog programs. Rather we allow a multiplicity of models to be
associated with a given program. The administrator can then choose one of
those sets, depending on the security requirements of the considered applica-
tion domain. Our framework supports the usage of user-defined predicates. The
framework is thus able to accommodate new and emerging models without re-
quiring any extension. Our framework is also different from the one by Jajodia
et al. [1997; 2001] with respect to the adopted conflict resolution policy. In
the framework by Jajodia et al., when a conflicting authorization is discarded,
other authorizations that may have been derived from it are not necessarily
discarded. From our point of view this approach is not always correct. Thus,
in our framework, we compute derived authorizations after resolving conflicts.
Additionally, we propose a set of dimensions for the analysis of access control
models and show how our framework can be used to compare and analyze ex-
isting access control models. These aspects are not addressed by the work of
Jajodia et al.

3. MOTIVATING EXAMPLE

Suppose that an organization plans to develop an access control system. To this
purpose, the security administrator (hereafter denoted by SA) must identify

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 77

which data have to be protected, how data can be accessed, and who can access
those data under which privileges. These activities can be performed in three
main steps, described in the following.

I. During the first step, the SA must choose an access control policy. For
example, the SA may decide to adopt a discretionary policy because of its flexi-
bility.

II. During the second step, the SA must specify an access control model
compliant with the chosen discretionary policy. To this purpose, the SA must
specify: (i) relevant domain components (for example, groups and/or roles);
(ii) a set of rules specifying how domain components are hierarchically orga-
nized (for example, role inheritance hierarchies); (iii) a set of rules specifying
how conditional authorizations are automatically derived by the system, start-
ing from the authorizations explicitly specified; (iv) a set of rules specifying the
integrity constraints the generated authorizations must satisfy. If the chosen
model supports both positive and negative authorizations, the SA must also
specify a mechanism to deal with conflicts that can possibly arise in the set of
entailed authorizations.

We may assume that, in the access control model specification process, the
SA is assisted by a tool, providing a GUI for entering the model characteris-
tics and translating the specified model in an internal formal (e.g., the logical
specification). It is also reasonable to assume that a library of already-specified
access control models exists in the system. Thus, the SA, besides the specifi-
cation of a new access control model, can alternatively select an access control
model already contained in the library.

After the access control model has been specified or selected, the SA may
be interested in determining whether the library contains other access control
models, supporting similar features with respect to the ones supported by the
chosen model. For example, if the SA selects a hierarchical RBAC model sup-
porting both positive and negative authorizations, he/she may be interested in
determining which other RBAC models with similar characteristics exist in the
library. Such models can differ for example with respect to how they propagate
authorizations through the role hierarchy. After selecting a certain set of mod-
els, the SA, in order to make his/her final choice, can evaluate the expressive
power of the chosen models, determining for example the relationships existing
between the authorizations entailed by the selected models. The SA may also
be interested in specifying some instance examples then analyzing how the sets
of entailed authorizations, computed for the specified instances, are related.

III. Once the model has been specified, the SA can start the analysis of the
specified model, to identify possible weaknesses and interesting properties. For
example, he/she can check whether constraints are well defined, that is, they
admit the existence of at least one model instance, or examine the dependencies
existing among authorizations. Based on the analysis results, the model can be
refined, for example adding or deleting some integrity constraints.

In order to illustrate an example of the proposed scenario, suppose that, dur-
ing step I, the SA chooses a discretionary policy. To support the chosen policy,

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

78 • E. Bertino et al.

during step II, the SA may specify a hierarchical RBAC model, called Model1
in the following, propagating authorizations from roles to users playing those
roles and from roles to subroles. The library may contain other access models
with similar characteristics. For example, suppose that the library contains
a hierarchical RBAC model, called Model2, that allows the SA to specify for
each role whether it is temporarily not usable by the users authorized to play
it. Moreover, suppose that for each role and privilege it is possible to specify
in which direction (upward or downward) the privilege has to be propagated
through the role hierarchy. Model2 is shown to the SA, since it is structurally
similar to the one he/she has specified. At this time, in order to make the right
choice, the SA may be interested in comparing the expressive power of Model1
and Model2. In this case, the system could determine that for each instance
of Model1 there exists an instance of Model2 entailing the same set of autho-
rizations. Based on this result, the SA can for example select Model2, since it
is more expressive than Model1. Model2 can then be analyzed during step III,
in order to identify useful properties. For example, the SA may be interested
in determining whether it is possible to generate some negative authorizations
for a given role starting from a positive authorization for the same role. Based
on the result of the analysis, Model2 can be refined, for example, inserting an
integrity constraint specifying that this situation must be avoided.

With respect to the previous scenario, the aim of this paper is to present the
formal foundations for developing a tool able to support all the above-mentioned
tasks. In particular, as we will clarify in the following sections, the proposed
logical framework can be used for the internal representation of access con-
trol models in a common and formal format, that makes possible the subse-
quent analysis phase. As far as analysis is concerned, we present in Section 7
two classes of dimensions, that can serve as a basis for developing analysis
tools. In particular, we propose a set of inter-model properties (see Section 7.1)
that serve to make a comparative evaluation of access control models and thus
represent the basis to make the more appropriate choice for the considered
environment. An important issue concerns devising appropriated criteria for
such choice. Some relevant quantitative criteria for each choice concerns the
cost of administration and authorization checking operations and the complex-
ity of the mapping on a given authorization policy on a given authorization
model. Examples of inter-model properties are related to the structural equiva-
lence/containment of two models, that is, whether they are built from the same
or a similar set of building blocks, independently from the set of authorizations
they entail. Besides structural equivalence, another fundamental issue is access
equivalence/containment, that is, whether two models entail the same set of au-
thorizations. By evaluating both access and structural equivalence, the SA can
for example discover that the library contains an access control model equiva-
lent to the one he/she has defined, but able to express the security requirements
in a more compact way (for instance, by specifying fewer authorizations) or in a
way that makes the management of administrative operations more efficient.

By contrast, for the analysis of a single access control model we propose the
use of intra-model properties (see Section 7.2). In particular, we have devised
two main intra-model properties: reachability, which allows the SA to identify

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 79

whether an authorization can be derived from a given access control model, and
can thus be the basis for safety verification, and consistency, which allows the
SA to determine whether the specified constraints can be satisfied, or whether
they specify inconsistent conditions.

4. THE FORMAL FRAMEWORK

In the following, we first introduce the basic elements of the framework. Then,
we introduce a logical language by which these basic components can be for-
mally represented. Finally, we show how the introduced components can be
described by the proposed logical language.

4.1 The Basic Components

The framework we propose has been developed with the goal of being as general
as possible. Therefore, it contains a set of primitive “building blocks” upon which
all other necessary concepts can be constructed. Then, based on the model to be
represented, some of these building blocks are selected and composed together.

The framework supports the representation of four basic components—
subjects, objects, privileges, and sessions—and the representation of arbitrary
authorization rules. Additionally, the framework supports the specification of
constraints on basic components of the framework. Subjects, objects, privileges,
and sessions are characterized by a variable number of attributes. Those at-
tributes model properties that are relevant in the specification of access control
policies. Examples of properties are the name of a subject or an object access
class. The various components of our framework are presented below.

Subjects. Authorizations are granted to subjects. A subject can be either a
user, a process, a group, or a role. A user is a human being for whom autho-
rizations must be expressed. Groups consist of sets of users and can be hier-
archically organized into a group-subgroup hierarchy, according to a partially
ordered relationship (denoted by ≺G). Roles represent functions within a given
organization. Roles can be hierarchically organized into a role-subrole hierar-
chy according to a partially ordered relationship (denoted by ≺R). A process is
the execution of a program on behalf of a specific user.

Objects. Objects are the resources to be protected. Objects can be hierarchi-
cally organized into a part-of hierarchy according to a partially-ordered rela-
tionship (denoted by ≺O).

Privileges. Privileges represent the access modes subjects can exercise on the
objects in the system. Some interactions may exist between privileges, speci-
fying that a privilege is stronger than some others. For this reason, privileges
can also be hierarchically organized into a privilege hierarchy according to a
partially ordered relationship (denoted by ≺P).

Sessions. A Session is a particular instance of a connection of a user to the
system.

Authorization rules. Authorizations on the basic components can be spec-
ified through authorization rules. Authorization rules can exploit subjects,

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

80 • E. Bertino et al.

objects, privileges and sessions attributes for the derivation of either positive
or negative authorizations. A positive authorization establishes that a subject
is authorized for a given privilege on a given object, whereas a negative autho-
rization establishes that a subject is denied access to a given object under a
given privilege. The specification of authorization rules can rely on the usage
of user-defined predicates.

Constraint rules. Constraints on the components of the system can be spec-
ified through constraint rules. In general, constraint rules specify conditions
that cannot be violated by the components of the system. Constraints can be
classified into static and dynamic: static constraints can be checked statically,
that is, without taking into account the execution state of the system, whereas
dynamic constraints can be checked only by taking into account the execution
state of the system. Constraints can involve subjects, objects, privileges, ses-
sions and their hierarchical organization.

To formally represent the building blocks of our framework, we use C-
Datalog [Greco et al. 1992], which is an object-oriented extension of Datalog,
supporting all features required to model subjects, objects, privileges, sessions,
their associated attributes, and authorization and constraint rules. More pre-
cisely, C-Datalog is an extension of Datalog [Ullman 1989] that includes a num-
ber of object-oriented constructs. In particular, it provides a framework for
representing both classical object-oriented concepts, such as classes, objects,
inheritance, that we use to represent subjects, objects, privileges, and sessions,
as well as typical logic-based concepts, such as deductive rules, used to repre-
sent authorization and constraint rules. Object-oriented concepts like classes,
objects, and inheritance provide the suitable background needed for fully
characterizing each basic component of our framework: class attributes model
relevant properties for the specification of access control policies whereas in-
heritance between classes allows classes to be defined in terms of other classes.
This feature provides the ability to specialize the behaviour of classes start-
ing from a set of common elements provided by their superclasses. For in-
stance, a user, a process, a group, and a role can be defined as subclasses
of a common superclass subject. On the other hand, the usage of a super-
class “subject” allows us to easily refer to any subject in the specification of
authorizations.

4.2 A Brief Introduction to C-Datalog

In C-Datalog, logical rules are defined against a given C-Datalog schema, rep-
resenting the structure of the objects existing in the system. In the following,
we briefly describe the basic concepts of the C-Datalog data model, then we
present the C-Datalog Language.

C-Datalog data model. The C-Datalog data model is based on the following
concepts.

(1) Class and relation names. The model provides the representation of
two different sets of entities: (i) class names (denoted by K), representing

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 81

names of classes in the usual object-oriented terminology, and (ii) derived
relation names (also called predicates in what follows) (denoted by R), rep-
resenting predicates defined by logical rules. In the following, we denote
K ∪R with B. Moreover, the following assumptions hold: (i) K ∩R = ∅, that
is, class and relation names must be disjoint, and (ii) {⊥, string , int} ⊆ K ,
that is, we assume that some built-in class names exist.

(2) Class schema. A function Scheme: B → ES assigns a schema to class
names, where ES is a set of entity schemas. An entity schema is a finite
subset of elements called attributes of the form (name : type), where name
is an attribute name (or label), belonging to an attribute name set A, and
type ∈ K . We assume that no entity schema exists having two attributes
with the same name. Function Scheme must satisfy the following (obvi-
ous) conditions: (i) ∀k ∈ K , (self : k) ⊆ Scheme(k); (ii) ∀r ∈ R, (self : r) 6⊂
Scheme(r); and (iii) ∀k ∈ {⊥, string, int}, Scheme(k)= {(self : k)}.

(3) Inheritance. To specify inheritance between classes, a function
ISA : K → 2K is defined, such that ∀c ∈ K , ISA(c) = {k | k is a direct
superclass of c}. Function Scheme can be closed with respect to the class
hierarchy, obtaining a function Scheme∗. ∀k ∈ K , Scheme∗(k) returns the
attributes of k and of all its superclasses. Conditions are given to deal with
attributes with same name belonging to different superclasses (we do not
consider this case in the paper). Note that {int,string} ⊆ ISA(⊥) is always
valid.

(4) Object identifiers. We assume the existence of a set Z of object identi-
fiers (or oids). In the following, object identifiers of non built-in classes are
denoted by #i, where i is an integer number.

(5) Instances. An instance of an entity b ∈ B can be defined as a tuple T
on the entity schema H of class b, that is, as a subset of A× Z such that:
∀(a : k) ∈ H, ∃!(a : z) ∈ T with z ∈ Z k . Note that if b ∈ K , instances
of b are all the possible objects of class b, in object-oriented terminology.
On the other hand, if b ∈ R, instances of b are tuples, in the usual logic
programming sense.

Based on the previous notions, a CD (C-Datalog) Schema S is defined as a tu-
ple < B, Scheme, A, ISA, Z >. A CD Schema must satisfy the usual conditions
of object-oriented schemas. For example, the instances of a class must also be
instances of all its superclasses, oids are unique, and so on.

C-Datalog language. Given a CD Schema S =< B, Scheme, A, ISA, Z>, the
C-Datalog logical language is used to define the extensions of the entities of S
and to provide query facilities. The language is composed of: predicate symbols,
coinciding with set B, constants symbols, coinciding with set Z , argument label
symbols, coinciding with set A, and a set of variable names V .

A CD atom has the form p(T) where: (i) p ∈ B, Scheme∗(p) = {a1 : k1 . . . , an :
kn}; (ii) T = {a1 : t1 . . . , an : tn}, such that for each (aj : t j), j = 1, . . . , n, k j is
the type of t j and one of the following conditions holds: (h) t j ∈ Z , (hh) t j ∈ V ,
(hhh) t j is an atom. If t j ∈ Z or t j ∈ V , then (aj : t j) is a simple term otherwise
it is a class term. Moreover, if p ∈ K , then p(T) is a class atom otherwise it is

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

82 • E. Bertino et al.

a derived relation atom. Let t1, t2 be either constants or variables, then t1θt2,
with θ ∈ {=,<,>,≤,≥, 6=} is a comparison atom. A CD literal is an atom p(T)
or the negation of an atom not p(T).

A CD rule l has the form: H ← A1, . . . , An, where H is a CD atom whose
arguments are simple terms, whereas A1, . . . , An are CD literals or comparison
atoms. H is the head of l denoted by head(l), whereas A1, . . . , An is the body
of l , denoted by body(l). Let l be a CD rule, if body (l) = ∅, then l is a fact; a
ground fact is a fact with no variables. The variables appearing in the head of
a rule must appear also in its body in order to assure typing and referential
integrity.

A CD program P for S is a set of ground facts for each class name c ∈ K and
a set of CD rules for each relation name r ∈ R.

4.3 Representation of the Basic Components in C-Datalog

Based on the C-Datalog language, in the following we introduce the concept
of Access Control Model Schema (ACMS for short) and Access Control Model
Instance (ACMI for short), used to represent an authorization model inside the
proposed framework. Informally, an ACMS defines the structural components
on which the model is based, whereas an ACMI provides information concern-
ing the component instances, that is, the actual subjects, objects, privileges,
sessions, and the authorization and constraint rules used to instantiate the
model.

Access Control Model Schema. To represent in C-Datalog the basic com-
ponents introduced in Section 4.1, we need first to define a CD schema, able to
model the following components:

— Domain component (DC). Domain classes represent the structure of basic
components of our framework (subjects, objects, privileges, and sessions) and
domain instances represent the actual subjects, objects, privileges, and ses-
sions. Instances are represented as a set of facts, which form the domain
component.

— Domain structure component (DSC). Domain structure information rep-
resents relationships existing among the basic components, for example
parent-child relationships in basic component hierarchies. This information
is expressed through a set of derived relation rules, representing the Domain
Structure Component. The presence of these kinds of rules depends on the
existence of a hierarchical organization of the class instances and/or of their
attributes.

— Authorization component (AC). This component contains authorization
rules, expressed as a set of derived relation rules.

— Propagation component (PC). This component consists of derived relation
rules, called in what follows propagation rules, by which additional au-
thorizations can be derived, starting from authorization rules and domain
information. For example, a typical propagation rule specifies that an autho-
rization which holds for an object o also holds for all the sub-objects of o. The
presence of these kinds of rules depends on the existence of a hierarchical

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 83

organization of class instances. Propagated authorizations also maintain in-
formation on the authorization source, that is, the authorization that has
triggered the propagation process. Information on the source of a propaga-
tion can be useful for the resolution of conflicts between positive and negative
authorizations (see Section 5).

— Constraint component (CC). The constraint component is composed of de-
rived relation rules able to express static and dynamic constraints on the
basic components.

An ACMS can then be formally defined as follows.

Definition 1 (Access Control Model Schema). An Access Control Model
Schema is a CD Schema < B, Scheme, A, I S A, Z > such that:

(1) B = K ∪ R such that: (i) K = Kbuilt in∪ Kbasic, where Kbuilt in =
{⊥, int, string}, and Kbasic ⊆ {user, group, role, process, subject, ob-
ject, privilege, session}. We assume that Kbasic always contains the
class names “subject”, “object”, “privilege” and at least one class name
from those in {user, group, role, process}; (ii) R = Rdomain ∪ Rauth
∪Rconstraint ∪ Ruser def . In particular, Rdomain ⊆ {SubG, InSubG, Belong,
UserIn, LessR, InLessR, Play, UserPlay, PartOf, InPartOf, LessP, InLessP,
ActiveRole}, Rauth = {Authd , Authp, Auth}, Rconstraint ⊆ {ErrorC}, and
Ruser def is a set of user-defined derived relation names.
The aim of derived relation names in Rdomain is to express the organization
of the instances of each class in K and their structural relationships. K and
Rdomain are related as follows:
— if SubG ∈ Rdomain, then group ∈ Kbasic and groups must be hierarchically

organized (InSubG ∈ Rdomain);
— if Belong ∈ Rdomain, then {user, group} ⊆ Kbasic;
— if UserIn ∈ Rdomain, then {user, group} ⊆ Kbasic, Belong ∈ Rdomain and

groups must be hierarchically organized (InSubG ∈ Rdomain);
— if LessR ∈ Rdomain, then role ∈ Kbasic and roles must be hierarchically

organized (InLessR ∈ Rdomain);
— if Play ∈ Rdomain, then {user, role} ⊆ Kbasic;
— if UserPlay ∈ Rdomain, then {user, role} ⊆ Kbasic, Play ∈ Rdomain and roles

must be hierarchically organized (InLessR ∈ Rdomain);
— if PartOf ∈ Rdomain, then object ∈ Kbasic and objects must be hierarchi-

cally organized (InPartOf ∈ Rdomain);
— if LessP ∈ Rdomain, then privilege ∈ Kbasic and privileges must be hierar-

chically organized (InLessP ∈ Rdomain);
— if ActiveRole ∈ Rdomain, then {role, user, session} ⊆ Kbasic.
Rconstraint contains a derived relation name (that is, ErrorC) used to de-
fine constraint rules, whereas Rauth is composed of three derived relation
names used to define authorizations: Authd is used to define direct autho-
rizations, that is, authorizations that are not derived through propagation
rules, Authp is used to define propagated authorizations, and Auth to refer
indiscriminately to direct and propagated authorizations. Ruser def is a set
of user-defined relation names, whose meaning depends on the context.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

84 • E. Bertino et al.

Fig. 1. The ISA hierarchy.

(2) Function Scheme, for derived relation names, is defined in the fourth col-
umn of Table I.

(3) Function ISA, for non built-in class names, is defined as follows:
ISA(user) = ISA(group) = ISA(role) = ISA(process) = {subject} (see
Figure 1). For all the other class names c, ISA(c) = ∅.

(4) Attribute name set A contains the special name “self” and the attribute
names appearing in the schema of each entity name b ∈ B (see Table I).

(5) A set Z consisting of oids for class entity names.

Table I contains information on the derived relation names composing an
ACMS (see Definition 1). In particular, the first column groups predicates ac-
cording to their type. The second column reports the predicate names. The third
column lists constraints that predicates must satisfy whereas the fourth column
presents predicate schemas. Finally, the fifth column explains the predicate’s
meaning.

Access Control Model Instance. An Access Control Model Instance is a CD
Program constructed over an ACMS, satisfying specific conditions. This pro-
gram contains definitions for domain classes and instances, domain structure
component, authorization component, propagation component, and constraint
component. Table II presents rules that can be included in the domain com-
ponent, depending on the considered schema, Table III presents examples of
rules that can be contained in the authorization and propagation components,
whereas Table IV presents some examples of rules that can be included in the
constraint component, modelling some of the most widely used classes of con-
straints [Jaeger and Tidswell 2001].

An ACMI can model both direct and propagated authorizations. Direct autho-
rizations are directly defined by the administrator, without taking into account
domain hierarchies. For example, “(A1) Ann is authorized to read document
d1”, is an example of direct authorization. Direct authorizations can in turn be
unconditional or conditional. Authorization A1 is an example of unconditional
authorization. By contrast, “(A2) Ann is authorized by Mary to write doc1 if Bob
has not been authorized by Mary to write the same document” is an example of
a conditional authorization because the authorization for Ann holds providing
that another authorization for Bob does not hold. From a C-Datalog point of

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 85

Table I. Predicates and their Meaning

Category Predicate Constraint Function Scheme Meaning

Group SubG group ∈ Kbasic and
hierarchical
organization of
groups

SubG(G1 : group,
G2 : group)

it represents the child-father
relationship in the ≺G
hierarchy; group G1 is a direct
child of G2

InSubG SubG ∈ Rdomain InSubG(G1 : group,
G2 : group)

it represents the transitive
closure of SubG; group G1 is
an indirect child of G2

Belong {user, group}⊆ Kbasic Belong(U : user,
G : group)

it represents the membership
of a user U to a group G

UserIn Belong∈ Rdomain and
hierarchical organi-
zation of groups

UserIn(U : user,
G : group)

it represents the transitive
closure of Belong; user U is an
indirect member of group G

Role LessR role ∈ Kbasic and
hierarchical organi-
zation of roles

LessR(R1 : role,
R2 : role)

it represents the child-father
relationship in the ≺R
hierarchy; role R1 is a direct
child of R2

InLessR LessR ∈ Rdomain InLessR(R1 : role,
R2 : role)

it represents the transitive
closure of LessR; role R1 is an
indirect child of R2

Play {user, role} ⊆ Kbasic Play(U : user, R : role) it represents the authorization
of a user U to play a role R

UserPlay Play ∈ Rdomain and
hierarchical organi-
zation of roles

UserPlay(U : user,
R : role)

it represents the transitive
closure of Play

ActiveRole {user, role, session} ⊆
Kbasic

ActiveRole(U : user,
S : session, R : role)

it represents a role R activated
by a user U in a session S

Object PartOf obj ect ∈ Kbasic and
hierarchical organi-
zation of objects

PartOf(O1 : obj ect,
O2 : subj ect)

it represents the child-father
relationship in the ≺O
hierarchy; object O1 is a direct
child of O2

InPartOf PartOf ∈ Rdomain InPartOf(O1 : object,
O2 : subject)

it represents the transitive
closure of PartOf; object O1 is
an indirect child of O2

Privilege LessP privilege∈ Kbasic and
hierarchical
organization of
privileges

LessP(P1 : privilege,
P2 : privilege)

it represents the child-father
relationship in the ≺P
hierarchy; privilege P1 is a
direct child of P2

InLessP LessP ∈ Rdomain InLessP(P1 : privilege,
P2 : privilege)

it represents the transitive
closure of LessP; privilege P1
is an indirect child of P2

Auth. Authd Authd (O : object,
S : subject, P : privilege,
G : subject, ε : string)

it represents the granting of a
positive or negative direct
authorization; subject S is
authorized (ε = +) or denied
(ε = −) for a given privilege P
on a given object O by grantor
G

Authp Authp(O : object,
S : subject, P : privilege,
G : subject, ε : string,
O ′ : object, S′ : subject,
P ′ : privilege)

it represents the granting of a
positive or negative
propagated authorization, by
considering the authorization
source (object O ′, subject S′

and privilege P ′)
Auth Auth(O : object,

S : subject, P : privilege,
G : subject, ε : string)

it represents both direct and
propagated authorizations

Constraint ErrorC existence of the
elements involved in
the constraint

ErrorC() it represents the violation of a
constraint

User-defined arbitrary predicates

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

86 • E. Bertino et al.

Table II. DSC rules and their Meaning

Category Id Rule Meaning

Group 1a InSubG(G1 : X , G2 : Y)← SubG(G1 :
X , G2 : Y)

it captures the direct
child-father relation in
the ≺G hierarchy

1b InSubG(G1 : X , G2 : Y)← SubG(G1 :
X , G2 : Z), InSubG(G1 : Z , G2 : Y)

it captures the indirect
child-father relation in
the ≺G hierarchy

2a UserIn(U : X , G : Y)← Belong(U :
X , G : Y)

it captures the direct
membership of a user to a
group

2b UserIn(U : X , G : Y)← Belong(U :
X , G : Z), InSubG(G1 : Z , G2 : Y)

it captures the indirect
membership of a user to a
group

Role 3a InLessR(R1 : X , R2 : Y)← LessR(R1 :
X , R2 : Y)

it captures the direct
child-father relation in
the ≺R hierarchy

3b InLessR(R1 : X , R2 : Y)← LessR(R1 :
X , R2 : Z), InLessR(R1 : Z , R2 : Y)

it captures the indirect
child-father relation in
the ≺R hierarchy

4a UserPlay(U : X , R : Y)← Play(U :
X , R : Y)

it denotes the roles that a
user is explicitly
authorized to play

4b UserPlay(U : X , R : Y)← Play(U :
X , R : Z), InLessR(R1 : Y , R2 : Z)

it denotes the roles that a
user is indirectly
authorized to play due to
the ≺R hierarchy

Object 5a InPartOf(O1 : X , O2 : Y)←
PartO f (O1 : X , O2 : Y)

it captures the direct
child-father relation in
the ≺O hierarchy

5b InPartOf(O1 : X , O2 : Y)←
PartO f (O1 : X , O2 : Z),
InPartOf(O1 : Z , O2 : Y)

it captures the indirect
child-father relation in
the ≺O hierarchy

Privilege 6a InLessP(P1 : X , P2 : Y)← LessP (P1 :
X , P2 : Y)

it captures the direct
child-father relation in
the ≺P hierarchy

6b InLessP(P1 : X , P2 : Y)← LessP (P1 :
X , P2 : Z), InLessP (P1 : Z , P2 : Y)

it captures the indirect
child-father relation in
the ≺P hierarchy

view, direct authorizations are represented as C-Datalog facts or rules, having
predicate Authd , where d stands for “direct”, as head predicate.

On the other hand, propagated authorizations specify how direct autho-
rizations are propagated through domain hierarchies. Propagation can be per-
formed in several ways. For example, authorizations can be propagated from
a group to all its subgroups. From a C-Datalog point of view, propagated au-
thorizations can be specified through C-Datalog rules, having Authp, where p
stands for “propagated”, as head predicate.

It is important to note that, given a propagated authorization, it is always
possible to identify the direct authorization from which the propagation orig-
inated. This information is called propagation source of the considered propa-
gated authorization. Based on this definition, the propagation source for a direct

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 87

Table III. AC and PC Rules and their Meaning

Category Id Rule Meaning

User-defined 1 rules with a user-defined predicate in the
head and with predicates contained in
Rdomain ∪ Ruser def in the body

the meaning depends on the
context

Auth 2 rules with head = Authd and with predicates
contained in R \ Rconstraint \ {Authp, Authd } in
the body

they express direct authorizations

Propagation 3 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O :
X 1, S : X 9, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ :
X 7, P ′ : X 8), InSubG(G1 : X 2, G2 : X 9)

it propagates an authorization for
a given group to its subgroups

4 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O :
X 1, S : X 9, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ :
X 7, P ′ : X 8), UserIn(U : X 2, G : X 9)

it propagates an authorization for
a given group to users belonging
to the group

5 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
+, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O :
X 1, S : X 8, P : X 3, G : X 4, ε : +, O ′ : X 5, S′ :
X 6, P ′ : X 7), InLessR(R1 : X 8, R2 : X 2)

it propagates a positive authoriza-
tion for a given role to roles that are
more powerful

6 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
−, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O :
X 1, S : X 8, P : X 3, G : X 4, ε : −, O ′ : X 5, S′ :
X 6, P ′ : X 7), InLessR(R1 : X 2, R2 : X 8)

it propagates a negative
authorization for a given role to
roles that are less powerful

7 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 1, S′ : X 6, P ′ : X 3)← Authp(O :
X 1, S : X 6, P : X 3, G : X 4, ε : X 5, O ′ : X 1, S′ :
X 6, P ′ : X 3), UserPlay(U : X 2, R :
X 6), ActiveRole(U : X 2, S : X 7, R : X 6)

it propagates direct authorizations
from each role to users that are
authorized to play that role and
have activated it;3it realizes the
activation interpretation of the
role hierarchy [Sandhu et al. 2000]

8 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O :
X 1, S : X 9, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ :
X 7, P ′ : X 8), UserPlay(U : X 2, R :
X 9), ActiveRole(U : X 2, S : X 10, R : X 9)

it propagates both direct and
propagated authorizations from
each role to users that are
authorized to play that role and
have activated it;4together with
rules 5 and 6 it realizes the
inheritance interpretation of the
role hierarchy [Sandhu et al. 2000]

9 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O :
X 9, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ :
X 7, P ′ : X 8), InPartO f (O1 : X 1, O2 : X 9)

it propagates an authorization for
a given object to its subobjects

10 Authp(O : X 1, S : X 2, P : X 3, G : X 4,+, O ′ :
X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S :
X 2, P : X 8, G : X 4,+, O ′ : X 5, S′ : X 6, P ′ :
X 7), InLessP(P1 : X 3, P2 : X 8)

it propagates a positive
authorization for a given privilege
to privileges that are less powerful

11 Authp(O : X 1, S : X 2, P : X 3, G : X 4,−, O ′ :
X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S :
X 2, P : X 8, G : X 4,−, O ′ : X 5, S′ : X 6, P ′ :
X 7), InLessP(P1 : X 8, P2 : X 3)

it propagates a negative
authorization for a given privilege
to privileges that are more
powerful

12 Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 1, S′ : X 2, P ′ : X 3)← Authd (O :
X 1, S : X 2, P : X 3, G : X 4, ε : X 5)

it adds source to direct
authorizations

13 Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5)←
Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)

it removes source from
authorizations

Constraint 14 non recursive rules with ErrorC in the head
and with predicates contained in
Rdomain ∪ Rauth ∪ Ruser def in the body

they express constraints whose
meaning depends on the context

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

88 • E. Bertino et al.

Table IV. Examples of CC Rules and their Meaning

Rule Meaning

ErrorC()← Belong(U : X , G : Y) user X cannot be a member of
a group Y

ErrorC()← Belong(U : X , G : K), Belong(U : Y , G : K),
Belong(U : Z , G : K)

users X , Y , Z cannot belong
to the same group K

ErrorC()← Play(U : X , R : Y) user X cannot play role Y
ErrorC()← Play(U : X , R : Y), Play(U : K , R : Y) users X , K cannot both play

role Y
ErrorC()← Play(U : X , R : Y), Play(U : X , R : K) roles Y , K cannot be both

assigned to the same user X
ErrorC()← ActiveRole(U : X , S : Y , R : Z), ActiveRole(U :
X , S : Y , R : K)

roles Z , K cannot be both
activated by user X within
the same session Y

ErrorC()← Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 6, S′ : X 7, P ′ : X 8), Auth(O : X 1, S : X 2, P :
X 9, G : X 10, ε : X 11, O ′ : X 12, S′ : X 13, P ′ : X 14), role(self :
X 2), X 3 6= X 9

privileges X 3, X 9 on object
X 1 cannot be simultaneously
assigned to role X 2

ErrorC()← Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε :
X 5, O ′ : X 6, S′ : X 7, P ′ : X 8), Auth(O : X 1, S : X 2, P :
X 9, G : X 10, ε : X 11, O ′ : X 12, S′ : X 13, P ′ : X 14), user(self :
X 2), X 3 6= X 9

privileges X 3, X 9 on object
X 1 cannot be simultaneously
assigned to user X 2

authorization is the authorization itself. From a formal point of view, for each di-
rect authorization (O : o, S : s, P : p, ε : k), we define its source as the triple (o,
s, p), whereas for each propagated authorization (O : o, S : s, P : p, ε : k), we de-
fine its source as the triple (o′, s′, p′), such that the following conditions hold: (i)
an authorization (O ′ : o′, S′ : s′, P ′ : p′, ε : k′) holds, (ii) (O : o, S : s, P : p, ε : k)
has been generated from (o′, s′, p′), and (iii) no authorization (o′′, s′′, p′′) exists
such that (O ′ : o′, S′ : s′, P ′ : p′, ε : k′) has been generated from (o′′, s′′, p′′).

As we will see in Section 5, propagation sources are useful in defining spe-
cific conflict resolution functions. For this reason, we assume that rules defin-
ing propagated authorizations also compute propagation sources. On the other
hand, it is important to note that it could be useful to define conditional direct
authorizations depending on some other direct and propagated authorizations.
In this case, however, information concerning the propagation source is usually
not relevant. For this reason, we introduce an auxiliary predicate Auth, repre-
senting both propagated and direct authorizations without taking into account
authorization sources. The definition of this predicate can therefore be obtained
from the definition of predicate Authp by projecting out information concerning
the source.

Table III presents the rules defining predicate Auth (rule 13) and some exam-
ples of rules defining predicate Authp (rules 3− 11 and rule 12). In particular,

3Note that the subject of the propagated authorization in the body of the rule is equal to its source
subject; this means that the considered propagated authorization has been generated from an
explicitly given direct authorization by applying rule 12.
4Note that the subject of the propagated authorization in the body of the rule and its source subject
are different; this means that the considered propagated authorization can be generated from a
generic authorization, that is, from either a direct or a propagated authorization.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 89

rule 12 specifies that a direct authorization is a special case of a propagated
authorization, where the source coincides with the authorization itself. Such a
rule is always contained in an ACMI since it describes the first step of the prop-
agation process. As additional examples, rule 9 states that an authorization for
a given object o is propagated to all the objects that are part of o. Moreover, if s is
a group, rule 3 specifies that the authorization is directly propagated to all the
subgroups of s, whereas rule 4 specifies that the authorization is propagated to
all users that belong to s. By contrast, according to rules 5 and 6, if s is a role, the
propagation varies according to the sign of the authorization: if the authoriza-
tion is positive, it is propagated to all the roles preceding s in the role hierarchy,
whereas if it is negative, it is propagated to all the subroles of s. Propagation may
also involve privileges in the sense that a positive authorization for a privilege p
may imply an analogous authorization for all the subprivileges of p, whereas a
negative authorization for a privilege p may imply an analogous authorization
for all the privileges preceding p in the privilege hierarchy. This type of propa-
gation is stated by rules 10, 11. Rule 7 specifies the activation interpretation of
the role hierarchy [Sandhu et al. 2000], whereas rule 8, together with rules 5
and 6, specifies the inheritance interpretation of the role hierarchy. In fact, rule
7 propagates direct authorizations from each role to users that are authorized
to play that role and have activated it, whereas rule 8 propagates direct and
propagated authorizations from each role to users that are authorized to play
that role and have activated it. Note that the presence of rules 3− 11 depends
on the presence of the predicates that define their bodies in the ACMS schema.

Based on the concepts defined above, an instance of our framework can be
now defined as follows.

Definition 2 (Access Control Model Instance). Let S =< B, Scheme, ISA,
A, Z > be an ACMS. An Access Control Model Instance (shortly instance) I
over S is a C-Datalog program composed of:

(1) Domain component: a definition (that is, a set of facts) for each class name
c ∈ Kbasic.

(2) Domain structure component: a definition (that is, a set of facts and/or rules)
for each derived relation name r ∈ Rdomain. The rules must be extracted from
those presented in Table II.

(3) Authorization component: a definition (that is, a set of facts and rules) for
the derived relation name Authd and for derived relation names in Ruser def .
The predicates contained in the body of the rules defining Authd must be-
long to R\Rconstraint\{Authp, Authd }. The predicates contained in the body of
the rules defining predicates in Ruser def must belong to Rdomain ∪ Ruser def .

(4) Propagation component: a definition for predicates Authp, composed of rule
12 and a set of negation-free recursive rules, containing in their body predi-
cates belonging to Rdomain∪{Authp}; a definition for predicate Auth obtained
by extracting rule 13 from Table III.

(5) Constraint component: a non recursive definition for the derived relation
name ErrorC. The predicates contained in the body of the rules defining
ErrorC must belong to R\Rconstraint.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

90 • E. Bertino et al.

subject(sel f : subj ect, name : string) user(sel f : user, age : int)
group(sel f : group) object(sel f : obj ect, name : string)
privilege(sel f : privilege, name : string)
Scheme∗(user) = (sel f : user, age : int, name : string)
Scheme∗(group) = (sel f : group, name : string)

Fig. 2. Schema for classes of Example 1.

Let I be an ACMI. The extensional part of I , called Extensional Access Control
Model Instance (EACMI), is composed of: (i) the facts in DC, (ii) the facts in
DSC, (iii) the facts for predicate Authd , and (iv) the facts for user-defined pred-
icates. We require the EACMI be composed of, at least, one subject, one object,
and one privilege. The intensional part of I , called Intensional Access Control
Model Instance (IACMI), is composed of all the rules in I .

Example 1. Consider an ACMS S defined as follows: (I) B = K ∪ R,
such that: (i) K = Kbuilt in ∪ Kbasic, where Kbuilt in = {⊥, int, string}, and
Kbasic = {user, group, subject, object, privilege}; (ii) R = Rdomain ∪ Rauth ∪
Rconstraint ∪ Ruser def , where Rdomain = {SubG, InSubG, Belong, UserIn, PartOf,
InPartOf, LessP, InLessP}, Rauth = {Authd , Authp, Auth}, Rconstraint = {ErrorC},
and Ruser def = ∅; (II) function Scheme for class names in Kbasic and for de-
rived relation names in Rdomain ∪ Rauth, presented in Figure 2 and in Table I,
respectively; (III) function ISA, presented in Figure 3 (d); (IV) set A, containing
the special name “self” and the attribute names appearing in Figure 2; (V) Z
containing oids for the elements in K . The following is an instance of S:

(1) DC: it is composed of the following facts:5

group(self : #1, name : Employees)
group(self : #2, name : Dev)
user(self : #3, name : Ann, age : 30)
user(self : #4, name : Bob, age : 32)
user(self : #5, name : Mary, age : 27)
object(self : #6, name : Pub)
object(self : #7, name : Private)
object(self : #8, name : doc1)
object(self : #9, name : doc2)
privilege(self : #10, name : Read)
privilege(self : #11, name : Write)

(2) DSC: it is composed of rules 1a, 1b, 2a, 2b, 5a, 5b, 6a, 6b of Table II and the
following facts:6

SubG(G1 : #2(Dev), G2 : #1(Employees))
Belong(U : #3(Ann), G : #1(Employees))

5We remark that function Scheme∗ represents the closure of function Scheme with respect to the
class hierarchy and that CD atoms are defined on the basis of Scheme∗.
6In order to make the examples more readable, after any oid we insert the name of the element the
oid refers to.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 91

Fig. 3. Hierarchical organization for classes of Example 1.

Authd (O : #8(doc1), S : #3(Ann), P : #11(Write), G : #5(Mary), ε : +)← not Auth(O : #8
(doc1), S : #4(Bob), P : #11(Write), G : #5(Mary), ε : +)

Authd (O : #8(doc1), S : #4(Bob), P : #11(Write), G : #5(Mary), ε : +)← not Auth(O : #8
(doc1), S : #3(Ann), P : #11(Write), G : #5(Mary), ε : +)

Authd (O : #9(doc2), S : #2(Dev), P : #11(Write), G : #4(Bob), ε : +)←
Authd (O : #9(doc2), S : #5(Mary), P : #11(Write), G : #3(Ann), ε : −)← Auth(O : #9(doc2),

S : #2(Dev), P : #11(Write), G : #4(Bob), ε : +)

Fig. 4. Authorization rules for Example 1.

Belong(U : #4(Bob), G : #1(Employees))
Belong(U : #5(Mary), G : #2(Dev))
PartOf(O1 : #7(Private), O2 : #6(Pub))
PartOf(O1 : #8(doc1), O2 : #6(Pub))
PartOf(O1 : #9(doc2), O2 : #7(Private))
LessP(P1 : #10(Read), P2 : #11(Write))

Subject, object, and privilege hierarchies are graphically represented in
Figures 3 (a), (b), and (c). We use dashed lines to represent the member-
ship of users to groups, to distinguish it from the group-subgroup relation
(denoted with solid lines).

(3) AC: rules in Figure 4. The first rule states that Ann is authorized by Mary
to write doc1 if Bob has not been authorized by Mary to write the same
document. The second rule states that Bob is authorized by Mary to write

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

92 • E. Bertino et al.

doc1 if Ann has not be authorized by Mary to write the same document. The
third rule states that members of group Dev are authorized by Bob to write
doc2, whereas the last rule states that Mary is denied by Ann to write doc2
if members of group Dev are authorized by Bob to write the same document.

(4) PC: rules 3-4 and 9-13 of Table III.
(5) CC: it contains the following rules:

ErrorC()← Belong(U : #3(Ann), G : #2(Dev))
ErrorC()← Belong(U : #3(Ann), G : #1(Employees))

whose meaning is to prevent Ann from being a member of groups Dev and
Employees; the first constraint is satisfied whereas the second is violated
since Ann belongs to Employees.

Since “user’ and “group” are subclasses of “subject”,7 the following set of
inherited elements holds:

subject(self : #1, name : Employees) subject(self : #2, name : Dev)
subject(self : #3, name : Ann) subject(self : #4, name : Bob)
subject(self : #5, name : Mary)

5. SEMANTICS

In the following, we provide the formal semantics for an ACMI. It has been
shown that any C-Datalog program can be transformed into an equivalent Dat-
alog program with negation [Greco et al. 1992]. Given an ACMI I, we denote
with D(I) the corresponding Datalog-like program, that we call Access Con-
trol Model Program (ACMP). The interested reader can find some informa-
tion concerning this transformation in Appendix A. Moreover, given an ACMS
S =< B, Scheme, ISA, A, Z >, we denote with L(S) the logical language over
which program D(I) is constructed, where I is an instance of S, and we call it
Access Control Model Language (ACML). It is simple to prove that constants in
L(S) coincide with Z and predicates coincide with B. In the following, when S
is not relevant or it is clear from the context, we denote L(S) with L.

The semantics we propose has to cope with conflicting authorizations. More
precisely, a conflict arises when a positive and a negative authorization hold for
the same subject, object, and privilege. Conflicts have to be solved to determine
whether an access should be authorized or not. The proposed semantics sup-
ports a parametric conflict resolution policy that establishes which authoriza-
tion prevails possibly exploiting information about the authorization sources.
The exact conflict resolution policy depends on the access control model being
modeled.

In the following, we first deal with the problem of conflicts and we then
present a formal semantics for ACMIs.

5.1 Conflict Management

Let D(I) be an ACMP. With D(I)ground we denote the set of all ground rules
of D(I) obtained by replacing each variable appearing in a rule of D(I) with

7According to the ISA hierarchy represented in Figure 3 (d).

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 93

a constant of the “right” type. Conflicts and conflicting rules are defined as
follows.

Definition 3. Let D(I) be an ACMP overL. Two atoms A1, A2 are conflicting
in L if A1 = Authp(O : o, S : s, P : p, G : g ′, ε : +, O ′ : o′, S′ : s′, P ′ : p′), A2 = Authp(O :
o, S : s, P : p, G : g ′′, ε : −, O ′ : o′′, S′ : s′′, P ′ : p′′), o, o′, o′′, s, s′, s′′, p, p′, p′′, g ′, g ′′ ∈ Z .
The pair (〈(o, s, p, g ′,+, o′, s′, p′), (o, s, p, g ′′,−, o′′, s′′, p′′)〉) is a conflict. The set of
all conflicts that can be generated over L is denoted by conflicts(L). Let r1, r2 ∈
D(I)ground. r1 and r2 are conflicting if head(r1) and head(r2) are conflicting.

It is well known that there is no unique solution to the problem of conflict
management and that several conflict resolution policies can be defined de-
pending on the specific domain [Ferrari and Thuraisingham 2000]. Examples
of conflict resolution policies are denials take precedence, most specific autho-
rization takes precedence, and permissions take precedence.

In order to provide a flexible conflict resolution mechanism, a parametric
conflict resolution policy is introduced that, for each conflict, specifies how the
conflict has to be resolved, possibly also taking into account the authorization
sources.

Definition 4 (Conflict Resolution Policy). Let L be an ACML. A conflict res-
olution policy for L (denoted by FL) is a total function from conflicts(L) to {+,−}.

Given a conflict c, the intended meaning of FL(c) is to choose whether the
positive or the negative authorization in c should prevail.

Example 2. Consider the ACMI I presented in Example 1 and, in particu-
lar, the following authorizations rules, taken from Figure 4:

AC1. Authd (O : #9(doc2), S : #2(Dev), P : #11(Write), G : #4(Bob), ε : +)←
AC2. Authd (O : #9(doc2), S : #5(Mary), P : #11(Write), G : #3(Ann), ε : −)←

Auth(O : #9(doc2), S : #2(Dev), P : #11(Write), G : #4(Bob), ε : +)

AC1 states that members of group Dev are authorized by Bob to write doc2.
AC2 states that Mary is denied by Ann to write doc2 if members of group Dev
are authorized by Bob to write the same document.

From I , the following facts can be derived:

F1. Authp(O : #9(doc2), S : #2(Dev), P : #11(Write), G : #4(Bob), ε : +, O ′ :
#9(doc2), S′ : #2(Dev), P ′ : #11(Write)), from AC1 and rule 12 of Table III;

F2. Authp(O : #9(doc2), S : #5(Mary), P : #11(Write), G : #4(Bob), ε : +, O ′ :
#9(doc2), S′ : #2(Dev), P ′ : #11(Write)), from F1 and rule 4 of Table III;

F3. Auth(O : #9(doc2), S : #2(Dev), P : #11(Write), G : #4(Bob), ε : +), from
F1 and rule 13 of Table III;

F4. Authd (O : #9(doc2), S : #5(Mary), P : #11(Write), G : #3(Ann), ε : −),
from F3 and AC2;

F5. Authp(O : #9(doc2), S : #5(Mary), P : #11(Write), G : #3(Ann), ε :
−, O ′ : #9(doc2), S′ : #5(Mary), P ′ : #11(Write)), from F4 and rule 12 of
Table III.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

94 • E. Bertino et al.

F2 and F5 are conflicting and the pair:

c1 ≡ (〈(#9(doc2), #5(Mary), #11(Write), #4(Bob),+, #9(doc2), #2(Dev),
(#11(Write)), #9(doc2), #5(Mary), #11(Write), #3(Ann),−, #9(doc2),
#5(Mary), #11(Write))〉)

is a conflict, thus it is contained into the set of all conflicts conflicts(L).
Consider a conflict resolution policy FL for L defined as follows: for each

conflict c ∈ conflicts(L), FL(c) = +. According to this conflict resolution pol-
icy, positive authorizations always prevail over negative ones. Thus, in the
case of our conflict, this means that authorization Authp(#9(doc2), #5(Mary),
#11(Write), #4(Bob),+, #9(doc2), #2(Dev), #11(Write)) prevails. As a result,
Mary can write doc2.

As an alternative, suppose a conflict resolution policy is defined that takes
into account the source of the authorizations involved in a conflict as follows:
(i) if the subjects of the sources are ordered by the group hierarchy, the au-
thorization specified for the most specific group is chosen; (ii) if a subject is a
user and the other is the group the user belongs to, the user’s authorization
prevails; (iii) otherwise the negative one prevails. This policy can be formally
defined as follows: for each conflict c ∈ conflicts(L), c ≡ (〈(o, s, p, g ′,+, o′, s′, p′),
(o, s, p, g ′′,−, o′′, s′′, p′′)〉):

FL(c) =

 +
{

if s′ and s′′ are groups and s′ ≺G s′′ or
if s′′ is a group and s′ is a user belonging to s′′

− otherwise

According to the previous conflict resolution policy, since Mary is a user be-
longing to group Dev, the negative authorization prevails. Thus, Mary is for-
bidden by Ann to write doc2.

5.2 A Model-Theoretic Semantics for ACMIs

ACMPs are logic programs with (arbitrary) negation. Since we make no restric-
tion on the type of negation, we know, from logic programming, that a single
meaning cannot be always assigned to these programs. This means that, in gen-
eral, an ACMP is associated with different sets of entailed authorizations. The
most general semantics for logic programs with negation is the stable model
semantics [Ullman 1989]. This semantics assigns to a logic program a num-
ber (possibly zero) of alternative models,8 each representing a set of consistent
authorizations that can be possibly assigned to subjects.

In the following, we propose a stable model semantics for ACMIs. Most of the
notions we introduce in the following are classical logic programming concepts.
However, we need to extend the classical stable model semantics to deal with
conflicts.

Before presenting the proposed semantics, some preliminary definitions
have to be given. Let D(I) be an ACMP over L. The base BD(I) of L is the
set of all ground atoms that can be constructed from predicate symbols in

8Here, the term “model” has a logic programming meaning (see below).

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 95

B and constants in Z . A set of ground atoms is consistent if it does not
contain any conflicting atom. An interpretation I for D(I) is any consistent
subset of BD(I). Let I be an interpretation for D(I), L a ground literal, and
r = H ← A1, . . . , An, not B1, . . . , not Bm a ground rule. Then, L (not L) is true
with respect to I if L ∈ I (L 6∈ I); the body of r is true in I if all its ground
literals are true in I . An authorization rule r ∈ D(I)ground is true in I if either
its head is true in I or its body is not true in I .

In traditional logic programming, a model is simply defined as an interpre-
tation in which all program rules are true. This notion is not sufficient in our
context since we have to deal with conflicts and to ensure that the model does
not contain conflicting atoms. This is possible by not considering all the rule
instances that lead to some conflicts. This notion is formalized by the concept
of discarded rule.

Definition 5 (Discarded Rules). Let FL be a conflict resolution policy for an
ACML L. Let I be an interpretation for an ACMP D(I) over L, and let r1 be
an authorization rule in D(I)ground. Rule r1 is discarded in I if there exists
r2 ∈ D(I)ground such that r1 and r2 are conflicting, r2 is true in I , head(r1) =
Authp(O : o, S : s, P : p, G : g , ε : k, O ′ : o′, S′ : s′, P ′ : p′), head(r2) =
Authp(O : o, S : s, P : p, G : g ′, ε : k′, O ′ : o′′, S′ : s′′, P ′ : p′′), k′ 6= k, and
FL(〈(o, s, p, g , k, o′, s′, p′), (o, s, p, g ′, k′, o′′, s′′, p′′)〉) = k′.

A discarded rule is therefore an authorization rule generating an authoriza-
tion a which generates a conflict with the authorization a′ generated by another
authorization rule, whose body is true in the considered interpretation, and
such that the conflict resolution function gives priority to a′.

Based on the previous notion, the concept of truth in an interpretation is
replaced by the concept of satisfaction, defined as follows.

Definition 6 (Rule Satisfaction). Let D(I) be an ACMP over L, and I an
interpretation for D(I). An authorization rule r ∈ D(I)ground is satisfied by I if
either r is true in I or it is discarded by I .

A model for an ACMP is now defined as follows.

Definition 7 (Model). Let D(I) be an ACMP over L and M be an interpre-
tation for D(I). M is a model for D(I) if every rule in D(I)ground is satisfied by
M . A model is consistent if it does not contain ErrorC atoms.

The previous definition means that in a model each rule of the ACMP must be
either true or discarded due to the chosen conflict resolution policy. By removing
discarded rules from a model, we generate a reduction of the considered model.
By closing this reduced set with respect to the usual logical inference operator,
we obtain a stable model.

Definition 8 (Reduction of an Instance). Let D(I) be an ACMP over L, and
I an interpretation for D(I). The reduction of D(I) w.r.t. I , denoted by RI (D(I)),
is the set of rules in D(I)ground that are not discarded in I and whose body is
true in I , that is, RI (D(I)) = {r|r ∈ D(I)ground, r is not discarded by I , body(r)
is true in I}.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

96 • E. Bertino et al.

Definition 9 (Stable Authorization Model). Let D(I) be an ACMP over L
and M a model for D(I). M is a stable authorization model if M ≡ T∞RM (D(I))(∅),
where TY : 2BD(I) → 2BD(I) is the usual fixpoint operator. A stable authorization
model is consistent if it does not contain ErrorC atoms. Given a stable model
M , we use the following notation:
M+

Auth = {〈#o, #s, #p, #g ,+〉|Auth(O : #o, S : #s, P : #p, G : #g , ε : +) ∈ M }
M−

Auth = {〈#o, #s, #p, #g ,−〉|Auth(O : #o, S : #s, P : #p, G : #g , ε : −) ∈ M }
MAuth = M+

Auth ∪ M−
Auth

M+
Auth

= {〈#o, #s, #p, #g ,+〉|Auth(O : #o, S : #s, P : #p, G : #g , ε : +),
subject(self : #s, . . .) ∈ M }.

Consistent stable models can be used to assign a semantics to access control
model instances. In particular, in our framework, the semantics of an instance
(that is, of the corresponding ACMP) is not a single stable model but the set of all
of its consistent stable models. This approach has the advantage of computing
each consistent set of assignments of access authorizations, and thus does not
make any assumption on the one to be selected, that depends on the access
control model being represented.

Definition 10. Let D(I) be an ACMP overL. The semantics of D(I), denoted
by S(D(I)), is the set of all the consistent stable models of D(I). The generalized
semantics of D(I), denoted by GS(D(I)), is the set of all the stable models of
D(I).

Example 3. Consider the following rules, taken from Example 1:

r1 : Authd (O : #8(doc1), S : #3(Ann), P : #11(Write), G : #5(Mary), ε : +)←
not Auth(O : #8(doc1), S : #4(Bob), P : #11(Write), G : #5(Mary), ε : +)

r2 : Authd (O : #8(doc1), S : #4(Bob), P : #11(Write), G : #5(Mary), ε : +)←
not Auth(O : #8(doc1), S : #3(Ann), P : #11(Write), G : #5(Mary), ε :+).

In the set of authorizations entailed by any program containing the previous
rules, Mary cannot authorize both Bob and Ann to write doc1. Indeed, based
on the previous rules, one authorization is entailed only if the other one is not.
This means that the program admits two different stable models: in the first,
Mary authorizes Bob to write document doc1, in the second Mary authorizes
Ann to write document doc1.

6. EXAMPLES OF APPLICATION OF THE PROPOSED FRAMEWORK

To demonstrate the applicability of our framework, in the following we show
how two well-known access control models can be seen as instances of our
framework. The models we consider are the Bell and La Padula model [Bell
and Padula 1975] and the NIST role-based model [Sandhu et al. 1996].

In order to show that these models can be represented in our framework, we
show that for each access control model M an access control model instance
exists such that its stable models exactly represent the set of access authoriza-
tions entailed by M .

Before presenting the examples of the framework usage, we formalize the
notion of representability of an access control model in our framework.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 97

Definition 11. Let ac be an access control model. ac is representable in our
framework if there exists an ACMS S and an IACMI I over S such that, for
each instance Iac of ac, there exists an EACMI E over S such that I = I ∪ E
agrees with Iac.

Iac agrees with I if:

— Iac entails the sets of authorizations A1, . . . , An;9

—S(D(I)) = {M1, . . . , Mn};
— for each Ai, i = 1, . . . , n, there exists a unique M j , 1 ≤ j ≤ n, such that

Ai ≡ M j auth, and vice versa.

Let:
subject(self : subject, as

1 : ts
1, . . . , as

h : ts
h)

object(self : object, ao
1 : to

1 , . . . , ao
k : to

k)
privilege(self : privilege, ap

1 : t p
1 , . . . , ap

t : t p
t)

be the class entity schemas for class “subject”, “object”, and “privilege” in S. In
each pair, a<class>

<pos> and t<class>
<pos> represent the label (a<class>

<pos>) and the type (t<class>
<pos>)

of the attribute in position < pos > for the class entity < class >, respectively.
Ai ≡ M j auth holds if both the following conditions are satisfied:

— for any tuple 〈o, s, p, g , ε〉 ∈ Ai, M j contains facts: subject(self : #s, as
1 :

e1, . . . , as
h : eh), object(self : #o, ao

1 : f1, . . . , ao
k : fk), privilege(self : #p, ap

1 :
g1, . . . , ap

t : gt), subject(self : #g , as
1 : v1, . . . , as

h : vh), and M j auth contains
the tuple 〈#o, #s, #p, #g , ε〉, where #o, #s, #p, #g are the unique identifiers
for the object o, the subject s, the privilege p, and the grantor g respectively.

— for any tuple 〈#o, #s, #p, #g , ε〉 ∈ M j auth, such that M j contains facts:
subject(self : #s, as

1 : e1, . . . , as
h : eh), object(self : #o, ao

1 : f1, . . . , ao
k : fk),

privilege(self : #p, ap
1 : g1, . . . , ap

t : gt), subject(self : #g , as
1 : v1, . . . , as

h : vh),
Ai contains the authorization 〈o, s, p, g , ε〉.
All the proofs of the results presented in the following sections are reported

in Appendix B.

6.1 Bell and La Padula Model

In the Bell and La Padula model [Bell and Padula 1975] subjects, objects, and
privileges are non-hierarchical domains. Subjects can be either single users or
processes, whereas the privileges considered by the model are: append, write,
read, and execute.10 Subjects and objects are assigned an access class. Access
classes are partially ordered according to a dominance relationship. Data ac-
cesses are regulated by the following two rules:

— Simple security property: a subject has a read access on an object if its
access class dominates the access class of the object;

— *-Property: a subject has a write access on an object if its access class is
equal to the access class of the object. By contrast, a subject can exercise the

9Each authorization is represented as a tuple 〈o, s, p, g , ε〉.
10For simplicity, we do not consider the control privilege, that is, the privilege to extend to another
subject one or more of the other privileges.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

98 • E. Bertino et al.

subject(self : subject, name : string, access class : string)
user(self : user)
process(self : process, idproc : int)
object(self : object, name : string, access class : string)
privilege(self : privilege, name : string)
LessC(C1 : string, C2 : string)
InLessC(C1 : string, C2 : string)
Scheme∗(user) = (self : user, name : string, access class : string)
Scheme∗(process) = (self : process, idproc : int, name : string, access class : string)

Fig. 5. Schema for the Bell and La Padula classes.

Fig. 6. Privileges and ISA hierarchy for the Bell and La Padula model.

append privilege on an object if its access class is dominated by the access
class of the object.

The Bell and La Padula model can be represented in our framework by con-
structing an ACMS S and an ACMI I over S as follows.

Access Control Model Schema. To represent the Bell and La Padula model
in our framework, we consider an ACMS S consisting of the following compo-
nents: (I) B = K ∪R such that: (i) K = Kbuilt in∪Kbasic, where Kbuilt in = {⊥, int,
string}, and Kbasic = {subj ect, user, process, obj ect, privilege}; (ii) R =
Rdomain ∪ Rauth ∪ Rconstraint ∪ Ruser def , where Rdomain = ∅, Rauth = {Authd ,
Authp, Auth}, Rconstraint = ∅, and Ruser def = {LessC, InLessC}; (II) function
Scheme for the elements in Kbasic ∪ Ruser def and Rauth, presented in Figure 5
and Table I, respectively; (III) function ISA, graphically represented in Figure 6
(b); (IV) set A, containing the special name “self” and the attribute names ap-
pearing in Figure 5; (V) Z containing oids for the elements of K . Access classes
are modeled by associating an attribute access class with subjects and objects
whereas the hierarchical organization of access classes is expressed by using
the user-defined predicates LessC and InLessC.

Access Control Model Instance. Let Iac be an instance of the Bell and
La Padula access control model; an instance I over S that agrees with Iac is
composed of the following components:

(1) DC: we insert in DC a fact for each subject, user, process, object, and priv-
ilege that is defined in Iac. These facts keep track of the subject and object
access class.

(2) DSC: empty.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 99

(3) AC: the definition of predicate Authd must represent the simple security
property and the *-Property. Thus, the following rules must be introduced
in AC:
— simple security property:

3a. Authd (O : X , S : Y , P : read , G : #S A, ε : +)←
subject(self : Y , name : M , access class : K), object(self : X , name : N ,
access class : K);
3b. Authd (O : X , S : Y , P : read, G : #S A, ε : +)←
subject (self : Y , name : M , access class : W), object(self : X , name :
N , access class : K), InLessC(C1 : K , C2 : W),
where #SA denotes the identifier of the Security Administrator.

— *-Property:
3c. Authd (O : X , S : Y , P : append, G : #S A, ε : +)←
subject(self : Y , name : M , access class : K), object(self : X , name : N ,
access class : K);
3d. Authd (O : X , S : Y , P : append, G : #S A, ε :+)←
subject(self : Y , name : M , access class : W), object(self : X , name : N ,
access class : K), InLessC(C1 : W, C2 : K);
3e. Authd (O : X , S : Y , P : write, G : #S A, ε : +) ← subject(self : Y ,
name : M , access class : K), object(self : X , name : N , access class : K).

Predicate LessC is defined as follows:
—∀c1, c2 ∈ Z , LessC(C1 : c1, C2 : c2) ∈ I iff c2 dominates c1 in the access

class hierarchy specified by Iac.
Finally, predicate InLessC is defined by the following rules:

3f. InLessC(C1 : X , C2 : Y)← LessC(C1 : X , C2 : Y);
3g. InLessC(C1 : X , C2 : Y) ← LessC(C1 : X , C2 : K), InLessC(C1 :
K , C2 : Y).

(4) PC: since no hierarchies are present, no rules except rule 12 in Table III are
extracted for predicate Authp. On the other hand, predicate Auth is defined
by extracting rule 13 from the set of rules presented in Table III.

(5) CC: empty.

Note that, for simplicity, in defining the mapping, we have made the assump-
tion that a user can only establish login sessions with his/her access class. How-
ever, the mapping can be extended with proper user-defined predicates to relax
this assumption and thus allowing a user to establish any login session whose
access class is dominated by the access class of the user.

We can state that the Bell and La Padula model is representable in our
framework, since it is easy to show that the (unique) model of the instance
presented above contains all and only those authorizations that are entailed by
the Bell and La Padula rules.

THEOREM 1 (REPRESENTABILITY). The Bell and La Padula access control
model is representable in our framework.

6.2 The NIST Model

In the following, we show how the general framework for modeling role-
based access control (RBAC) models proposed by Sandhu et al. [2000] can be

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

100 • E. Bertino et al.

represented in our framework. The NIST model is defined by four levels of
increasing complexity such that each level adds to the previous one new fea-
tures. These levels are described in the following.

Flat RBAC. Flat RBAC is the base level, able to capture the basic classical
features of an RBAC model: users acquire permissions from roles; a user can
be assigned to many roles and a role can refer to many users (the same holds
for the relation existing between permissions and roles); users can simulta-
neously exercise permissions deriving from different roles. Additionally, Flat
RBAC supports user-role review, that is, it must be possible to determine which
roles are assigned to a specific user and which are the users authorized to play
a specific role.

Hierarchical RBAC. Hierarchical RBAC adds to Flat RBAC the support for
role hierarchies. Two different interpretations of role hierarchies are supported:
the inheritance and the activation interpretation. In the first case, the activa-
tion of a role ri implies the activations of all roles r j that are less powerful than
ri and thus the inheritance of their permissions whereas, in the second case
junior roles must be explicitly activated.

Constrained RBAC. Constrained RBAC adds to Hierarchical RBAC the sup-
port for separation of duty (SOD) constraints. Separation of duty is the ability
to state which roles cannot be simultaneously assigned to the same user (static
SOD) or which roles cannot be activated together by the same user (dynamic
SOD).

Symmetric RBAC. Symmetric RBAC adds to Constrained RBAC support for
permission-role review. This is the ability to determine which are the roles to
which a particular permission is assigned as well as which are the permissions
assigned to a particular role.

The basic components of the NIST model can be formally defined as follows:

—U , R, P , and S represent respectively the sets of users, roles, permissions,
and sessions. Each permission is a pair (a, o) and represents a specific access
mode a on object o. We thus denote with A and O the sets of access modes and
objects, respectively. Thus, P ⊆ A× O. Moreover, let p ∈ P be a permission,
we denote with pa and po the access mode and the object in p, respectively.

— UA ⊆ U × R and PA ⊆ P × R represent respectively the user-role and the
permission-role assignments. Let f ∈ UA, we denote with fu and fr the user
and role specified in f . Similarly, let g ∈ PA, we denote with g p and gr the
permission and role specified in g .

— RH ⊆ R × R represents the role hierarchy; ∀ri, r j ∈ R, 〈ri, r j 〉 ∈ RH, if r j
precedes ri in the role hierarchy.

— user : S→ U is a function that maps each session onto a single user.
— roles : S→ 2R is a function that maps each session onto a set of roles defined

as follows: ∀s ∈ S, roles(s) ⊆ {ri ∈ R|〈ri, r j 〉 ∈ RH, f ∈ UA, fu = user(s),
fr = r j }; session s has the following permissions:

⋃
ri∈roles(s){p ∈ P |〈rk ,

ri〉 ∈ RH, g ∈ PA, g p = p, gr = rk}.
— C represents the set of specified constraints.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 101

subject(self : subject, name : string) user(self : user)
role(self : role) object(self : object, name : string)
privilege(self : privilege, name : string) session(self : session, name : string)
Scheme∗(user) = (self : user, name : string) Scheme∗(role) = (self : role, name : string)

Fig. 7. Schema for NIST RBAC models.

Fig. 8. The ISA hierarchy for NIST RBAC models.

In order to show how each of the above models can be represented by our
framework, we show that, for each considered NIST level, an access control
model instance exists such that its stable model exactly represents the set of
access authorizations entailed by the considered access control model.

For simplicity, in presenting the mapping, differently from the NIST model,
we assume that Flat RBAC also supports the notion of session. In Flat RBAC,
we assume that during a session all the roles the user is authorized to play are
activated. In the other cases, we assume that the user can activate a subset of
the roles he/she is authorized to play.

6.2.1 Flat RBAC. In Flat RBAC users, roles, and permissions are flat
domains; users and permissions are assigned to roles. Permissions are al-
ways positive. The ACMS and the ACMI for Flat RBAC can be constructed as
follows.

Access Control Model Schema. To represent the Flat RBAC model in our
framework, we consider an ACMS S consisting of the following components:
(I) B = K ∪ R, such that: (i) K = Kbuilt in ∪ Kbasic, where Kbuilt in = {⊥, int,
string}, and Kbasic = {subject, user, role, object, privilege, session}; (ii) R =
Rdomain ∪ Rauth ∪ Rconstraint ∪ Ruser def , where Rdomain = {Play, UserPlay,
ActiveRole}, Rauth = {Authd , Authp, Auth}, Rconstraint = Ruser def = ∅; (II)
function Scheme for the elements in Kbasic, Rdomain ∪ Rauth ∪ Radmin ∪ Ruser def ,
presented in Figure 7, and Table I; (III) function ISA, graphically represented
in Figure 8; (IV) set A, containing the special name “self” and the attribute
names appearing in Figure 7; (V) Z containing oids for the elements of K .

Access Control Model Instance. Let Iac be an instance of the Flat RBAC
model; an instance I over S that agrees with Iac is composed of:

(1) DC: we insert in DC: i) a fact user(self : #i, name : u), for each user u ∈ U ;
ii) a fact role(self : #i, name : r), for each role r ∈ R; iii) a fact session(self :
#i, name : s), for each s ∈ S; iv) a fact object(self : #i, name : o), for each

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

102 • E. Bertino et al.

object o ∈ O, and v) a fact privilege(self : #i, name : a), for each access mode
a ∈ A, where #i ∈ Z denotes a unique identifier for an object i.
Note that, since “user” and “role” are subclasses of “subject”,11 the following
set of inherited elements {subject(self : #i, name : u)|user(self : #i, name :
u) ∈ DC} ∪ {subject(self : # j , name : r)|role(self : # j , name : r) ∈ DC} holds.

(2) DSC: a definition (set of facts and/or rules) for each derived relation name
in Rdomain. In particular, the following facts and rules are introduced:
—∀ f ∈ UA, we insert the fact: Play(U : # fu, R : # fr) in I, where # fu and

fr are the identifiers of fu and fr , respectively.
— rule 4a of Table II;
—∀s ∈ S, we insert in I the set of facts: {ActiveRole(U : #user(s), S : #s, R :

#r) | r ∈ roles(s)}, where #user(s), #s, #r are the identifiers of user(s), s,
and r, respectively.

(3) AC: for each permission-role assignment g ∈ P A, g p = (a, o), we insert
in AC the fact: Authd (O : #o, S : #gr , P : #a, G : #S A, ε : +), where #SA
denotes the identifier of the Security Administrator , and #o, #gr , and #a
are the identifiers of o, gr , and a respectively.

(4) PC: predicate Authp is defined by rules 8 and 12 of Table III. Predicate Auth
is defined by rule 13 of Table III.

(5) CC: empty.

The following theorem states that the Flat RBAC model is representable in
our framework.

THEOREM 2 (REPRESENTABILITY). The Flat RBAC model is representable in
our framework.

Note that, the user-role review requirement of Flat RBAC can be easily sat-
isfied by our mapping. Indeed, let Iac be an instance of the Flat RBAC model
constructed as pointed out above, and let I be the corresponding ACMI. Let M
be the unique stable model of D(I). The roles assigned to a specific user u can
be determined by selecting from M all the facts Play(U : #u, R : #r) such that
#u is the identifier of u, and by considering the role component of these facts.
Similarly, to determine which are the users authorized to play a role r, it is
simply necessary to select from M the facts Play(U : #s, R : #r) such that #r is
the identifier of role r and taking the user component.

6.2.2 Hierarchical RBAC. Hierarchical RBAC model adds to Flat RBAC
the support for role hierarchies. Two different interpretations of a role hierarchy
are supported, as described before: permission and activation inheritance.

The ACMS and ACMI for Hierarchical RBAC can be constructed as follows.

Access Control Model Schema. To represent the Hierarchical RBAC
model in our framework, we consider an ACMS S consisting of of the fol-
lowing components: (I) B = K ∪ R such that: (i) K = Kbuilt in ∪ Kbasic,
where Kbuilt in = {⊥, int, string}, and Kbasic = {subject, user, role, object,

11According to the ISA hierarchy represented in Figure 8.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 103

privilege, session}; (ii) R = Rdomain∪Rauth∪Rconstraint∪Ruser def , where Rdomain =
{Play, UserPlay, LessR, InLessR, ActiveRole}, Rauth = {Authd , Authp, Auth},
Rconstraint = Ruser def = ∅; (II) function Scheme for the elements in Kbasic,
Rdomain ∪ Rauth ∪ Radmin ∪ Ruser def, presented in Figure 7, and Table I; (III)
function ISA, graphically represented in Figure 8; (IV) set A, containing the
special name “self” and the attribute names appearing in Figure 7; (V) Z con-
taining oids for the elements of K .

Access Control Model Instance. Let Iac be an instance of the Hierarchical
RBAC model; an instance I over S that agrees with Iac is composed of:

(1) DC: it coincides with the DC component of the Access Control Model In-
stance presented in Section 6.2.1.

(2) DSC: the following facts and rules must be introduced:
—∀ f ∈ U A, we insert the fact: Play(U : # fu, R : # fr) in I, where # fu and

fr are the identifiers of fu and fr , respectively.
— rules 4a and 4b of Table II;
—∀#ri, #r j ∈ Z , LessR(R1 : #ri, R2 : #r j) ∈ I iff 〈ri, r j 〉 ∈ RH, and #ri, #r j

are the identifiers of ri and r j respectively;
— rules 3a and 3b of Table II representing the transitive closure of LessR;
—∀s ∈ S, we insert in I the set of facts {ActiveRole(U : #user(s), S : #s, R :

#r) | r ∈ roles(s)}, where #user(s), #s, #r are the identifiers of user(s), s,
and r, respectively.

(3) AC: it coincides with the AC component of the Access Control Model In-
stance presented in Section 6.2.1.

(4) PC: Predicate Authp is defined by:
— rule 7 of Table III, if Iac supports the activation interpretation of the role

hierarchy;
— rules 5, and 8 of Table III, if Iac supports the inheritance interpretation

of the role hierarchy.
Predicate Auth is defined by rules 12 and 13 of Table III.

(5) CC: empty.

Note that, for simplicity, in the mapping, we have made the assumption that
the two interpretations of the role hierarchies are mutually exclusive. The map-
ping can be easily extended to simultaneously support both interpretations. It
is only necessary to maintain information on the session in which an autho-
rization holds.

The following theorem states that the Hierarchical RBAC model is repre-
sentable in our framework.

THEOREM 3 (REPRESENTABILITY). The Hierarchical RBAC model is repre-
sentable in our framework.

6.2.3 Constrained RBAC. The Constrained RBAC model adds to Hierar-
chical RBAC the support for static and dynamic separation of duties. Thus, the
ACMS and ACMI for Constraint RBAC are very similar to those defined for
Hierarchical RBAC. The only differences are that in the ACMS of Constraint

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

104 • E. Bertino et al.

RBAC, Rconstraint = {ErrorC}, whereas the ACMI contains a non-empty con-
straint component that maps the constraints expressed in the instance of the
Constraint RBAC being modeled. In our framework, static and dynamic sepa-
ration of duty constraints can be expressed through the following rules:

— ErrorC()← User Play(U : X , R : Y), UserPlay(U : X , R : Z), A1, . . . , An;
— ErrorC()← ActiveRole(U : X , S : Y , R : Z), ActiveRole(U : X , S : Y , R : K),

UserPlay(U : X , R : Z), UserPlay(U : X , R : K), B1, . . . , Bm;

where A1, . . . , An, B1, . . . , Bm are optional atoms, whose predicate must belong
to the set of predicates defined in the ACMS, expressing additional conditions
on the constraint validity.

6.2.4 Symmetric RBAC. Symmetric RBAC does not add any basic compo-
nent to Constraint RBAC but it adds the support for permission-role review.
This implies that it must be possible to easily determine the roles to which a
particular permission is assigned and the permissions assigned to a specific
role. In our framework, this information can be inferred from the analysis of
the model of the generated instance. More precisely, let Iac be an instance of
Symmetric RBAC, generated using the same method presented for Constraint
RBAC, and let I be the corresponding ACMI. Let M be the unique stable model
of D(I). To determine which are the roles to which a particular permission
p = (a, o) is granted, we need to extract from Mauth all the tuples 〈#o, #s, #a〉12

such that #s is the identifier of a role, and #o and #a are the identifiers of o and
a, respectively, and then taking the subject component of these tuples. Analo-
gously, to determine which permissions p = (a, o) are assigned to a specific role
r we extract from Mauth all the tuples 〈#r, #o, #a〉, such that #r is the identifier
of role r, and #o and #a are the identifiers of o and a, respectively, and we take
the privilege and object components of these tuples.

7. COMPARISON DIMENSIONS

In the previous section, we have shown how the formal framework presented
in this paper can be used to represent (possibly heterogeneous) access control
models into a common formalism. As a result of the mapping, each access con-
trol model is expressed by an equivalent logic program. In this section, we use
the framework and the result of the mapping as a tool for reasoning about the
characteristics of the various access control models and for comparing their
expressive power. Since access control models are expressed with a variety
of different formalisms, making their comparison very difficult, the proposed
formalism allows us to define a uniform context in which models can be ho-
mogeneously represented. Due to the nature of our formalism, the problem of
access control model analysis and comparison becomes thus a matter of analyz-
ing and comparing logic programs. We can thus exploit formal results proved
in the logic programming field and adapt them to our context.

The analysis of access control models can be carried out by considering the
properties of the model itself or by comparing the expressive power of distinct

12For simplicity, we do not consider the grantor and the sign components of authorizations.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 105

access control models. Therefore, we can distinguish between intra-model and
inter-model properties. Intra-model properties denote characteristics of a single
access control model. By contrast, inter-model properties denote characteristics
of a model in relation to another model, and are thus a means for comparing two
different access control models according to a specified dimension. According to
the scenario presented in Section 3, inter-model properties will be used to select,
from a possibly existing library, models with similar characteristics with respect
to the one the SA has chosen, enabling him/her to refine his/her choice. On the
other hand, intra-model properties will help the SA to analyze the chosen model.

In the following, we present some inter- and intra-model properties, by for-
mally defining them and presenting some examples of their applicability. All
the proposed definitions and results assume that no conflict resolution policy
and constraints are used. We leave to future work the investigation of the same
issues in the presence of such a function and constraints.

7.1 Inter-Model Properties

Inter-model properties define the different dimensions that can be used to com-
pare two access control models. The first comparison dimension concerns the
modeling capabilities of the models. By modeling capabilities we mean all con-
structs provided by an authorization model to represent subjects, objects, and
privileges. Examples of modeling capabilities include roles, groups, and nega-
tive/positive privileges. Another way of comparing two access control models is
on the basis of the authorizations they enforce, independently from the possibly
generated errors. The last considered comparison dimension concerns consis-
tency of the models. In the following, we introduce these properties, presenting
some examples and formally discussing decidability results.

7.1.1 Structural Subsumption/Equivalence. Consider two models, one
supporting authorizations on groups and the other supporting only the speci-
fication of authorizations for single users. These models could entail the same
set of user authorizations. However, their expressive power is not the same
since the first supports groups, whereas the other does not. These consider-
ations suggest us to consider a dimension, that we call structural subsump-
tion/equivalence, that verifies whether two access control models are built from
the same set of ACMS basic components.

Two aspects have to be considered when dealing with structural equivalence.
The first concerns the components contained in the ACMS for the considered ac-
cess control models. For example, if an access control model deals with groups,
and therefore requires class names group and user, whereas another access
control model only deals with users, thus requiring only class name user, the
two access control models are not structurally equivalent. In this case, we say
that the access control models are not weakly structurally equivalent. The sec-
ond aspect concerns the attributes used to characterize subjects, objects, and
privileges. For example, a mandatory access control model assigning to each
subject and object an access class is structurally different from an access con-
trol model which does not consider this information. In this case, we say that
the access control models are not strongly structurally equivalent.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

106 • E. Bertino et al.

Model1
subject(self : subject, name : string) user(self : user)
role(self : role) object(self : object, name : string)
privilege(self : privilege, name : string) session(self : session, name : string)
Scheme∗1(user) = (self : user, name : string) Scheme∗1(role) = (self : role, name : string)
IACMI

r1 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Y)
r2 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Z), InLessR(R1 : Z , R2 : Y)
r3 : UserPlay(U : X , R : Y)← Play(U : X , R : Y)
r4 : UserPlay(U : X , R : Y)← Play(U : X , R : Z), InLessR(R1 : Y , R2 : Z)
r5 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S : X 8,

P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7), InLessR(R1 : X 8, R2 : X 2)
r6 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O : X 1,

S : X 9, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8), UserPlay(U : X 2, R : X 9),
ActiveRole(U : X 2, S : X 10, R : X 9)

r7 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 1, S′ : X 2, P ′ : X 3)← Authd (O : X 1,
S : X 2, P : X 3, G : X 4, ε : X 5)

r8 : Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5)← Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5,
O ′ : X 6, S′ : X 7, P ′ : X 8)

Fig. 9. A role-based model (Model1 in the examples).

Weak and strong structural subsumption/equivalence can be formally de-
fined as follows.

Definition 12 (Weak and Strong Structural Subsumption/Equivalence).
Let ac1 and ac2 be two access control models representable in our framework
by two ACMSs S1 =< B1, Scheme1, A1, ISA1, Z1 > and S2 =< B2, Scheme2,
A2, ISA2, Z2 >.

— ac1 is weakly structurally (w-structurally) subsumed by ac2 (denoted by
ac1 ⊆s

w ac2), iff B1 − Ruser def ⊆ B2 − Ruser def. ac1 is weakly structurally
equivalent to ac2 (denoted by ac1 ≡s

w ac2), if and only if both the following
conditions hold: (i) ac1 ⊆s

w ac2, and (ii) ac2 ⊆s
w ac1.

— ac1 is strongly structurally (s-structurally) subsumed by ac2, denoted by
ac1 ⊆s

s ac2, if the following conditions hold: (i) ac1 is weakly structurally sub-
sumed by ac2; (ii) for each b ∈ {B1 − Ruser def }, Scheme1(b) ⊆ Scheme2(b).
ac1 is strongly structurally equivalent to ac2, denoted by ac1 ≡s

s ac2, if the
following conditions hold: (i) ac1 ⊆s

s ac2, and (ii) ac2 ⊆s
s ac1.

Note that both w-structurally and s-structurally equivalence do not consider
user-defined predicates, since they do not represent the structure of an access
control model but auxiliary information used for the specification of authoriza-
tion, propagation, and constraint rules.

Note that, based on the translation presented in Section 6, the Bell and La
Padula model is not w-structurally equivalent with any RBAC model, due to
the presence of class role in RBAC models.

Example 4. Consider two different role-based access control models, say
Model1 and Model2, whose class entity names schema and corresponding
IACMI are presented in Figure 9 and Figure 10, respectively. The main

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 107

Model2
subject(self : subject, name : string)
user(self : user)
role(self : role, temp dis : string)
object(self : object, name : string)
privilege(self : privilege, name : string)
session(self : session, name : string)
PropDir(R : role, P : privilege, direction : string)

Scheme∗2(user) = (self : user, name : string)
Scheme∗2(role) = (self : role, temp dis : string, name : string)

IACMI
r1 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Y)
r2 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Z), InLessR(R1 : Z , R2 : Y)
r3 : UserPlay(U : X , R : Y)← Play(U : X , R : Y)
r4 : UserPlay(U : X , R : Y)← Play(U : X , R : Z), InLessR(R1 : Y , R2 : Z)
r5 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :+, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S : X 8,

P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7), InLessR(R1 : X 8, R2 : X 2), PropDir(R : X 8,
P : X 3, direction : up)

r6 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :+, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S : X 8,
P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7), InLessR(R1 : X 2, R2 : X 8), PropDir(R : X 8,
P : X 3, direction : down)

r7 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O : X 1,
S : X 9, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8), UserPlay(U : X 2, R : X 9),
ActiveRole(U : X 2, S : X 10, R : X 9), role(self : X 9, name : X 11, temp dis : false)

r8 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 1, S′ : X 2, P ′ : X 3)← Authd (O : X 1,
S : X 2, P : X 3, G : X 4, ε : X 5)

r9 : Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5)← Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5,
O ′ : X 6, S′ : X 7, P ′ : X 8)

Fig. 10. A role-based model (Model2 in the examples).

difference between Model1 and Model2 is that Model2 associates with each
role a boolean attribute, temp dis, that is true when the role is temporarily not
usable by the users authorized to play it. This means that when temp dis is true
the privileges assigned to that role are not propagated to the users authorized
to play it. Moreover, Model2 contains a user-defined predicate, PropDir, that, for
each role and privilege, specifies whether the privilege is propagated according
to either an upward or downward direction in the role hierarchy starting from
that role.

From Definition 12, it follows that Model1 and Model2 are w-structurally
equivalent. Indeed, since user-defined predicates are not taken into account, the
corresponding ACMSs are based on the same class names. On the other hand,
they are not s-structurally equivalent, since class role has two different sets of
attributes in the two models. However, Model1 is s-structurally subsumed by
Model2, since all the attributes defining classes in Model1 are also contained
in the schema of the corresponding classes in Model2.

Weak (strong) structural subsumption/equivalence is of course always decid-
able, as stated by the following theorem, since it corresponds to determining
inclusion between finite sets.

THEOREM 4. Structural subsumption/equivalence is decidable.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

108 • E. Bertino et al.

7.1.2 Access Subsumption/Equivalence. Two access control instances are
equivalent if they enforce exactly the same set of accesses. We call this kind of
equivalence access equivalence. On the other hand, an access control instance
is access-subsumed by another access control instance if the set of accesses en-
forced by the first instance is also enforced by the second one. For both these
dimensions we can consider more than one version depending on the “granu-
larity” of the sets of accesses we compare: a strong version compares all the
accesses, a weaker version compares only sets of positive accesses, whereas the
weakest version compares only sets of positive accesses where the subject is a
user.

Subsumption and equivalence can be first analyzed with respect to access
control model instances, resulting in the following definition.

Definition 13 (Instance Access Subsumption/Equivalence). Let ic1 and ic2
be two access control model instances of two access control models ac1 and ac2,
representable in our framework by two ACMIs I1 and I2, over two ACMS S1
and S2, respectively. We say that:13

— ic1 is strongly access-subsumed by ic2 (denoted by ic1 ⊆ia
s ic2) if for each

m1 ∈ GS(D(I1)) there exists m2 ∈ GS(D(I2)) such that m1Auth ⊆ m2Auth . ic1

is strongly access-equivalent to ic2 (denoted by ic1 ≡ia
s ic2) if the following

conditions hold: (i) ic1 ⊆ia
s ic2; and (ii) ic2 ⊆ia

s ic1.
— ic1 is positively access-subsumed by ic2 (denoted by ic1 ⊆ia

p ic2) if for each
m1 ∈ GS(D(I1)) there exists m2 ∈ GS(D(I2)) such that m+1Auth

⊆ m+2Auth
. ic1

is positively access-equivalent to ic2 (denoted by ic1 ≡ia
p ic2) if the following

conditions hold: (i) ic1 ⊆ia
p ic2; and (ii) ic2 ⊆ia

p ic1.

— ic1 is user-access subsumed by ic2 (denoted by ic1 ⊆ia
u ic2) if for each m1 ∈

GS(D(I1)) there exists m2 ∈ GS(D(I2)) such that m+1
Auth
⊆ m+2

Auth
. ic1 is user-

access equivalent to ic2 (denoted by ic1 ≡ia
u ic2) if both the following conditions

hold: (i) ic1 ⊆ia
u ic2; and (ii) ic2 ⊆ia

u ic1.

Example 5. Consider the Bell and La Padula model presented in Figure 11,
and the RBAC model presented in Figures 12 and 13. The two models are not
w-structurally equivalent, since roles are not present in the Bell and La Padula
model.

Now consider the instance of the Bell and La Padula model obtained by
considering the EACMI in Figure 11. This instance deals with three users (Ann,
Bob, Mary), three objects (o1, o2, o3), three privileges (read (R), append (A),
write (W)), and three access classes (c1, c2, c3) such that:

— c2 < c1, c3 < c1;
— the access class of Ann and o1 is c1;
— the access class of Bob and o2 is c2;
— the access class of Mary and o3 is c3.

13See Definition 9 for the meaning of the notation used in this definition.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 109

Since the considered IACMI rules do not use negation, this instance admits a
unique stable model, generating the authorization set presented in Figure 11.

Now consider an instance of the RBAC Model2 presented in Example 4,
represented in our framework by the ACMI presented in Figure 12. This in-
stance deals with three users (Ann, Bob, Mary), three objects (o1, o2, o3), three
privileges (read (R), append (A), write (W)), three roles (r1, r2, r3), and three
sessions (one for each user) such that:

—r2 < r1 and r3 < r1;
— Ann can play role r1 and activates it in her session;
— Bob can play role r2 and activates it in his session;
— Mary can play role r3 and activates it in her session;
— authorizations involving role r1 and privilege A can be propagated downward

along the role hierarchy;
— authorizations involving role r2 (or r3) and privilege R can be propagated

upward along the role hierarchy;
— role r1 is authorized to exercise privileges R, A, W on o1;
— role r2 is authorized to exercise privileges R, A, W on o2;
— role r3 is authorized to exercise privileges R, A, W on o3.

Since the considered IACMI rules do not use negation, this instance also admits
a unique stable model, generating the authorization set presented in Figure 13.

From Figures 11, 12, and 13 it follows that the accesses entailed by the
considered instances coincide, even if the structures of the considered models
are quite different.

On the other hand, models with a similar structure, such as the models
presented in Example 4, can greatly differ with respect to the entailed autho-
rization sets. Consider for example two instances of such models, presented in
Figures 12, 13, and in Figures 14, and 15, respectively. Altough the extensional
part is the same for the two models, the accesses entailed by these instances
are different and are not comparable even if we use the weakest dimension.

Instance access subsumption and equivalence are always decidable, since
stable model semantics is always computable. However, comparing two access
control models on a per-instance basis could be useful only in specific situations
in which there is the interest, given two specific access control model instances,
of deciding whether the accesses entailed by the first instance are equivalent
or subsumed by the set of accesses entailed by the second one. However, in a
general setting, it is more useful to reason on the above properties indepen-
dently from the specific instances, determining whether these properties hold
for all instances of two access control models. For example, we may be inter-
ested in determining whether, for each instance of a given model, there exists
an instance of the second one, entailing the same set of authorizations. This
property will help us in comparing access control model expressive power.

One of the problems to cope with in order to answer these questions is which
properties the instances on which the analysis is performed must satisfy. To
this purpose, it seems reasonable to assume the two instances contain the

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

110 • E. Bertino et al.

Model3
subject(self : subject, name : string, access class : string)
user(self : user)
process(self : process, idproc : int)
object(self : object, name : string, access class : string)
privilege(self : privilege, name : string)
LessC(C1 : string, C2 : string)
InLessC(C1 : string, C2 : string)
Scheme∗3(user) = (self : user, name : string, access class : string)
Scheme∗3(process) = (self : process, idproc : int, name : string, access class : string)
EACMI

user(self : #1, name : Ann, access class : c1) privilege(self : #7, name : R)
user(self : #2, name : Bob, access class : c2) privilege(self : #8, name : A)
user(self : #3, name : Mary, access class : c3) privilege(self : #9, name : W)
object(self : #4, name : o1, access class : c1) LessC(C1 : c2, C2 : c1)
object(self : #5, name : o2, access class : c2) LessC(C1 : c3, C2 : c1)
object(self : #6, name : o3, access class : c3))
subject(self : #1, name : Ann, access class : c1)
subject(self : #2, name : Bob, access class : c2)
subject(self : #3, name : Mary, access class : c3)

IACMI
r1 : Authd (O : X , S : Y , P : #7(R), G : #S A, ε : +)← subject(self : Y , name : M ,

access class : K), object(self : X , name : N , access class : K)
r2 : Authd (O : X , S : Y , P : #7(R), G : #S A, ε : +)← subject(self : Y , name : M ,

access class : W), object(self : X , name : N , access class : K), InLessC(C1 : K , C2 : W)
r3 : Authd (O : X , S : Y , P : #8(A), G : #S A, ε : +)← subject(self : Y , name : M ,

access class : K), object(self : X , name : N , access class : K)
r4 : Authd (O : X , S : Y , P : #8(A), G : #S A, ε : +)← subject(self : Y , name : M ,

access class : W), object(self : X , name : N , access class : K), InLessC(C1 : W, C2 : K)
r5 : Authd (O : X , S : Y , P : #9(W), G : #S A, ε : +)← subj ect(sel f : Y , name : M ,

access class : K), obj ect(sel f : X , name : N , access class : K)
r6 : InLessC(C1 : X , C2 : Y)← LessC(C1 : X , C2 : Y)
r7 : InLessC(C1 : X , C2 : Y)← LessC(C1 : X , C2 : K), InLessC(C1 : K , C2 : Y)
r8 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 1, S′ : X 2, P ′ : X 3)← Authd (O : X 1,

S : X 2, P : X 3, G : X 4, ε : X 5)
r9 : Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5)← Authp(O : X 1, S : X 2, P : X 3, G : X 4,
ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)

Authorizations set
(o1, Ann, R) (O : #4, S : #1, P : #7, G : #S A, ε : +)
(o2, Bob, R) (O : #5, S : #2, P : #7, G : #S A, ε : +)
(o3, Mar y , R) (O : #6, S : #3, P : #7, G : #S A, ε : +)
(o2, Ann, R) (O : #5, S : #1, P : #7, G : #S A, ε : +)
(o3, Ann, R) (O : #6, S : #1, P : #7, G : #S A, ε : +)
(o1, Ann, A) (O : #4, S : #1, P : #8, G : #S A, ε : +)
(o2, Bob, A) (O : #5, S : #2, P : #8, G : #S A, ε : +)
(o3, Mar y , A) (O : #6, S : #3, P : #8, G : #S A, ε : +)
(o1, Bob, A) (O : #4, S : #2, P : #8, G : #S A, ε : +)
(o1, Mar y , A) (O : #4, S : #3, P : #8, G : #S A, ε : +)
(o1, Ann, W) (O : #4, S : #1, P : #9, G : #S A, ε : +)
(o2, Bob, W) (O : #5, S : #2, P : #9, G : #S A, ε : +)
(o3, Mar y , W) (O : #6, S : #3, P : #9, G : #S A, ε : +)

Fig. 11. Complete definition of a Bell and La Padula model instance (Model3 in the examples).

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 111

Model2
subject(sel f : subj ect, name : string)
user(sel f : user)
object(sel f : obj ect, name : string)
role(sel f : role, temp dis : string)
privilege(sel f : privilege, name : string)
session(sel f : session, name : string)
PropDir(R : role, P : privilege, direction : string)
Scheme∗2(user) = (sel f : user, name : string)
Scheme∗2(role) = (sel f : role, temp dis : string , name : string)

EACMI
user(sel f : #1, name : Ann) role(sel f : #10, name : r1, blocked u : f alse)
user(sel f : #2, name : Bob) role(sel f : #11, name : r2, blocked u : f alse)
user(sel f : #3, name : Mar y) role(sel f : #12, name : r3, blocked u : f alse)
object(sel f : #4, name : o1) LessR(R1 : #11(r2), R2 : #10(r1))
object(sel f : #5, name : o2) LessR(R1 : #12(r3), R2 : #10(r1))
object(sel f : #6, name : o3) Prop dir(R : #11(r2), P : #7(R), direction : up)
privilege(sel f : #7, name : R) Prop dir(R : #12(r3), P : #7(R), direction : up)
privilege(sel f : #8, name : A) Prop dir(R : #10(r1), P : #8(A), direction : down)
privilege(sel f : #9, name : W) ActiveRole(U : #1(Ann), S : #13(Ann), R : #10(r1))
session(sel f : #13, name : Ann) ActiveRole(U : #2(Bob), S : #14(Bob), R : #11(r2))
session(sel f : #14, name : Bob) ActiveRole(U : #3(Mary), S : #15(Mary), R : #12(r3))
session(sel f : #15, name : Mar y) Authd (O : #4(o1), S : #10(r1), P : #7(R), G : #S A, ε : +)
subj ect(sel f : #1, name : Ann) Authd (O : #5(o2), S : #11(r2), P : #7(R), G : #S A, ε : +)
subj ect(sel f : #2, name : Bob) Authd (O : #6(o3), S : #12(r3), P : #7(R), G : #S A, ε : +)
subj ect(sel f : #3, name : Mar y) Authd (O : #4(o1), S : #10(r1), P : #8(A), G : #S A, ε : +)
subj ect(sel f : #10, name : r1) Authd (O : #5(o2), S : #11(r2), P : #8(A), G : #S A, ε : +)
subj ect(sel f : #11, name : r2) Authd (O : #6(o3), S : #12(r3), P : #8(A), G : #S A, ε : +)
subj ect(sel f : #12, name : r3) Authd (O : #4(o1), S : #10(r1), P : #9(W), G : #S A, ε : +)
Play(U : #1(Ann), R : #10(r1)) Authd (O : #5(o2), S : #11(r2), P : #9(W), G : #S A, ε : +)
Play(U : #2(Bob), R : #11(r2)) Authd (O : #6(o3), S : #12(r3), P : #9(W), G : #S A, ε : +)
Play(U : #3(Mary), R : #12(r3))

IACMI
r1 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Y)
r2 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Z), InLessR(R1 : Z , R2 : Y)
r3 : UserPlay(U : X , R : Y)← Play(U : X , R : Y)
r4 : UserPlay(U : X , R : Y)← Play(U : X , R : Z), InLessR(R1 : Y , R2 : Z)
r5 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S : X 8,

P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7), InLessR(R1 : X 8, R2 : X 2), PropDir(R : X 8,
P : X 3, direction : up)

r6 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S : X 8,
P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7), InLessR(R1 : X 2, R2 : X 8), PropDir(R : X 8,
P : X 3, direction : down)

r7 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O : X 1,
S : X 9, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8), UserPlay(U : X 2, R : X 9),
ActiveRole(U : X 2, S : X 10, R : X 9), role(sel f : X 9, namer : X 11, temp dis : f alse)

r8 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 1, S′ : X 2, P ′ : X 3)← Authd (O : X 1,
S : X 2, P : X 3, G : X 4, ε : X 5)

r9 : Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5)← Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5,
O ′ : X 6, S′ : X 7, P ′ : X 8)

Fig. 12. Complete definition of a role-based model instance (Model2 in the examples) - part A.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

112 • E. Bertino et al.

Model2
Authorization set
(o1, r1, R) (O : #4, S : #10, P : #7, G : #S A, ε : +)
(o2, r2, R) (O : #5, S : #11, P : #7, G : #S A, ε : +)
(o3, r3, R) (O : #6, S : #12, P : #7, G : #S A, ε : +)
(o1, r1, A) (O : #4, S : #10, P : #8, G : #S A, ε : +)
(o2, r2, A) (O : #5, S : #11, P : #8, G : #S A, ε : +)
(o3, r3, A) (O : #6, S : #12, P : #8, G : #S A, ε : +)
(o1, r1, W) (O : #4, S : #10, P : #9, G : #S A, ε : +)
(o2, r2, W) (O : #5, S : #11, P : #9, G : #S A, ε : +)
(o3, r3, W) (O : #6, S : #12, P : #9, G : #S A, ε : +)
(o2, r1, R) (O : #5, S : #11, P : #7, G : #S A, ε : +)
(o3, r1, R) (O : #6, S : #12, P : #7, G : #S A, ε : +)
(o1, r2, A) (O : #4, S : #10, P : #8, G : #S A, ε : +)
(o1, r3, A) (O : #4, S : #10, P : #8, G : #S A, ε : +)
(o1, Ann, R) (O : #4, S : #1, P : #7, G : #S A, ε : +)
(o2, Bob, R) (O : #5, S : #2, P : #7, G : #S A, ε : +)
(o3, Mar y , R) (O : #6, S : #3, P : #7, G : #S A, ε : +)
(o1, Ann, A) (O : #4, S : #1, P : #8, G : #S A, ε : +)
(o2, Bob, A) (O : #5, S : #2, P : #8, G : #S A, ε : +)
(o3, Mar y , A) (O : #6, S : #3, P : #8, G : #S A, ε : +)
(o1, Ann, W) (O : #4, S : #1, P : #9, G : #S A, ε : +)
(o2, Bob, W) (O : #5, S : #2, P : #9, G : #S A, ε : +)
(o3, Mar y , W) (O : #6, S : #3, P : #9, G : #S A, ε : +)
(o2, Ann, R) (O : #5, S : #1, P : #7, G : #S A, ε : +)
(o3, Ann, R) (O : #6, S : #1, P : #7, G : #S A, ε : +)
(o1, Bob, A) (O : #4, S : #2, P : #8, G : #S A, ε : +)
(o1, Mar y , A) (O : #4, S : #3, P : #8, G : #S A, ε : +)

Fig. 13. Complete definition of a role-based model instance (Model2 in the examples) - part B.

same information for common structural components. In this case, we say that
the two instances are compatible. In order to formally define the concept of
compatibility, we need to first define the projection of an EACMI over a given
ACMS.

Definition 14 (EACMI Projection). Let E be an EACMI and let S =< B,
Scheme, A, ISA, Z > be an ACMS. The projection of E onto S, denoted by
5S(E), is the set { f (l1 : v1, . . . , ln : vn)| f (l1 : v1, . . . , ln : vn) ∈ E, f ∈
B, {l1, . . . , ln} ∈ Scheme(f)}.

Compatibility can be now defined as follows.

Definition 15 (Compatible EACMIs). Let S1 =< B1, Scheme1, A1, ISA1,
Z1 > and S2 =< B2, Scheme2, A2, ISA2, Z2 > be two ACMSs. Let S =< B,
Scheme, A, ISA, Z > be the schema constructed as follows:

— B = B1 ∩ B2;
—∀b ∈ B1 ∩ B2, Scheme(b) = Scheme1(b) ∩ Scheme2(b)
— A = A1 ∩ A2;
— ISA = ISA1 = ISA2;
— Z = Z1 ∩ Z2.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 113

Model1
subject(sel f : subj ect, name : string) user(sel f : user)
role(sel f : role) object(sel f : obj ect, name : string)
privilege(sel f : privilege, name : string) session(sel f : session, name : string)
Scheme∗1(user) = (sel f : user, name : string) Scheme∗1(role) = (sel f : role, name : string)

EACMI
user(sel f : #1, name : Ann) user(sel f : #2, name : Bob)
user(sel f : #3, name : Mar y) object(sel f : #4, name : o1)
object(sel f : #5, name : o2) object(sel f : #6, name : o3)
privilege(sel f : #7, name : R) privilege(sel f : #8, name : A)
privilege(sel f : #9, name : W) role(sel f : #10, name : r1)
role(sel f : #11, name : r2) role(sel f : #12, name : r3)
session(sel f : #13, name : Ann) session(sel f : #14, name : Bob)
ActiveRole(U : #1(Ann), S : #13(Ann), R : #10(r1)) session(sel f : #15, name : Mar y)
ActiveRole(U : #2(Bob), S : #14(Bob), R : #11(r2)) LessR(R1 : #11(r2), R2 : #10(r1))
ActiveRole(U : #3(Mary), S : #15(Mary), R : #12(r3)) LessR(R1 : #12(r3), R2 : #10(r1))
Authd (O : #4(o1), S : #10(r1), P : #7(R), G : #S A, ε : +) subj ect(sel f : #1, name : Ann)
Authd (O : #5(o2), S : #11(r2), P : #7(R), G : #S A, ε : +) subj ect(sel f : #2, name : Bob)
Authd (O : #6(o3), S : #12(r3), P : #7(R), G : #S A, ε : +) subj ect(sel f : #3, name : Mar y)
Authd (O : #4(o1), S : #10(r1), P : #8(A), G : #S A, ε : +) subj ect(sel f : #10, name : r1)
Authd (O : #5(o2), S : #11(r2), P : #8(A), G : #S A, ε : +) subj ect(sel f : #11, name : r2)
Authd (O : #6(o3), S : #12(r3), P : #8(A), G : #S A, ε : +) subj ect(sel f : #12, name : r3)
Authd (O : #4(o1), S : #10(r1), P : #9(W), G : #S A, ε : +) Play(U : #1(Ann), R : #10(r1))
Authd (O : #5(o2), S : #11(r2), P : #9(W), G : #S A, ε : +) Play(U : #2(Bob), R : #11(r2))
Authd (O : #6(o3), S : #12(r3), P : #9(W), G : #S A, ε : +) Play(U : #3(Mary), R : #12(r3))

IACMI
r1 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Y)
r2 : InLessR(R1 : X , R2 : Y)← LessR(R1 : X , R2 : Z), InLessR(R1 : Z , R2 : Y)
r3 : UserPlay(U : X , R : Y)← Play(U : X , R : Y)
r4 : UserPlay(U : X , R : Y)← Play(U : X , R : Z), InLessR(R1 : Y , R2 : Z)
r5 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε :+, O ′ : X 5, S′ : X 6, P ′ : X 7)← Authp(O : X 1, S : X 8,

P : X 3, G : X 4, ε : +, O ′ : X 5, S′ : X 6, P ′ : X 7), InLessR(R1 : X 8, R2 : X 2)
r6 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8)← Authp(O : X 1,

S : X 9, P : X 3, G : X 4, ε : X 5, O ′ : X 6, S′ : X 7, P ′ : X 8), UserPlay(U : X 2, R : X 9),
ActiveRole(U : X 2, S : X 10, R : X 9)

r7 : Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5, O ′ : X 1, S′ : X 2, P ′ : X 3)← Authd (O : X 1,
S : X 2, P : X 3, G : X 4, ε : X 5)

r8 : Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5)← Authp(O : X 1, S : X 2, P : X 3, G : X 4, ε : X 5,
O ′ : X 6, S′ : X 7, P ′ : X 8)

Fig. 14. Complete definition of a role-based model instance (Model1 in the examples) - part A.

Let E1 be an EACMI over S1 and E2 an EACMI over S2. We say that E1 and
E2 are compatible if and only if 5S(E1) = 5S(E2).

Similarly to Definition 13, in order to introduce access subsumption/
equivalence, we consider three different cases.

Definition 16 (Access Subsumption/Equivalence). Let ac1 and ac2 be two
access control models representable in our framework by two IACMIs I1 and I2
over two ACMSs S1 and S2, respectively. We say that:

— ac1 is strongly access-subsumed by ac2 (denoted by ac1 ⊆a
s ac2), if for each

EACMI E1 constructed over S1 there exists an EACMI E2 over S2 such
that E1 and E2 are compatible and E1 ∪ I1 ⊆ia

s E2 ∪ I2. ac1 is strongly

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

114 • E. Bertino et al.

Model1
Authorization set
(o1, r1, R) (O : #4, S : #10, P : #7, G : #S A, ε : +)
(o2, r2, R) (O : #5, S : #11, P : #7, G : #S A, ε : +)
(o3, r3, R) (O : #6, S : #12, P : #7, G : #S A, ε : +)
(o1, r1, A) (O : #4, S : #10, P : #8, G : #S A, ε : +)
(o2, r2, A) (O : #5, S : #11, P : #8, G : #S A, ε : +)
(o3, r3, A) (O : #6, S : #12, P : #8, G : #S A, ε : +)
(o1, r1, W) (O : #4, S : #10, P : #9, G : #S A, ε : +)
(o2, r2, W) (O : #5, S : #11, P : #9, G : #S A, ε : +)
(o3, r3, W) (O : #6, S : #12, P : #9, G : #S A, ε : +)
(o2, r1, R) (O : #5, S : #10, P : #7, G : #S A, ε : +)
(o3, r1, R) (O : #6, S : #10, P : #7, G : #S A, ε : +)
(o2, r1, A) (O : #5, S : #10, P : #8, G : #S A, ε : +)
(o3, r1, A) (O : #6, S : #10, P : #8, G : #S A, ε : +)
(o2, r1, W) (O : #5, S : #10, P : #9, G : #S A, ε : +)
(o3, r1, W) (O : #6, S : #10, P : #9, G : #S A, ε : +)
(o1, Ann, R) (O : #4, S : #1, P : #7, G : #S A, ε : +)
(o2, Bob, R) (O : #5, S : #2, P : #7, G : #S A, ε : +)
(o3, Mar y , R) (O : #6, S : #3, P : #7, G : #S A, ε : +)
(o1, Ann, A) (O : #4, S : #1, P : #8, G : #S A, ε : +)
(o2, Bob, A) (O : #5, S : #2, P : #8, G : #S A, ε : +)
(o3, Mar y , A) (O : #6, S : #3, P : #8, G : #S A, ε : +)
(o1, Ann, W) (O : #4, S : #1, P : #9, G : #S A, ε : +)
(o2, Bob, W) (O : #5, S : #2, P : #9, G : #S A, ε : +)
(o3, Mar y , W) (O : #6, S : #3, P : #9, G : #S A, ε : +)
(o2, Ann, R) (O : #5, S : #1, P : #7, G : #S A, ε : +)
(o3, Ann, R) (O : #6, S : #1, P : #7, G : #S A, ε : +)
(o2, Ann, A) (O : #5, S : #1, P : #8, G : #S A, ε : +)
(o3, Ann, A) (O : #6, S : #1, P : #8, G : #S A, ε : +)
(o2, Ann, W) (O : #5, S : #1, P : #9, G : #S A, ε : +)
(o3, Ann, W) (O : #6, S : #1, P : #9, G : #S A, ε : +)

Fig. 15. Complete definition of a role-based model instance (Model1 in the examples) - part B.

access-equivalent to ac2 (denoted by ac1 ≡a
s ac2) if both the following condi-

tions hold: (i) ac1 ⊆a
s ac2; and (ii) ac2 ⊆a

s ac1.
— ac1 is positively access-subsumed by ac2 (denoted by ac1 ⊆a

p ac2), if, for each
EACMI E1 constructed over S1 there exists an EACMI E2 over S2 such that
E1 and E2 are compatible and E1 ∪ I1 ⊆ia

p E2 ∪ I2. ac1 is positively access-
equivalent to ac2 (denoted by ac1 ≡a

p ac2) if both the following conditions
hold: (i) ac1 ⊆a

p ac2; and (ii) ac2 ⊆a
p ac1.

— ac1 is user-access subsumed by ac2 (denoted by ac1 ⊆a
u ac2) if, for each EACMI

E1 constructed over S1 there exists an EACMI E2 over S2 such that E1 and
E2 are compatible and E1∪ I1 ⊆ia

u E2∪ I2. ac1 is user-access equivalent to ac2
(denoted by ac1 ≡a

u ac2) if both the following conditions hold: (i) ac1 ⊆a
u ac2;

and (ii) ac2 ⊆a
u ac1.

The intuitive meaning of Definition 16 is to establish whether, independently
from a specific extensional part, the accesses entailed by the first access control
model can always be generated by an instance of the second access control
model. In this case, the second model is more expressive than the first one.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 115

Example 6. Consider the models presented in Example 4. We want to show
that for each instance of Model1 there exists an instance of Model2 entailing
the same set of authorizations. Given an EACMI E1 for Model1, the corre-
sponding instance E2 for Model2 can be constructed by inserting in each fact
for predicate role contained in E1 a new attribute temp dis set to false. More-
over, we must insert one fact for predicate PropDir for each combination of
role/privilege, setting the value for attribute direction to down. It is easy to
show that E1 ∪ I1 ≡a

s E2 ∪ I2, thus Model1 ⊆a
s Model2. Note that the con-

structed instances are compatible since their contents coincide for the common
structural information.

Informally, the obtained result means that Model2 is more expressive than
Model1. Indeed, with Model2, we can disable the propagation from some role
to users playing that role and we can decide the direction of the propagation.
These operations are not allowed in Model1.

As an additional example of access subsumption, it can be proved that there
exists a constrained RBAC access control model that strongly access-subsumes
the Bell and La Padula model (see, for example, Sandhu [1996] for a sketch of
the proof).

In the particular case in which S1 = S2, access subsumption/equivalence for
access control models represented by our framework can be reduced to a logic
programming problem, as stated by the following proposition.

PROPOSITION 1. Let ac1 and ac2 be two access control models representable
in our framework by two IACMIs I1 and I2 over an ACMS S. We say that:

— ac1 ⊆a
s ac2 if and only if D(I1) ⊆Auth D(I2), where ⊆Auth is the usual con-

tainment relationship between logic programs, considering Auth as query
predicate. ac1 ≡a

s ac2 holds if and only if D(I1) ≡Auth D(I2), where ≡Auth is the
usual equivalence relationship between logic programs, considering Auth as
query predicate.14

— ac1 ⊆a
p ac2 D′(I1) ⊆Auth+ D′(I2), where ⊆Auth+ is the usual containment rela-

tionship between logic programs, considering Auth+ as query predicate, and
D′(I) = D(I) ∪ {Auth+(O : X 1, S : X 2, P : X 3, G : X 4) ← Auth(O : X 1, S : X 2, P :
X 3, G : X 4, ε : +)}. ac1 ≡a

s ac2 holds if and only if D′(I1) ≡Auth+ D′(I2), where
≡Auth+ is the usual equivalence relationship between logic programs, consid-
ering Auth+ as query predicate.

— ac1 ⊆a
u ac2 if and only if D′′(I1) ⊆Auth D′′(I2), where ⊆Auth is the usual con-

tainment relationship between logic programs, considering Auth as query
predicate, and D′′(I) = D(I) ∪ {Auth(O : X 1, S : X 2, P : X 3, G : X 4) ← Auth(O :
X 1, S : X 2, P : X 3, G : X 4, ε : +), subj ect(sel f : X 2, . . .))}. ac1 ≡a

u ac2 holds if and
only if D′′(I1) ≡Auth D′′(I2), where ≡Auth is the usual equivalence relationship
between logic programs, considering Auth as query predicate.

14A logic program P1 is contained in a logic program P2 with respect to a query predicate q, denoted
by P1 ⊆q P2, if for any set of facts F for extensional predicates, the solutions for q generated by
P1 ∪ F are contained in the solutions for q generated by P2 ∪ F . P1 is equivalent to P2 with respect
to the query predicate q, denoted by P1 ≡q P2, if P1 ⊆q P2 and P2 ⊆q P1.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

116 • E. Bertino et al.

Table V. Decidability Results: SAT = Satisfiability, QR = Query Reachability,
EQ = Equivalence, CN = Containment

Datalog restriction/extension Sat/QR EQ/CN

Project-join queries decidable decidable
Datalog rules decidable undecidable
Unary int. predicates decidable decidable
Unary int. predicates, negation on nonrecur-
sive predicates, 1 recursive rule, 6=

undecidable undecidable

Unary recursive int. pred., binary nonrecursive
int. pred., negation on nonrecursive predicates,
1 recursive rule, no 6=

undecidable undecidable

Binary int. pred. decidable undecidable
Dense order constraints decidable undecidable
Unary ext. pred., stratified negation decidable decidable
Dense order constraints, negation on ext. pred. decidable undecidable

Containment/equivalence of generic Datalog programs with negation is un-
decidable [Gaifman et al. 1987]. However, it is decidable under specific condi-
tions, some of which are summarized in Table V, taken from Levy et al. [1993].
Since IACMIs in general do not satisfy any of the conditions listed in Table V,
it follows that equivalence of access control models represented in our frame-
work is in general undecidable. However, IACMIs have a well defined structure.
Therefore, it is possible to identify specific classes of IACMIs for which subsump-
tion and equivalence are decidable. For such classes of IACMIs, the proposed
properties can be checked by using typical logic programming techniques. We
leave to future work a comprehensive investigation of this problem.

7.1.3 Constraint Containment/Equivalence. Besides the set of entailed ac-
cesses and the structural components, another dimension by which access con-
trol models can be compared concerns the constraints enforced by the model.
We say that two access control models are constraint equivalent if they enforce
exactly the same constraints. An access control model is constraint contained
into another access control model if the validity of the constraints enforced by
the first model implies the validity of the constraints enforced by the second
one. Formally, constraint containment/equivalence can be defined as follows.

Definition 17 (Constraint Subsumption/Equivalence). Let ac1 and ac2 be
two access control models representable in our framework by two IACMIs I1
and I2 over two ACMSs S1 and S2, respectively. ac1 is constraint subsumed by
ac2 (denoted by ac1 ⊆c ac2) if D(I1) ⊆ErrorC D(I2). ac1 is constraint equivalent
to ac2 (denoted by ac1 ≡c ac2) if the following conditions hold: (i) ac1 ⊆c ac2;
and (ii) ac2 ⊆c ac1.

Also in this case, decidability of constraint subsumption/equivalence depends
on the decidability of subsumption/equivalence of logic programs. For example,
it is possible to prove that if rules defining predicate ErrorC in both programs do
not depend on predicates Auth, Authp and on recursive user-defined predicates,
and do not use negation, constraint containment/equivalence is decidable.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 117

7.2 Intra-Model Properties

Intra-model properties concern the analysis of the characteristics of a single
access control model. In analyzing access control models, we have devised the
following set of relevant properties:

— Reachability: by reachability we mean the ability to determine whether a
certain authorization can be generated by a given access control model, pos-
sibly conditionally to the generation of another authorization. This property
can be useful for determining dependencies existing among authorizations.

— Consistency: An access control model is consistent if it admits at least one
instance that satisfies all the specified constraints, that is, it generates at
least one consistent set of authorizations.

The previous properties can be formally defined in our framework as follows.

Definition 18 (Reachability). Let ac1 be an access control model rep-
resentable in our framework by an IACMI I1 over an ACMS S. Atom
Authp(t1, . . . , tm) is reachable from atom Auth(t ′1, . . . , t ′n) in D(I1) if there exists
an EACMI E such that it is possible to derive Auth(t ′1, . . . , t ′n) from a derivation
tree in which an instance of Authp(t1, . . . , tm) appears.

Reachability can help the security administrator in the specification of
authorizations and in the maintenance of the system, since it is a means to
determine the effect of an authorization rule on the state of the system. For in-
stance, by using this property, the administrator is able to determine, whether:
(i) a negative authorization can be derived from a positive (negative) authoriza-
tion; (ii) a positive authorization can be derived from a positive (negative) autho-
rization. This information is very useful, for instance, for checking dependencies
existing among authorizations or for discovering the presence of conflicts.

Reachability is a property that has been investigated in the context of deduc-
tive databases. In general, reachability is decidable for Datalog programs, also
with negation on extensional predicates. It is important to note that IACMIs,
except for the rules defining Authd , are Datalog programs without negation.
Thus, undecidability can only arise because of the structure of Authd rules.
Table V reports some decidability results, depending on the structure of the
considered program. For IACMIs satisfying these properties, reachability is
decidable. For example, reachability is decidable in the Bell and La Padula and
NIST models, as stated by the following proposition.

PROPOSITION 2. Reachability is decidable in the Bell and La Padula and
NIST models.

Example 7. Consider an RBAC model supporting the inheritance inter-
pretation of role hierarchy and positive and negative authorizations. Moreover,
suppose that positive authorizations for a given role are propagated to more
powerful roles, whereas negative authorizations for a given role are propa-
gated to less powerful roles. In this context, reachability results can be used to

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

118 • E. Bertino et al.

answer the following questions:

i Is a negative authorization for a role r on a given object o for a given
privilege p reachable from a positive authorization stating that the same role
r is authorized for the same privilege on the same object?

From a formal point of view, this question corresponds to determining
whether atom Authp(O : o, S : r, P : p, G : G1, ε : −, O ′ : X 1, S′ : X 2, P ′ : X 3) is
reachable from atom Auth(O : o, S : r, P : p, G : G1, ε : +), where G1 is a variable
representing an arbitrary grantor, and X 1, X 2, X 3 are variables representing
an arbitrary information source.

ii Is a negative authorization for a user u on a given object o for a given
privilege p reachable from a negative authorization stating that the role r is
denied for the privilege p on the object o?

From a formal point of view, this question corresponds to determining
whether atom Authp(O : o, S : u, P : p, G : G1, ε : −, O ′ : X 1, S′ : X 2, P ′ : X 3) is
reachable from atom Auth(O : o, S : r, P : p, G : G1, ε : −), where G1 is a variable
representing an arbitrary grantor, and X 1, X 2, X 3 are variables representing
an arbitrary information source.

iii Is a negative authorization stating that user u1 is denied for a given
privilege p on a given object o reachable from a positive authorization
stating that user u2 is authorized for the same privilege on the same
object?

From a formal point of view, this question corresponds to determining
whether atom Authp(O : o, S : u1, P : p, G : G1, ε : −, O ′ : X 1, S′ : X 2, P ′ : X 3)
is reachable from atom Auth(O : o, S : u2, P : p, G : G1, ε : +), where G1 is a
variable representing an arbitrary grantor, and X 1, X 2, X 3 are variables rep-
resenting an arbitrary information source.

iv Is a positive authorization for a role r on a given object o for a given
privilege p reachable from a positive authorization stating that a user u is
authorized for the same privilege on the same object?

From a formal point of view, this question corresponds to determining
whether atom Authp(O : o, S : r, P : p, G : G1, ε : +, O ′ : X 1, S′ : X 2, P ′ : X 3) is
reachable from Auth(O : o, S : u, P : p, G : G1, ε : +) atom , where G1 is a variable
representing an arbitrary grantor, and X 1, X 2, X 3 are variables representing
an arbitrary information source.

The ability to give an answer to the above questions supports the administrator
in the creation and maintenance of a conflict resolution function according to
the needed security requirements, and, in general, in the analysis of the model
behavior. For instance, if the answer to question i) is yes, a conflict is generated;
this information supports the administrator in the identification and resolution
of conflicts.

As an example, consider the NIST Hierarchical access control model pre-
sented in Figures 14 and 15. The atom (a) : Authp(O : #5(o2), S : #11(r2), P :
#7(R), G : #S A, ε : +, O ′ : #5(o2), S′ : #11(r2), P ′ : #7(R)) is reachable from
(b) : Auth(O : #5(o2), S : #1(Ann), P : #7(R), G : #S A, ε : +) since there exists
a derivation tree for (b) in which an instance of (a) appears. Such a tree is
presented in Figure 16. Note that:

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 119

Fig. 16. A derivation tree.

— From Authd (O : #5(o2), S : #11(r2), P : #7(R), G : #S A, ε : +), by applying rule
r7, we obtain (a).

— From (a) and rule r5 we obtain (i) : Authp(O : #5(o2), S : #10(r1), P : #7(R), G :
#S A, ε : +, O ′ : #5(o2), S′ : #11(r2), P ′ : #7(R)).

— From (i), by applying rule r6, we obtain (ii) : Authp(O : #5(o2), S : #1(Ann), P :
#7(R), G : #S A, ε : +, O ′ : #5(o2), S′ : #11(r2), P ′ : #7(R)).

— From (ii) and rule r8 we obtain (b).

Consistency can be formally defined in our framework as follows.

Definition 19 (Consistency). Let ac be an access control model repre-
sentable in our framework by an IACMI I over an ACMS S. ac is consistent if
there exists an EACMI E such that a consistent stable model exists for I ∪ E.

It is simple to prove that consistency holds if {Error() ←} ⊆ErrorC I is not
true.

PROPOSITION 3. Let ac be an access control model representable in our frame-
work by an IACMI I over an ACMS S. ac is consistent iff {Error()←} ⊆ErrorC I
does not hold.

Example 8. Consider a NIST Constrained access control model supporting
the inheritance interpretation of role hierarchy. Moreover, consider the follow-
ing rules:

1. ErrorC() ← ActiveRole(U : X , S : Y , R : Z), ActiveRole(U : X , S : Y , R :
K);

2. ErrorC()← Auth(O : X 1, S : X 2, P : X 3, G : X 4, ε : −);
3. ErrorC() ← Auth(O : X 1(o1), S : X 2(r1), P : X 3(p1), G : #S A, ε : +),

notAuth(O : X 4(o2), S : X 5(u2), P : X 6(p2), G : #S A, ε : −), object(self :
X 1, name : o1), role(self : X 2, name : r1), privilege(self : X 3, name : p1),
object(self : X 4, name : o2), user(self : X 5, name : u2), privilege(self : X 6,
name : p2);

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

120 • E. Bertino et al.

4. Authd (O : X 1, S : X 2(r1), P : X 3(p1), G : #4, ε : +) ← object(self : X 1,
name : X 2), role(self : X 2, name : r1), privilege(self : X 3, name : p1);

5. p()← object(self : X 1, name : o1);
6. ErrorC()← notp().

Rules 1,2,3, and 6 define constraints, rules 4 defines direct authorizations,
whereas rule 5 defines a user-defined predicate, used in constraint 6.

Constraint 1 states that two distinct roles cannot be activated by the same
user within the same session. An access control model containing just this
constraint is certainly consistent, since there exists at least an EACMI that
does not violate the constraint. For example, the EACMI of Model1 in Figure 14
does not violate the constraint since there does not exist a user that can activate
more than a role within its session.

By contrast, consider a model in which rules 4, 5 and constraints 2,3, and 6
have been inserted. Rule 4 states that role r1 must be authorized to exercise
privilege p1 on all objects, whereas rule 5 and constraint 6 state that object o1
must be always present. Constraint 3 states that an error occurs if role r1 is
authorized to exercise privilege p1 on o1 and, at the same time, user u2 is not
denied the exercise of privilege p2 on o2. Finally, constraint 2 states that only
positive authorizations are admitted.

An access control model with rules 4, 5, and constraints 2,3, and 6 is not con-
sistent because an ErrorC fact is always generated, regardless of the considered
EACMI. In fact:

— if some negative authorizations are entailed by the model, an error is gener-
ated due to constraint 2;

— if o1 does not exist, an error is generated due to rule 5 and constraint 6;
— if o1 exists, role r1 is authorized to exercise privilege p1 on o1 by rule 4;

in this case, if user u2 is not denied to exercise privilege p2 on o2, an error
occurs due to constraint 3; otherwise he/she is denied but in this case, an error
occurs due to constraint 2 since a negative authorization has been generated.

8. CONCLUSIONS

In this paper we have presented a formal framework for reasoning about ac-
cess control models. The proposed framework is based on the C-Datalog lan-
guage. The framework is general enough to model a large variety of access
control models. In the paper, besides giving the syntax and the formal se-
mantics of our framework, we have shown some examples of its applicability.
Moreover, we have presented a set of dimensions for the analysis and the com-
parison of access control models and we have stated decidability results for
them.

The framework we have introduced can be seen as a formal approach for
analyzing and comparing existing access control models. In particular, we may
assume that the user is assisted by a tool, automatizing the mapping process.
The user will supply the model characteristics by using a GUI. The tool will then
translate the specified information in an instance of the proposed framework,
starting from which the analysis can be performed.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 121

The work reported in this paper is a first step of a wider project we are cur-
rently working on. Future work includes the definition of a formal methodology
for mapping access control models onto our framework, and a more compre-
hensive investigation of the proposed dimensions taking into account conflict
resolution aspects. In this context we also plan to investigate the problem of
safety verification in our framework. Another important extension concerns
the definition of a notion of mapping complexity, that is, a measure of the effort
required to map an access control model into our framework. We also plan to
investigate the complexity of authorization administration and checking of the
various models by using our framework as a formal basis. Such complexity mea-
sures represent the basis for criteria that can be used for the SA when having
to choose among different models. Moreover, we plan to define specific algo-
rithms supporting the detection of access equivalence relationships between
access control models.

Additionally, we are developing, based on the proposed framework, a multi-
policy system [Bertino et al. 2002]. This system will provide, among various
features, a tool for access control model mapping and analysis. The system
will also include tools for policy integration, in distributed heterogeneous sys-
tems, and policy evolution. Moreover, the system will provide: (i) a tool en-
abling the security administrator to specify and analyze access control policies,
independently of any specific access control mechanism; and (ii) conversion
tools for mapping these policies, once validated, onto access control mecha-
nisms. We also plan to extend our framework for supporting administrative
functions and we plan to compare this new framework with previous work on
this topic [Ammann and Sandhu 1991; Sandhu 1992a; Sandhu 1992b; Sandhu
and Ganta 1993]. Another planned extension concerns the representation of
temporal access control (e.g. Bertino et al. [1998]) models inside our frame-
work. In this respect we note that, given the characteristics of our framework,
it will be quite easy to represent temporal constraints by making use of class
attributes.

APPENDIX

A. FROM C-DATALOG TO DATALOG

In the following, we briefly survey how a C-Datalog program can be translated
into an equivalent Datalog-like program. We refer the reader to Greco et al.
[1992] for additional information.

The transformation involves three main steps: explicit representation of in-
heritance relationships, removal of labels, and representation of class terms. In
the following, the previous steps are briefly described.

Instance inheritance. Inheritance relationships can be represented by in-
serting additional rules that make explicit the relations expressed by the ISA
hierarchy. As an example, suppose that a, b ∈ K , and that b is a superclass
of a. Let Scheme∗(b) = {b1, . . . , bn} and Scheme∗(a) \ Scheme∗(b) = {a1, . . . , am}.
Then, the following rule captures the existing ISA relationship between a and
b: b(b1 : X 1, . . . , bn : X n)← a(b1 : X 1, . . . , bn : X n, a1 : X n+1, . . . , am : X n+m).

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

122 • E. Bertino et al.

Labeling of terms. Let a ∈ B be an entity name with schema closure
Scheme∗(b) of arity n. If we propose to fix an ordering for the n attributes of
Scheme∗(b) (with sel f attribute in first position), we can then maintain the
correspondence between terms and their labels even when removing the labels
from atoms.

Class terms in atoms. Class terms must be extracted from atoms and rep-
resented as conjunctions of Datalog atoms. Suppose that a(T) is an atom such
that a class term c(. . .) occurs in T . We can replace c(. . .) in T with its first
attribute (referring to self attribute), obtaining T ′, and replace atom a(T) with
the following conjunction of Datalog atoms: a(T ′), c(. . .). The same procedure
must be applied to each literal that belongs to the body of a rule with the fol-
lowing exception: if a rule contains a negated literal not a(T) such that a class
term c(. . .) occurs in T , we replace not a(T) with not a′(T ′), where a′(T ′) is a
new atom whose arguments are the variables of a(T ′), c(. . .), defined by the rule
a′(T ′)← a(T ′), c(. . .).

B. FORMAL PROOFS

THEOREM 1 . Let Iac be an instance of the Bell and La Padula model and let I
be the ACMI constructed as pointed out above. We have to show that Iac and I
agree. We first note that no constraints are enforced by the Bell and La Padula
Model and no conflict can arise, since only positive authorizations are gener-
ated. Additionally, the grantor of each authorization is always the SA. Thus, we
do not consider the grantor and the sign component of an authorization in the
remainder of the proof. Moreover, only one set of authorizations A1 is entailed
by Iac and, by construction, D(I) admits a unique consistent stable model M .
Based on the previous considerations we note that no conflict resolution policy is
required for assigning a semantics to D(I) and that S(D(I)) = GS(D(I)) = M .
We have to show therefore that MAuth = A1, where A1 is the set of authorizations
entailed by Iac. This corresponds to proving that A1 ⊆ Mauth and Mauth ⊆ A1.

A1 ⊆ Mauth Valid authorizations in the Bell and La Padula model are all and
only those that satisfy the simple security and *-Property.

Suppose that the authorization 〈o, s, read 〉 ∈ A1 and it is entailed by the
simple security property. It means that subject s has a read access on object o
and thus the access class of s - say ls - dominates the access class of o - say lo -.
By construction, D(I) contains facts: subject(self : #s, name : s, access class : ls),
and object(self : #o, name : o, access class : lo), where #s and #o are identifiers.
Moreover, by construction, ls = lo or InLessC(C1 : lo, C2 : ls) holds. In the first
case, from rule 3a), we deduce fact Authd (O : #o, S : #s, P : #read, G : #SA, ε :
+), where #read is the identifier of the read privilege. In the second case, the
same fact is deduced from rule 3b). Thus, 〈#o, #s, #read〉 ∈ MAuth.

Now suppose that the authorization 〈o, s, write〉 ∈ A1 due to the *-Property.
This means that subject s has a write access on object o and its access class
ls is equal to the access class lo of the object. By construction, D(I) contains
facts: subject(sel f : #s, name : s, access}class : ls), and object(sel f : #o, name :
o, access class : lo), and lo = ls. Thus, from rule 3e), we deduce the fact

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 123

Authd (O : #o, S : #s, P : #write, G : #S A, ε : +), where #write is the iden-
tifier of the write privilege. Thus, 〈#o, #s, #write〉 ∈ MAuth.

Finally, suppose that the authorization 〈o, s, append〉 ∈ A1 due to the *-
Property. This means that subject s can exercise the append privilege on object
o and its access class ls is dominated by the access class of the object lo. By con-
struction, D(I) contains facts: subject(self : #s, name : s, access class : ls), and
object(sel f : #o, name : o, access class : lo). Moreover, by construction, ls = lo
or InLessC(C1 : lo, C2 : ls) holds. In the first case, from rule 3c) we deduce the
fact Authd (O : #o, S : #s, P : #append, G : #S A, ε : +), where #append is the
identifier of the append privilege. In the second case, the same fact is deduced
from rule 3d). Thus, 〈#o, #s, #append〉 ∈ MAuth.

We can therefore conclude that A1 ⊆ Mauth
Mauth ⊆ A1. The thesis follows by applying a reasoning similar to that pre-

sented in the previous proof, by noting that in I we represent just the subjects
(users or processes), objects, and privileges existing in Iac and that dominance
relationship among access classes is exactly represented by the definition of
predicates LessC and InLessC.

THEOREM 2. Let Iac be an instance of the Flat RBAC model and let I be
the ACMI constructed as shown in Section 6.2.1. We have to show that Iac
and I agree. We first note that no constraints are enforced by the Flat RBAC
model and no conflict can arise, since only positive authorizations are generated.
Additionally, the grantor of each authorization is always the SA. Thus, we do
not consider the grantor and the sign component of an authorization in the
remainder of the proof. Moreover, only one set of authorizations A1 is entailed
by the Flat RBAC instance and, by construction, D(I) does not contain negation
and admits a unique consistent stable model M . This means that no conflict
resolution policy is required and that S(D(I)) = GS(D(I)) = M . We therefore
have to show that MAuth = A1. This corresponds to proving that A1 ⊆ Mauth
and Mauth ⊆ A1.

A1 ⊆ Mauth An instance Iac of the Flat RBAC model consists of the sets U ,
R, P , S and of the functions UA and PA defined over these sets. Set P consists
of pairs (a, o), where a ∈ A is an access model and o ∈ O is an object.

Valid authorizations in the Flat RBAC model are all and only those of the
form 〈s, p〉, s ∈ U ∪ R, p ∈ P , that can be deduced from the user-role and the
permission-role assignment functions. We suppose that 〈s, p〉 ∈ A1. Two cases
arise depending on whether s is a user or a role.

By construction, D(I) contains a fact for each element of the sets U , R, A, S,
and O. Let us first suppose that s = r, r ∈ R. Since 〈r, p〉 ∈ A1, then (p, r) ∈ PA.
Thus, by construction D(I) contains the fact Authd (O : #po, S : #r, P : #pa, G :
#S A, ε : +), where # j represents the identifier of j . Thus, 〈r, p〉 ∈ MAuth.

Let us now suppose that s = u, u ∈ U . Since 〈u, p〉 ∈ A1, this means that both
the following conditions hold: i) (u, r) ∈ U A; ii) (p, r) ∈ PA. By construction of
AC, D(I) contains the facts: Play(U : #u, R : #r), UserPlay(U : #u, R : #r), and
ActiveRole(U : #u, S : #s, R : #r).

Additionally, since (p, r) ∈ PA, the fact Authd (O : #po, S : #r, P : #pa, G :
#S A, ε : +) belongs to D(I). It is easy to show that by applying rules 8, 12 and

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

124 • E. Bertino et al.

13, the fact Auth(O : #po, S : #u, P : #pa, G : #S A, ε : +) is generated. Thus,
〈u, p〉 ∈ MAuth which proves the thesis.

Mauth ⊆ A1. The thesis follows by applying a reasoning similar to that
presented in the previous proof, by noting that in I we represent just the sub-
jects (users or roles), objects, and privileges existing in Iac and that user-role
and permission-role assignments are exactly represented by the definition of
predicates Play, ActiveRole and Authd .

THEOREM 3. Let Iac be an instance of the Hierarchical RBAC model and let
D(I) be the ACMI constructed as shown in Section 6.2.2. We have to show that
Iac and I agree. We first note that no constraints are enforced by the Hierar-
chical RBAC model and no conflict can arise, since only positive authorizations
are generated. Additionally, the grantor of each authorization is always the
SA. Thus, we do not consider the grantor and the sign component of an autho-
rization in the remainder of the proof. Moreover, only one set of authorizations
A1 is entailed by the Hierarchical RBAC instance and, by construction, D(I)
admits a unique consistent stable model M . This means that no conflict reso-
lution policy is required and that S(D(I)) = GS(D(I)) = M . We have to show
therefore that MAuth = A1. This corresponds to proving that A1 ⊆ Mauth and
Mauth ⊆ A1.

A1 ⊆ Mauth An instance Iac of the Hierarchical RBAC model consists of
sets U , R, P , S, of functions U A, and PA and of the role hierarchy RH. Set
P consists of pairs (a, o), where a ∈ A is an access mode, and o ∈ O is an
object. Valid authorizations in the Hierarchical RBAC model are all and only
those of the form 〈s, p〉, s ∈ U ∪ R, p ∈ P , that can be deduced from the user-
role, the permission-role assignment functions, and the role hierarchy RH. We
suppose that 〈s, p〉 ∈ A1. Two cases arise depending on whether s is a user or a
role.

By construction, D(I) contains a fact for each element of the sets U , R, A,
P , S and O. Moreover, for each 〈r j , ri〉 ∈ RH, D(I) contains a fact LessR(R1 :
#r j , R2 : #ri), where #l represents the identifier of l . Let us first suppose that
s = r, r ∈ R. Since 〈r, p〉 ∈ A1, then either i) (p, r) ∈ PA or ii) (p, r ′) ∈ PA
such r ′ is a direct or indirect child of r in RH. Suppose first that i) holds. Thus,
by construction D(I) contains the fact Authd (O : #po, S : #r, P : #pa, G :
#S A, ε : +). Thus, 〈r, p〉 ∈ MAuth, which proves the thesis. Let us now suppose
that ii) holds. Thus, by construction D(I) contains the fact Authd (O : #po, S :
#r ′, P : #pa, G : #S A, ε : +). It is easy to show that by rules 12, 13, 5, fact
Auth(O : #po, S : #r, P : #pa, G : #S A, ε : +) is deduced. Thus, 〈r, p〉 ∈ MAuth,
which proves the thesis.

Let us now suppose that s = u, u ∈ U . Since 〈u, p〉 ∈ A1, this means that
both the following conditions hold: i) (u, r) ∈ U A and ii) (p, r ′) ∈ PA such that
either a) r = r ′ or b) the inheritance interpretation of RH is considered and
r ′ is a child of r. By construction of AC, if (u, r) ∈ U A, then D(I) contains the
facts: Play(U : #u, R : #r), UserPlay(U : #u, R : #r), and ActiveRole(U : #u, S :
#, R : #r). Let us first suppose that a) holds. Since by hypothesis (p, r) ∈ PA, the
fact Authd (O : #po, S : #r, P : #pa, G : #S A, ε : +) belongs to D(I). It is easy
to show that independently from which interpretation of the role hierarchy is

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 125

chosen, the fact Auth(O : #po, S : #u, P : #pa, G : #SA, ε : +) is generated.
Thus, 〈u, p〉 ∈ MAuth, which proves the thesis.

Suppose now that b) holds. Thus, Authd (O : #po, S : #r ′, P : #pa, G : #SA, ε :
+) belongs to D(I), where r ′ is a child of r. It is easy to show that by rules 3a,
3b, 4a, 4b, 5, 8, 12 and 13, we deduce the fact Auth(O : #po, S : #u, P : #pa, G :
#S A, ε : +). Thus, 〈u, o〉 ∈ MAuth, which proves the thesis.

Mauth ⊆ A1. The thesis follows by applying a reasoning similar to that pre-
sented in the previous proof, by noting that in I we represent just the subjects
(users or roles), objects, and privileges existing in Iac and that role hierarchy,
user-role and permission-role assignments is exactly represented by the defini-
tion of predicates LessR, InLessR, Play, ActiveRole, and Authd .

PROPOSITION 2. The IACMs representing the Bell and La Padula, Flat RBAC,
Hierarchical RBAC, and Constrained RBAC models are a Datalog program
without negation. Based on Table V, reachability in such programs is decidable.

PROPOSITION 3. If ac1 is consistent, there exists an EACMI E such that a
consistent stable model exists for I1 ∪ E, that is, a model not containing any
facts for predicate ErrorC. This also means that it is not true that, for each
EACM E, no consistent stable model for I1 ∪ E exists. This corresponds to
saying that {Error()←} ⊆ErrorC I1 does not hold.

REFERENCES

ADAM, N., ATLURI, V., BERTINO, E., AND FERRARI, E. 2002. A Content-Based Authorization Model
for Digital Libraries. IEEE Trans. Knowl. Data Eng. 14, 2 (March/April), 296–315.

AGG. See http://tfs.cs.tu-berlin.de/agg/docu.html.
AMMANN, P. AND SANDHU, R. 1991. Safety Analysis for the Extended Schematic Protection Model.

In Proceedings of the IEEE Symposium on Security and Privacy. Oakland, California, 87–97.
ATLURI, V. AND HUANG, W. 2000. A Petri Net Based Safety Analysis of Workflow Authorization

Models. J. Comput. Secu. 8, 2&3.
BELL, D. AND PADULA, L. L. 1975. Secure Computer Systems: Unified Exposition and Multics

Interpretation. Tech. Rep. ESD-TR-75-306, Hanscom Air Force Base, Bedford, MA.
BERTINO, E., BETTINI, C., FERRARI, E., AND SAMARATI, P. 1998. An Access Control Mechanism Sup-

porting Periodicity Constraints and Temporal Reasoning. ACM Trans. Database Syst. 23, 3, 231–
285.

BERTINO, E., BUCCAFURRI, F., FERRARI, E., AND RULLO, P. 2000. A Logic-Based Approach for Enforcing
Access Control. J. Comput. Secu. 8, 2&3.

BERTINO, E., CATANIA, B., FERRARI, E., AND PERLASCA, P. 2002. A System to Specify and Manage
Multipolicy Access Control Models. In Proceedings of the IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks.

BERTINO, E., FERRARI, E., AND ATLURI, V. 1999. The Specification and Enforcement of Authoriza-
tion Constraints in Workflow Managenent Systems. ACM Trans. Inform. Syst. Secu. 2, 1, 65–
104.

BERTINO, E., SAMARATI, P., AND JAJODIA, S. 1997. An Extended Authorization Model. IEEE Trans.
Knowl. Data Engi. 9, 1 (January/February).

CASTANO, S., FUGINI, M., MARTELLA, G., AND SAMARATI, P. 1995. Database Security. Addison-Wesley.
CORAL. See ftp.cs.wisc.edu/coral/.
ECLiPSe. See http://www-icparc.doc.ic.ac.uk/eclipse/.
EHRIG, H., KREOWSKI, H., MONTANARI, U., AND ROZENBERG, G., Eds. 1999. Handbook of Graph Gram-

mars and Computing by Graph Transformation. vol. 2 (Applications, Languages, and Tools).
World Scientific.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

126 • E. Bertino et al.

FERNANDEZ, E., GUDES, E., AND SONG, H. 1994. A Model for Evaluation and Administration of
Security in Object-Oriented Databases. IEEE Trans. Knowl. Data Eng. 6, 275–292.

FERRARI, E. AND THURAISINGHAM, B. 2000. Secure Database Systems. In Advanced Databases:
Technology and Design, O. Diaz and M. Piattini, Eds. Artech House, London.

GAIFMAN, H., MAIRSON, H., SAGIV, Y., AND VARDI, M. 1987. Undecidable Optimization Problems in
Database Logic Programs. In Proceedings of the 2nd IEEE Symposium on Logic in Computer.
106–115.

GLAUERT, J., KENNAWAY, R., AND SLEEP, R. 1991. DACTL: An Experimental Graph Rewriting Lan-
guage. In Proceedings of the 4th. International Workshop on Graph Grammars and their Appli-
cation to Computer Science, Springer-Verlag, Ed. vol. 532. 378–395.

GRECO, S., LEONE, N., AND RULLO, P. 1992. COMPLEX: An Object-Oriented Logic Programming Sys-
tem. IEEE Trans. Knowl. Data Eng. 4, 72–87.

HAAS, L., CHANG, W., AND LOHMAN, G. 1990. Starbust Mid-Flight: As the Dust Clears. IEEE Trans.
Knowl. Data Eng. 2, 33–54.

JAEGER, T. AND TIDSWELL, J. 2001. Practical Safety in Flexible Access Control Models. ACM Trans.
Inform. Syst. Secu. 4, 2 (May), 158–190.

JAJODIA, S., SAMARATI, P., SAPINO, M., AND SUBRAHMANIAN, V. 2001. Flexible Support for Multiple
Access Control Policies. ACM Trans. Database Syst. 26, 2 (June), 214–260.

JAJODIA, S., SAMARATI, P., SUBRAHMANIAN, V., AND BERTINO, E. 1997. A Unified Framework for En-
forcing Multiple Access Control Policies. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. 474–485.

KOCH, M., MANCINI, L., AND PARISI-PRESICCE, F. 2000. A Formal Model for Role-Based Access Con-
trol Using Graph Transformation. In Proceedings of the 6th European Symposium on Research
in Computer Security. 122–139.

KOCH, M., MANCINI, L., AND PARISI-PRESICCE, F. 2001. On the Specification and Evolution of Ac-
cess Control Policies. In Proceedings of the 6th ACM Symposium on Access Control Models and
Technologies (SACMAT-01). Chantilly, Virginia, USA, 121–130.

LEVY, A., MUMICK, I., SAGIV, Y., AND SHMUELI, O. 1993. Equivalence, Query-Reachability, and Sat-
isfiability in Datalog Extensions. In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. 109–122.

LLOYD, J. 1987. Foundations of Logic Programming. Springer-Verlag.
MILLEN, J. AND LUNT, T. 1992. Security for Object-Oriented Database Systems. In Proceedings of

the IEEE Symposium on Security and Privacy. Oakland (Ca), USA, 260–272.
RABITTI, F., BERTINO, E., KIM, W., AND WOELK, D. 1991. A Model of Authorization for Next-

Generation Database Systems. ACM Trans. Database Syst. 16, 1 (March), 88–131.
ROZENBERG, G., Ed. 1997. Handbook of Graph Grammars and Computing by Graph Transforma-

tion. vol. 1 (Foundations). World Scientific, Singapore.
SAMARATI, P., BERTINO, E., AND JAJODIA, S. 1996. An Authorization Model for a Distributed Hyper-

text System. IEEE Trans. Knowl. Data Eng. 8, 4 (August), 555–562.
SANDHU, R. 1992a. Expressive Power of the Schematic Protection Model. J. Comput. Secu. 1, 1.
SANDHU, R. 1992b. The Typed Access Matrix Model. In Proceedings of the IEEE Symposium on

Security and Privacy. 122–136.
SANDHU, R. 1996. Role Hierarchies and Constraints for Lattice-based Access Controls. In Com-

puter Security - Esorics’96, E. Bertino, H. Kurth, G. Martella, and E. Montolivo, Eds. Number
1146 in Lecture Notes in Computer Science. Rome, Italy, 65–79.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-Based Access Control Models.
IEEE Comput. 29, 2 (February), 38–47.

SANDHU, R., FERRAIOLO, D., AND KUHN, R. 2000. The NIST Model for Role-Based Access Control:
Towards a Unified Standard. In Proceedings of the 5th ACM Workshop on Role-Based Access
Control. Berlin, Germany, 47–63.

SANDHU, R. AND GANTA, S. 1993. Expressive Power of the Single-Object Typed Access Matrix
Model. In Proceedings of the 9th Annual Computer Security Applications Conference.

SCHURR, A. 1991. PROGRES: A VHL-language based on Graph Grammars. In Proceedings of
the 4th International Workshop on Graph Grammars and their Application to Computer Science.
Lecture Notes in Computer Science, vol. 532. Springer-Verlag, 641–659.

STRAWBERRY PROLOG. See http://www.dobrev.com/index.html.

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

A Logical Framework for Reasoning about Access Control Models • 127

THOMAS, R. AND SANDHU, R. 1997. Task-Based Authorization Controls (TBAC): Models for Active
and Enterprise-Oriented Authorization Management. In Proceedings of the 11th IFIP Working
Conference on Database Security. Lake Tahoe (CA), 136–151.

ULLMAN, J. 1989. Principles of Database and Knowledge Base Systems. vol. 1& 2. Computer
Science Press.

WINSLETT, M., CHING, N., JONES, V., AND SLEPCHIN, I. 1997. Using Digital Credentials on the World
Wide Web. J. Comput. Secu. 5, 3.

XSB. See http://xsb.sourceforge.net/.

Received October 2001; revised February 2002, March 2002,
April 2002, September 2002; accepted September 2002

ACM Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

