
Fine-grained Role-based Delegation in Presence
of the Hybrid Role Hierarchy

James B. D. Joshi
LERSAIS & Department of Information Science and

Telecommunications, University of Pittsburgh
Pittsburgh, PA 15212

jjoshi@mail.sis.pitt.edu

Elisa Bertino
CERIAS and Department of Computer Science,

Purdue University
West Lafayatte, IN 47907

bertino@cs.purdue.edu

ABSTRACT
Delegation of authority is an important process that needs to be
captured by any access control model. In role-based access
control models, delegation of authority involves delegating roles
that a user can assume or the set of permissions that he can
acquire, to other users. Several role-based delegation models have
been proposed in the literature. However, these models consider
delegation in presence of the general hierarchy type. Multiple
hierarchy types have been proposed in the context of Generalized
Temporal Role-based Access Control (GTRBAC) model, where it
has been shown that multiple hierarchy semantics is desirable to
express fine-grained access control policies. In this paper, we
address role-based delegation schemes in the of hybrid hierarchies
and elaborate on fine-grained delegation schemes. In particular,
we show that upward delegation, which has been considered as
having no practical use, is a desirable feature. Furthermore, we
show that accountability must be considered as an important
factor during the delegation process. The delegation framework
proposed subsumes delegations schemes proposed in earlier role-
based delegation models and provide much more fine-grained
control of delegation semantics.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H2.7 [Database
Administration]: Security, integrity, and protection.

General Terms
Security, Management, Theory.

Keywords
Role based, access control, delegation, hybrid hierarchy

1. INTRODUCTION
Role based access control (RBAC) has emerged as a promising
alternative to traditional discretionary and mandatory access
control (DAC and MAC) models [Jos01b, Osb00, San96a,
Giu97], which have some inherent limitations. Several beneficial

features make RBAC better suited for handling access control
requirements of diverse organizations [Jos01b, San96a, Giu97].
One important organizational process that affects the access
control privilege distribution among the users is delegation.
Delegation involves a subject passing its authority to other
subjects. Zhang et al. [Zha03a] identify three cases in which
delegation takes place. The first case, termed as backup of role,
corresponds to when someone is not in a position to perform the
tasks that he is supposed to do. In such a case, he should be
allowed to have someone else perform his job functions by
delegating his authority to do the job to someone else. Secondly,
delegation may be used to achieve decentralization of authority.
Lastly, delegation is useful when individuals collaborate on some
work – they may need to delegate their authorities to ease the
collaboration.

Existing role-based delegation models address delegation in
presence of the traditional single hierarchy type. Recently, Joshi
et al [Jos05] have identified three different types of hierarchical
relations within the Generalized Temporal RBAC (GTRBAC)
framework [Jos05] that can be applied between roles, namely
inheritance-only hierarchy (I-hierarchy), activation-only
hierarchy (A-hierarchy) and inheritance-and-activation hierarchy
(IA-hierarchy). A hybrid hierarchy in which these different
hierarchy types coexist can capture fine-grained inheritance
semantics [Jos05 Jos02a, Jos03, San98]. In particular, when
various separation of duty (SoD) as well as user-centric and
permission centric cardinality constraints need to be applied on
roles in a hierarchy, A-hierarchy can be used [San98, Jos02a]. The
use of these hierarchy types also facilitate efficient integration of
multiple RBAC policies employing hierarchical as well as SoD
constraints [Sha03].

In presence of the multiple hierarchy types, more fine-grained
delegation semantics with practical applications is possible. In
this paper, we address delegation in presence of the hybrid
hierarchy within the GTRBAC framework. Because of space
limitation, we do not discuss cross-sectional delegation that does
not involve hierarchies. The novelty of the paper is as follows:

• We provide a more complete delegation framework that
subsumes all role-based delegation schemes proposed earlier
in the literature. In addition, the proposed delegation
framework also allows delegating or preventing delegation
of dynamically assigned permissions during the delegation
period. We introduce a novel concept of filter roles to
support this feature, which, to the best of our knowledge, has
not been addressed earlier.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’06, June 7-9, 2006, Lake Tahoe, CA, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006...$5.00.

81

• The proposed delegation framework introduces upward
delegation that allows a user assigned to a junior role to
delegate his authority to a user assigned to a senior role.
Contrary to earlier belief, we show that upward delegation is
practically relevant, particularly when hybrid hierarchy is
used. Further, we argue that upward delegation is also
important to enhance support for accountability.

While different combinations of delegation and revocation
schemes are possible, because of the space limitation, we focus on
single step delegation and revocation only. For such simple cases,
the revocation details are straightforward and hence, for the sake
of space, are presented in the tables and only briefly discussed.

The paper is organized as follows. We overview related work in
Section 2 and the GTRBAC model in Section 3. We present the
proposed delegation framework in Section 4 and conclusions in
Section 5.

2. RELATED WORK
Considerable work on different aspects of delegation has been
reported in the literature. Gasser et al. address user-to-machine
delegation [Gas90], while Stein explores delegation and
inheritance in the object-oriented environment [Ste87]. Process to
process delegation in distributed object environment has been
introduced by Nagaratnam et al. [Nag98]. Sandhu et al. address
delegation related to role administrators in ARBAC97 model
[San99]. Goh et al. treat delegation as an attribute of role
[Goh98]. RBDM0 allows user-to-user delegation based on roles
[Bar00a, Bar00b]. That is, a user (delegator) assigned to a role
(delegator role) delegates his role membership to another user
(delegatee) assigned to another role (delegatee role). In RBDM0,
a role is delegated entirely, i.e., all the permissions associated
with the delegated roles are available to the user to whom the role
has been delegated. RDM2000 extends RBDM0 and supports
delegation in presence of a role hierarchy and multi-step
delegation. RDM2000 provides a rule based declarative language
to specify and enforce delegation and revocation policies. It
introduces the can_delegate condition with prerequisite roles to
restrict the scope of delegation. In both RBDM0 and RDM2000,
the unit of delegation is a role. PBDM is a family of models that
extend RDM2000 with newer features. PBDM0, the first model of
PBDM, supports permission level user-to-user delegation, i.e., a
subset of permissions is allowed to be delegated. In particular, a
new “delegation” role is created with the set of permissions to be
delegated explicitly assigned to it. PBDM1 extends PBDM0 by
allowing the security administrator to control the delegated
permissions. Here, the delegated role, which is a replica of an
original role is created by the security administrator in order to
control the flow of the delegated permissions. PBDM2 extends
PBDM0 by allowing role-to-role delegation. Delegation based on
conditions on time, workload and other task attributes have been
considered in [Atl05]. Wainer et al. focus on user to user
delegation in [Wai05]. Some work, e.g., [Tho97], have dealt with
adding permissions to a session dynamically to facilitate
collaborative work.

The framework we propose in this paper is closely related to the
RBDM0 [Bar00a, Bar00b], RDM2000 [Zha03b] and PBDM
[Zha03a] models and extends the features they provide with more
fine grained delegation semantics aligned with the fine-grained
semantics of hybrid hierarchies [Jos02a].

3. HYBRID HIERARCHY IN GTRBAC
The GTRBAC model introduces the separate notion of role
enabling and role activation, and provides constraints and event
expressions associated with both [Jos05]. An enabled role
indicates that a valid user can activate it, whereas an activated
role indicates that at the least one user has activated the role. The
basic GTRBAC model proposed in [Jos05], allows specification
of the following set of constraints: (i) temporal constraints on role
enabling/disabling that allow specification of intervals and
durations in which a role is enabled; (ii) temporal constraints on
user-role and role-permission assignments that allow specifying
intervals and durations in which a user or permission is assigned
to a role; (iii) activation constraints that allow specification of
restrictions on the activation of a role, such as, specifying the total
duration for which a user may activate a role, or the number of
concurrent activations of the role at a particular time; (iv) run-
time events allow an administrator and users to dynamically
initiate the various role events, or enable the duration or
activation constraints; (v) constraint enabling events that enable
or disable duration and role activation constraints mentioned
earlier; and (vi) triggers that allow expressing dependencies
among events and conditions

Semantically, a role hierarchy expands the scope of the
permission-acquisition and role-activation semantics beyond the
explicit assignments through the hierarchical relations defined
among roles. Within the GTRBAC framework, the following
three hierarchy types have been identified: permission-
inheritance-only hierarchy (I-hierarchy), role-activation-only
hierarchy (A-hierarchy) and the combined inheritance-activation
hierarchy (IA-hierarchy) [Jos05]. Table 3.1 captures the predicate
notations used in defining the semantics of these hierarchies
[Jos05]. Predicates enabled(r, t), assigned(u, r, t) and assigned(p,
r, t) refer to the status of roles, user-role and role-permission
assignments at time t. Predicate can_activate(u, r, t) indicates that
user u can activate role r at time t implying that user u is
implicitly or explicitly assigned to role r. active(u, r, s, t)
indicates that role r is active in user u’s session s at time t
whereas, acquires(u, p, s, t) implies that u acquires permission p
at time t in session s. The axioms in Table 3.1 capture the key
relationships among these predicates and identify precisely the
permission-acquisition and role-activation semantics in GTRBAC
[Jos05]. Axiom (1) states that if a permission is assigned to a role,
then it can be acquired through that role. Axiom (2) states that all
users assigned to a role can activate that role. Axiom (3) states
that if a user u can activate a role r, then all the permissions that
can be acquired through r can be acquired by u. Similarly, axiom
(4) states that if there is a user session in which a user u has
activated a role r then u acquires all the permissions that can be
acquired through role r. We note that axioms (1) and (2) indicate
that permission-acquisition and role-activation semantics are
governed by explicit user-role and role-permission assignments.

In Table 3.2, the semantics of each hierarchy type is defined by
its corresponding implication rule in the shaded box. The rule for
the I-hierarchy, (x≥ty), implies that if (x≥ty) holds, then the
permissions that can be acquired through role x include all the
permissions that can be acquired through role y. In other words,
permissions of the junior roles are inherited by the senior role.
Similarly, the rule for the A-hierarchy implies that if user u can
activate role x, and x≿ty is defined, then user u can also activate

82

role y even if he is not explicitly assigned to y. Note that it does
not imply that user u can acquire y’s permissions by merely
activating x. In other words, permission-inheritance is not implied
in an A-hierarchy. The IA-hierarchy is the most general form and
includes both permission-inheritance and role-activation
semantics. In the remaining sections we do not use the time
parameter t in any expression.

Example 3.1: Assume that a programming tool is used for a
programming project and has a licensing restriction preventing

more than four users using it at any given time. The project leader
mainly supervises the programming tasks. Only the programmers
do the coding. The project leader can only look at the tasks the
programmers have carried out in a weekly basis, say on Fridays.
Figure 3.1 depicts the hierarchy that can be generated for
achieving the goal1. Role TaskR contains the read-only
permissions whereas role TaskW contains all the write/modify
permissions related to the programming task. The Project Leader
role becomes the senior of Programmer role only on Fridays. Note
that the users assigned to the Project Leader only inherit TaskR
permissions and cannot acquire any permissions of TaskW.

4. GTRBAC DELEGATION FRAMEWORK
In this section, we extend the GTRBAC model to capture various
delegation schemes in presence of different hierarchies. Table 4.1
introduces some terminologies that we use in this paper. In
particular, delegator, delegatee, delegator role, delegatee role and
delegation role/sub-role have specific meanings. If x is the
delegator role then we use x’ to represent the delegation role.

4.1 Role-based Delegation Schemes
Figure 4.1 shows the delegation schemes allowed in the proposed
GTRBAC framework.

1 I, A and IA-hierarchies are represented by a simple line, a dotted

line and a line with arrows on both ends, respectively.

Table 3.1 Status predicates

Predicate Meaning Axioms
enabled(r, t) Role r is enabled at time t

u_assigned(u, r, t) User u is assigned to role r at time t

For all r ∈ Roles, u ∈ Users, p ∈ Permissions, s ∈
Sessions, and time instant t ≥ 0, the following
implications hold:

p_assigned(p, r, t) Permission p is assigned to role r at time t 1. assigned(p, r, t)→ can_be_acquired(p, r, t)

can_activate (u, r, t) User u can activate role r at time t 2. assigned(u, r, t) → can_activate (u, r, t)

can_acquire (u, p, t) User u can acquire permission p at time t

can_be_acquired(p, r, t) Permission p can be acquired through role r at time t
3. can_activate (u, r, t) ∧ can_be_acquired(p, r, t) →

can_acquire (u, p,t)

active(u, r, s, t) Role r is active in user u’s session s at time t

acquires(u, p, s, t) User u’ acquires permission p in session s at time t
4. active(u, r, s, t) ∧ can_be_acquired(p, r, t) →

acquires(u, p, s, t)

Table 3.2. Role hierarchies in GTRBAC Table 4.1 Notational Conventions and New GTRBAC

Short form Notation Formal Semantics Terms/notation Description
delegator A user who delegates his authority
delegatee A user who receives the delegated authority I-hierarchy (x≥ty) ∀p, (x≥ty) ∧ can_be_acquired(p, y,

t) → can_be_acquired(p, x, t)
delegator role Role that the delegatee is assigned to
delegatee role Role that the delegatee is assigned to

A-hierarchy (x≽ty) ∀u, (x≽ty) ∧ can_activate (u, x, t)
→ can_activate (u, y, t) delegation role A copy of delegator role that the delegatee is

assigned to achieve delegation

delegation sub-role A copy of role to which there is a hierarchical path
from the delegator role. IA-hierarchy (x≿ty) (x≿ty) ↔ (x≥ty) ∧ (x≽ty)

x<f>y,<f>∈{≥,≽,≿} x is direct senior of y with hierarchy type <f>
Consistency Property: Let <f1><f2> ∈{≥t, ≽t, ≿t}, and x and y be
distinct roles such that (x<f1>y) then ¬(y <f2> x) must hold

x<f>gy,
<f>∈{≥,≽,≿} y is direct or derived junior of x

u5

Project Leader
(PL)

Programmer
(P)

assigned to

taskR taskW

(Fridays, enable h)

u1

u4

u3

u2
assigned to

No.of activations ≤ 4
(permission-centric)

I-hierarchy A-hierarchy

h = I-hierarchy

Figure 3.1 Hierarchy example

83

4.1.1 U2U, R2R , U2R, and R2U Delegation
Broadly speaking, in an RBAC model, delegation can be user-to-
user (U2U), user-to-role (U2R), role-to-role (R2R) or role-to-
user (R2U). In U2U delegation, a delegator delegates a delegator
role or a part of it to the delegatee based on the relationship
between the delegator role and the delegatee role. In R2R, the
delegation is not user specific - the delegator role is delegated to
the delegatee role. This means, anyone who can activate the
delegatee role can also activate the delegation role. The key
difference is, in U2U, a user primarily decides (although not
always) who he wants to delegate his role to, while in R2R, a role
is delegated to another role (hence to all its authorized users) by
the system based on some pre-specified rule. R2R can be viewed
as a special case of the U2U delegation in which the delegator
role is delegated to all the users authorized for the delegatee role.
U2R and R2U delegations can be considered as in the middle of
the two extremes U2U and R2R. That is, in U2R, an individual
user delegates his role to the delegatee role, while in R2U, the
delegator role is delegated to an individual delegatee.

4.1.2 Downward, Cross-sectional and Upward
Delegation

Each delegation scheme may further be categorized as downward,
cross-sectional or upward. In downward and upward delegation
schemes, the delegator role and the delegatee role are
hierarchically related by direct or derived I, A, or IA relations. In
downward delegation, the delegator role is a senior of the
delegatee role, whereas, in the upward delegation, the delegator
role is a junior of the delegatee role. In cross-sectional
delegation, the delegator role and the delegatee role are not
hierarchically related. Both downward and cross-sectional
delegation schemes have been the main focus of earlier role-based
delegation models. Upward delegation, however, has been
dismissed as not being of any practical use [Zha03a]. In this
paper, we introduce upward delegation primarily for two purposes

(1) to facilitate fine-grained delegation in presence of the hybrid
hierarchy and (2) to provide more fine-grained support for
accountability of delegated authority.
Presence of hybrid hierarchy: In a hybrid hierarchy, a complex
inheritance and activation semantics between an arbitrary pair of
roles may exist. In such a case, the upward delegation comes as a
desirable mechanism to transfer user’s access authority to others

who are assigned to higher roles. One such situation in hybrid
hierarchies is when there is an I-relation followed by an A-relation
from the senior delegatee role (say x) to the junior delegator role
(say z), i.e., when x ≥g y and y≽z. In such a case, a user assigned
to x cannot acquire any permission that can be acquired through
role z. The user cannot activate y either, because of the I-relation.
Hence, some form of delegation needs to be utilized if the junior
delegator role is to be delegated to the delegatee assigned to the
senior delegatee role. Example 4.2 illustrates such a case.
Example 4.1: Let us revisit example 3.1 and refer to Figure
4.2. Here, a user assigned to the PL role cannot acquire the
permissions of the taskW role. Assume that one of the users, say
John, assigned to P gets sick and his tasks need to be carried out
by a user authorized for the PL role. The delegation involves
giving the project leader the ability to activate taskW on John’s
behalf. This can be achieved in several ways for this particular
RBAC hierarchy and set of assignments. Figure 4.2(b) shows one
way in which the delegation roles P’ and taskW’ are created as I-
seniors of P and taskW. PL is made A-senior of P’. Hence, anyone
assigned to PL can activate both P’ and taskW’. It could be an R2R
delegation or a U2R delegation depending upon whether the
system or John authorizes the delegation. Figure 4.2(c) shows the
second case of U2U delegation (or R2U if the system rather than
John is responsible for authorizing delegation), where user u1 is
explicitly assigned to the senior role P’. Figure 4.2(d) shows the
delegation role P’ assigned to the user u1 (hence it is U2U or R2U
delegation). Here, P’ is assumed to have been explicitly assigned
the set of permissions to be delegated that can be acquired
through roles P and taskW.
The example shows that delegation in hybrid hierarchies becomes
complex and more fine-grained control of delegated permission
can be imposed. For instance, in figures (b) and (c), if we do not
include taskW’, the delegation would include only permissions
authorized for P. We could also simply delegate taskW by not
including P’, and making taskW’ an A-junior of PL in (b) or by
assigning u1 to taskW’ in (d).

Accountability: As shown in example 4.1, it may be necessary for
a user who is assigned to a junior role to delegate his authority to
a user assigned to a senior role. However, as a delegatee, the
project leader should be made accountable for any work that he
does on behalf of the delegator. Note that as a user assigned to a

Figure 4.1 GTRBAC delegation schemes

PL

P

PL

P

u1
assigned to

u4 u5

u2 u3

taskR taskW

assigned to

u1
assigned to

taskR taskW

PL

P P’

taskR taskW

u1
assigned to

assigned to

P’

(a) (b)

(d)

taskW’

PL

P

u1
assigned to

taskR taskW

P’

(c)
taskW’

assigned to

PAP: Partial Authorized Permissions
BA: Blocking Assignment
TEA: Total Explicit Assignment

R2R-PDR-TEA or R2R-PAP-TEA delegation

RBAC Delegation SchemesRBAC Delegation Schemes

Upward Upward DownwardDownward Cross-sectionalCross-sectional

TotalTotal PartialPartial

PDRPDR PAPPAP

BABA TEATEA

TotalTotal PartialPartial

PDRPDR PAPPAP

BABA TEATEA

TotalTotal PartialPartial

PDRPDR PAPPAP

BABA TEATEA

U2U delegationU2U delegation U2R delegationU2R delegation R2R delegationR2R delegation R2U delegationR2U delegation

Figure 4.2 Upward delegation example

84

senior role, the delegatee has access to the delegator role prior to
the delegation as well. However, after delegation, accountability
becomes a key issue, as the delegatee will be exercising
permission on behalf of the delegator. Key to achieving
accountability is to record the session information that indicates
roles that are active in a delegatee’s session and the permissions
that have been acquired through the active roles. Accountability
has not been considered as a factor in earlier delegation models.

4.1.3 Total and Partial Delegation
Each of the delegation schemes can further be categorized as total
delegation (TD) or partial delegation (PD). In TD, unlike in PD,
the entire authority that the delegator role embodies is delegated.
That is, all the permissions that he can acquire (through
assignments and inheritance) are made available to the delegatee.
Such an approach will not be able to provide fine-grained control
on delegation. In particular, the delegator role may represent
authority to carry out several different tasks, particularly, if it is at
the higher level of a role hierarchy. In such a case, the delegatee
may simply want to delegate a part of the role that represents a
particular subset of the delegated permissions. In earlier models,
delegation schemes have only considered the permissions
explicitly assigned to the delegation role instead of all the
permissions that can be acquired through a role (using I-relations)
or through the activation of authorized roles (using A-hierarchy).
Our framework allows delegating the entire set of permissions
that the delegatee can acquire by virtue of his membership to the
delegator role.
Partial delegation may be enforced using different schemes. In
our framework, we allow it in two ways: (1) blocking assignment
(BA), and (2) total explicit assignment (TEA). In the BA scheme,
permissions that are not to be delegated are blocked from being

acquired by the delegatee. The TEA scheme, on the other hand,
involves explicitly assigning the set of permissions that are to be
delegated. Exisitng role-based delegation models use the TEA
scheme for partial delegation and do not support the BA scheme.
It is to be noted that the TEA scheme is static in nature and hence
cannot be used in dynamic environments where role-permission
assignments can continually change over time as is possible in the
GTRBAC model. However, the TEA scheme is useful in cases
where the delegator wants to ensure that in the delegation period,
the delegatee does not have access rights that may be dynamically
assigned/authorized to the delegation role. The advantage of the
BA approach is that during the delegation period, if new
permissions are available to the delegation role through new
permission assignments to the delegator role or sub-roles, they
will also be available to the delegatee. Furthermore, it also allows
blocking sensitive permissions that exist prior to delegation or
that may be available during the delegation period.

4.2 Delegation and revocation in presence of
the I, A and IA-hierarchies

Here, we detail fine-grained delegation semantics for each of the
hierarchy types mentioned earlier. We differentiate several cases
based on the hierarchical relations between the delegator role and
the delegatee role. For each delegation scheme, we present the
revocation scheme that follows the reverse steps. We focus on
single step delegation and revocation only. For such simple cases,
the revocation details are straightforward. We assume that a can
delegate policy is specified to indicate who can delegate or which
role can be delegated to which entities (users or roles). Formally,
a can delegate policy base is defined as follows:

Table 4.2 Can delegate policy statement forms

Can delegate statement (cd) Meaning

cd1 can_delegate(rd, re) Role rd can be delegated to re (R2R)
cd2 can_delegate(rd, ue,re) Role rd can be delegated to user ue assigned to role re (R2U)
cd3 can_delegate(ud, rd, ue,re) User ud can delegate role rd to user ue assigned to role re (U2U)

cd4 can_delegate(ud, Pd, ue, re)
User ud can delegate permission set Pd to user ue assigned to role re if the following holds: ∀ p∈Pd ,
can_acquire(ud, Pd) (U2U)

cd5 can_delegate(ud, dP , ue, re)
User ud can delegate permission set P- dP to user ue assigned to role re if the following holds:

dP ⊆P ∧∀p∈P, can_acquire(ud, Pd). (U2U)

Table 4.3 Extended GTRBAC Events

Existing GTRBAC events New GTRBAC events
enable r [ud]:delegate rd to ue

disable r [ud]:revoke rd’ from u2

assignU r to u [ud]:delegate rd to re

deassignU r to u [ud]:revoke rd’

assignP p to r block_assignP p to r

deassignP p to r block_deassignP p to r

s: activate r for u

s: deactivate r for u

Initial
GTRBAC Policy

Configuration

Initial
GTRBAC Policy

Configuration

Modified
GTRBAC Policy

Configuration

Modified
GTRBAC Policy

Configuration

Delegation processDelegation process Revocation processRevocation process

Can delegate
Policy base

Can delegate
Policy base

delegate rd to ue

revoke rd from ue

Figure 4.3 Delegation and revocation process

85

Definition 4.1 (can delegate policy): A can delegate policy base
(CDPB) is a set of expressions of the forms listed in Table 4.2.

We extend the existing event set of GTRBAC with new events
listed in Table 4.3 to facilitate the delegation process. Figure 4.3
depicts the general delegation process using an informal petri-net
diagram. Delegation process is initiated by a delegation event
provided there is a can delegate policy statement authorizing the
event. For example, if the “ud: delegate rd to ue” event occurs,
the system has to first ensure that there a role re for which cd3 ∈
CDPB, u_assigned(ud, rd) = true, and u_assigned(ue, re) = true.
The delegation process includes creation of new roles and
assignments as well as hierarchical structures to facilitate the
intended delegation. The result hence is a new GTRBAC policy
base. Given the modified policy base, a revoke event initiates the
revocation process to undo the changes done by the delegation
process. For our purpose, it involves removing newly created
roles, new assignments and hierarchy structures to bring the
policy back to the initial configuration. In actual implementation,
it may simply be disabling the new entities created by the
delegation process.

To support the blocking of a specified set of permissions from
being delegated in BA schemes, we introduce filter roles, which
are indicated by a line above the role name. A filter role is
associated with a set of permissions, through what we call
blocking assignments that are not to be made available through
that role. In essence, a filter role may also have normal permission
assignments. To define the filter roles, we introduce special
blocking assignment event “block_assign

P
 p to r ” and an

associated status predicate block_p_assigned(p, r ,t) which
implies that p is associated with role r through blocking
assignment at time t. The semantics of the filter role is captured
by the following definition:

Definition 4.2 (filter role): A filter role r is a special role for
which the following rules apply:
• block_p_assigned(p, r , t)→ ¬ can_be_acquired (p, r , t)
 (axiom 5)

• ∀p, (x≥ r) ∧ can_be_acquired(p, r , t) ∧
¬block_p_assigned(p, r , t)→ can_be_acquired(p, x, t)
(where y is a normal or a filter role)
(new definition of I-hierarchy)

Furthermore, we assume that for all normal permission-role
assignments for which p_assigned(p, r, t) is true,
block_p_assigned(p, r, t) is false.

We use the first condition in the definition as a new axiom. The
effect of axiom 5 is that permissions associated with the filter role
through the blocking assignment cannot be acquired in a session.
This is because, axiom 4 states that only those permissions that
can be acquired through a role are acquired by a user who has
activated that role – and axiom 5 essentially ensures that the
blocking-assigned permissions cannot be acquired through that
role. This condition, however, does not prevent the blocking-
assigned permissions from being acquired through a senior role, if
the permissions that are to be blocked are inherited by the filter
role from other roles. The second condition blocks the permission
acquisition through hierarchy relation. This ensures that only
permissions that can be acquired through a role and not blocked
by it can be acquired through its I-senior role. We use the second

condition as the new definition of the I-hierarchy as it now allows
filter roles to be a part of the role hierarchies. We use a filter role
to support the BA scheme.

4.2.1 Downward Delegation in I-hierarchy
Figure 4.4 depicts the delegation schemes when the delegator role
rd is I-senior of the delegatee role re i.e., (rd ≥g re). Table 4.4
shows the delegation processes for each of them. The delegatee
role may be related to junior roles through any of the three
hierarchy types. To generalize the construction, the hierarchy
includes three juniors (roles a, b and c) each related to the
delegatee role with one hierarchy type.

Total delegation (TD): Here, the delegatee needs to totally
delegate the delegator role to the delegatee. As shown in Figure
4.4(b), the delegation role rd’ is created and the delegatee is
assigned to it. rd’ is an empty role which is made I-senior of the
delegator role. The delegatee can now activate rd’and acquire all
the permissions that can be acquired through role rd because of
the I-relation. However, the delegatee cannot activate rd and any
roles junior to rd. Accountability is easily facilitated if we
maintain an audit log of the sessions in which the delegation role
is activated by the delegatee. Note that any of the permissions that
can be acquired through the delegatee role (including those of re
as as (rd≥g re) may be used by the delegatee.

Partial Delegator Role (PDR): As indicated earlier, this scheme
allows a subset of permissions explicitly assigned to the delegator
role to be delegated. Inherited permissions are, however, passed
on in totality. This can be achieved in two different ways as
shown in Figure 4.4 (c). The first scheme, PDR-BA, involves
specifying the permissions

dP of rd that are not to be delegated.

As shown in the table, the delegation role is '
dr a filter role to

which
dP is blocking assigned. However, other permissions can

be acquired through '
dr because of the I-inheritance and are hence

delegated to the delegatee. The second scheme, PDR-TEA can be
implemented in two ways. In TDR-TEA(i), only the permissions
assigned to rd that are to be delegated are assigned to rd’, which is
made senior of rd’s junior role so that the permissions below the
hierarchy are inherited. In TDR-TEA(ii), however, all the

OR
Similar to PDR-BA

OR
Similar to PDR-TEA

rd

re

b ca

ba

rd’
rd

ud

ue

c

TD

rd’
x

y
PDR-BA

rd’

re’

rd

y

y’

rd’
x

y

PDR-TEA
(i)

PDR-TEA
(ii)

PAP-BA
(i) PAP-TEA

(ii)

ue

rd

y

rd

y

ue

rd’
x

y

rd

y

rd’
x

y

rd

y

ue ue

(a)

(b)
(c)

Pa
rti

al
PDR

Partial PAP

To
ta

l

ue
ue

(d)

y

y

re

Figure 4.4 Downward delegation in I-hierarchy

86

permissions that can be acquired through rd are assigned to the
delegation role rd’.

Partial Authorized Permission (PAP): PAP allows only a subset
of permissions that can be acquired through the delegator role to
be delegated to the delegatee. The BA and TEA approaches to
achieving this are shown in Figure 4.4(d). PAP-BA can be
implemented similar to the PDR-BA (hence, the steps for PDR-
BA can be reused with a minor modification). Here, all the
permissions that can be acquired through rd (not just those
assigned to rd, as in PDR-BA) but not to be delegated are blocked.
Another way to achieve it is by creating each delegation sub-role
and explicitly filtering from each delegation sub-role the
permissions of the delegator sub-role that are not to be delegated.
However, this would require reversing the hierarchical relations
among the filter roles as shown in Figure 4.4(d) (see table for the

2 The tables only show U2U delegation. R2R delegation can be

easily derived from these.

details). The PAP-TEA scheme can be implemented similar to
that of PDR-TEA method. Again the difference would be that the
delegation role now is assigned all the permissions that can be
acquired through the delegator role, while in PDR-TEA, only the
subset of permission that are directly assigned to the delegator
role is assigned to the delegation role. Figure 4.4(d) shows
another way to implement this scheme by creating the delegation
role and sub-roles.
It is to be noted that, besides the difference between BA and TEA
schemes (i.e., dynamic vs. static), the BA method is preferable
when the permissions that are to be blocked from being delegated
is relatively small. The TEA scheme is more appropriate when
only a small subset of permissions is to be delegated.
Furthermore, although the PAP-BA and PAP-TEA scheme is
easily implemented as in PDR-BA and PDR-TEA, the alternatives
shown in Figure 4.4(d) will be required when the delegator
roles/subroles have different temporal properties (e.g., enabling
times). In such cases, employing the PAP-BA and PAP-TEA
schemes similar to the PDR counterparts will not maintain these

Table 4.4. Semantics for the downward delegation in I-hierarchy2

Scheme Delegation process Revocation Process
delegate rd to ue revoke rd’ from ue TD

cd3 ∈ CDPB; u_assigned(ud,
rd) = true u_assigned(ue, re)

= true
(1) create rd’; (2) add (rd’ ≥ rd) to H;
(3) assignU rd’ to ue

(1) deassignU rd’ to ue
(2) remove (rd’ ≥ rd) from H; (3) delete rd’

PDR-BA
cd5 ∈ CDPB; u_assigned(ud,
rd) = true u_assigned(ue, re)

= true

(1) Create ,
dr

(2) ∀p∈ dP , block_assignP p to ,
dr

(3) ∀r, s.t. (rd ≥ r) ∈ H, add (,
dr ≥ r) to H

(4) assignU ,
dr to ue

(1) deassignU ,
dr to ue

(2) ∀r, s.t. (rd’≥ r) ∈ H, remove (,
dr ≥ r) from H

(3) delete ,
dr

PDR-TEA(i)
Cd4 ∈ CDPB; u_assigned(ue,

re) = true

(1) create rd’
(2) ∀p∈ Pd , assignP p to rd’
(3) ∀r, s.t. (rd ≥ r) ∈ H, add (rd’ ≥ r) to H
(4) assignU rd’ to ue

(1) deassignU x’ to u2
(2) ∀r, s.t. (x’≥ r) ∈ H, remove (x’ ≥ r) from H
(3) ∀p∈ assigned(p, x’), deassignP p to x’
(4) delete x’

PDR-TEA (ii)
Cd4 ∈ CDPB; u_assigned(ue,

re) = true

(1) create rd’
(2) ∀p∈ Pd , assignP p to rd’
(3) assignU rd’ to ue

(1) deassignU rd’ to ue
(2) ∀p∈ assigned (p, rd’), deassignP p to rd’
(3) delete rd’

PAP-BA
cd5 ∈ CDPB; u_assigned(ud,
rd) = true u_assigned(ue, re)

= true

X’: new filter delegation
roles/sub-roles created

(Or similar to PDR-BA)

(1) Create ,
dr

(2) ∀p∈ dP , assigned(p, rd) = true, block_assignP p to ,
dr

(2) ∀r, s.t. (rd ≥ r) ∈ H, ∃p∈ dP , assigned(p, r) = true

 (a) create ,r ; (b) add (,r ≥ ,
dr) to H ;

 (c) block_assignP p to ,r

(3) ∀r1, r2, s.t. (rd ≥g r1) and (r1≥ r2)∈ H, ∃p∈ dP , assigned(p, r2) = true

 (a) create ,
2r ; (b) add (,

2r ≥ ,
1r) to H

 (c) block_assignP p to ,
2r

(4) assignU ,
dr to ue

(1) deassignU ,
dr to ue

(2) ∀ ,
1r , ,

2r ∈ X’, s.t.

 (,
1r ≥ ,

2r) ∈H,
 (a) remove (,

1r ≥ ,
2r) from H

 (b) delete ,
1r

 (c) delete ,
2r

PAP-TEA
Cd4 ∈ CDPB; u_assigned(ue,

re) = true

X’: new delegation
roles/sub-roles created

(Or similar to PDR-TEA)

(1) create rd’
(2) ∀r, s.t. (rd ≥ r) ∈ H, ∃p∈ Pd , assigned(p, r) = true
 (a) create r’; (b) add (rd’ ≥ r’) to H
(3) ∀r1, r2, s.t. (rd ≥g r1) and (r1≥ r2)∈ H, ∃p∈ Pd , assigned(p, r2) = true
 (a) create r2’; (b) add (r1’ ≥ r2’) to H
(4) ∀r’∈ X’, ∀p∈ Pd , assigned(p, r) → assignP p to r’
(5) assignU rd’ to ue

(1) deassignU rd’ to ue
(2) ∀r’1, r’2∈ X’, s.t. (r’1 ≥ r’2) ∈H,
 (a) remove (r’1 ≥ r’2) from H
 (b) delete r’1
 (c) delete r’2

87

temporal properties. Because of space limitation, how temporal
hierarchies affect delegation semantics is not discussed in this
paper3.

4.2.2 Downward Delegation in A-hierarchy
Figure 4.5 shows various downward delegation policies when the
delegator role and the delegatee role are related by an A-
hierarchy, i.e. the case (rd≽gy) and (y≽re).

Total delegation (TD): The delegatee needs to delegate in totality
the delegator role to the delegatee. As shown in Figure 4.5(b), the
delegation role rd’ and the delegation sub-roles are created and
the delegator is assigned to rd’. Each of the delegation role/sub-
roles created is an empty role and is made I-senior of its
corresponding delegator role/sub-role. The delegatee can activate
the main delegation role but to acquire the permissions of the
roles junior to the delegator role, the delegatee has to activate the
corresponding delegation sub-role. This is in par with the role
activation capability of the delegator in the original hierarchy –
the delegatee should be able to activate juniors but he does not
acquire all the permissions simply by activating the main
delegation role. Accountability is facilitated if we maintain log of
the sessions in which the delegatee activates a delegation
role/sub-role.

Note that there is even a delegation sub-role re’ corresponding to
the delegatee role re. Because of the separate A-path, the
accountability can be easily achieved by logging the session
information. The steps needed for enforcing this scheme is shown
in Table 4.5. It is to be noted that if the delegatee role is related to
its junior by an I-hierarchy, the delegation sub-role corresponding
to that junior need not be created because the delegatee can
acquire its permissions through the delegation role.

Partial Delegator Role (PDR): PDR-BA scheme involves
employing a filter delegation role as shown in Figure 4.5(c). The
remaining part of the hierarchy structure below delegator role rd
is recreated as in TD. PDR-TEA can be implemented similar to
PDR-BA as shown in Figure 4.5 (c). Only difference will be (1)
the delegation role rd’ is assigned all of rd’s permissions that need

3 We refer the readers to reference [Jos02a] for relevant

information on temporal hierarchies.

to be delegated; (2) unlike in PDR-BA, no hierarchical relation
from rd’ to rd is created. Table 4.5 shows the details.

Partial Authorized Permission (PAP): The first PAP scheme,
PAP-BA is almost the same as TD. The difference is: (1) unlike in
the TD, even the filter delegation sub-role for all roles in the sub-
hierarchy below rd (inclusive of rd) is created; e.g., even filter role

,a for role a is created as shown in Figure 4.5(d); (2) the

delegation sub-role re’ for the delegatee role re (note that it is also
the delegator role) are related to the junior delegation sub-roles
by the same hierarchical relations that relate the corresponding
delegatee role with its corresponding juniors. The PAP-TEA
scheme can be implemented similar to that of the PAP-BA
scheme. Only difference is that the delegation role and all the
delegation sub-roles are not hierarchically related to their original
roles.

4.2.3 Downward Delegation in IA-hierarchy
Note that the IA-hierarchy is one that allows both permission-
inheritance and role-activation semantics. This implies that when
the delegator role is the IA-senior of the delegatee role, we can
capture the delegation semantics by using the delegation schemes
for I and A-hierarchies. Hence, we only illustrate the schemes in
figures and do not provide details of each step. We categorize the
following cases:

Permission-only (or activation-only) delegation: Here only
authorized permissions (or role activations) are delegated. In
permissions-only (activations-only) delegation the role activation
(permission-inheritance) semantics is not delegated. Hence, for
permissions-only (activations-only) delegation, we apply the I-
hierarchy (A-hierarchy) semantics described earlier. In particular,
in permissions-only delegation only the delegation role is created
and the delegatee assigned to it, as shown in Figure 4.6. The
authorized permissions are made available to the delegatee when
he activates the delegation role. Note that in the original role
hierarchy, the delegator has authority to activate junior roles as
well. This capability is not delegated.

Permission-and-activation delegation: This feature allows both
the authorized permissions and role activation capabilities to be

rd

y

b ca

re

ba

rd’

y’

x

y

z

ud

ue

b’

re’

c’

ue

u2

u1

rd’

y’

re’

ue

b’ c’a’ b ca

x

y

z

rd’

y’

b’

re’

c’

ue
c

a’

TD

PAP-TEA

rd’

y’

x

y

rd’

y’

x

y

PDR-BA

PAP-BA

PDR-TEA

rd

re

rd

re

rd rd
ue ue

(a)

(b)
(c)

(d)

Figure 4.5 Downward delegation in A-hierarchy

Figure 4.6. Permission-only delegation

OR
Similar to PDR-BA

OR
Similar to PDR-TEA

rd

re

b ca

ba

rd’
rd

ud

ue

c

TD

rd’
x

y
PDR-BA

rd’

re’

rd

y

y’

rd’
x

y

PDR-TEA
(i)

PDR-TEA
(ii)

PAP-BA
(i) PAP-TEA

(ii)

ue

rd

y

rd

y

ue

rd’
x

y

rd

y

rd’
x

y

rd

y

ue ue

(a)

(b)
(c)

Part
ial

 PDR

Partial PAP

To
ta

l

ue
ue

(d)

y

y

re

88

delegated. The downward delegation in IA-hierarchy from the
delegator role to a delegatee can be obtained by making simple
modifications to the A-hierarchy, shown in Figure 4.7, as the
structural changes are similar.

4.2.4 Upward Delegation in hybrid hierarchy
For upward delegation the delegator role is junior to the
delegatee role. Hence, as in downward delegation, we do not have
to worry about the various hierarchical relations that may exist
between the two roles. As the steps can be easily derived as in
tables 4.4 and 4.5, and because of the lack of space, we illustrate
various U2U delegation schemes through the transformations
illustrated in Figure 4.8.

Total delegation (TD): For the TD, we create the delegation role
(rd’) and make it the I-seniors of the delegator role rd. For each of
the roles that is I or IA-junior of the delegation role (rd), we create
a delegation sub-role and make it A-junior of the delegation role
rd’. The delegation role and the delegation sub-roles are empty
roles but are I-senior of the corresponding original roles. The
delegatee is assigned to the delegator role as usual. The delegatee
can activate each role separately, conforming to the original
semantics. Note that we do not create a delegation sub-role for a
role that is I-junior to the delegator role (role a in the figure) - the
I-hierarchy between the delegation role and the delegator role
allows the inheritance and hence the junior’s permissions (role a’
permissions in the figure) are acquired through rd’ by the
delegatee.

Partial Delegator Role (PDR): The PDR-BA scheme is similar to
TD scheme. Only difference is that here the delegation role '

dr is
related to delegation sub-roles by the same hierarchical relations
as those of their corresponding delegator role and sub-roles
(filter) respectively. As in previous cases, the permissions
assigned to the delegator role rd and any I-junior of rd not to be
delegated are filtered. The PDR-TEA is similar to PDR-BA – the
only difference is, here, no delegation role/sub-role is
hierarchically related to its corresponding delegator role/sub-role.
The permissions to be delegated corresponding to each delegation
role/sub-role are explicitly assigned to them.

Partial Authorized Permissions (PAP): For PAP-BA
scheme, the newly created delegation role '

dr is made I-senior of
the delegator role rd. As shown in Figure 4.8, the filter delegation
sub-roles for A and IA-juniors (b and c) of the delegator role rd
are created and made A-juniors of the delegation role ('

dr) and the
I-seniors of their corresponding roles, respectively. For the PAP-
TEA, the sub-hierarchy with the delegator role rd as the senior-
most role is recreated and the original hierarchical relations are

introduced between corresponding delegation roles and sub-roles,
as depicted in Figure 4.8.

5. CONCLUSION AND FUTURE WORK
We have addressed the issues of delegation within the context of
different role hierarchy types and hybrid hierarchies. We have
presented several fine-grained downward and upward delegation
schemes. We have shown that upward delegation plays an
important role within the RBAC models. Furthermore, we argued
that accountability consideration is crucial when delegation
policies are considered. This affects the use of hierarchical
relations when, during the delegation process, new roles are
created. The delegations schemes subsume existing role-based
delegation schemes. Due to space limitation, we focused on user-
to-user delegation which is more fine-grained than role-to-role
delegation and hence R2R delegation schemes can be easily
derived from the U2U schemes presented here. Furthermore,
cross-sectional delegation was not addressed due to space
limitation; but it is simpler than delegation in the presence of
hierarchies and can be easily derived from downward and upward
schemes presented in detail here. Furthermore, we have not dealt
with constraints on delegation such as specifying intervals or
durations in which the delegation is to be valid, as well as the
multi-step delegation and revocation schemes. We plan to pursue
these as future work. Another future work is to develop a generic
analysis framework for verifying correctness of policies when
hierarchical, SoD, and delegation policies co-exists.

Acknowledgement: This research has been supported by the US
National Science Foundation award IIS-0545912. We thank the
anonymous reviewers for their helpful comments.

Figure 4.7 Permission and activation delegation

re

y

b ca

rd

ue

ud

TD⊗

⊗

b’ c’

ue

re

y

ca

rd

ue

ud

⊗

⊗
rd’

b

⊗ indicates I, A
or IA relation

b’

PDR-BA

c’

ue

c

rd’

b’ c’

ue

c

rd’

PAP-BA

a

bb

b’

PDR-TEA

c’

a

rd’

b’ c’

ue rd’

PAP-TEA

a’
a

(a)
(b)

(c) (d)

Figure 4.8 Upward delegation in a hierarchy

rd

y

b ca

re

ba

rd’

y’

x

y

z

ud

ue

b’

re’

c’

ue

u2

u1

rd’

y’

re’

ue

b’ c’a’ b ca

x

y

z

rd’

y’

b’

re’

c’

ue
c

a’

TD

PAP-TEA

rd’

y’

x

y

rd’

y’

x

y

PDR-BA

PAP-BA

PDR-TEA

rd

re

rd

re

rd rd
ue ue

(a)

(b)
(c)

(d)

89

6. REFERENCES
[Atl05] V. Atluri, J. Warner, Supporting Conditional

Delegation in Secure Workflow Management Systems,
ACM Symposium on Access Control Models and
Technologies, Sweden, Jun 1-3, 2005.

[Bar00] E. Barka and R. Sandhu, A Role-Based Delegation
Model and Some Extensions, Proc. of 23rd National
Information Systems Security Conference, Dec, 2000.

[Bar05] E. Barka and R. Sandhu, Role-Based Delegation
Models/Hierarchical Roles, Proc Annual Computer
Security Application Conference. 2004.

 [Fer93] D. F. Ferraiolo, D. M. Gilbert, and N Lynch. An
Examination of Federal and Commercial Access
Control Policy Needs. In Proceedings of NISTNCSC
National Computer Security Conference, pages 107-
116, Baltimore, MD, September 20-23 1993.

[Fer01] D. F. Ferraiolo, R. Sandhu , S. Gavrila , D. Richard
Kuhn , R. Chandramouli. Proposed NIST Standard for
Role-based Access Control. ACM Transactions on
Information and System Security (TISSEC) Volume
4, Issue 3, August 2001.

[Gas90] M. Gasser, E. McDermott, An Architecture for practical
Delegation in a Distributed System, 1990 IEEE
Computer Society Symposium on Research in Security
and Privacy. May, 1990.

[Giu97] L. Giuri. Role-based access control: A natural approach.
In Proceedings of the 1st ACM Workshop on Role-
Based Access Control. ACM, 1997.

[Goh98] C. Goh and A. Baldwin, Towards a more Complete
Model of Role, Proc. of 3rd ACM Workshop on Role-
Based Access Control. October, 1998.

[Jos01a] J. B. D. Joshi, A. Ghafoor, W. Aref, E. H. Spafford.
Digital Government Security Infrastructure Design
Challenges. IEEE Computer, Vol. 34, No. 2, February
2001, pages 66-72.

[Jos01b] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H.
Spafford. Security models for web-based applications.
Communications of the ACM, 44, 2 (Feb. 2001), pages
38-72.

[Jos02a] J. B. D. Joshi, E. Bertino, A. Ghafoor. Temporal
hierarchy and Inheritance Semantics for GTRBAC. 7th
ACM Symposium on Access Control Models and
Technologies. Monterey, CA, June 3-4, 2002.

[Jos03] J. B. D. Joshi, E. Bertino, A. Ghafoor. Hybrid Temporal
Role Hierarchies in GTRBAC. Submitted to ACM
Transactions on Information and System Security.

[Jos05] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor.
Generalized Temporal Role Based Access Control
Model. IEEE Transactions on Knowledge and Data
Engineering, Vol 17, No. 1 pages 4-23, Jan, 2005.

[Liu04] R.W.C. Lui and L.C.K. Hui, A Model for Delegation of
Accountability, IASTED International Conference on
Software Engineering, SE 2004.

[Mof90] J. D. Moffett, Delegation of Authority Using Domain
Based Access Rules, PhD Thesis. Dept of Computing,
Imperial College, University of London. 1990.

[Nag98] N. Nagaratnam, D. Lea, Secure Delegation for
Distributed Object Environments, USENIX Conference
on Object Oriented Technologies and Systems. April,
1998.

[Osb00] S. Osborn, R. Sandhu, Q. Munawer. Configuring Role-
based Access Control to Enforce Mandatory and
Discretionary Access Control Policies. ACM
Transactions on Information and System Security,
3(2):85-106, May 2000.

[San96a] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman.
Role-Based Access Control Models. IEEE Computer
29(2): 38-47, IEEE Press, 1996

[San96b] R. Sandhu. Role Hierarchies and Constraints for
Lattice-based Access Controls. In E. Bertino, H. Kurth,
G. Martella, and E. Montolivo Eds., Computer Security
- Esorics'96, LNCS N. 1146, Rome, Italy, 1996, pages
65-79.

[San98] R. Sandhu, Role Activation Hierarchies, 3rd ACM
Workshop on Role-Bused Access Fairfax VA, 1998.

[San99] R. Sandhu, V. Bhamidipati and Q. Munawer, The
ARBAC97 Model for Role-Based Administration of
Roles, ACM Transactions on Information and System
Security, Volume 2, Number 1, February, 1999.

[Sha04] B. Shafiq, J. B. D. Joshi, E. Bertino, A. Ghafoor, Secure
Interoperation in a Multi-Domain Environment
Employing RBAC Policies, Submitted to IEEE
Transactions on Knowledge and Data Engineering
(2004).

[Ste87] L. A. Stein, Delegation Is Inheritance, Proc. Of Object-
Oriented Programming Systems, Languages, and
Applications (OOPSLA ’87). October, 1987.

[Tho97] R. K. Thomas. Team Based Access Control (TBAC): A
Primitive for Applying Role-based Access Controls in
Collaborative Environments. ACM Proceedings of the
second ACM workshop on Role-based access control
Fairfax., Nov, 1997.

[Wai05] J. Wainer, A. Kumar, A Fine-grained, Controllable,
User-to-user Delegation Method in RBAC, ACM
Symposium on Access Control Models and
Technologies, Sweden, Jun 1-3, 2005.

[Zha03a] X. Zhang, S. Oh and R. Sandhu, PBDM: A Flexible
Delegation Model in RBAC, SACMAT 2003.

[Zha03b] L. Zhang, G. Ahn, and B. Chu, A rule-based Framework
for Role-Based Delegation, ACM Transactions on
Information and Systems Security, Vol 6, No. 3, August
2003, Pages 404-4.

90

