A Formal Enforcement Framework for
Role-Based Access Control using
Aspect-Oriented Programming

Jaime Pavlich-Mariscal, Laurent Michel and Steven Demurjian

Department of Computer Science & Engineering, The University of Connecticut,
Unit-2155, 371 Fairfield Road, Storrs, CT 06269- 2155. jaime.pavlich@uconn.edu,
{1dm, steve}@engr.uconn.edu

Abstract. Many of today’s software applications require a high-level of
security, defined by a detailed policy and attained via mechanisms such
as role-based access control (RBAC), mandatory access control, digital
signatures, etc. The integration of the design/implementation processes
of access-control policies with runtime enforcement mechanisms is crucial
to achieve an acceptable level of security for a software application. Our
prior research focused on formalizing the concept of a role slice, which is a
unified modeling language (UML) artifact that captures RBAC security
requirements by defining permissions in the form of allowable or prohib-
ited methods, and by specifying roles as specialized class diagrams that
contain those methods. This paper augments this effort by introducing a
formal framework for the security of software applications that supports
the automatic translation of a role-slice access-control policy (RBAC re-
quirements) into aspect-oriented programming (AOP) enforcement code
that is seamlessly integrated with the application. The formal framework
provides the necessary underpinnings to automate the integration of se-
curity policies into software. A prototyping effort based on Borland’s
UML tool Together Control Center for defining role-slice diagrams and
the associated AOP code generator is under development.

1 Introduction

Security has become a very important issue in the development of software ap-
plications. Definition and realization of access control policies, along with other
security requirements, must be an integral part of the development process,
to ensure that the proper level of security in an application is attained. Since
access-control requirements tend to change across the entire life-time of a soft-
ware system, it is very important to have mechanisms that allow the developers
or the security administrators to understand and evolve the policies seamlessly.
To realize the integration of security in an application, it is necessary to con-
sider several key elements: the access-control approach, the means to represent
the access-control information during the analysis and design of the system, and

the access-control mechanisms to translate those specifications to enforcement
code during the implementation (or update them after deployment).

In terms of access control, there are several popular approaches: mandatory ac-
cess control (MAC) [1,2], discretionary access control (DAC) [3], and role-based
access control (RBAC) [4,5,6]. In MAC, permissions are assigned to users based
on the objects they can access in a system. Each object is labeled with a classifi-
cation level (e.g., top secret, secret, confidential, and unclassified) that represents
the sensitivity of their information. To constrain the access to information, each
user has a clearance level that defines the access to objects based on its relative
order with the classification level of each object. In DAC, permissions are de-
fined between users and objects, but there are also privileges to delegate rights
to other users, i.e. a user can be granted the permission to delegate a subset of
its own permissions to another user. RBAC is a more general approach where
permissions are grouped in independent units called roles, which represent the
role that a user assumes in an organization. Thus, roles, rather than permissions,
are assigned to users when they initiate an interactive session with the software
system. The set of privileges granted to a user is defined by the set of permissions
assigned to its corresponding role.

To represent access-control information, regardless of the approach utilized, it
is crucial to use a formalism that allows developers to clearly understand the
security policies that they are defining, and to evolve them easily as require-
ments change. In this regard, visual languages can be very powerful tools; a
well-designed visual representation can conceptualize the security information
to developers in an intuitive fashion, facilitate changes, and hopefully reduce er-
rors in the definition of the policy. A CASE tool that incorporates that notation
for modeling, and that can automatically check the consistency of the generated
models is also critical to ensure a proper security definition. Ongoing work by
Doan et al. [7,8,9] is focusing on creating a framework for the definition of secu-
rity policies by enhancing UML to support RBAC and MAC, and defining rules
for checking the consistency of the models as an application and its security are
defined and changed over time. Their focus is on extending use-case, class and se-
quence diagrams with tagged values representing access-control attributes, such
as classification and clearance levels, lifetimes (legal time intervals for accessing
elements in the model), etc. Their work associates roles with UML actors, and
defines permissions as actor-use-case associations, actor-object associations, and
actor-method associations (in sequence diagrams).

While their approach utilizes a visual modeling language to represent security
policies, it does not provide a global view of the permissions. A security policy
modeled by this method can be hard to understand by developers and security
administrators, since such a policy is distributed across many UML elements
rather than organized in a single UML artifact. To complement this work, and
to provide a more seamless transition from an access-control policy definition to
its implementation, a new visual notation was introduced, the role slice [10], that
can be used to represent roles and their permissions for RBAC. The underlying

premise is to define permissions as the ability to invoke a method of a class.
Roles are represented as stereotyped packages, and their permission assignment is
represented by a specialized class diagram containing the assigned methods. Role
hierarchies are also supported; they are represented by stereotyped dependency
arrows, using model composition[11] to obtain the permissions of each role based
on its position in the hierarchy.

The purpose of this paper is to detail and formalize the process that translates
an access-control policy into code, via an architecture that emphasizes separation
of concerns to reduce software complexity, significantly extending our prior work
on the definition of a role slice [10]. To do so, this paper introduces a specialized
formalism for representing security policies which is instrumental in modularizing
security concerns at design time. One contribution of this paper is to separate, at
development time and through the use of aspect-oriented programming (AOP),
the security enforcement code from the rest of the application. Without this
type of support, access-control enforcement code is often scattered and tangled
in the application’s code, making it difficult to track an entire policy as a logical
entity. For example, using a traditional object-oriented decomposition, access
control code may be added at the beginning of every method, which results in
modifications to many classes that are otherwise unrelated to security issues.
Using aspects, that code can be isolated, resulting in a complete modularization
of the security concern. The transition from security specifications to code is
automated with aspect-oriented security code generation. In this regard, a second
contribution of this paper is the formalization of this compilation process, where
AOP generated security code is included as part of an application’s software.
The formalisms that we present utilize a functional notation based on structural
operational semantics [12].

This paper is organized into five sections. Section 2 explains background concepts
on RBAC and AOP. Section 3 formalizes the elements needed for implementing
access control: the underlying object-oriented and aspect-oriented models, and
role slices. Section 4 formalizes the generation of aspect-oriented access control
code from a role-slice specification. Section 5 summarizes related work. Section
6 concludes the paper and reviews on-going prototyping and future work.

2 Background on RBAC and AOP

This section provides background information about the integration of access
control into software applications by using RBAC, and AOP to create a soft-
ware architecture that modularizes security. To begin, role-based access control
(RBAC) assumes that an organization itself owns the data and not the users
(who require access to the data). Access control can be established with respect
to the tasks that each user performs inside the organization [13]. Thus, in RBAC
permissions are assigned to roles that exist within an organization. A user can
assume a role and utilize its permissions for the duration of the authorization.

Since in an organization, the set of functions associated with each role is much
more stable than the users who are assigned to those roles[5], the approach limits
changes to the security policy and the impact on end-user authorizations. The
basic RBAC concepts used in this paper are:

Permissions represent the ability to perform a task over some part of the
system. The NIST standard[6,14] deliberately leaves them as uninterpreted
symbols, allowing the developers to decide the chosen interpretation accord-
ing to a particular realization of the security policy. A positive (negative)
permission explicitly grants (denies) the right to perform an action over the
system. Our approach uses negative permissions only to provide overriding
capabilities to the role hierarchies.

Methods of an object-oriented application are the unit of permission for our
approach, allowing each role to be statically associated with the methods that
are positive permissions and negative permissions. The use of methods as the
level of privilege assignment has been utilized as part of our foundational
security work on the object-oriented paradigm [15], our efforts on security
for distributed environments [16,17], and for the integration of MAC and
RBAC into UML [7,8,9].

Roles are the entities that represent the set of permissions to perform task in a
system. Users represent individuals who interact with a system. To initiate
an interaction, a user obtains a role and all its associated permissions. Roles
are organized in hierarchies similar to class hierarchies in object-oriented
systems; each role is associated to a set of parent roles and inherits all the
permissions from them. Role hierarchies can be used for classifying roles, i.e.
grouping them according to common sets of permissions. For that purpose
abstract roles can be used, which in a role hierarchy cannot be assigned to
any user. Concrete roles represent roles that can be assigned to a user, and
are normally associated to organizational roles.

Aspect-oriented programming (AOP) is an approach for isolating crosscutting
concerns, i.e., requirements orthogonal to the application structure whose im-
plementations are invariably scattered and tangled throughout the entire ap-
plication. An AOP aspect is a code fragment that modularizes the orthogonal
concern. An aspect weaver is a compiler that integrates the aspects with the rest
of the application. Each aspect specify where and how to inject its own code in
the application. Standard terminology includes:

Advices An advice is a code fragment that implements a part of an aspect
(e.g., access control), and is intended to be woven with the main program.

Join Points A join point is a location within a program where the aspect
weaver integrates an advice.

Pointcuts A pointcut is a set of join points sharing specific static properties.
For instance, in AspectJ [18], pointcuts are defined with quantified boolean
formulas over method names, class names, control flow or lexical scopes and
capture specific event occurrences such as method calls, access to attributes
or exceptions to name a few.

Aspect Weaving is a compilation technique that identifies join points in point
cuts and modifies the code at that site according to the specified advice.

3 Formal Definitions

In this section, we detail a formal framework for modeling an object-oriented
application (Section 3.1), role slices (Section 3.2), and aspect-oriented concepts
(Section 3.3). The formalism employs a functional notation based on [12] to
specify the operational semantics of the program transformation. The functional
notation used for the program transformation is structure-driven and promotes
a concise, yet precise, specification of the compilation process. For uniformity,
the following conventions are used throughout the section:

— Most of the definitions use records of the form (l; = v1,lo = va, ..., L, = vy,),
where each I; is the label of the it" field of the record and v; is its value.

— The dot operator (“.”) is used with the label name to project on the corre-
sponding value. For example, for a record person = (name = Joe, age = 20),
the expression person.name denotes the value Joe

In addition, some definitions, such as the composition function (see Def. 11),
or the weaving function (see Def 15), use higher-order functions such as map
and foldl. For completeness, the specification of map and foldl are: Foldl
is a higher-order function that takes a function of two arguments, an initial
value, and a list, and returns the result of applying the function recursively over
every element of the list, in a left-associative way; and, Map is a function that
takes a rewriting function and a list, and returns a list that consists of all the
transformed elements.

foldl = Af.Av.Al.if nil [then v else (foldl f (f v(head l)) (tail 1))
map = AfAlLifnil [then nil else (f (head 1)) :: (map f(tail 1)))

3.1 Object-Oriented Definitions

This section formalizes an object-oriented application via an abstraction of a full
blown object-oriented language that only retains features that are relevant to
the discussion of security concerns. The top-level element application, contains
classes and inheritance relationships. Each class contains a set of methods, and
each method contains an implementation, which is a sequence of method invoca-
tions. A subsystem is a subset of the classes and will be used to separate secure
and non-secure portions of the system.

The execution of a program is carried out by an interpreter that chains method
invocations on object instances. One important element of the execution schema

is that for every method executed, an extra argument representing an environ-
ment function is passed to every method invocation. The environment keeps the
state of variables, such as the return value of a method, the credentials for the
authenticated (active) role, the access control policy (available roles and role
hierarchy), and the exit value of the program.

Definition 1 (Interpreter Function). An interpreter I : M — S — Arg —
N is a function that, given a method, an environment (see Def. 2), and a method
argument, performs a sequence of method invocations (reduction steps) and ter-
minates with the output of an exil status (natural number):

I = dm.As.\arg. (evalCall (m,s,arg)) 'exit’

To define its behavior the interpreter uses the auxiliary function evalCall that,
given a method invocation (see Def. 4), recursively evaluates the implemen-
tation of the method, executing control flow statements, performing method
invocations, and altering the environment. At the end it returns a new environ-
ment. We deliberately avoid a more detailed definition of this function, because
it would unnecessarily increase the complexity of our definitions, and because
the interpreter and its semantics are not affected by techniques proposed herein.

Definition 2 (Environment Function). An environment S : Id — T is a
function that tracks global information during the execution of the application,
by associating an identifier of type Id (e.g. a string) to an object of type T.

Note that T is a sum type capable to hold a value of any type that exist within the
application. An example of the values that S can assume during the execution of a
program is [‘exit’ — 0, ‘activeRole’ — R, ‘policy’ — P], where ‘exit’ represents
the exit value of the execution of the application (see Def. 1), ‘activeRole’ is
mapped to the object representing the active role of the application (see Eq. 3
and Eq. 7), and ‘policy’ is mapped to the access control policy (see Def. 10 and
Eq. 3). The environment is also used to store the return value of a method after
its invocation (e.g. [‘returnValue’ — 5]). For convenience, the auxiliary function

set = As. i . Ax.if x = i then v else s

will be used to update the environment. It takes an environment s, an identifier
i and a value v, and returns a new environment that contains the association
i +— v in addition to the original ones.

Definition 3 (Method). A method is a record (name,impl), where name is
the name of the method and impl is the implementation of the method.

When the method is evaluated, the interpreter obtains the functional implemen-
tation of the method, which is of the form As.Aarg.b, where s is the environment

function, arg is the argument passed to the method ! and b is the method imple-
mentation. This function returns a new environment containing the changes done
by the execution of the method. During compilation time, the implementation
of the method is treated as a sequence of the form shown in Def. 5.

Definition 4 (Method Invocation). A method invocation is a record of the
form (m, s, arg), where m is the invoked method, s is the environment, and arg
its argument.

The interpreter function evalCall is responsible for the evaluation of a method
and returns a new environment that reflects all the changes and side effects re-
sulting from the execution of the method. For example, a Java method invocation
of the form a.method (p1,p2,p3); is expressed as (method, s, (a,pl, p2, p3)).

Definition 5 (Implementation). An implementation (invi, ..., inv,) is a se-
quence of method invocations.

This definition purposefully abstracts away several elements from a real tmple-
mentation (e.g., control flow statements, builtin instructions or side-effects op-
erations such as assignments) that would add complexity to the formalization
but do not affect the framework.

Definition 6 (Class). A class is a set of methods. Because attributes are not
necessary to explain our approach, we do not include them in the definition of
class.

Definition 7 (Application). An application is a record (C, H), where C is
the set of classes and H C C x C is the inheritance relation between classes in
C, with each pair {a,b) € H indicates that a is a subclass of b.

Definition 8 (Subsystem). A subsystem of an application (C, H) is a record
(SC,SH), where SC C C and SH is the projection of H onto SC.

3.2 Role Slices

In this section, we review and formalize the role-slice artifact as it relates to
RBAC and permission assignment, using a university application illustrated in
Figure 1, that depicts a simplified class model that manages information about
courses and students, providing access for different types of users (e.g., teach-
ers, students, administrators, etc.). The Course class stores information about
syllabus, credits, and enrolled students, while StudentRecord stores the infor-
mation about a student’s id number, name, and enrolled courses. The Catalog
class shows all of the public information on the courses offered. To grant access
through RBAC, we define two roles: Teacher is able to manage a course, define its
syllabus, and obtain the list of enrolled student names; and, Student is able to get
the basic information on a courses s/he is enrolled in, obtain their syllabus, and
the number of credits. A role slice is used to define an access-control policy. A role

! An argument can also be a tuple of values

Course
StudentRecord Catalog

getSyllabus()
getSsn() setSyllabus(syllabus) , laetCoursesOffered
getName() setCredits(numOfCredits)
etEnrolledCourses| getCredits()
-courses
. getEnrolledStudents

-enrolledStudents -enrolledCourses

Fig. 1. Class diagram of the Courseware Application

slice denotes the set of class methods that a given role can access, and represents
the separate concern that captures permissions for roles. Since a role may not
require access to every class, the role-slice permission assignment is defined with
respect to a subsystem. Pictorially, a role slice is represented in UML as a stereo-
typed package containing a specialized class diagram (see Fig. 2), that is a subset
of the class model; each class present in the role slice has only the methods that
are assigned to the corresponding role as positive or negative permissions. The
diagram in Fig. 2 is defined over the subsystem ({Course,StudentRecord}, {}).
Catalog represents publicly-accessible information and does not appear in any
role slice. The two concrete role slices are Teacher and Student. Each inherit
permissions from the abstract role slice AcademicPeople that holds the com-
mon set of permissions. Note that positive and negative permissions (methods)
are represented, respectively, with the stereotype < pos > and < neg >. The
role-slice composition relationship captures inheritance among roles in a role hi-
erarchy. Visually, it is represented as a stereotyped dependency arrow that starts
from the child and points to the parent. To obtain the complete set of permissions
for a role in a hierarchy, a specialized version of the composition with override
integration defined by Clarke [11] composes two class diagrams by unifying their
classes and methods. For role slices, the names of the classes are matched (i.e.,
classes with the same name in both role slices compose into one class in the final
diagram), and the child overrides any permission definition in the parent. For
the role-slice diagram in Fig. 2, a full composition operation produces the dia-
gram shown in Fig. 3. In this new role-slice diagram, only concrete role slices are
shown. To illustrate overriding, the method getEnrolledStudents is positive in
AcademicPeople, and negative in Student. The composed role slice for Student
shows this method as negative. Formally, a role-slice is defined as follows.

Definition 9 (Role Slice). A role slice is a record (PP, NP, abstract), where
PP is the set of methods with positive permissions, N P is the set of methods with
negative permissions, and abstract indicates whether the role slice is abstract or
concrete (see definition of Roles in section 2).

Definition 10 (Access-Control Policy). An access-control policy represents
the sets of roles and permissions for a specific subsystem containing the classes

requiring access control, and is a record (RS,CR,S), where RS is the set of
role slices defined over the subsystem S, and CR C RS x RS is the role-slice
composition relation that defines the role hierarchy. Each pair in CR is of the
form (a,b), where a is the child role slice and b is the parent role slice.

Definition 11 (Full composition). Full composition fc: RS — CR — RS
s a function that takes a role slice and a composition relation as arguments,
traversing the role-slice hierarchy to return the role slice composed with all its
ancestors. For space reasons, no further details are given for this function.

<<Rol eSl i ce>>
Acadeni cPeopl e

{abstract} <<Rol eSl i ce>>
Teacher
StudentRecord
StudentRecord
+<<pos>> get Nane()

Course +<<pos>> get Nane()

+<<pos>> get Syl | abus() Course
+<<pos>> get Credits()
+<<pos>> get Enrol | edSt udent s()

+<<pos>> set Syl | abus(syl | abus)
A A +<<pos>> get Enrol | edSt udent s()

+<<pos>> get Syl | abus()
+<<pos>> get Credi ts()

<<Rol eSl i ce(lfm'posi tion>>

<<Rol eSl i ce>>
St udent -
<<Rol eSl i ce>>

StudentRecord St udent

+<<pos>> get Enrol | edCour ses()

StudentRecord

Course

+<<pos>> get Enrol | edCour ses()
+<<neg>> get Enrol | edSt udent s() +<<pos>> get Name()

I
<<Rol eS| i ceGonposi ti on>> Course

<<Rol eSl i ce>>
Teacher +<<pos>> get Syl | abus()

+<<pos>> get Credits()
Course +<<neg>> get Enrol | edSt udent s()

+<<pos>> set Syl | abus(sy! | abus)

Fig. 3. Composed Role Slice Diagram
Fig. 2. Role Slice Diagram

3.3 Aspect-Oriented Definitions

This section details the formal definitions of the aspect-oriented elements needed
for specifying access-control code. The concepts that are introduced are abstrac-
tions of real AOP constructions that only capture the features necessary to
describe the compilation of the security design. For example, join points only
reference method calls initiated in specific methods, and there are no attribute-
based join points and advices only represent the around construct.?

2 pefore and after constructs can easily be emulated in the rewriting function

Definition 12 (Point Cut). A point cut represents a set of specific locations
in the code of the application that are used to integrate the aspect code. It is repre-
sented as a record {caller, callee), where caller is a method where all invocations
of callee must be modified to include the aspect code.

Definition 13 (Advice). An advice is a record (PC,T), where PC is a set
of point cuts and T is a rewriting function that modifies the method invocations

specified in PC.
Definition 14 (Aspect). An aspect is a set of advices.

Definition 15 (Weaving). Weaving W : App — A — App is a function that
takes an application and an aspect as arguments, and outputs an application with
all the advices of the aspect woven to its structure.

Fig. 4 details the algorithm for weaving using A-calculus notation. The aspect-
weaving function W uses three auxiliary functions. W weaves one advice adv to
the set of classes C of the application. W), weaves one advice adv to the methods
of each class. Wyjspr, modifies the implementation of the current method by
weaving the advice adv to each method invocation inv whenever (m,inv.m) is
a point cut in the advice, with m the caller obtained from W}, and ¢nv.m the
callee. The rewrite simply replaces the invocation inv by the invocation of a new
function generated by the advice. Typically, the method invoked performs some
access control and delegates back to the callee when the access is granted and
raises an exception otherwise.

Wivpr = Am.Ainv.\adv.if (m,inv.m) € adv.PC
then adv.T inv

else inv
W = dm.Aadv.(m.name,map (Winrpr m) m.impl)
We = Ac.Aadv.map Wy ¢
w = Aapp.Aa.(foldl (Ac.\adv. map We¢ ¢ adv) app.C a,app.H)

Fig. 4. Weaving Algorithm

4 Enforcing RBAC using AOP

Once an access-control policy is defined by using role slices, it is necessary to
translate that specification to enforcement code. This process is done automati-
cally by a code generator, currently under development at UConn. This program
takes as input a role-slice access-control policy (see Def. 10) and outputs:

— A policy database, containing the access control policy, and an authorization
schema to store user instances and their assigned roles. The assumption is
that every user is assigned only one role per session with the system. In our
example, this information is accessed through the environment using the id
string ‘policy’.

— An access-control aspect that intercepts every call to the set of classes which
access needs to be controlled and grants or deny access depending on the
permissions stored in the policy database.

Formally, to implement access control for an application app, a subsystem subs
is defined for controlling access, i.e., for the university application in Sec. 3.2
subs = ({StudentRecord, Course}, {}). The access-control aspect is defined as:

ac = {adviogin, AdVent } (1)

To enforce access control, the aspect uses the active role of the user currently
logged in. The method that obtains the active role remains application depen-
dent. In this example assume that when a user initiates a session in the system,
a login method is invoked to obtain a tuple (u,r) representing an instance of
the logged user (u) and his/her active role (r). The advigin advice intercepts
the login method and stores the active role in the environment.

adviogin = ({{m, Login) :m € (() ¢)\{login}}, Tiogin) (2)

c€app.C

The pointcut of adviggin references all calls to the login method that do not occur
within the login method itself. Tiogin is the rewriting function that retrieves the
user’s role from the return value of the login method, applies full composition
to it (see Def. 11), and stores it into the environment as the ‘activeRole’.

Tiogin = Minv.((As.Aarg.let y = ((inv.m s arg) ‘returnValue’) in (3)
set s ‘activeRole’ (fc y.r (s ‘policy’).CR)),inv.s,inv.arg)

The advens advice enforces the security policy. It intercepts external calls to the
subsystem subs (calls to methods in subs originating outside subs).

advens = {({{a,b) : @ € Mext, b € Min}, Tont) (4)

M.y is the set of methods outside the subsystem subs, and M;, is the set of
methods within subsystem subs.

Mexy = U c (5)

c€(app.C\subs.SC)

Mi = U Cc (6)

cesubs.SC

Tent 1s the method invocation rewriting function that checks positive permissions.
It receives a method invocation inv and produces a new invocation record whose

first member m is a new function that performs the access control and possibly
delegates to the original function implementation when the access is granted.

Tent = Minv.{(As.darg. if inv.m € (s ‘activeRole’). PP (7)
then (inv.m s arg)
else Exception),inv.s,inv.arg)

Notice that negative permissions are not checked explicitly, because they are
implicitly enforced by this implementation; the main purpose of negative per-
missions is to provide overriding when doing role slice composition.

To illustrate the ideas discussed above, we first model the university application
and a secure subsystem:

app = ({Student Record, Course, Catalog}, {}) (8)
subs = ({Student Record, Course},{}) 9)

The security policy for the subsystem subs is defined by the composed role slices
Teacher and Student (see Fig. 3); the Student role slice is:

Student = <{ g6tl;:[;;lﬁgggf;ﬁgf:;gsame} ,{getEnrolledStudents}

(10)
Security enforcement of the university application is implemented by an access
control aspect as shown in Eq. 1. For space reasons, we only give details of the
advice advens (Eq. 4), defined with respect to the sets of external and internal
methods, as:

Moyt = {getCoursesOf fered} (11)

M, = {getSsn, get Name, get EnrolledCourses, getSyllabus, setSyllabus,
getCredits, setCredits, get EnrolledStudents}
(12)
To illustrate the effects of the weaving function, we show the details of the
method getCoursesO f fered:

(getSyllabus, s, (thecourse)),
<getC0ursesOffered7 ((getCredits, s, (thecourse)) (13)

For brevity, assume that its implementation has only two method invocations,
which are executed over an instance of Course, called thecourse. Since the
method getCoursesO f fered is external, all its invocations to internal methods
are woven to advice advens. The functional implementation of the invocation to
getSyllabus after the weaving is:

((As.harg. if getSyllabus € (s ‘activeRole’).PP (14)
then (getSyllabus s arg)

else Exception), s, (thecourse))

This woven invocation now calls getSyllabus only if the active role has permis-
sions to do it.

5 Related Work

There have been previous attempts to use AOP for enforcing access control. One
such approach is [19], which contains an example of composition of access-control
behavior into an application by using aspect-oriented modeling techniques, with
the aim of integrating security into a class model that allows designers to verify
its access-control properties. Their approach takes a generic security design and
instantiates it in a model tied to the domain of the application. In contrast,
our code generation also requires the instantiation of the design, but only the
access control aspect has dependencies with the domain class model. In addition,
the role-slice notation provides a language to represent the policy that can be
implemented using the aspect-oriented paradigm.

Another effort is [20] that provides a general framework for incorporating secu-
rity into software via AOP, presenting a particular example access control via
aspects. Their approach is similar to ours in the way they constrain method in-
vocations based on permissions, but it differs in permission definition; in theirs,
each permission is represented as a specific method tied to a framework of server
objects that define them and a set of client objects that invoke them, while in
ours, permissions are defined over any method in the class diagram, with a for-
mal mapping between policy definition and code to set the base for automatic
code generation. In terms for formalizing AOP, [21] proposes a monadic formal
model for dynamic join points and AOP. Their notation is complete and general
enough for representing AOP. Our approach is simpler (sufficient for our needs)
and with the specific purpose of representing access-control enforcement.

Regarding the UML notation, [22] has proposed a Network Enterprise Frame-
work using UML for representing RBAC requirements without separation of
duty. Permissions are represented using UML packages and interfaces; role hi-
erarchies are achieved by interface inheritance. This approach inspired the role-
slice model, which in contrast uses classes, supports permission overriding, and
role hierarchies, which are defined over a special grouping unit (the role slice).
Another effort that relates to role slices is [23], which defines a metamodel to
generate security definition languages. SecureUML [23] is an instance defined by
this approach; a platform-independent security definition language for RBAC.
The syntax of SecureUML has two parts: an abstract syntax independent from
the modeling notation; and, a concrete syntaxr which can be used as an exten-
sion to a modeling language, such as UML. The abstract syntax defines basic
elements to represent RBAC: roles, which can be assigned to users or groups
of users; permissions, which are assigned to roles based on specific associated
constraints; and, actions, which are associated with permissions, where a role
can have a permission to execute one or more actions. SecureUML’s concrete
syntax is defined by mapping elements in the abstract syntax to concrete UML
elements [23]. We note that our role-slice diagram and associated concepts can
be an instance of the concrete-syntax of the SecureUML notation, and that our
syntax and associated mappings to UML elements differ from their approach.

We also note that the role-slice diagram is only one component of our overall
research. Specifically, our usage of composition in the role-slice diagram and the
subsequent transition of the composed diagram into AOP enforcement code, is
significantly different than the approach in SecureUML.

6 Conclusions and Future Work

This paper has formalized a compilation mechanism for security specification,
that is able to support the automatic transition of a new UML artifact, the role
slice (based on our previous work), into aspect-oriented code for security en-
forcement. Based on background on RBAC and AOP in Section 2, we have pre-
sented a formal functional model that captured an object-oriented application,
aspect-oriented modeling, and role slices (see Section 3). This model facilitates
the formalization of aspect-oriented access control generation from role slices,
as presented in Section 4. Overall, we believe that our efforts to formalize the
security definition and enforcement processes can be instrumental in attaining
precise and accurate security specifications that can be evolved over time.

In terms of ongoing research, the effort presented in this paper is occurring
concurrently with work underway at UConn to extend UML with MAC and
RBAC [7,8,9], as mentioned in the introduction. As part of this effort, a team of
graduate students has been integrating both that work and the work presented
herein as part of Borland’s UML tool Together Control Center (TCC). TCC
has an open API and plug in architecture that has allowed us to extend UML
diagrams to support security definition, and to define a new role-slice diagram.
In addition to this prototyping effort, we are continuing our research into the
role-slice model as presented in this paper. Specifically, we are interested in
enhancing our model with additional security concerns, including: MAC to be
able to handle security against methods based on classification and clearance;
delegation to provide the ability to pass on authority (role) from one user to
another; and, instance-based security that expands our work to control access
to methods based on object instances in addition to our current class-based
approach. Our intent is to extend the formalisims of Sections 3 and 4 with each
additional access control capability.

References

1. Bell, D., LaPadula, L.: Secure computer systems: Mathematical foundations model.
Technical report, Mitre Corporation (1975)

2. Biba, K.: Integrity considerations for secure computer systems. Technical report,
Mitre Corporation (1977)

3. DoD: Trusted Computer System Evaluation Criteria. 5200.28-STD. DoD (1985)

4. Ting, T.C.: A user-role based data security approach. In Landwehr, C., ed.:
Database Security: Status and Prospects. (1988)

5. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29 (1996) 38-47

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4 (2001)
224-274

Doan, T., Demurjian, S., Ting, T., Phillips, C.: RBAC/MAC security for UML.
In Farkas, C., Samarati, P., eds.: Research Directions in Data and Applications
Security XVIIL. (2004)

Doan, T., Demurjian, S., Ting, T., Ketterl, A.: MAC and UML for secure software
design. In: Proc. of 2nd ACM Wksp. on Formal Methods in Security Engineering,
Washington D.C. (2004)

Doan, T., Demurjian, S., Ammar, R., Ting, T.: UML design with security in-
tegration as a first class citizen. In: Proc. of 3rd Intl. Conf. on Computer Sci-
ence, Software Engineering, Information Technology, e-Business, and Applications
(CSITeA’04), Cairo (2004)

Pavlich-Mariscal, J.A., Doan, T., Michel, L., Demurjian, S.A., Ting, T.C.: Role
slices: A notation for rbac permission assignment and enforcement. In: Proceedings
of 19th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security. (2005)

Clarke, S.: Composition of object-oriented software design models. PhD thesis,
Dublin City University (2001)

Plotkin, G.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, CS Department, University of Aarhus (1981)

Ferraiolo, D., Kuhn, R.: Role-based access controls. In: 15th NIST-NCSC National
Computer Security Conference. (1992) 554-563

Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role-based access control:
Towards a unified standard. (2000) 47-64

Demurjian, S.A., Ting, T.C.: Towards a definitive paradigm for security in object-
oriented systems and applications. Journal of Computer Security 5 (1997)
Phillips, C., Demurjian, S., Ting, T.: Security assurance for an rbac/mac security
model. In: Proc. of 2003 IEEE Info. Assurance Workshop, West Point, NY (2003)
Phillips, C., Demurjian, S., Ting, T.C.: Safety and liveness for an rbac/mac security
model. In di Vimercati, S., Ray, 1., eds.: Database and Applications Security XVII:
Status and Prospects. (2004)

AspectJ-Team: The aspect] programming guide.
http://dev.eclipse.org/viewcvs/indextech.cgi/ checkout /aspectj-
home/doc/progguide/index.html (2003)

Song, E., Reddy, R., France, R., Ray, 1., Georg, G., Alexander, R.: Verifiable
composition of access control features and applications. In: Proceedings of 10th
ACM Symposium on Access Control Models and Technologies (SACMAT 2005).
(2005)

Win, B.D., Vanhaute, B., Decker, B.D.: Security through aspect-oriented program-
ming. In: Proceedings of the IFIP TC11 WG11.4 First Annual Working Conference
on Network Security, Kluwer, B.V. (2001) 125-138

Wand, M., Kiczales, G., Dutchyn, C.: A semantics for advice and dynamic join
points in aspect-oriented programming. In Leavens, G.T., Cytron, R., eds.: FOAL
2002 Proceedings. (2002)

Epstein, P., Sandhu, R.: Towards a uml based approach to role engineering. In:
Proceedings of the fourth ACM workshop on Role-based access control. (1999)
135-143

Basin, D., Doser, J., Lodderstedt, T.: Model driven security, Engineering Theories
of Software Intensive Systems. (2004)

