
ARTICLE IN PRESS
Journal of Network and

Computer Applications] (]]]])]]]–]]]
1084-8045/$ -

doi:10.1016/j

$Portions

Role-based D

Coding & Co
�Correspo
E-mail ad

philhong@ic
www.elsevier.com/locate/jnca
Towards secure information sharing using
role-based delegation$

Gail-Joon Ahna,�, Badrinath Mohana, Seng-Phil Hongb

aUniversity of North Carolina at Charlotte, Charlotte, NC, USA
bInformation and Communications University, Taejon, Republic of Korea
Abstract

As computing becomes more pervasive, information sharing occurs in broad, highly

dynamic network-based environments. Such pervasive computing environments pose a

difficult challenge in formally accessing the resources. The digital information generally

represents sensitive and confidential information that organizations must protect and allow

only authorized personnel to access and manipulate them. As organizations implement

information strategies that call for sharing access to resources in the networked environment,

mechanisms must be provided to protect the resources from adversaries. In this paper, we seek

to address the issue of how to advocate selective information sharing while minimizing the

risks of unauthorized access. We integrate a role-based delegation framework to propose a

system architecture. We also demonstrate the feasibility of our framework through a proof-of-

concept implementation.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Information sharing; Role-based; Delegation
see front matter r 2005 Elsevier Ltd. All rights reserved.

.jnca.2005.08.004

of this paper appeared in preliminary form under the title Secure Information Sharing Using

elegation in Proceedings of IEEE International Conference on Information Technology:

mputing (ITCC), Las Vegas, NV, April 5–7, 2004.

nding author. Tel.: +1704 687 3783; fax: +1 704 687 4893.

dresses: gahn@uncc.edu (G.-J. Ahn), bmohan@uncc.edu (B. Mohan),

u.ac.kr (S.-P. Hong).

www.elsevier.com/locate/jnca

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]2
1. Introduction

Several organizations have transited from their old and disparate business models
based on ink and paper to a new, consolidated ones based on digital information on
the Internet. The Internet is uniquely and strategically positioned to address the
needs of a growing segment of population in a very cost-effective way. It provides
tremendous connectivity and immense information sharing capability which the
organizations can use for their competitive advantage. However, balancing the
competing goals of collaboration and security is difficult because interaction in
collaborative systems is targeted towards making people, information, and resources
available to all who need it, whereas information security seeks to ensure the
integrity of these elements while providing it only to those with proper authorization.
Furthermore, as computing becomes more pervasive, information sharing occurs in
broad, highly dynamic network-based environments. Such pervasive computing
environments pose a difficult challenge in formally accessing the resources (The
Pittsburgh Pebbles PDA Project, 2004).
Digital information generally represents sensitive and confidential information

that organizations must protect and allow only authorized personnel to access and
manipulate them. As organizations implement information strategies that call for
sharing access to resources in the networked environment, mechanisms must be
provided to protect the resources from adversaries. We seek to address the issue of
how to advocate selective information sharing in pervasive computing environments
while minimizing the risks of unauthorized access. We integrate a role-based
delegation framework (Zhang et al., 2003) to propose a system architecture. We
also demonstrate the feasibility of our framework through a proof-of-concept
implementation.
The rest of this paper is organized as follows: in Section 2, we discuss role-based

delegation including details of system architecture. Section 3 overviews other
research and related technologies. Section 4 describes implementation details.
Section 5 concludes this paper.
2. Role-based delegation

Ahn et al. (2003) have recently identified the following issues in collaborative
environments. First, selective information sharing is necessary. We are dealing with
friends, not adversaries, and should provide relevant information expeditiously.
Second, the information may be shared across organizational boundaries. Medical
records may be exchanged between collaborative hospitals for shared patient;
researchers may reside in different healthcare organizations. Because sharing a
resource across organizational boundaries often means authorizing a server to give
access to a third party, it implies enabling resource servers to reason about
previously unknown third parties. This requirement contrasts with many conven-
tional systems, wherein a server only needs to reason about the set of users known
inside a given organization. Third, it is impossible to fully predicate what data

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 3
should be shared, when and to whom. And another thing is that a mechanism must
be provided for revoking the sharing when it is no longer needed. All these factors
have to be considered in order to formulate the mechanism for information sharing
among collaborating organizations.
In order to deal with the aforementioned issues, our work, called FRDIS (A

Framework of Role-based Delegation for Information Sharing), leverages the
existing models (Sandhu et al., 1996; Zhang et al., 2003). To illustrate each
functional component in our model, we use the role hierarchy example illustrated in
Fig. 1 and Table 1.
To simplify the discussion of delegation, we assume a user cannot be delegated to

a role if the user is already a member of that role. For example, project leader Deloris
with role PL1 cannot be delegated to the role PO1 or PC1 since he has already been
an implicit member of these roles.

2.1. Role delegation

We first define a new relation called delegation relation (DLGT). It includes three
elements: original user assignments UAO, delegated user assignment UAD, and
constraints. The motivation behind this relation is to address the relationships
among different components involved in a delegation. In a user-to-user delegation,
there are four components: a delegating user, a delegating role, a delegated user, and
a delegated role. For example, (Deloris, PL1, Cathy, PL1) means Deloris acting in
role PL1 delegates role PL1 to Cathy. The delegation relation supports role
hierarchies: a user who is authorized to delegate a role r can also delegate a role r0

that is junior to r. For example, (Deloris, PL1, Lewis, PC1) means Deloris acting in
role PL1 delegates a junior role PC1 to Lewis. A delegation relation is one-to-many
relationship on user assignments. It consists of original user delegation (ODLGT)
Director (DIR)

Lead Officer 1
(PL1)

Project 1
(P1)

Project
Collaborator

1 (PC1)

Patrol Officer
(PTO)

Community
Service Officer

(CSO)

Reserve Officer
(RSO)

Police Officer (PLO)

Lead Officer 2
(PL2)

Project 2
(P2)

Project
Collaborator

2 (PC2)

Participant
Officer 1
(PO2)

Reporter
(RE2)

Participant
Officer
1 (PO1)

Reporter
(RE1)

Fig. 1. Role hierarchy and membership.

ARTICLE IN PRESS

Table 1

Role membership

ROLES DIR PL1 PL2 PO1 PO2

USERS John Deloris Cathy Michael Mark

David Lewis

UAO

ODLGT

DDLGT

DLGT

UAD

CONSTRAINTS

Fig. 2. Delegation relation.

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]4
and delegated user delegation (DDLGT). Fig. 2 illustrates components and their
relations in FRDIS. We assume each delegation relation may have a duration
constraint associated with it. If the duration is not explicitly specified, we consider
the delegation as permanent unless another user revokes it. The function Duration
returns the assigned duration-restriction constraint of a delegated user assignment. If
there is no assigned duration, it returns a maximum value.
In some cases, we may need to define whether or not each delegation can be

further delegated and for how many times, or up to the maximum delegation depth.
We introduce two types of delegation: single-step delegation and multi-step
delegation. Single-step delegation does not allow the delegated role to be further
delegated; multi-step delegation allows multiple delegations until it reaches the
maximum delegation depth. The maximum delegation depth is a natural number
defined to impose restriction on the delegation. Single-step delegation is a special
case of multi-step delegation with maximum delegation depth equal to one.
Also, we have an additional concept, delegation path (DP) that is an ordered list

of user assignment relations generated through multi-step delegation. A delegation
path always starts from an original user assignment. We use the following notation
to represent a delegation path.

uao0! uad1! uadi ! uadn.
Delegation paths starting with the same original user assignment can further

construct a delegation tree. A delegation tree (DT) expresses the delegation paths in
a hierarchical structure. Each node in the tree refers to a user assignment and each
edge to a delegation relation. The layer of a user assignment in the tree is referred as
the delegation depth. The function Prior maps one delegated user assignment to the

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 5
delegating user assignment; function Path returns the path of a delegated user
assignment; and function Depth returns the depth of the delegation path.
FRDIS has the following components and theses components are formalized from

the above discussions.
�
 U is a set of users.

�
 R is disjoint sets of roles and administrative roles, respectively.

�
 UAO � U � R is an original user to role assignment relation.

�
 UAD � U � R is a delegated user to role assignment relation.

�
 UA ¼ UAO [UAD
�
 DLGT � UA�UA is one to many delegation relation. A delegation relation can
be represented by ðu; r; u0; r0Þ 2 DLGT , which means the delegating user u with role
r delegated role r0 to user u0.

�
 ODLGT � UAO�UAD is an original user delegation relation.

�
 DDLGT � UAD�UAD is a delegated user delegation relation.

�
 DLGT ¼ ODLGT [DDLGT .

�
 T is a set of duration-restricted constraint.

�
 DP � UA�UA represents a delegation path.

�
 DT � UA�UA represents a delegation tree.

�
 Path: UA! DP is a function that maps a UA to a delegation path.

�
 Prior: UA! UA is a function that maps a user assignment to another subsequent
user assignment that forms a delegation relation.

Constraints are an important aspect of RBAC and can lay out higher-level
organizational policies. In theory, the effects of constraints can be achieved by
establishing procedures and sedulous actions of security administrators (Ferraiolo
et al., 1999). Specification of policies for the authorization needs in the context of
role management has been also studied by Lupu and Sloman (1997). In FRDIS, the
constraints are enforced by a set of integrity rules that provide management and
regulators with the confidence that critical security policies are uniformly and
consistently enforced. In the framework, when a user delegates a role, all context
constraints that are assigned to the user and anchored to the delegated role are
delegated as well.
In order to specify and enforce constraints in role-based delegation authorizations,

we first overview some identified constraints in role-based systems (Ahn and Sandhu,
2000; Bertino et al., 1999a, b; Sandhu et al., 1996):
(1) Static separation of duty (SSOD)/Incompatible roles assignment: This constraint

states that no common user should be assigned to conflicting roles. A frequently
used example is a user cannot be a purchase manager while at the same time being
an account payable manager for the same organization. We denote a set of
incompatible role assignments as IRA.
(2) Incompatible users: This constraint states that two conflicting users cannot be

assigned to the same role. For example, it might be a company’s policy that members
from same subdivision should not be assigned to the same steering committee. We
denote a set of incompatible users as IU.

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]6
(3) Incompatible permissions: This constraint states that conflicting permissions
cannot be assigned to the same role. We denote a set of incompatible permissions
as IP.
(4) Cardinality constraints: This constraint states that a role can have a maximum

number of members or a user may belong to a maximum number of roles. For
example, there may be only one person in the role of CEO in an organization. As
stated in Sandhu et al. (1996), the role cardinality is difficult to implement since the
system may not know exactly how many users are still ‘‘alive’’—some may leave
without notifying security officers. We denote the cardinality of x as cardiðxÞ, where
x is a role term or a user term. It is futile to enumerate all role-based constraints, as
there are too many possibilities and variants (Ahn and Sandhu, 2000). In the
subsequent sections, we show that the enhanced rule-based language is expressive
enough to specify a wide range of constraints.

2.2. Role revocation

Several different semantics are possible for user revocation. Hagstrom et al. (2001)
categorized revocations into three dimensions in the context of owner-based
approach: global and local (propagation), strong and weak (dominance), and
deletion or negative (resilience). Barka and Sandhu (2000b) further identified user
grant-dependent and grant-independent revocation (grant-dependency). Since
negative authorization is not considered in FRDIS, we articulate user revocation
in the following dimensions: grant-dependency, propagation, and dominance.
Grant-dependency refers to the legitimacy of a user who can revoke a delegated

role. Grant-dependent revocation means only the delegating user can revoke the
delegated user from the delegated role membership. Grant-independent revoca-
tion means any original user of the delegating role can revoke the user from the
delegated role.
Dominance refers to the effect of a revocation on implicit/explicit role member-

ships of a user. A strong revocation of a user from a role requires that the user be
removed not only from the explicit membership but also from the implicit
memberships of the delegated role. A weak revocation only removes the user from
the delegated role (explicit membership) and leaves other roles intact. Strong
revocation is theoretically equivalent to a series of weak revocations. To perform
strong revocation, the implied weak revocations are authorized based on revocation
policies. However, a strong revocation may have no effect if any upward weak
revocation in the role hierarchy fails (Sandhu et al., 1999).
Propagation refers to the extent of the revocation to other delegated users. A

cascading revocation directly revokes a delegated user assignment in a delegation
relation and also indirectly revokes a set of subsequent propagated user assignments.
A non-cascading revocation only revokes a delegated user assignment.
Our preliminary study shows grant-dependent revocation for brevity. Suppose the

revocation in Fig. 3 is weak non-cascading, for John to revoke Cathy from role PL1,
it is important to note that only Cathy’s membership of role PL1 is changed; other
role memberships of Cathy and all the delegated user assignments propagated by

ARTICLE IN PRESS

Mark, PC1 Lewis, PC1 Mark, PC1

David, PC2

John, DIR

Cathy, PL1Cathy, DIR

John, DIR

Cathy, DIR David, PC2

Lewis, PC1

Cathy, PL1

WNDR

Fig. 3. Weak non-cascading revocation.

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 7
Cathy are still valid. If the revoked node is not a leaf node, non-cascading revocation
may leave a ‘‘hole’’ in the delegation tree. A solution might be the revoking user
takes over the delegating user’s responsibility. In this example, John takes over the
delegating user’s responsibility from Cathy, and changes all delegation relations:
ðCathy;PL1; u; rÞ 2 DLGT to ðJohn;DIR; u; rÞ 2 DLGT . In this case, John takes over
Cathy’s delegating responsibility for Mark and Lewis.

2.3. Rule-based policy specification language

FRDIS defines policies that allow regular users to delegate their roles. It also
specifies the policies regarding which delegated roles can be revoked. A rule-based
language is adopted to specify and enforce these policies. It is a declarative language
in which binds logic with rules. The advantage is that it is entirely declarative so it is
easier for security administrator to define policies.
A rule takes the form:
H F1&F2& . . . &Fn

where H, F1;F2; . . . ;Fn are Boolean functions.
There are three sets of rules in the framework: basic authorization rules specify

organizational delegation and revocation policies; authorization derivation rules
enforce these policies in collaborative information systems; and integrity rules
specify and enforce role-based constraints.
For example, a user–user delegation authorization rule forms as follows:
can_delegateðr; cr; nÞ ,
where r, cr, and n are elements of roles, prerequisite conditions, and maximum
delegation depths, respectively.
This is the basic user-to-user delegation authorization rule. It means that a

member of the role r (or a member of any role that is senior to r) can assign a user
whose current membership satisfies prerequisite condition cr to role r (or a role that
is junior to r) without exceeding the maximum delegation depth n.
A user delegation request is further authorized by the user– user delegation

authorization derivation rule that takes the form
der_can_delegateðu; r; u0; r0; dlg_optÞ

can_delegateðr00; cr; nÞ&
activeðu; r; sÞ&
delegatableðu; rÞ&

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]8
seniorðr; r00Þ&
inðu0; crÞ&
juniorðr0; r00Þ&
inðdepthðu; rÞ; nÞ,
where u and u0 are elements of users; r, r0, and r00 are elements of roles; cr and s are
elements of prerequisite condition and sessions, respectively; dlg_opt is a Boolean
term, if it is true, then further delegation is allowed. This argument is used as
Boolean control of delegation propagation.
This rule means that a user u with a membership of a role r senior to r00 activated in

session s can delegate a user u0 whose current role membership satisfies prerequisite
condition cr to role r0 (r0 is junior to role r00) without exceeding the maximum
delegation depth n. Similar rules are also defined for role-based revocations and are
applied to specify constraints.
The fundamental element of the specification language is a set of functions. We

categorize these functions into three groups:
�

Tab

Uti

Pre

all_

equ

in

not

one

sat
a set of specification functions, expressing information of role-based delegation
components;

�
 a set of authorization functions, describing an authorization information or
decision. We further divide them into a set of basic authorization functions
(BAP), a set of derived authorization functions (DAP), and a set of negative
authorization functions (NAP); and

�
 a set of utility functions, providing supportive functionalities, e.g. comparison and
aggregation.

Some functions and their semantics are listed in Tables 2–4. We use UT, RT, PT,
ST, UAT, PAT, DLGTT, DPT, CRT, IRAT, IUT, IRRT, BT, DT, and NT to
indicate set of users, roles, permissions, sessions, user assignments, permission
assignments, delegations, delegation paths, prerequisite conditions, incompatible
role assignments, incompatible users, incompatible roles, booleans, durations, and
le 2

lity functions

dicate Arity Argument Return Meaning

other 2 Set of XT, XT Set of XT all_otherðX ;xÞ ¼ X � fxg

als 2 XT, XT BT If equalsðx; yÞ is true,
then x ¼ y

2 XT, set of XT BT If inðx; yÞ is true,
then x 2 y

1 BT BT notðtrueÞ ¼ false and

notðfalseÞ ¼ true

_element 1 Set of XT XT one_elementðX Þ returns

one element in set X

isfy 2 UT, CR BT If satisfyðu; crÞ is true,

then user u satisfies cr

ARTICLE IN PRESS

Table 3

Specification functions

Predicate Arity Arg Return Meaning

cardi 1 RT NT cardiðrÞ returns current number of users

in role r

delegatable 1 UAT BT If delegatable(ua) is true, then ua can

further delegate

maxcardi 1 RT NT maxcardi(r) returns the maximum cardinality

allowed for role r

Table 4

Authorization functions

Predicate Arity Arg Type Meaning

override 2 Rule head, BT BAP overrideðH; bÞ states conflict resolution
policy for H B

cannot_assign 2 UT, RT NAP cannot_assignðu; rÞ means user u cannot

be assigned role r

cannot_assignp 2 RT, PT NAP cannot_assignpðr; pÞ means permission
p cannot be assigned to role r

cannot_activate 3 UT, RT, ST NAP cannot_activateðu; r; sÞ means u cannot

activate r in sessions

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 9
natural numbers, respectively.We borrow the notion of two non-deterministic
functions from RCL2000 (Ahn and Sandhu, 2000): one_element and all_other

(originally as OE and AO). These functions are introduced to replace explicit
quantifiers, thus keep the language simple and intuitive. The one_elementðX Þ

function allows us to get one element xi from set X. Multiple occurrences of
one_elementðX Þ in a single rule statement select the same element xi. With
all_otherðX ; xiÞ we can get a subset of X by taking out one element xi.

2.3.1. Constraints specification

In order to represent role-based privilege management constraints, we define rules
that are extremely suited for constraints specification as well as enforcement. We
articulate several constraints and specify them using a rule-based language
introduced in Zhang et al. (2003).

A static separation of duty (SSOD): incompatible roles assignment constraint states
that no common user can be assigned to conflicting roles in the incompatible role set
ira ¼ fr1; r2; . . .g. This constraint can be represented as
cannot_assignðu; rÞ
seniorðr; one_elementðiraÞÞ&
member_of ðu; one_elementðall_otherðira; one_elementðiraÞÞÞÞ,
where u 2 U , r 2 R, and ira 2 IRA.

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]10
The rule says if r equals one element of a set of the incompatible role assignments ira,
and a user u is already member of another role other than r in the incompatible role
set, then u cannot be assigned role r.

An incompatible users constraint states that two conflicting users in the incompatible
user set iu ¼ fu1; u2; . . .g cannot be assigned to the same role. This constraint can be
represented as
cannot_assignðu; rÞ
equalsðu0; one_elementðall_otherðiu; uÞÞÞ&
member_of ðu0; rÞ.
An incompatible permissions constraint states that two conflicting permissions in
the incompatible user set ip ¼ fp1; p2; . . .g cannot be assigned to the same role. This
constraint can be represented as
cannot_assignpðr; pÞ
equalsðp0; one_elementðall_otherðip; pÞÞÞ&
inðp0; permissions_roleðrÞÞ.
A role cardinality constraint states that a role can have a maximum number N of
user members. This constraint can be represented as
cannot_assignðu; rÞ
greater_thanðcardiðrÞ;maxcardiðrÞ � 1Þ.
A user cardinality constraint states that a user can be member of a maximum
number N of roles. This constraint can be represented as
cannot_assignðu; rÞ
greater_thanðcardiðuÞ;maxcardiðuÞ � 1Þ.
We have demonstrated how different constraints can be specified using rules.

2.4. Architectural framework

Our system is designed to provide access control and delegation in collaborative
environments. We use the term Hive to describe its system architecture. In a bee hive,
honeybees collect nectar and pollen and store them for other bees to use to make
honey; in the Hive, any legitimate users can access resources at anytime and
anywhere. To do so, access control services should be provided to users who have
access privileges that can be originally assigned by a security officer or can be
delegated by other legitimate user(s). The notions described in Hive are designed to
be utilized within an administrative-directed delegation management architecture.
An overview of the preliminary architecture is shown in Fig. 4. It consists of a

number of services and management agents together with the objects to be managed.

A
R
TIC

LE
IN

PR
ES

S

Rule Service

Security
Officer

Role Service

Attribute
Certificate

Server

AC Storage

Role Database

Cert.

Rule Editor (PMI Attribute
Authority)

Applications/
Resources

Delegation
Agent

Access Control
Agent

Authentication
Agent

Reference
Monitor

Access
Decision

Access/
delegation
Request

Access

Hive

Tablet
PCs

Wearable
computers

PDAs

Wireless/wired
connectivity

Fig. 4. FRDIS architecture: Hive.

G
.-J

.
A

h
n

et
a

l.
/

J
o

u
rn

a
l

o
f

N
etw

o
rk

a
n

d
C

o
m

p
u

ter
A

p
p

lica
tio

n
s
]

(
]]]])

]]]–
]]]

1
1

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]12
The enforcement agents are based on a combination of roles and rules for specifying
and interpreting policies. Since delegation and revocation services are only part of a
security infrastructure, we choose a modular approach to our architecture that
allows the delegation and revocation services to work with current and future
authentication and access control services. The modularity enables future enhance-
ments of our approach.
The role service is provided by a role server, which is an implementation of the

RBAC and Hive components. A role server maintains RBAC database and provides
user credentials, role memberships, associated permissions, and delegation relations
of the system. The rule service is provided by a rule server, which manages delegation
and revocation rules. These rules are always associated with a role, which specifies
the role that can be delegated. They are implemented as authorization policies
that authorize requests from users. The delegation agent is an administrative
infrastructure, which authorizes delegation and revocation requests from users by
applying derivation authorization rules and processes delegation and revocation
transactions on behalf of users.
The implementation requirements related to the delegation framework are not

only a delegation agent, but also authentication and access control agents. The
authentication agent is used to authenticate users during their initial sign-on and
supply them with an initial set of credentials. The reference monitor makes access
control decisions based on information supplied by the access control agent. In large
role-based system, there may be tens or hundreds of delegation and revocation rules.
The rule editor is developed to simplify the management of these rules. As a portion
of an integrated RBAC administration platform to manage various RBAC and Hive

components, the rule editor is used to view, create, edit, and delete delegation and
revocation rules.
3. Related works

Pervasive computing enables users to access services and information at anytime
and anywhere. Under such computing environments, the information sharing tends
to be very dynamic and often ad hoc. Hence, the traditional management approach
is not appropriate to such environments because the workload on a security officer
(or a small group of security officers) will be overwhelming. Since the very goal of
our research is to enable users to access and selectively share resources in distributed
systems, we assume that users can be trusted to exercise their discretions on
resources: if Alice explicitly shares a resource with Bob, she trusts Bob to use the
resource.
We also consider enhancing the scalability of information sharing. Some of the

projects that address this issue are UC Baltimore’s eBiquity (Kagal et al., 2001),
Pebbles project (Myers et al., 1998), UC Berkely’s Ninja project (Goldberg et al.,
1999; Gribble et al., 2001), Stanford’s Interactive Workspace Project (Candea and
Fox, 2000), and Matt Blaze’s PolicyMaker (Blaze et al., 1996) with the notion of
Role-Based Access Control (RBAC). We have found that delegation is one of

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 13
promising approaches to rectify the above-mentioned issue. There are many
definitions and different types of delegation in the literature (Abadi et al., 1993;
Barka and Sandhu, 2000a; Gasser and McDermott, 1990). In general, it is
referred to as the process whereby one active entity in a system authorizes another
entity to act on behalf of the former by transferring a set of rights. Through
delegation, individual user is trusted and empowered to share resources to which
they have access. Godo et al. (2003) proposed a multi-agent system to help in the
revision of medical prescriptions containing antibiotics of restricted use. The
proposed approach attaches an agent to each patient which is responsible of
checking different medical aspects associated with his prescribed therapy. Although
the monitoring system may allow the use of agents and roles in healthcare
organizations, their approach does not address how secure information sharing can
be occurred among distributed domains through an innovative access control
mechanism.

3.1. Privilege management infrastructure

PMI is based on the ITU-T Recommendation X.509 (2001) of directory systems
specification, which introduced PKI in its earlier version. Public-key certificates
are used in PKI while attribute certificates are a central notion of PMI. Public-key
certificates are signed and issued by certification authority (CA), while attribute
certificates are signed and issued by attribute authority (AA). PMI is to develop
an infrastructure for access control management based on attribute certificate
framework (Shin et al., 2002). Attribute certificates bind attributes to an entity.
The types of attributes that can be bound are role, group, clearance, audit identity,
and so on. Attribute certificates have a separate structure from that of public key
certificates.
PMI consists of four models: general model, control model, delegation model, and

roles model. General and control models are required, whereas roles and delegation
models are optional. The general model provides the basic entities which recur in
other models. It consists of three foundation entities: the object, the privilege
asserter, and the privilege verifier. The control model explains how access control is
managed when privilege asserters request services on object. When the privilege
asserter requests services by presenting his/her privileges, the privilege verifier makes
access control decisions based upon the privilege presented, privilege policies,
environmental variables, and object methods. The delegation model handles a
situation when privilege delegation is necessary. It introduces two additional
components: source of authority (SOA) and other AAs. When delegation is used,
SOA assigns privilege to AAs, and AAs delegate privileges to an end-entity privilege
asserter. Lastly, PMI roles model also introduces two additional components: role
assignment and role specification. Role assignment is to associate privilege asserters
with roles, and its binding information is contained in attribute certificate called role
assignment attribute certificate. The latter is to associate roles with privileges, and it
can be contained in attribute certificate called role-specification attribute certificate
or locally configured at a privilege verifier’s system.

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]14
4. Implementation details

Our implementation leverages Hive features and X.509 attribute certificate. We
attempt to implement the proof-of-concept prototype implementation of Hive on
privilege management infrastructure (PMI) (ITU-T Recommendation X.509, 2001).
PMI provides certificate-based authorization with attribute certificates while public-
key infrastructure (PKI) does certificate-based authentication with public-key
certificates, so called identity certificates.
Three components are identified for managing attribute certificates: privilege

asserter, privilege verifier, and PMI AA. Two different attribute certificates are
employed: role assignment attribute certificate (RAAC) for assigning roles to a user
and role specification attribute certificate (RSAC) to assign specific permissions to a
role. Our implementation is divided into two components. The first component is to
build APIs for both a role-based decision making engine and attribute certificates.
Those APIs are the core building blocks for constructing an access control policy
server and an attribute certificate server. The second component is to implement
each entity integrating with APIs. Some of PMI modules in Shin et al. (2002) were
utilized to construct the above-mentioned components.
We also developed an application working as an access control policy server. This

application has been developed in Cþþ. An engine for making access control
decisions is a major component in this application. After receiving a valid RAAC
and requested objects (with operation type) from the server, the engine extracts
permissions from the RSAC and checks if the requested object (with operation type)
is in the list of permissions. The programming library, called RBAC API, was
developed to facilitate such procedures.
The current work is focused on the multimedia information sharing between a

server in Hive and handheld devices. A user of a handheld device can communicate
directly with the server and also send commands to the server application. The
communication channel has been supported by Microsoft Windows Sockets
(WinSock). The management of multimedia information is handled by Microsoft
Windows Media Control Interface (MCI). We also used a library such as Victor
Image processing library for the conversion between BMP files to JPEG files. In
order to enhance the performance, our application is capable of zipping files in both
the server and handheld devices developed by Visual Studio 6.0 (VCþþ version 6.0)
and Embedded Visual Tools 3.0 (EVCþþ 3.0), respectively.
The snapshots in Figs. 5 and 6 illustrate how a client can share resources in a

server in Hive. To support this feature, our implementation consists of several
modules.1

Communication channel establishment: The communication link is established
through the socket connection. It includes creation and listen modes. The following
is a sample method to create a link.
Create (UINT nSocketPort ¼ 0,
1These procedures are performed after the attributes are validated.

ARTICLE IN PRESS

Fig. 5. Accessing information via a handheld device with delegated privilege.

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 15
int nSocketType ¼ SOCK_STREAM,
LPCTSTR lpszSocketAddress ¼ NULL).
Controlling messages and commands: Both parties need to exchange messages and
a client needs to send commands to a server. The following snippet is an example of
this procedure.
Int SendTo (const void* lpBuf,
int nBufLen,
UINT nHostPort,
LPCTSTR lpszHostAddress ¼ NULL,
int nFlags ¼ 0);

ARTICLE IN PRESS

Fig. 6. Sharing information in a server.

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]16
Int ReceiveFrom (void* lpBuf,
int nBufLen,
CString& rSocketAddress,
UINT& rSocketPort,
int nFlags ¼ 0);

If (nCode ¼ ¼ MESSAGE_RBDOWN) {
SetCursorPos (nSrcX, nSrcY);
mouse_event (MOUSEEVENTF_RIGHTDOWN,0,0,0,0);
mouse_event(MOUSEEVENTF_RIGHTUP,0,0,0,0); }
// the mouse_event API //
// for a typical right click //
Information sharing between both parties: Once the communication is set up both
parties are ready to share information. The video information or screen information
is obtained through Windows GDI by creating a temporary Graphics object. The
image is copied in the form of a BMP file.2 A snippet of code is as follows.
hbm ¼ ::CreateDIBSection(
hdc,&bmi,DIB_RGB_COLORS,
(void**)&imagedata,0,0);

CFile fo(
Cstring (".nntemp.bmp"),
CFile::modeCreate|CFile::modeWrite);

Fo.Write(imagedata, bmi.bmiHeader.biSizeImage).
2The sound can also be captured. The capture of sound is implemented by using Windows MCI calls.

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 17
5. Conclusion
Sharing information and resources in collaborative environments entails addres-
sing several requirements not raised by traditional single-user environments in part
due to the unpredictability of users and the unexpected manners in which users and
applications interact in collaborative sessions. In this paper, we have discussed issues
of information sharing introducing an architecture, Hive. We also attempted to
utilize an existing delegation framework and attribute certificates in PMI. In
addition, we demonstrated the feasibility of our architecture through a proof-of-
concept implementation. Currently, we are investigating how this technology can be
applied to K-12 education environment supporting some of features in The
Pittsburgh Pebbles PDA Project, 2004.
Acknowledgements

The work of Gail-J. Ahn and Badrinath Mohan was supported, in part, by funds
provided by National Science Foundation (NSF-IIS-0242393 and NSF-CNS-
0130799) and Department of Energy Early Career Principal Investigator Award
(DE-FG02-03ER25565).
References

Abadi M, Burrows M, Lampson B, Plotkin G. A calculus for access control in distributed systems. ACM

Trans Programming Languages Systems 1993;15(4):706–34.

Ahn G-J, Sandhu R. Role-based authorization constraints specification. ACM Trans Inf System Security

2003;3(4):207–26.

Ahn G-J, Zhang L, Shin D, Chu B. Authorization management for role-based collaboration. In: IEEE

international conference on system, man and cybernetic (SMC2003); Washington, DC, October 2003.

p. 4128–214.

Barka E, Sandhu R. A role-based delegation model and some extensions. In: Proceedings of the

16th annual computer security application conference; Sheraton, New Orleans. December 11–15,

2000a.

Barka E, Sandhu R. Framework for role-based delegation model. In: Proceedings of the 23rd national

information systems security conference; Baltimore, MD, October 16–19, 2000b. p. 101–14.

Bertino E, Ferrari E, Atluri V. The specification and enforcement of authorization constraints in workflow

management systems. ACM Trans Inf System Security 1999a;2(1):65–104.

Bertino E, Jajodia S, Samarati P. A flexible authorization mechanism for relational data management

systems. ACM Trans Inf Systems 1999b;17(2):101–40.

Blaze M, Feigenbaum J, Lacy J. Decentralized trust management. In: Proceedings of the 1996 IEEE

symposium on security and privacy; May 1996. p. 164–73.

Candea G, Fox A. Using dynamic mediation to integrate COTS entities in a ubiquitous computing

environment. In: Proceedings of the second international symposium on handheld and ubiquitous

computing; 2000.

Ferraiolo DF, Barkley JF, Kuhn DR. A role based access control model and reference implementation

within a corporate intranet. ACM Trans Inf System Security 1999;2(1).

Gasser M, McDermott E. An architecture for practical delegation in a distributed system. In: Proceedings

of the IEEE computer society symposium on research in security and privacy; Oakland, CA, May 7–9,

1990.

ARTICLE IN PRESS

G.-J. Ahn et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]18
Godo L, Puyol-Gruart J, Sabater J, Torra V, Barrufet P, Fàbregas X. A multi-agent system approach for

monitoring the prescription of restricted use of antibiotics. Artif Intell Med 2003;27(3):259–82.

Goldberg I, Gribble SD, Wagner D, Brewer EA. The Ninja jukebox. In: Proceedings of the second

USENIX symposium on internet technologies and systems (USITS-99); 1999.

Gribble, SD, et al. The Ninja architecture for robust Internet-scale systems and services. Comput

Networks 2001.

Hagstrom A, Jajodia S, Presicce FP, Wijesekera D. Revocations—a classification. In: Proceedings of the

14th IEEE computer security foundations workshop; Nova Scotia, Canada, June 2001. p. 44–58.

Kagal L, Finin T, Joshi A. Trust-based security in pervasive computing environments. IEEE Comput

2001. p. 2–5.

Lupu E, Sloman M. A policy based role object model. In: Proceedings of the first IEEE international

enterprise distributed object computing workshop (EDOC’97); 1997.

Myers BA, Stiel H, Gargiulo R. Collaboration using multiple PDAs connected to a PC. In: Proceedings of

the CSCW’98: ACM conference on computer-supported cooperative work; Seattle, WA, November

14–18, 1998. p. 285–294.

The Pittsburgh Pebbles PDA Project. Available at www.cs.cmu.edu/�pebbles; 2004

Sandhu RS, Coyne EJ, Feinstein HL, Youman CE. Role-based access control models. IEEE Comput

1996;29(2):38–47.

Sandhu R, Bhamidipati V, Munawer Q. The ARBAC97 model for role-based administration of roles.

ACM Trans Inf System Security 1999;2(1).

Shin D, Ahn G-J, Cho S. Role-based EAM using X.509 attribute certificate. In: Proceedings of the

sixteenth annual IFIP WG 11.3 working conference on data and application security; King’s College,

University of Cambridge, UK, July 29–31, 2002. p. 285–94.

Zhang L, Ahn G-J, Chu B. A rule-based framework for role-based delegation and revocation. ACM Trans

Inf System Security 2003;6(3):404–41.

ITU-T Recommendation X.509. Information technology: open systems interconnection—the directory:

public-key and attribute certificate frameworks, ISO/IEC 9594-8, 2001.

Gail-Joon Ahn is an Associate Professor of Software and Information Systems Department at University

of North Carolina at Charlotte and a coordinator of Laboratory of Information Integration, Security and

Privacy (LIISP) which has been designated as a National Center of Academic Excellence in Information

Assurance Education by National Security Agency and Department of Homeland Security. Ahn received

PhD and MS degrees from George Mason University, Fairfax, Virginia, and BS degree in Computer

Science from SoongSil University, Seoul, Korea. His principal research and teaching interests are in

information and systems security. His research foci include vulnerability and risk management, access

control, and security architecture for distributed systems. Ahn is currently an information director of

ACM Special Interest Group on Security, Audit and Control (SIGSAC) and is a recipient of Department

of Energy Early Career Principal Investigator Award.

Badrinath Mohan received his MS degree from University of North Carolina at Charlotte (UNC

Charlotte) and was an active research assistant of LIISP at UNC Charlotte. His research interests include

access control, identity management and embedded systems.

Seung-Phil Hong received his PhD degree from Information and Communications University, Taejon,

Korea. Also, he received BS and MS degrees from Indiana State University and Ball State University,

respectively. He worked for the Research and Development Center in LG- CNS Co, Ltd. from 1997–2004,

and was actively involved in research in information security. His research interests include access control,

security architecture, PKI, and e-buisness security.

http://www.cs.cmu.edu/~pebbles
http://www.cs.cmu.edu/~pebbles

	Towards secure information sharing using �role-based delegation
	Introduction
	Role-based delegation
	Role delegation
	Role revocation
	Rule-based policy specification language
	Constraints specification

	Architectural framework

	Related works
	Privilege management infrastructure

	Implementation details
	Conclusion
	Acknowledgements
	References

