

ibm.com/redbooks

Administering and Implementing
WebSphere Business Integration
Server V4.3

Alicia Harvey
Travis Jeanneret
Thiam Cheng Lee

Rangarajan S Manavalan
Marty Trice

Implement a business integration
infrastructure

Develop and deploy solution
components

Manage WebSphere BI
infrastructure

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Administering and Implementing WebSphere
Business Integration Server V4.3

April 2006

International Technical Support Organization

SG24-6647-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2006)

This edition applies to Version 4, Release 3, Modification 0 of IBM WebSphere Business
Integration Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xii
Become a published author . xiv
Comments welcome. xiv

Part 1. Implementing a BI solution framework . 1

Chapter 1. The state of business integration technology 3
1.1 IBM WebSphere BI Overview . 4
1.2 The evolution of business integration technology . 4
1.3 Integration capabilities. 9

Chapter 2. Building an implementation plan . 15
2.1 WebSphere Business Integration Server overview 16

2.1.1 WebSphere MQ Workflow: long-running processes 17
2.1.2 WebSphere InterChange Server: objects and their interactions 18
2.1.3 WebSphere BI Message Broker: routing and reformatting 21
2.1.4 WebSphere BI Adapters: connectivity. 23
2.1.5 Base components . 25
2.1.6 Bringing it all together . 25

2.2 Business requirements . 26
2.2.1 Implementation of use cases as required . 26
2.2.2 Agility. 27
2.2.3 Ability to integrate existing services . 27
2.2.4 Business monitoring . 27

2.3 Quality of service requirements. 28
2.3.1 Performance . 28
2.3.2 Availability . 28

2.4 System design for our scenario. 29
2.5 Planning considerations . 31

2.5.1 WebSphere MQ Workflow. 32
2.5.2 InterChange Server. 35
2.5.3 WebSphere Business Integration Message Broker 37

2.6 Planning documents . 39

Chapter 3. Implementing the runtime components 45
© Copyright IBM Corp. 2006. All rights reserved. iii

3.1 WebSphere MQ Workflow installation and configuration 46
3.1.1 Install WebSphere MQ Workflow Runtime . 47
3.1.2 Configure WebSphere MQ Workflow . 49
3.1.3 Verify WebSphere MQ Workflow server . 62

3.2 InterChange Server installation and configuration 68
3.2.1 Prerequisite tasks . 68
3.2.2 Installation of WebSphere BI Server components 70
3.2.3 Configuration of the InterChange Server . 73
3.2.4 Verifying the configuration. 80
3.2.5 Using role-based access control . 84

3.3 Installing WebSphere Business Integration Adapters 96
3.4 WebSphere BI Message Broker installation and configuration 100

3.4.1 Prerequisite software . 101
3.4.2 Installation . 101
3.4.3 Create the WebSphere BI Message Broker infrastructure 107

3.5 Summary . 118

Chapter 4. Implementing client components . 119
4.1 Implementing WebSphere MQ Workflow Web Client 120

4.1.1 Setting up the application server on Windows 121
4.1.2 WebSphere MQ Workflow Web Client installation 126
4.1.3 WebSphere MQ Workflow Web Client configuration 128
4.1.4 WebSphere MQ Workflow Web Client validation 138

4.2 Implementing a development client. 140
4.2.1 WebSphere MQ Workflow development environment 140
4.2.2 WebSphere InterChange Server development environment 152
4.2.3 WebSphere BI Message Broker development environment 156

4.3 Implementing a management client . 166
4.3.1 WebSphere MQ Workflow management client 166
4.3.2 InterChange Server management client . 172
4.3.3 WebSphere Message Broker management client. 182

4.4 Summary . 189

Part 2. Implementing business integration solution components 191

Chapter 5. Application scenario and solution design 193
5.1 Business scenario . 194

5.1.1 Customer order process . 196
5.1.2 Entry audit process . 197
5.1.3 Subprocesses . 197

5.2 What we implemented. 198

Chapter 6. Implementing a process model in WebSphere MQ Workflow201
6.1 Overview . 202
iv Administering and Implementing WebSphere Business Integration Server V4.3

6.2 Creating the process model . 203
6.2.1 Creating data structures . 203
6.2.2 Creating program objects . 208
6.2.3 Creating the process diagram . 210
6.2.4 Creating a data mapping. 216

6.3 Deploying the process flow in Runtime server . 225
6.4 Validating the workflow process flow. 229
6.5 Update activities to integrate automated activities 236

6.5.1 Create user-defined program execution servers. 236
6.5.2 Create program objects for InterChange Server 240
6.5.3 Update activities in process diagram . 242

Chapter 7. Sales order management in InterChange Server. 249
7.1 Introduction . 250
7.2 Scenario implementation overview . 251
7.3 Application database ORDERMGT . 256
7.4 Preparing Development Environment . 258
7.5 Create business objects . 262

7.5.1 DB2 application-specific business object . 262
7.5.2 WebSphere MQ Workflow application-specific business object . . . 269
7.5.3 Generic business object . 274

7.6 Create maps . 275
7.6.1 From ASBO MQWF_Order_Form to GBO Order 276
7.6.2 From the GBO order to the ASBO JDBC_ORDERS. 289
7.6.3 From ASBO JDBC_ORDERS to GBO Order 297
7.6.4 From GBO Order to ASBO MQWF_Form_OrderDetail 302

7.7 Adapter configuration . 310
7.7.1 Importing the adapters into System Manager 310
7.7.2 WebSphere MQ Workflow adapter configuration 312
7.7.3 JDBC adapter configuration . 325

7.8 Collaboration template . 333
7.9 Collaboration object. 336
7.10 Create a new user project . 342
7.11 Deploy user project . 343
7.12 Runtime validation of infrastructure. 347
7.13 Runtime validation of integration solution . 349

7.13.1 Unit testing with the Integrated Test Environment 350
7.13.2 Unit testing with the Visual Test Connector 367
7.13.3 End-to-end testing using the Web Client. 375

Chapter 8. Replenishing parts in WebSphere BI Message Broker 377
8.1 Overview . 378
8.2 Implementation steps . 378
 Contents v

8.3 WebSphere MQ configuration . 379
8.4 Implementation of the fan-out and fan-in flow . 381

8.4.1 Building the graphical flow . 386
8.4.2 Developing ESQL in the Compute nodes . 394

8.5 Supporting message flow . 400
8.6 Deployment and testing of the message flow . 402
8.7 Testing from the Web Client . 407

Part 3. Managing a business integration solution . 409

Chapter 9. Handling deployment and change . 411
9.1 Preparing for production deployment . 412

9.1.1 Preparing an WebSphere MQ Workflow solution for production. . . 412
9.1.2 Preparing a message broker solution for production 417
9.1.3 Preparing InterChange Server solutions for production 422

9.2 Managing runtime-specific changes . 430
9.2.1 Changes to WebSphere MQ Workflow process model 431
9.2.2 Changes to a message flow . 432
9.2.3 Changes to a collaboration . 432

9.3 Managing interface changes . 432
9.3.1 Changes to the data structure used to invoke the collaboration . . . 432
9.3.2 Changes to the data structure used to invoke the message flow . . 434

9.4 Summary . 434

Chapter 10. Operational aspects of a WebSphere BI
server implementation . 435

10.1 Starting and stopping components . 436
10.2 Management and problem determination tools 441

10.2.1 Sources of information . 441
10.2.2 Obtaining additional information . 454

Chapter 11. Tuning a WebSphere BI Server infrastructure 461
11.1 Introduction . 462
11.2 General performance checklist . 462
11.3 WebSphere InterChange Server . 464

11.3.1 Configure threads in collaborations and adapter controllers. 464
11.3.2 Use caches for maps and collaborations (instance reuse) 468
11.3.3 Configure threading for CORBA / IIOP . 469
11.3.4 Configure database connection pools. 470
11.3.5 Setting flow control queue sizes . 471
11.3.6 Turn off component tracing . 472
11.3.7 Turn off event sequencing where applicable. 473

11.4 WebSphere Business Integration Adapters . 475
11.4.1 Configure poll frequency and poll quantity 475
vi Administering and Implementing WebSphere Business Integration Server V4.3

11.4.2 Multiple WebSphere MQ and JMS listener threads 477
11.5 General database performance. 477

11.5.1 Place database tablespaces on a fast disk subsystem. 478
11.5.2 Size database cross-referencing tables correctly 478
11.5.3 Place logs on separate device from table spaces. 478

11.6 Database: DB2-specific. 479
11.6.1 Maintain current indexes on tables . 479
11.6.2 Update catalog statistics . 479
11.6.3 Set bufferpool size correctly . 480

11.7 Database: Oracle-specific . 480
11.7.1 Set buffer, block, and shared pool area sizes correctly 480
11.7.2 Set processes, Open_Cursors, and IO_Slaves 481
11.7.3 Use a dedicated connection . 481
11.7.4 Query optimization . 481

11.8 WebSphere MQ. 482
11.8.1 Place MQ logs on fast disk subsystem . 482
11.8.2 Monitor message queue depth . 483
11.8.3 Configure WebSphere MQ log files and buffer pages. 484

11.9 Java. 486
11.9.1 Set heap size and nursery size for efficient garbage collection . . 487
11.9.2 Set AIX threading parameters. 491
11.9.3 Use HotSpot server instead of client . 492
11.9.4 Setting thread stack size if using many threads 492
11.9.5 Reduce or increase heap size for out-of-memory errors. 492

11.10 Large objects. 493
11.10.1 Factors affecting large object size processing 494
11.10.2 Mitigating large object issues . 495

11.11 Tuning other WebSphere BI runtime components 499

Part 4. Appendixes . 501

Appendix A. Our hardware and software configuration 503
Configuration of client machines . 504
Configuration of runtime servers . 504

Appendix B. Configuring LDAP for use with RBAC 507
Configuring an LDAP server as a user registry for RBAC 508

Related publications . 515
IBM Redbooks . 515
Other publications . 515
Online resources . 515
How to get IBM Redbooks . 516
Help from IBM . 516
 Contents vii

Index . 517
viii Administering and Implementing WebSphere Business Integration Server V4.3

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
^®
e-business on demand™
iSeries™
xSeries®
z/OS®
AIX®

ClearCase®
CICS®
DB2 Connect™
DB2 Universal Database™
DB2®
IBM®
IMS™
MQSeries®
OS/390®

Rational®
Redbooks™
RDN™
S/360™
SupportPac™
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Java, JavaScript, JDBC, JDK, JVM, Solaris, Sun, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows server, Windows NT, Windows, Win32, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x Administering and Implementing WebSphere Business Integration Server V4.3

Preface

This IBM® Redbook describes three major phases in a WebSphere® Business
Integration (BI) project.

� We discuss the planning and system design for a WebSphere BI
infrastructure designed to support several business integration projects. We
extend the real-life scenario written for another IBM Redbook. Following
planning and design, we discuss the implementation of the run-time engines
available in IBM WebSphere Business Integration Server V4.3.

� The next phase is developing and testing a business integration solution
within our infrastructure. The integration solution combines three run-time
engines of WebSphere Business Integration Server V4.3. These engines
provide for human interaction, straight-through processing, and message
brokering and aggregation.

� The final phase of our WebSphere BI project involves deploying the solution
into the production environment, and how to manage this solution. We
address issues such as how to coordinate stopping and starting components,
and troubleshooting run-time problems. We end by discussing performance
tuning in WebSphere Business Integration Server V4.3.
© Copyright IBM Corp. 2006. All rights reserved. xi

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Raleigh
Center.

From left to right: Rangarajan, Marty, Thiam Cheng, Travis and Alicia

Alicia Harvey is an IT Specialist with the IBM International Technical Support
Organization, Raleigh Center. Alicia has been a Systems Integrator with IBM
since 1993. For the last six years she has specialized in EAI solutions using the
WebSphere MQ family of products. Alicia writes extensively and teaches IBM
classes worldwide on all areas of the WebSphere MQ family and Business
Integration.

Travis Jeanneret is a Certified Senior Pre-Sales IT Specialist with IBM
Software. Travis has eight years of experience in EAI and Business Integration
solutions. He holds a degree in Computer Engineering from Kansas State
University. Travis’s areas of expertise include business process modeling,
process Integration, and application integration.

Thiam Cheng Lee is a Senior IT Specialist with IBM Business Consulting
Services in Malaysia. Thiam Cheng has eight years of experience in application
integration specializing mainly in the banking and finance industry. He holds a
degree in Computer Science from University Science of Malaysia. Thiam
Cheng’s other areas of interest include host application integration and
cryptography related applications.
xii Administering and Implementing WebSphere Business Integration Server V4.3

Rangarajan S Manavalan is a Staff Software Engineer with IBM at Burlingame,
California. Rangarajan has been developing software at IBM Since 2001. For the
last three years he has specialized in WebSphere Business Integration Server
development. He holds a Masters Degree in Electronics and Communications
Engineering from Anna University. Rangarajan’s interests include application
integration and distributed applications.

Marty Trice is an Enterprise Application Integration Administrator with Sara Lee
Corporation, Winston Salem, NC USA. Marty has three years of experience in
engineering and integrating EAI solutions on multiple platforms. He holds
undergraduate and graduate degrees in Education (BS), Math Education (BS),
Mathematics (MS), and Computer Science (MS) from North Carolina State and
North Carolina A&T State Universities, respectively. Marty's areas of experience
include WebSphere MQ, WebSphere MQ Integrator Broker, WebSphere MQ
Workflow, WebSphere InterChange Server, and WebSphere Application Server.
In addition, Marty is a Mathematics Instructor with the North Carolina Community
College System.

Thanks to the following people for their contributions to this project:

Murali Behara
Sara Lee Corporation EAI Development

John Ganci
IBM International Technical Support Organization, Raleigh Center

Geert Van de Putte
International Technical Support Organization, Raleigh Center

Gang Chen
IBM China Development Lab

Steve Rice
IBM Americas Business Integration PoC Speed Team

IBM WebSphere Business Integration Performance Team, Austin, Texas
IBM Software Group

Chris Richardson
IBM WebSphere Business Integration Performance Team, Austin

Mike Collins
IBM WebSphere Business Integration Performance Team, Austin

Andreas Eggenschwiler
IBM Sales & Distribution, Software Sales, Switzerland
 Preface xiii

Manuel Carlos Rodriguez Alvarez-Querol
IT Specialist, Spain

Satyavani Suryadevara
Miracle Software Systems Inc., Detroit

Francois van der Merwe
IBM Sales & Distribution, Software Sales, South Africa

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xiv Administering and Implementing WebSphere Business Integration Server V4.3

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Implementing a
BI solution
framework

Business integration (BI) technologies have made significant advances in recent
years, reaching the stage of maturity where BI solutions are implemented more
rigorously. Today, BI infrastructures are designed to support integration solutions
for many groups within an organization. In the past, business integration
solutions were often implemented to service one single part of an organization.
As a result of this, IT departments found themselves faced with islands of
integration.

Now, BI infrastructures are created to host business integration solutions and to
provide the foundation layer for the next layers of integration, business process
management and business-to-business (B2B) integration.

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

2 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 1. The state of business
integration technology

For many reasons, business integration (BI) is an important focus area for IT
organizations. Not only does it promise great cost and efficiency benefits by
automating and controlling the interactions of disparate systems whether they
are existing or new, home-grown or packages, it is also seen as an important
supporting technology for Business Process Management (BPM) and an enabler
for business-to-business (B2B) technology.

In this chapter, we introduce the design, implementation, and administration
concepts that are central to the business integration solution described later in
this book.

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 IBM WebSphere BI Overview
In the world of business integration, there is no single solution for all situations.
This is why the IBM WebSphere software platform contains several
complementary technology offerings that provide WebSphere Business
Integration (BI) functionality. In this book, we describe using WebSphere
Business Integration Server. In addition to WebSphere MQ itself, which forms
the foundation, there are four additional components that are discussed in this
book:

� WebSphere MQ Workflow
� WebSphere InterChange Server
� WebSphere Business Integration Message Broker
� WebSphere Business Integration Adapters

These components are packaged together as WebSphere Business Integration
Server in order to give customers the opportunity to choose the components that
best fit each of their integration projects.

This IBM Redbook is about implementing and managing an integration solution
built upon these four components.

1.2 The evolution of business integration technology
It seems inconceivable today that before the mid-1960s every new generation of
computers changed the programming model so much that effectively all
applications had to be rewritten or were condemned to run in emulation mode,
where available.

The IBM S/360™ computing architecture promised customers for the first time
that future architectures would be backward-compatible so that investments in
software would be protected.

Several diverse architectures exist still, but they have evolved over a period of
time and the issues surrounding the porting of code between them are well
understood, if not completely solved.

Historically, applications were written to solve specific, well-delineated problems.
Architects and developers gave little or no thought to a holistic application
landscape that would cover the whole range of business requirements, so no
need for an integrated architecture was seen. As a result, solutions evolved on a
great variety of platforms. If and where integration was needed, it was usually
achieved by hosting the applications on the same system and sharing files. This
was no great restriction, because most applications at that time were
4 Administering and Implementing WebSphere Business Integration Server V4.3

batch-oriented and large central computers, mainframes, were the accepted
technology standard. With the evolution of database management systems, the
models for sharing information soon moved to this technology.

Whenever a business identified a need for information to be shared across their
computing platforms, they had to use the networking capabilities of the day,
which were anything but user-friendly. Protocols on all levels were proprietary,
often complex, and usually not well-understood, especially for cross-platform
implementations. Files remained the favorite entities to share, for several
reasons:

� They worked well between applications on the same system.

� Support was available for cross-platform file transfers and file-sharing on
network servers.

� Above all, most applications were still batch-oriented.

Where online processing was introduced, businesses found it more acceptable
from risk and system-capacity perspectives to simply collect data during the
online day (in files) and do the actual processing during nightly batch runs. This
mode of operation is still prevalent in businesses.

Occasionally, though, a need for real-time, or near real-time, communication
between two applications on disparate platforms would emerge. This brought
several problems with it:

� Technology choices had to be made on all levels of network protocols, on
both platforms. These early solutions were strictly point-to-point)

� The communications functions had to be added to the applications. This
involved highly specialized programming skills, often a different skill set for
each platform.

� The APIs were complex at best and, lots of exception handling and recovery
logic was required in the code if there was to be any degree of success.

In a nutshell, such applications were exceedingly expensive to build. They also
took so long to implement that business benefits were often realized too late to
justify the development effort.

This is where messaging middleware came in, notably WebSphere MQ. By
providing a simple, easy-to-use API that conceals network complexities from
application programmers, WebSphere MQ made writing communication
functions into application programs much easier and faster. And, because MQ
was made available on so many different platforms, cross-platform
communications became much easier as well.
 Chapter 1. The state of business integration technology 5

Asynchronous communication with queues allowed for loose coupling of systems
and provided reliability (if queues were kept safe on disks) without compromising
the ability to communicate in real time. Transactional capabilities enabled users
to build robust messaging applications that would ensure data integrity across
systems. In addition, message queuing allowed for easy transition between the
batch-oriented processing model of the past and event-driven, real-time
processing, which is very much a requirement in today’s e-business on
demand™ culture. This is because message queues can serve as buffers
between the new online systems and the old batch systems that will be replaced
by online back-end systems sooner or later. Well-defined messaging interfaces
also serve to facilitate this transition.

The use of messaging almost automatically leads to a need to architect
interfaces between applications. This is not really new, because databases (and
flat files) also required agreement between applications on what data was placed
where and, with what meaning. However, a messaging interface adds a new
dimension, because it provides for a great deal of interoperability between
communicating applications. It is quite easy, for example, to replace an old
application on an existing platform with a new implementation on a different
platform, as long as the specific message interface continues to be observed.

Originally, any applications that wanted use WebSphere MQ had to do so using
the provided API, the MQI. In many instances, however, this was not possible (as
in the case of off-the-shelf packages) or it was difficult (as with some existing
applications). To help in these situations, a series of components was developed
that are referred to as bridges, adapters, or connectors. They all provide a
WebSphere MQ interface for specific applications or groups of applications that
are noninvasive. The bridges for CICS® and IMS™ are examples of this. The
bridges enable a WebSphere MQ-enabled application to start existing
transactions in these systems and receive results back.

Adapters use several techniques to interface with packages, such as database
or flat file interfaces, terminal emulation, or package-specific APIs. They typically
provide and expect messages in specific formats based on the application’s
capabilities and requirements, although some implementations provide a degree
of message transformation.

At this point in evolution, inter-application programming was still needed, if only
to route messages between packaged applications and to transform them
according to the applications’ requirements.

The promise of business integration is that ultimately any application will be able
to communicate with any other application, as long as there is some meaning in
such a communication. It should then also be possible to reconfigure such
networks of applications to form innovative solutions without changing the
applications themselves.
6 Administering and Implementing WebSphere Business Integration Server V4.3

Enter message brokering technology. After you make all applications speak the
same language on a transport level, whether by using adapters or by adding API
calls to the middleware, you can look at clever ways of managing data traffic.
Message brokers are systems that can be located centrally between applications,
such as in a hub-and-spoke topology. Consider the following example.

Two applications (A and B) communicate with WebSphere MQ using a particular
message interface agreed between their developers. A new package (C) is
introduced. It is determined that the messages that are exchanged by A and B
could be used as a data feed into C, but the message formats are not quite
correct. Because C is a package and it cannot be modified, we now face
modifying both A and B. If either of them cannot be changed (the package itself,
an existing application with no maintenance skills available, or the owners think a
change would be too risky), the project stops right there. Even if there are no
inhibitors, changes such as this can be very costly and time-consuming. Our
example features only three applications, but imagine a scenario in which
something as central as a general ledger must be replaced. You could be looking
at hundreds of interfaces.

So it would be advantageous to have a central hub where messages can be
reformatted and rerouted according to easy-to-set-up rules that can be adjusted
quickly to changing requirements. That is exactly the role of a message broker, in
our case WebSphere Business Integration Message Broker.

WebSphere Business Integration Message Broker uses a visual construction
approach for you to build message flows by wiring together a sequence of
processing functions that are provided as processing nodes. Processing nodes
can be customized for the exact function parameters at any specific point in the
flow, such as the name of a queue or database to interact with, transactional
behavior, or field-by-field transformations.

A comprehensive set of adapters to help integrate all applications of the
enterprise and a message broker makes it easy to model the information flow
between applications, Enterprise Application Integration is achieved, almost.

From the perspective of the IT infrastructure, all of the tools for enabling the flow
of information between the applications are in place. But the business wants
something more. The flow of data through an enterprise, or between separate
business entities as in B2B, must be managed according to certain business
process rules.

A classic example is a customer service situation. A customer service request
can arrive through several different channels, such as a telephone call, voice
message, fax, e-mail, or even a traditional letter.
 Chapter 1. The state of business integration technology 7

Any such triggering event must be captured, categorized, and sent on its way
through the organization along a predetermined path. At the same time, this
event is monitored by a management system that ensures that a resolution (and
customer satisfaction) is achieved within a certain time frame and that any
slippage is detected, escalated, and remedied according to specific service-level
parameters.

This method of inquiry resolution is called Business Process Management (BPM),
and IBM offers WebSphere MQ Workflow for this function. It enables the analyst
to model a step-by-step business process involving both applications that
perform their functions unattended in the background and those that operate
interactively in a dialog with a human operator. WebSphere MQ Workflow is
equipped to drive and manage the process flow between steps, to interface with
the applications and to assign work to the staff members according to an
organizational profile. WebSphere MQ Workflow is built on WebSphere MQ
technology, including WebSphere Business Integration Message Broker
wherever appropriate, providing for easy and robust application integration. It
also uses DB2® databases to maintain persistent state information for all
process instances, so that business processes can be implemented in a fully
transactional fashion even though they might well extend over many weeks.

One common denominator of a message-oriented processing environment, and
a differentiator against the older, batch-oriented systems, is that it supports
event-driven processing in real or near real time when appropriate. There are
many business integration scenarios in which that capability is a prerequisite,
such as straight-through processing, transaction synchronization spanning
multiple systems, same-day value, online banking, or ordering over the Internet.

The WebSphere InterChange Server was designed to detect real-time events
and use those events to drive sequences of related business activities. Thus, it
choreographs the interaction between desperate systems and technologies by
means of automated business processes called collaborations. The InterChange
Server was built upon the premise of a canonical data model allowing for the
abstraction of the business process and rules from the underlying integration
technology. The collaborations act upon a common data structure (Business
Objects) and when communicating with a source or target application, the
InterChange server will map (translate) that common data structure to or from the
application specific form of that data.

The next two steps in the evolution of integration technology, already under way,
are:

� Inclusion of external systems, such as those of your trading partners,
suppliers, or customers, into your process automation. This is usually referred
to as Business-to-Business Integration (B2B).
8 Administering and Implementing WebSphere Business Integration Server V4.3

� Development of a comprehensive set of standards for Web-based service
infrastructures, known as Web services. Standardizing the way that services
can be exposed and invoked makes such services easily accessible from
anywhere on the Internet, making a huge contribution toward doing business
on the Internet.

Both of these developments are beyond the scope of this book and are only
mentioned here to complete our overview of Enterprise Application Integration.

1.3 Integration capabilities
WebSphere is positioned as the IBM platform for integration. There are many
and varied products in the platform, but the common denominator is that they all
support integration in one way or another. To help categorize this large number of
products on the basis of their functionality, different phases of building an
integration solution were identified. The integration capabilities of a product of
the Business Integration family of products can be categorized in six activities.

Figure 1-1 Integration capabilities

The following overview helps to position the functional offerings in the Business
Integration product set and enables us to delineate their capabilities against each
other in an effort to employ the correct technology for each solution.

Model

Manage Transform

Interact Integrate

Accelerate

IBM
Business

Integration
 Chapter 1. The state of business integration technology 9

These six types of integration capabilities have been identified:

� Model business functions and business processes

During this stage, business analysts design or redesign processes quickly
and graphically across people, partners, and applications. The modeled
process can be simulated using what-if scenarios and optimized to obtain
projected business benefits. The modeling phase also results in deployable
components, without much code writing.

The business analysts, not the IT developers, use a powerful graphical tool to
define and describe a new business process. Using a standard library of
processes, interfaces, and business definitions, the business analyst draws
up a new process or makes changes to an existing process. The business
analyst documents the business requirements in a straightforward manner,
which are then be shared with colleagues in the organization. If necessary,
the analyst designs forms and applies standard business objects to the forms,
or creates new forms that could be used throughout the process.

The analyst applies standard business cost for the selected elements or
applies unique costs to build up a profile of the process. Using a standard test
selection, the analyst then runs a set of transactions through the process to
see what business results arise.

IBM WebSphere Business Integration Modeler enables line-of-business
analysts to describe a new process using graphical tools and to put into that
process the necessary steps to integrate applications, people, and processes
across the business or businesses. The analysts can designate resources
and activities that are within the department, within the enterprise, or in any
part of an extended process.

� Transform applications processes and data.

Transforming applications and data is the phase where you apply tools to help
you reuse existing applications in an e-business on demand environment.
This is all about transforming applications, processes, and data, whether
creating new business value from existing IT systems or maximizing
predictability, efficiency, and quality development overall. The IBM Enterprise
Transformation portfolio provides tools that enable you to:

– Transform the user experience.

Convert green screens to a user-friendly Web interface, improve the
workflow and navigation of host applications, and provide host access
through a browser or portal.

– Transform the connectivity.

Create Web services from CICS, IMS, or iSeries™ applications and
transform existing processes into reusable, shareable business
10 Administering and Implementing WebSphere Business Integration Server V4.3

components. Use Java™ connectors to integrate existing applications with
WebSphere Application Server.

– Transform the application structure.

Discover the unrealized business value in your existing assets and
develop new applications that reuse existing code for greater efficiency
and flexibility.

� Integrate islands of applications, processes, and information.

Integration enables you to bring together islands of siloed information across
and beyond the enterprise including:

– Application and data sources across and beyond the enterprise

– Structured and unstructured information from relational data stores,
existing data sources, content repositories, spreadsheets, e-mail, and
more

Requirements for this type of cross-enterprise integration include:

– The ability to define and manage the way that standalone applications
work together in an end-to-end business process. These business
processes also must extend to applications and data sources that reside
with partners.

– Integration also requires middleware that is capable of near real-time
communications between the different applications and data sources that
are involved in the business process.

– Integration might also involve providing a common view of data and
content from sources no matter what form the data is stored in, no matter
where it resides.

� Interact with resources any time, anywhere, and with any device.

This capability delivers personalized information that is drawn from multiple
sources through diverse channels. It creates a single user experience across
applications on a variety of devices. This style is implemented by using portal,
host integration, and mobile device technologies, including such functions as
transcoding, translation, and personalization. Federated database searches
are a part of this style, as well as a consolidated view of applications that
provide related information but are physically disparate and not integrated at
all. This style also meets the user requirement for a unified and consolidated
view of his IT resources, including such features as single sign-on.

� Manage performance against business measures.

This capability allows you to take a considered look at the performance of a
process over a period of time and see if that process meets the expectation of
the simulation. This goes beyond traditional system management and
monitoring tools because it ties operational results back to business
 Chapter 1. The state of business integration technology 11

measures. Also, you can generate reports based on real-time and historical
data. The operational data and results can be used again in the model phase
to improve the design and to assess initial assumptions versus actual values.

� Accelerate the implementation of intelligent processes.

At all stages of the integration project, you can apply tools and templates to
accelerate the implementation. With pre-built processes, pre-built
connectivity, and domain or industry expertise, capabilities that are reflected
in Accelerate help reduce the costs, and adapt or grow based on dynamic
market conditions.

This is achieved with the capabilities that are contained in the Accelerate
category:

– WebSphere Commerce: pre-built processes for selling, buying, and
channel-management solutions

– Process templates: also known within IBM as Collaborations, provided
across many industries in the areas of Procurement, CRM, Order
Management, Financial and Human Resources, Collaboration
Foundation, Insurance, Telecommunications, Retail, and Healthcare.

– Adapters: provided for Applications, Technology and Data Handlers,
Mainframe, e-Business

Figure 1-2 on page 13 maps these capabilities on actual product offerings in the
WebSphere portfolio.
12 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 1-2 Products supporting business integration capabilities

Products Supporting BI Capabilities

Model business functions and processes

Transform applications, processes and data

Integrate islands of applications, processes
and information

Interact with resources anytime, anywhere
with any device

Manage performance against business
objectives

Accelerate the implementation of
intelligent processes

Service Oriented Infrastructure
leveraging a common runtime environment

WebSphere Business Integration Server
WebSphere Business Integration Connect
DB2 Information Integrator
WebSphere BI Server Foundation*

WebSphere Business Integration Modeler

WebSphere Studio
WebSphere Business Integration Tools

WebSphere Portal

WebSphere Business Integration Monitor

Pre-Built Portlets
Process Templates

Adapters
WebSphere Commerce

WebSphere Application Server
WebSphere MQ
 Chapter 1. The state of business integration technology 13

14 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 2. Building an implementation
plan

Rapid change and constant cost pressure are the drivers of most Business
Integration initiatives. WebSphere Business Integration Server responds to these
drivers by providing:

� Out-of-box, ready-to-deploy components
� Pervasive reuse of components, infrastructure, and skills
� Delegation of concerns that are not business-related to the infrastructure

The integration infrastructure, when it is set up, is ready to cope with one
project’s need and handle future requirements. The infrastructure provides
availability, performance, scalability, integrity, and security for mission-critical
processes.

A WebSphere Business Integration Server infrastructure has:

� Low incremental costs for implementing additional business requirements
� Low risk for new projects that depend on the infrastructure
� Short time-to-value

2

© Copyright IBM Corp. 2006. All rights reserved. 15

2.1 WebSphere Business Integration Server overview
In today’s business environment, companies face constant cost pressure and
shorter windows of opportunities than ever. Companies respond to these
pressures by improving the efficiency and agility of their operations. This is
achieved through the integration of people, processes, and applications. The
IBM WebSphere Business Integration Server helps companies to achieve more
effective and agile processes by enabling:

� Modeling of processes at a business level
� Transformation of applications and data
� Integration of people, processes, and applications
� Interaction with resources any time
� Managing, reviewing, and improving processes and performance
� Acceleration of implementation

Addressing these six capabilities is the heart of business integration. Some of
these capabilities are provided by WebSphere Business Integration Server while
it provides the required interfaces to support the other capabilities. The output of
the WebSphere Business Integration Modeler can be deployed in WebSphere
Business Integration Server, which generates monitoring data that is used by
WebSphere Business Integration Monitor. The WebSphere MQ Workflow Web
Client features can be integrated easily into WebSphere Portal Server, providing
the main user interface to a WebSphere Business Integration Server solution.

Figure 2-1 The integration capabilities and WebSphere Business Integration Server

b

Model business functions and processes WebSphere Business Integration Modeler

WebSphere Studio
WebSphere Business Integration Tools

Transform applications, processes and data

WebSphere Business Integration Server
WebSphere Business Integration Connect
DB2 Information Integrator
WebSphere BI Server Foundation*

Integrate islands of applications, processes
and information

WebSphere PortalInteract with resources anytime, anywhere
with any device

WebSphere Business Integration MonitorManage performance against business
objectives

Pre-Built Portlets
Process Templates

Accelerate the implementation of
intelligent processes

WebSphere Application Server
WebSphere MQ

Service Oriented Infrastructure
leveraging a common runtime environment

Adapters
WebSphere Commerce
16 Administering and Implementing WebSphere Business Integration Server V4.3

This book is about the runtime integration and connection infrastructure. The
runtime components of a Business Integration system that is ready for
enterprise-wide business processes need these features:

� Coordination of long-running activities that span multiple computer systems,
enterprise organizations, and enterprises

� The ability to provide a simple generic model to describe and implement the
interactions between potentially complex business systems.

� A high-speed business services bus that connects the process actors and
mediates between data formats.

� Universal connectivity using a single adapter framework to connect:

– Business applications such as SAP R/3 and PeopleSoft

– Transaction systems such as CICS and IMS

– Internal systems using standard interfaces such as RMI/IIOP, JCA, and
JDBC™

– External systems and trading hubs using Web services, EDI, and
industry-specific standards.

Each of these requirements is satisfied by one component of WebSphere
Business Integration Server.

2.1.1 WebSphere MQ Workflow: long-running processes
The WebSphere MQ Workflow engine enables companies to deploy
long-running business processes that span multiple computer systems,
organizations, and enterprises. WebSphere MQ Workflow contains the
necessary software to define, build, and manage business processes.

End users interact with WebSphere MQ Workflow using Web applications,
WebSphere Portal Server portlets, or Microsoft® Windows® standalone clients.
Using these user interfaces, people who participate in business processes can
pick up work items and add their own contributions to the business processes.
Ongoing business processes can be monitored and the status of ongoing
processes can be checked. Work items can be rescheduled and reassigned.

In order to integrate internal and external business systems with WebSphere MQ
Workflow, processes can access straight-through business processes and
business objects that are deployed to the WebSphere InterChange Server. This
provides a reusable and easy method for accessing potentially complex business
systems from WebSphere MQ Workflow. The complexity of integrating internal
and external systems is handled by the InterChange Server. Business analysts
and end users can concentrate on the business logic of the long-running
process.
 Chapter 2. Building an implementation plan 17

WebSphere MQ Workflow generates trace data about completed and
in-progress processes. Detailed reports enable business analysts to assess the
costs, throughput, and cycle time and to improve and redesign the business
processes. This trace data is used by WebSphere Business Integration Monitor.

Development tools
A graphical representation of a WebSphere MQ Workflow process can be
generated by using WebSphere MQ Workflow Build Time. Alternatively,
processes that were designed by tools that support Flow Definition Language
(FDL) can be imported into WebSphere MQ Workflow. WebSphere Business
Integration Modeler is a process modeling and simulation application that can
export process definitions to WebSphere MQ Workflow.

Runtime environment
The WebSphere MQ Workflow Runtime is the container in which the deployed
processes run. WebSphere MQ Workflow Runtime uses a database
management system in order to keep track of the processes’ internal state.
WebSphere MQ Workflow uses WebSphere MQ queues to communicate with
external actors. WebSphere Application Server is used for providing a graphical
user interface to end users who participate in the workflow.

Monitoring and management
The WebSphere MQ Workflow administrator uses the Administration Utility to:

� Start and stop servers
� Monitor and analyze error logs

Additionally, WebSphere Business Integration Monitor can be used to analyze
trace data and to generate reports and graphical representation about the
business data that is generated by the processes. This statistical data that is
obtained by WebSphere Business Integration Monitor can be used by Modeler to
re-engineer business processes.

2.1.2 WebSphere InterChange Server: objects and their interactions
In most enterprises, business logic and business data is distributed over multiple
business systems. These business systems use many different external
interfaces and data models. However, computer systems and end users must be
able to access one single and simple view of the enterprise. Many business
transactions change the internal state of more than one business system.
Distributed and long-running units of work that affect many systems must be
coordinated in order to avoid inconsistent data.
18 Administering and Implementing WebSphere Business Integration Server V4.3

WebSphere InterChange Server implements a generic business object model
that allows the description of business entities without exposing their underlying
complexity. Whenever a generic business object is accessed, InterChange
Server will access the underlying business systems and map their internal data
structure to the generic business object.

WebSphere InterChange Server uses straight-through business processes to
implement the interactions between the generic business objects. These
straight-through processes (multi-step processes run end-to-end without the
need for manual intervention) can span many business systems. The integrity of
the distributed enterprise data can be assured by InterChange Server even if the
business systems do not allow coordination of external transactions.

Graphical component design tools make it easy to design straight-through
processes, business objects, and data mappings. The object design tool enables
access to enterprise applications in order to obtain business object metadata and
to automatically construct business objects.

WebSphere Business Integration Server can run IBM ready-to-use,
industry-specific business integration solutions. These are available for following
industries:

� Automotive
� Banking
� Chemical and Petroleum
� Electronics
� Energy and Utilities
� Financial Markets
� Health care
� HIPAA
� Insurance
� Life Sciences and Pharmaceuticals
� Retail Distribution
� Telecommunications

Development tools
InterChange Server uses the System Manager, an integrated development
environment based on WebSphere Studio Workbench, for creating, debugging,
testing, and deploying integration components. Specific perspectives in
WebSphere Studio are used for designing, testing, deployment, and version
management. WebSphere Studio Workbench is based on the Eclipse
framework.
 Chapter 2. Building an implementation plan 19

The design of InterChange Server is highly modular. For each of the integration
components that are required for a WebSphere Business Integration solution,
there is a design tool that is started from WebSphere Studio Workbench.

� The Connector Designer is used to configure the connectors, which are the
components that send and receive business objects to and from enterprise
applications.

� The Business Object Designer is used to design business objects, the
integration components that represent the state of a business entity within the
integration system.

� The Map Designer is used to graphically design maps between fields of
business objects. Maps are integration components that can map one
business object to another.

� The Relationship Designer is used for designing relationships, which are
integration components that describe associations between business objects.
For example, in one business object you might use ISO country codes, and in
another business object you might use the full name of a country. A
relationship links these two together so that you can perform a look-up to map
the country code to the name and vice-versa.

� The Collaboration Designer is used for designing collaborations, which are
straight-through business processes. The logic of collaborations can be
graphically described using the Collaboration Designer.

For almost every adapter, for example the WebSphere Business Integration
Adapters for SAP R/3 and the WebSphere Business Integration Adapters for
JDBC, there are object discovery agents that can connect to the target
applications in order to retrieve metadata to create business objects.

Additional tools can help to test and debug integration components:

� The Visual Test Connector can simulate application connectors during
development. This enables development and testing of maps, business
objects, and collaborations without connecting to the enterprise application.

� The Integrated Test Environment is a WebSphere Studio perspective that can
be used to automate the tasks that are required for unit testing of integration
components.

Runtime environment
The core InterChange Server application is a Java application that is used as the
container for the integration components. It uses WebSphere MQ, JMS, and
IIOP for communicating with the adapters, the development and management
tools, and the monitoring application.
20 Administering and Implementing WebSphere Business Integration Server V4.3

Monitoring and management
InterChange Server includes specific applications for monitoring an integration
system:

� The System Monitor can monitor and get information messages about
changes in all InterChange Server runtime components. From System
Monitor, components can be started, stopped, paused, and shut down. The
System Monitor is available as a standalone GUI application or as a
Web-based application.

� The Flow Manager can be used to locate, view, and handle failed events.
Flow Manager can list unresolved flows and obtain details about them.
Unresolved flows can then be discarded, submitted, or otherwise handled.

� The Log Viewer is used to display message and trace logs.

The deployment and control of integration solutions within the InterChange
Server is performed from within the System Manager perspective in WebSphere
Studio. This perspective provides an overall view of development and
management of integration solutions for the WebSphere InterChange Server.

Since Version 4.2.2, the InterChange Server provides other ways to pass
information to the WebSphere Business Integration Monitor. For collaborations
that are initiated with the WebSphere MQ Workflow connector, you can enable
flow monitoring, which results in data being sent to the same event database that
is used by WebSphere MQ Workflow and WebSphere Business Integration
Monitor.

2.1.3 WebSphere BI Message Broker: routing and reformatting
The enterprise applications and integration infrastructure within an enterprise
generate a high volume of WebSphere MQ messages. These messages contain
many different destination addresses and payloads in different formats. These
hard-coded destination addresses and application-specific data formats make it
hard to change an enterprise infrastructure. New requirements can demand new
data formats and new destination addresses. In order to satisfy these
requirements, the integration infrastructure must be able to do:

� Message routing based on both address and content

� Publish/subscribe-type routing in which the subscribers subscribe to a
specific message content

� Reformatting and augmenting of the content of messages

� Publish/subscribe-type routing in which each subscriber requires a specific
message format.
 Chapter 2. Building an implementation plan 21

WebSphere Business Integration Message Broker implements a message bus.
Business events are routed to different destinations according to both their
header data and their content. Subscribers subscribe to messages with a
specific content. WebSphere Business Integration Message Broker changes and
removes content and accesses databases in order to add content or to write it to
database tables. Subscribers can request a specific content format.

WebSphere Business Integration Message Broker can access message queues
and databases as part of one logical unit of work. This ensures that no message
is lost and that no database is updated without the corresponding messages
being sent as requested.

WebSphere Business Integration Message Broker uses a graphical user
interface to design message flows, which describe message routing and
transformation. Each step in the flow is described by a node. Data is accessed
and stored in data access nodes. Extended SQL is used to transform data in
transformation nodes. Business logic is described by Compute nodes. These
Compute nodes are programmed in ESQL.

Development tools
The latest version of the broker product, Version 5, introduces a development
toolkit that is based on WebSphere Studio Workbench. Developers use the
Broker Application Development perspective in WebSphere Business Integration
Message Broker to design solution components. This toolkit provides editors and
views to:

� Develop, modify, debug, and deploy message flows.

� Develop, modify, and deploy message sets. Message sets describe the
representation of business data payload of WebSphere MQ messages.

� Define broker topologies.

� Export and import resource definitions.

Runtime environment
The runtime environment of WebSphere Business Integration Message Broker
consists of two distinctive components:

� The configuration manager, which manages a broker domain. A broker
domain is a collection of one or more brokers that run on one or more
platforms.

� The broker, which provides one or more runtime containers within which
message flows are executed.

The configuration manager coordinates and authorizes configuration changes of
the components that are deployed within the broker domain. This includes
22 Administering and Implementing WebSphere Business Integration Server V4.3

adding and removing brokers, deploying message flows, and deploying message
sets.

In previous versions of the product, the configuration manager played a crucial
role in the development process as well, because resources were checked in
and checked out of the configuration database. This team development concept
has been dropped in the latest version. Now the product relies on team
development tools that plug into the Eclipse development environment under
WebSphere Studio. An example of such a version control product is Rational®
ClearCase®.

The broker is the container of the runtime components of WebSphere Business
Integration Message Broker. The formal name for a runtime container is a data
flow engine or execution group. It participates in transactions and performs
transformation and routing as described by the integration components that are
deployed to that data flow engine. Transactions are coordinated by WebSphere
MQ.

Monitoring and management
The main management tool is the Broker Administration perspective in
WebSphere Studio. Within this perspective, the broker administrator can
assemble and deploy integration projects. The administrator builds a broker
archive that contains message flows and message sets. This broker archive is
then added to an execution group within a broker.

The actual deployment operation is a process that runs asynchronously between
the configuration manager and the broker. Success or failure is reported back to
the administrator with the Event Log view within WebSphere Studio.

Runtime errors are normally reported to a system log. For Windows platforms,
this is the Event Viewer, which is part of the operating system.

2.1.4 WebSphere BI Adapters: connectivity
An enterprise IT infrastructure consists of enterprise systems such as SAP and
PeopleSoft, of transaction systems such as CICS and IMS, and of computer
systems that use specific technologies such as SOAP, RMI/IIOP, or JDBC. Each
of these protocols uses its own format to encapsulate the data that is sent.

WebSphere Business Integration Adapters provide one single framework for
accessing each of these data formats and systems. The adapter consists of two
components: the adapter agent maintaining the connection to the application and
the adapter controller maintaining the connection to the WebSphere Business
Integration system. Agent and controller communicate using WebSphere MQ,
JMS, or IIOP. The adapter agent component ensures that no business event is
 Chapter 2. Building an implementation plan 23

lost, even if connectivity to the WebSphere Business Integration System is
interrupted. Application-specific components extend the business application in
order to detect business events within the application. If there is a WebSphere
Business Integration system that subscribes to the specific business event, the
event is sent to the integration system. Possible integration servers include:

� WebSphere InterChange Server
� WebSphere Business Integration Message Broker
� WebSphere Application Server Enterprise Edition

The adapter controller function is specific to the use of WebSphere InterChange
Server as the integration server.

Development tools
WebSphere Business Integration Adapters configurations can be created using
the Connector Configurator. Additionally, the Business Object Designer with the
object discovery agent, if available, can be used to generate application-specific
business objects. The XML schemata that describe the business objects can be
imported into WebSphere Business Integration Message Broker as a new
message set if the adapter connects to WebSphere Business Integration
Message Broker.

Both the Connector Configurator and the Business Object Designer integrate
with WebSphere Studio.

Runtime environment
The WebSphere Business Integration Adapters consist of an adapter agent
component that connects to the application and, if InterChange Server is the
integration broker, of a adapter controller component that is deployed in the
InterChange Server. The agent component runs as a standalone Java
application. It can either run on the integration server platform or on the
application platform. On Windows platforms, you can configure the adapter to
run as a Windows service.

Monitoring and management
WebSphere Business Integration Adapters can be monitored and managed
using the System Monitor application, which is part of InterChange Server. The
System Monitor component offers the options to start, stop, suspend, resume,
and shut down the adapter agent and controller. It is integrated in the System
Manager and it is also available as a Web application.

For adapters that use WebSphere Application Server as its integration server,
these management and monitoring functions are integrated in the WebSphere
Application Server administrative console.
24 Administering and Implementing WebSphere Business Integration Server V4.3

For problem determination, the agent and broker trace and log files provide
additional information about the state of the adapters.

2.1.5 Base components
WebSphere Business Integration Server exploits the capabilities that are
provided by the WebSphere Platform and by the database management system:

� WebSphere MQ provides assured, once-and-only-once delivery of messages
between the loosely coupled components of the WebSphere Business
Integration Server. It is the JMS provider of WebSphere Application Server.
WebSphere MQ can be set up in a high-availability configuration in order to
satisfy specific availability requirements.

� WebSphere Application Server is a J2EE–compliant application server which
is used to provide a Web user interface for end users and administrators of
the WebSphere Business Integration system.

� WebSphere MQ Workflow, WebSphere InterChange Server and WebSphere
Business Integration Message Broker use a database management system,
for example DB2 or Oracle, for tracking in-flight business processes and
storing deployed solution components.

2.1.6 Bringing it all together
Each of the components of WebSphere Business Integration Server is
responsible for its own part of the total solution. The advantages of such a
layered architecture are:

� Reuse of components: Change of business processes typically are more
frequent than changes of the underlying business objects. All business
processes that involve the same business object can share the components
for implementing the business object. This makes adapting business
processes to changed needs fast and easy.

� Separation of concerns: A business analyst who designs the workflow for
processing a sales order does not have to know how such sales orders are
implemented in the underlying business systems.

� Exploiting each component’s strength: Each component of WebSphere
Business Integration Server is designed for solving one part of the Business
Integration problem domain. A combination of WebSphere Business
Integration Server components can exploit each component’s particular
strength.

The total solution is shown in Figure 2-2 on page 26.
 Chapter 2. Building an implementation plan 25

Figure 2-2 WebSphere Business Integration Server components working together

2.2 Business requirements
Obviously, an integration system must implement the use cases that are
provided by an integration project’s sponsor. However, the value of an integration
infrastructure for an enterprise is much higher if the infrastructure is ready for the
requirements of future projects. Such an infrastructure can minimize risk,
incremental costs, and time-to-value for implementing additional requirements.
An integration system’s agility, its ability to integrate existing systems, and its
ability to be monitored easily by the owners of the business processes each
contribute to the integration system’s value.

2.2.1 Implementation of use cases as required
Typically, use cases are provided by business analysts. They represent the
functionality of an integration system from an end user’s point of view. Often, use
cases are provided as written descriptions of a user’s or a business system’s
interactions with other users and other business systems. Describing and
analyzing a use case is especially easy if WebSphere Business Integration
Modeler is used to model the business process. The process can be graphically
composed by a business analyst and simulated in WebSphere Business
Integration Modeler in order to find errors, bottlenecks, and inconsistencies.

Long Running
Business Process

Straight Through
Business Logic

Services Bus

Adapter Framework

Business Applications
26 Administering and Implementing WebSphere Business Integration Server V4.3

Costs of existing and new processes can be compared, and return on investment
(ROI) of the integration project can be calculated. Finally, the representation of
the business process can be deployed to the individual runtime components of
WebSphere Business Integration Server. This means that the output that is
generated by WebSphere Business Integration Modeler is imported in the
development tools specific for a runtime component to allow for further
development by IT specialists.

2.2.2 Agility
The solution must be easy to extend and adapt to future needs. In order to be
easy to extend and adapt, it must provide:

� The ability to reuse existing integration components in new business
scenarios

� The ability to deploy out-of-box components

� The scalability to cope with additional workloads

� The ability to change and add components to a running system without
interrupting already deployed business integration systems

2.2.3 Ability to integrate existing services
Low costs, low risk, and short time-to-value of an integration system is achieved
by pervasive reuse of components. Services that are provided by business
applications such as SAP and PeopleSoft and by transaction system such as
CICS and IMS can be accessed easily by the integration system. External
services can be accessed using EDI and Web Services protocols. GUI tools that
can access services metadata make the development of adapter components for
existing business systems easy.

2.2.4 Business monitoring
After having deployed a business process to the WebSphere Business
Integration Server, the business owners of the deployed processes must be able
to monitor processes as they execute. WebSphere Business Integration Monitor
enables business analysts to inquire on the state of work-in-progress items and
to take corrective action by reassigning, reprioritizing, and rescheduling them.
This enables them to:

� Check compliance with service level agreements.
� Access up-to-date process information to make operational decisions.
� Generate reports and statistical analysis from process data.
 Chapter 2. Building an implementation plan 27

The insight into the running business processes that are obtained by business
monitoring enables a business analyst to optimize business processes and to
adapt them to changing needs.

2.3 Quality of service requirements
A business integration solution must satisfy the business requirements and
provide the necessary qualities of service. Performance, security, and availability
must be adequate for a given scenario. The integration solution’s ability to be
integrated into an operational IT environment strongly influences its total cost. A
system that is easily integrated into an operational IT environment can be
monitored by the IT operations staff. Its performance and availability correspond
to its importance for the enterprise. The integration system must provide the
security that is required for a system that accesses critical business applications.
The system’s ability to be managed directly affects its total costs.

2.3.1 Performance
The performance of the integration system affects the response time that end
users see and the amount of computing resources that are needed in order to
provide a specific service level. The end user response time influences the value
of the integration system while the necessary computing resources influence the
costs of the integration system. Value and cost together define the system’s
return on investment.

The response time is affected by:

� The response time of the enterprise applications involved
� The time that WebSphere MQ messages take to reach the integration system
� The performance of database access
� The time that a specific component of the integration system takes to digest

the message

Flight time of WebSphere MQ transactions and database transactions strongly
depend on the computer networks that are used.

The business logic of most integration systems is lightweight. In most cases,
enterprise system response time is the most significant contributor to total
response time.

2.3.2 Availability
The integration system must provide the availability that is required by the
specific business process. Each component of the integration system including
28 Administering and Implementing WebSphere Business Integration Server V4.3

networking infrastructure can affect an integration system’s availability.
Redundant components can provide higher availability. However, they also affect
the costs. The cost of downtime can be a significant contribution to an integration
system’s total cost. It directly affects the system’s ROI.

Availability is especially critical if an external trading partner could be affected by
downtime and if service level agreements are involved. In such cases, the costs
of downtime can dominate the ROI.

2.4 System design for our scenario
This section describes the system design that resulted from our business
requirements, the quality of service requirements, and the constraints. Our
design principles were:

� Three-tier architecture

Our system design uses the well-established separation of the total solution
into Web-client tier, application-server tier, and database-server tier.

� Separation of the main components

The advantage of locating the main components on separate computer
systems is that each component could be installed, configured, and operated
separately.

� Single central database management system

We used one single, central database management system on one server.
The advantage of this setup is that the database administrator has one single
system to set up, manage, and tune.

Figure 2-3 on page 31 summarizes the interaction between the different
components and systems. On the left, it shows users of WebSphere MQ
Workflow Buildtime that require access to the common Buildtime database.
Typically, you will have more than one installation of WebSphere MQ Workflow
Buildtime within an organization. In the middle, we see runtime servers for
WebSphere MQ Workflow and WebSphere Business Integration Message
Broker. While only one server is shown for each runtime, adding a second
workflow server is easy. Additional workflow runtime servers use the same
shared workflow database. Clustering workflow servers in an MQ cluster is a
relatively straightforward process, because the workflow configuration tools have
built-in support for setting up workflow clusters and MQ clusters.

End users of a workflow server typically use a browser to interact with processes
that are running in the workflow server. A WebSphere Application Server ties the
browser to the workflow servers. A workflow system also requires a management
 Chapter 2. Building an implementation plan 29

interface, which relies on MQ client interactions to manage the workflow
systems. Management tasks include deployment of new workflows, stopping and
starting workflow runtime components, accessing logs, and runtime error
information.

The WebSphere Business Integration Message Broker runtime machine
performs a dual role. It is both the host of the configuration manager and the host
of the single broker in our broker domain. The configuration manager also relies
on a database to store information about solutions that are deployed to the
different brokers in the domain. Note that it is not required to run the
configuration manager on the same machine as a broker. A broker can be
created on one or more servers and on one or more platforms. Only one
configuration manager is required to manage the entire broker domain.

Adding additional WebSphere Business Integration Message Brokers requires a
separate queue manager to support the broker. Multiple brokers can share the
same database and tables, because every table has the broker UUID as a key
column. Multiple brokers can be added to a single MQ cluster, if required.

Typically, a broker solution has no real end-user interface, only an interface for
developers and administrators of the broker domain. Message flows run without
user interaction (or, at the minimum, users are not aware that their system
interactions include a message flow). The users who get involved with a broker
solution are developers and administrators. Both types of users use the Broker
Toolkit plug-ins of WebSphere Studio. This requires the use of MQ client to
interact with the queue manager of the configuration manager. Setting up
multiple instances of the Broker Toolkit for either administrative or development
purposes is easy to do. However, the diagram in Figure 2-3 on page 31 does not
address a possible shared repository for the developers, such as Rational
ClearCase. Setting up such a team development environment is not within the
scope of this redbook.

Finally, on the right side of Figure 2-3 on page 31, we see the InterChange
Server and one or more users of the System Manager perspective and related
tools. The InterChange Server relies again on a database for storing information
about deployed solutions and information about active interactions and events.
To manage an active system, an administrator can use a Web-based application
deployed on WebSphere Application Server. Or he can use the Studio-based
tools. Both rely on a connection to the ORB (Object Request Broker) that gets
installed as part of the InterChange Server. Note that for Web-based
management tasks, only WebSphere Application Server has to have such a
connection to the ORB. The end user simply uses a browser to drive the Web
application and does not require a connection to the ORB.
30 Administering and Implementing WebSphere Business Integration Server V4.3

.

Figure 2-3 Runtime topology

2.5 Planning considerations
Before all, implementing a WebSphere Business Integration infrastructure starts
by reviewing hardware and software requirements. Up-to-date information is
available online at:

http://www-306.ibm.com/software/integration/wbiserver/requirements/

In this book, we briefly discuss the installation steps and the options that are
selected for the environment shown in Figure 2-3. However, more generic
installation information is available in the product documentation, which can be
reviewed here:

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

Connections
DB
MQ
MQ Client
ORB
http

- - - -

DB2

WF
BTWF

BTWF
Buildtime

ICS

WF
BTWF

BT
System
Manager

WF
BTWF

BTBroker
Toolkit

WF
BTWF

BTWeb

WAS

WF
Runtime

MB
Broker
Config
Manager

WF
admin
 Chapter 2. Building an implementation plan 31

http://www-306.ibm.com/software/integration/wbiserver/requirements/
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

The first product-installation task is checking the prerequisites and implementing
missing prerequisites if necessary. While, you can find this information in the
product documentation, it is presented here for your convenience.

When additional fixes or CSDs are required, you can obtain them by accessing
the IBM Support Web site at:

http://www.ibm.com/software/support/

A consistent naming scheme makes both installing and operating the solution
much easier. Before installation starts, names for resources should be defined.
These include:

� Database names
� Queue manager name
� Queue names
� InterChange Server names
� User names
� Passwords

2.5.1 WebSphere MQ Workflow
Figure 2-4 on page 34 shows the topology layout that we use in this book for the
WebSphere MQ Workflow infrastructure. It consists of three server machines:

� A dedicated database server
� An application server
� A workflow server

Figure 2-4 on page 34 also shows the development client and the runtime client
in a browser.

Workflow server infrastructure
The workflow server utilizes the services of a queue manager to communicate
with outside components and uses a database to store process templates and
process state date.

When creating this queue manager, you must decide about several parameters
and choose names for several objects. A queue manager has a name and
belongs to an MQ cluster. This cluster can be an existing cluster or a newly
defined cluster where this queue manager is the one and only member. A queue
manager usually has a listener component; thus we must decide about the
protocol and any protocol parameters, such as a port number.

The configuration tool also defines an MQ cluster receiver object, which is an
object that is published to the cluster and that provides other members of the
cluster with sufficient information to communicate with the workflow queue
32 Administering and Implementing WebSphere Business Integration Server V4.3

http://www.ibm.com/software/support/

manager. As a result, the configuration tool asks you for the host name of the
workflow server so that it can create this cluster receiver object. The workflow
system uses several queues with names that have a fixed prefix. Finally, decide
about the type of logging for the queue manager and the location of the logging
files. The queue manager acts as the transaction coordinator, so you should use
linear logging for this queue manager. The location of the log files should be on a
dedicated and fast disk subsystem. To use this destination for MQ logging, you
must update the default log directory for WebSphere MQ because the workflow
configuration tool does not provide this option. To update the logging default, use
the application IBM MQSeries® services.

The workflow server uses a database. As a result, during the configuration of the
workflow system, we must provide several parameters. The database has a
name and will be created on a remote machine, so we need information such as
remote instance name, remote host name, and communication parameters to set
up a database-client connection. The database connection must be performed
with the authority of a user ID that is defined on the database server. Therefore,
you must provide the name and password of this user ID and make sure that this
user ID has sufficient authorities to work with the database instance.

When creating a workflow configuration, you store all provided parameters in a
profile, which is also called a configuration identifier. The configuration tool
usually generates one for you, but you might consider using a selected name. A
workflow server belongs by default to a server system, and a server system
belongs to a server group. You can define multiple servers on a single server
system. A server system can be considered as a single physical machine. Both
concepts, the server group and the server system, are named objects. Those
names are again provided during the configuration of the server.

To assist in building any piece of the WebSphere Business Integration Server
infrastructure, you should prepare a table that lists the values that you must
provide during installation and setup. Table 2-1 on page 39 shows a sample table
for the creation of the workflow server.

Web Client infrastructure for WebSphere MQ Workflow
The Web Client feature is a Java application that is deployed in an application
server, such as WebSphere Application Server. (Setup of a multi-server Web
infrastructure is a topic in itself.) For our scenario, one Web server is sufficient.
The Web Client feature usually communicates with its own queue manager to the
workflow queue manager. Technically speaking, the Web Client queue manager
will join the MQ cluster that is created during the setup of the workflow server
itself. As a result, when configuring the Web Client feature, you must know
values of some parameters listed in Table 2-1 on page 39. Besides that, you
must choose a name of the queue manager on the Web server machine. To
enable the MQ communication, the configuration tool asks for the host name and
 Chapter 2. Building an implementation plan 33

port number so that it can create an MQ listener and a cluster receiver channel.
The Web Client feature will be accessed using a certain root URI, which you can
choose during the contradiction. All of this information is stored in a profile for
which you can provide a name. Table 2-2 on page 40 lists these parameters and
the values that were used for our scenario.

Development infrastructure for WebSphere MQ Workflow
The Buildtime tool uses a database to store process definitions. Again, this
database is created on a remote database server so that process modelers can
share the same repository. Thus, during the creation of the WebSphere MQ
Workflow profile on the development machine, you provide database parameters
similar to what was required for the runtime database and information about the
workflow runtime system for which this development environment will be used.
Table 2-3 on page 41 lists the Buildtime-specific parameters.

Figure 2-4 System infrastructure for WebSphere MQ Workflow

This setup enables the workflow environment to start small and grow without
pain. It also allows for very easy scaling options. Depending on the workload, the

WebSphere
AS WebSphere

MQ Workflow

repository

MQMQ

repository

import/export
34 Administering and Implementing WebSphere Business Integration Server V4.3

number of users, or the workflow complexity, the relevant server component can
be upgraded.

If the database server becomes the bottleneck of the system, it can be upgraded
independent of the workflow server. Adding additional workflow systems also is
easy. Such an additional workflow server will have its own queue manager that is
part of the same cluster and uses the existing runtime database.

The MQ workload that is generated by workflow clients is separated on the Web
server machine. When using traditional GUI workflow clients, we used an MQ
client connection for each client on the workflow server. Adding more users can
then have a significant impact on the performance of the server. In our setup, all
workflow clients are routed through a single MQ channel pair, reducing memory
usage and CPU usage for MQ tasks on the workflow server.

Because the Web server acts as a client concentrator and uses MQ cluster
channels to communicate with the workflow server, we achieve a simple
load-balancing between the workflow servers. As such, it also increases the
availability of the workflow system. If one server is down, the Web server queue
manager will route new requests to the available workflow servers.

2.5.2 InterChange Server
Figure 2-5 on page 37 shows the topology layout that we use for the InterChange
Server infrastructure in this book. It consists of three server machines:

� A dedicated database server
� An application server
� An InterChange Server

Figure 2-5 on page 37 also shows the development and management client.

InterChange Server infrastructure
The InterChange Server uses the services of a queue manager to interact with
connectors. It also uses a database to store deployed solutions and runtime state
data. We use a single database in our scenario, but it is easy to split repository
information from runtime information in separate databases. Another component
of the InterChange Server infrastructure is a name server or object request
broker (ORB). It is used as a central naming service from which other
components obtain information to connect to the actual InterChange Server. For

Attention: The fail-over that is part of WebSphere MQ clustering relies on the
detection of the unavailability of the queue manager. If the workflow server is
down but the queue manager is still running, then messages will still be routed
to the unavailable workflow server.
 Chapter 2. Building an implementation plan 35

example, during the installation of the development and management client, the
installation program will ask about the host name and port that is used by the
name service component.

To create the queue manager, you can use a script that is provided by the
product or create it yourself using the WebSphere MQ tools. In either case,
decide about the usual MQ parameters for a queue manager, such as its name,
logging parameters, and listener port number. Also, an MQ client connection is
usually created to support connectors that use MQ as the transport mechanism.
The standard name for this channel is CHANNEL1, but it is a good idea to
customize its name.

The database for the InterChange Server is mostly created and customized
outside the InterChange Server tools. During setup of the InterChange Server,
provide the name of the database, the type or vendor of the database system,
and how many connections the InterChange Server can make. To make a
connection, the InterChange Server has to know the name and password of an
authorized database user ID. The InterChange Server itself has a name, as well.

The location of the connectors versus the InterChange Server is another design
point. In the general case, you can deploy in three different ways:

� The connector is installed on the InterChange Server machine.
� The connector is installed on the application platform.
� The connector is installed on a separate machine.

Several factors play a role in deciding for one or the other option. For example,
your application might be running on a platform for which there is no connector
available. (Not all connectors are available for every possible platform.) Also,
some applications do not tolerate an integration solution on their servers. For
installations where the resource usage of the connectors is significant, it is
probably better to deploy the connector on a separate platform. When the
integration workload is light, installing the connectors on the same machine as
the InterChange Server is probably the better solution.

System Monitor Web application
When installing InterChange Server on a machine that already has WebSphere
Application Server, the System Monitor Web application is deployed
automatically. However, to distribute the workload, the Web server is usually on
a separate machine. The installation of the System Monitor as a Web application
requires several modules and scripts. It also requires the host name of the
InterChange Server machine and the port number that is used by the name
server.
36 Administering and Implementing WebSphere Business Integration Server V4.3

Development and management client
The infrastructure requirements are the same for the development client and the
management client. During the installation, you must provide the host name and
port number so that the System Manager tool can connect to the name server.

Table 2-4 on page 41 lists the important parameters and values that we used
when building our infrastructure.

Figure 2-5 System infrastructure for WebSphere InterChange Server

2.5.3 WebSphere Business Integration Message Broker
Figure 2-5 depicts the topology layout that we use in this book for the WebSphere
Business Integration Message Broker infrastructure. It consists of two server
machines:

� A dedicated database server

workspace

WebSphere
AS

WebSphere
ICS

ORB

repository

MQ

Connector2

Application2

Connector1

Application1
 Chapter 2. Building an implementation plan 37

� A server shared by the broker and the configuration manager

Figure 2-6 on page 39 also shows the development and management client.

The WebSphere Business Integration Message Broker product has two main
components: the broker domain, which is a collection of brokers, and the
configuration manager. Brokers are available for several platforms, while the
configuration manager is only available for Windows. While the configuration
manager is not a named object, the broker itself has a name, which you give it.

Both components rely on a database to store information about the broker
domain and deployed components. As with the database server for our other
runtime components, we use remote databases. The databases must be named
and they require an authorized user ID for access.

Both the broker and the configuration manager use a queue manager to interact
with each other and with the Broker Toolkit. These queue managers are named
objects that must be able to communicate with each via either traditional MQ
channels or MQ cluster channels. Thus, we must create two MQ listeners and
need therefore two port numbers.

The broker and the configuration manager are running as Windows services.
However, they do have their own user ID, not simply the system user ID.
Therefore, before creating these two components, you must define one or two
user IDs that can be used for Windows services and that are members of the
mqm group.

The Broker Toolkit communicates with the MQ client interface to the queue
manager of the configuration manager. Therefore, we ensure that the user ID of
the broker developer is known and authorized to use MQ facilities on the broker
server. The requirements for MQ and MQ authorizations are highly dependent on
the type of Windows domain infrastructure that is in place and on whether you
want to use it for securing connections between the Broker Toolkit and the
configuration manager. The type of security infrastructure is passed to the
configuration manager during its creation.

Note: With the broker and the configuration manager running on the same
machine, we could use the same queue manager for both components.
However, to make the scenario and scripts more generic, we used separate
queue managers.
38 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 2-6 System infrastructure for WebSphere Business Integration Message Broker

2.6 Planning documents
This section provides several tables that we used during the implementation of
our business integration infrastructure. While Table 2-1 through Table 2-5 on
page 42 are not complete for every possible implementation of development,
management, and runtime components, they do offer an idea of the settings that
you need or should consider when building each component.

Table 2-1 WebSphere MQ Workflow Runtime component

workspace

Broker
repository

MQ

Config
Manager

MQ

repository

Component Our selection Reader
selection

TCP/IP address or host name wbiwf

Queue Manager Name WFQM
 Chapter 2. Building an implementation plan 39

Table 2-2 WebSphere Application Server

Queue Manager TCP/IP Port 5010

Queue prefix FMC

Type of MQ logging Linear

Log files location WebSphere MQ default

MQ cluster name FMCGRP

Configuration identifier FMC

Configuration administrator fmc

Database server host name wbidb

Runtime Node host name wbiwf

WebSphere MQ Workflow Runtime
database name

FMCDB

Runtime database location d:\WMQWF\rt_db\wbidb\FMCDB

Runtime database logging d:\WMQWF\rt_db\wbidb\FMCDB

DB2 user ID to access Runtime
database

wbiadmin

Password for DB2 user ID sab414r

DB2 service name (port number) 50000

System group name FMCGRP

System name FMCSYS

Component Our selection Reader
selection

Application Server Queue Manager Name ASQM

Queue Manager Port 5010

Web server host name wbiwas

Web Client URL MQWFClient

Component Our selection Reader
selection
40 Administering and Implementing WebSphere Business Integration Server V4.3

Table 2-3 WebSphere MQ Workflow Buildtime component

Table 2-4 InterChange Server component

Component Our selection Reader
selection

Configuration Identifier FMC

Database server host name wbidb

WebSphere MQ Workflow Runtime
database name

FMCBTDB

Buildtime Database Location d:\WMQWF\bt_db\wbidb\FMCBT
DB

Buildtime Database Logging d:\WMQWF\bt_db\wbidb\FMCBT
DB

DB2 user ID to access Runtime
database

wbiadmin

Password for DB2 user ID sab414r

DB2 service name (port number) 50000

Component Our election Reader election

Host Name wbiics

InterChange Server name ICS

Queue Manager Name ICS.queue.manager

Queue Manager Port 1414

Channel CLIENTS.ISQM

Logging Linear

Primary files 61

Secondary files 2

Dead letter queue DLQ

LogBufferPages 17

LogFilePages 2048

Admin User ID admin

Admin Password null
 Chapter 2. Building an implementation plan 41

Table 2-5 WebSphere Business Integration Message Broker

Database Driver DB2

Database Max Connections 120

Database name ISDB

Database login wbiadmin

Database password sab414r

Database Port 50000

Component Our election Reader election

Broker Name BROKER

Broker Queue Manager Name BKQM

Broker Queue Manager Port 1414

Broker Admin User ID bkadmin

Broker Admin Password sab414r

Broker Database BKDB

Broker Database User ID wbiadmin

Broker Database Password sab414r

Configuration Manager Queue
Manager Name

CMQM

Configuration Manager Queue
Manager Port

1415

Configuration Manager Admin
User ID

cmadmin

Configuration Manager Admin
Password

sab414r

Configuration Manager
Database

CMDB

Configuration Manager
Database UserID

wbiadmin

Broker Database Password sab414r

Component Our election Reader election
42 Administering and Implementing WebSphere Business Integration Server V4.3

 Chapter 2. Building an implementation plan 43

44 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 3. Implementing the runtime
components

This chapter discusses the installation and configuration of WebSphere MQ
Workflow, WebSphere InterChange Server, and WebSphere Business
Integration Message Broker, which are the main runtime components of
WebSphere Business Integration Server.

3

© Copyright IBM Corp. 2006. All rights reserved. 45

3.1 WebSphere MQ Workflow installation and
configuration

In this section we describe the installation and configuration for WebSphere MQ
Workflow Runtime, Buildtime, and client. We also discuss simple validation steps
to ensure that everything is working before proceeding to the next component.

Figure 3-1 shows the topology for our installation.

Figure 3-1 WebSphere MQ Workflow topology

The grayed-out sections of Figure 3-1 represent the WebSphere MQ Workflow
Web client. We discuss the Web client in 4.1.3, “WebSphere MQ Workflow Web
Client configuration” on page 128.

The topology depicted in Figure 3-1 is very flexible with regard to scaleability.
Depending on where performance problems occur, it is possible to scale the
database access, the Runtime engine, and the Web client access to the system
independently. Experience shows that WebSphere MQ Workflow Runtime scales
almost linearly when adding more processors or more machines that are
connected to the shared remote database.

Prerequisites: WebSphere MQ and DB2 must be installed and configured
prior to beginning WebSphere MQ Workflow installation and configuration.

Windows:WBIWF Windows:WBIDB

WMQWF Runtime
UserID:ADMIN

wbiadmin

WMQWF
BuildtimeWMQWF

Buildtime

Windows:WBIWAS

Browser
WF Web ClientBrowser

WF Web Client

MQ Connection
Database Connection

HTTP Connection

ASQM

WAS
UserID:Administrator

WMQWF Web Client

WFQM

Browser
WF Web Client

WMQWF
Buildtime

ISDB

BTDB

RTDB

CMDB

WMQWF
Runtime clientWMQWF

Runtime clientWMQWF
Runtime Client
46 Administering and Implementing WebSphere Business Integration Server V4.3

For a more general discussion of WebSphere MQ Workflow installation, refer to
the IBM WebSphere MQ Workflow V3.5 Installation Guide, SH12-6288.

3.1.1 Install WebSphere MQ Workflow Runtime
The installation of WebSphere MQ Workflow is not remarkably different from the
installation of any other software product on Windows.

The preliminary steps of the installation entail selection of an installation
language, acceptance of the license agreement, and the choice of an installation
folder for the software.

Next, the user is prompted to choose which of the Workflow components they
want to install. By choosing a specific setup (Administrative components,
Buildtime, Clients, and so on), the subset of the Workflow components that are
applicable to that particular environment is installed.

On the server machine, we chose to install all components. While it is not
required, we chose to install the Buildtime and Runtime clients on the server.
This enables the administrator to perform development and runtime verification
tasks independent of other network-connected machines. Figure 3-2 and
Figure 3-3 on page 48 show the components that we installed on the Workflow
server.

Figure 3-2 Selecting components to install
 Chapter 3. Implementing the runtime components 47

Figure 3-3 Selecting components to install

If necessary, you can click <Back to verify or revise any previously selected
choices from the Summary window (Figure 3-4 on page 48).

Figure 3-4 Installation summary
48 Administering and Implementing WebSphere Business Integration Server V4.3

To complete the installation process, you are given the option to name the
Workflow program folder where the icons are to be held (Figure 3-5).

Figure 3-5 Program Folder

When the installation is finished, a shortcut to the configuration utility appears in
the Start Programs menu. The use of this utility is discussed in, “Create a
WebSphere MQ Workflow configuration” on page 51. Based on the type of
configuration that is created using this utility, more shortcuts will be added.

For a new system, it is good idea to apply the latest service pack before creating
a Workflow configuration or a Workflow database.

The latest service pack for WebSphere MQ Workflow can obtained from:

http://www-306.ibm.com/software/integration/wmqwf/support/

3.1.2 Configure WebSphere MQ Workflow
WebSphere MQ Workflow configuration consists of several steps:

� Prepare the DB2 environment.

Note: You can apply the service pack after the creation of a configuration, but
then you must rebind the database. This can be done using the administration
utility which is part of the Workflow server installation.
 Chapter 3. Implementing the runtime components 49

http://www-306.ibm.com/software/integration/wmqwf/support/
http://www-306.ibm.com/software/integration/wmqwf/support/

� Catalog the existing remote DB2 environment.
� Create a WebSphere MQ Workflow configuration.

The WebSphere MQ Workflow configurator creates the Runtime DB2 database,
the WebSphere MQ queue manager and all necessary queues, and all
WebSphere MQ Workflow Runtime components.

Prepare the DB2 environment
Because we are creating a three-tier environment (remote database) we must
also set the DB2 isolation level to read stability.

1. Log on to the machine that will host the Runtime database using a user ID
with DB2 administration rights.

2. Execute the db2set command first to verify its current value.

If it is not YES, stop DB2 with the command:

db2stop

3. Enter the following command to change the value:

db2set DB2_RR_TO_RS=YES

4. Start DB2 with the command:

db2start

Repeat this process on the WebSphere MQ Workflow server machine with a
user ID with DB2 administration rights.

Catalog the existing remote DB2 instance
In order to access the remote database from our WebSphere MQ Workflow
Runtime server, we catalog it on the WebSphere MQ Workflow Runtime
machine:

1. Log on to the WebSphere MQ Workflow server with a user ID with DB2
administration rights and open a DB2 command window. Enter the command:

CATALOG TCPIP NODE WBIDB REMOTE <server name> SERVER 50000 REMOTE_INSTANCE
WBIDB SYSTEM <server name> OSTYPE WIN

2. On the machine that will host the WebSphere MQ Workflow server, enter the
following two commands:

db2 UPDATE DBM CFG USING TP_MON_NAME mqmax

Note: It is not difficult to change the WebSphere MQ Workflow configuration if
any mistakes are made. The configurator handles the deletion and creation of
all supporting components such as DB2 databases and WebSphere MQ
queue managers.
50 Administering and Implementing WebSphere Business Integration Server V4.3

db2 TERMINATE

3. Verify that the Runtime database user can attach to the remote instance by
entering the following command:

db2 ATTACH TO wbidb USER wbiadmin USING RTDBpassword

In this command, wbidb is the host name of the database server and wbiadmin
and RTDBpassword are a valid ID and password for the remote database
server.

4. Follow this up with the command:

db2 DETACH

5. When using the WebSphere MQ Workflow Configuration Utility, you must
provide folder names for the database containers. These folder names should
exist in the file system on the remote database server. Log on to the DB2
server with a user ID that has DB2 administration rights. Create the Runtime
database location and Buildtime Database Location directories as planned in
Table 2-1 on page 39 and Table 2-3 on page 41, respectively.

Create a WebSphere MQ Workflow configuration
This section outlines the steps needed to configure the WebSphere MQ
Workflow Runtime environment. With the aid of the Workflow Configuration
Utility, all necessary elements specific to the Workflow domain are created and
the information is stored in a configuration file. This configuration file can be
replicated to ensure accuracy and proper execution during the build phase.

If there are any problems during the execution of this section, make sure that all
sections before this one were executed successfully.

1. Start the configuration process by selecting Start → Programs → IBM
WebSphere MQ Workflow → IBM WebSphere MQ Workflow
Configuration Utility.

2. The configuration utility opens on the General tab where you can define a
new profile and select the components that you want to configure in this
profile. Figure 3-6 on page 52 shows this screen. Click New and provide a
name for the profile, as planned in Table 2-1 on page 39 (see Configuration
Identifier).
 Chapter 3. Implementing the runtime components 51

Figure 3-6 Configuration ID

3. After the new profile is named, select the components that you want to
configure as part of this profile.

Figure 3-7 on page 53 shows the components that were selected for this
configuration. Note that the selection of certain components implies the
selection of other components. For example, the Runtime Database Utilities
option is selected as soon as the Server component is selected.

We choose to install the Buildtime and Runtime Client features to allow us to
perform some local validation. Even when a proper development environment
is in place, it is worthwhile to have the option to log on locally to the server
using the Runtime client. It can also be useful to install this client feature
because it provides a bird’s-eye view of your environment from a GUI
perspective. This is especially helpful if your runtime environment is installed
on a non-Windows platform.

Note also that every selected option may result in one or more tabs being
added to enable you to specify configuration parameters for that component.
52 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-7 General tab - components selected for this configuration

4. Click Next to proceed to the Runtime Database tab (Figure 3-8 on page 54).
 Chapter 3. Implementing the runtime components 53

Figure 3-8 Runtime Database tab

The top list box contains the known DB2 instances. This includes the default
local instance, DB2, and the remote instance, WBIDB, that we configured
earlier.

Before selecting the appropriate instance, we must specify the correct
connection parameters. If an instance is selected before the database
connection parameters are provided, the utility will try to connect to the
instance using your current logon ID, which may or may not be authorized to
do that.

Figure 3-9 on page 55 shows the result of selecting the WBIDB instance
without providing the correct connection parameters.
54 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-9 DB2 error due to wrong connection parameters

4. The correct approach is to click DB2 Connect parameters... first. This opens
the window that is shown in Figure 3-10, where you enter the database user
ID and password as planned in Table 2-1 on page 39.

Figure 3-10 Provide DB2 connection parameters

Now that we have successfully connected to the database server, we have the
option to create a new runtime database. If the configuration utility detects an
existing database that was created according to the WebSphere MQ Workflow
schema, it will list it in the second list box seen in Figure 3-8 on page 54. This
feature enables you to redefine a server based on an existing database;

Tip: If you selected the instance before providing the correct connection
parameters, you can follow these steps to recover:

1. Close the error message box by clicking OK.
2. Click DB2 Connect™ parameters.
3. When the user ID and password are provided, click Refresh.

You can then select the correct instance again and the configuration utility
should not return an error this time.
 Chapter 3. Implementing the runtime components 55

something that you might want to do when migrating or moving a server to a new
hardware platform.

In our case, we create a new server:

1. Click New to open another window (Figure 3-11) in which you specify the
parameters for the creation of the new database, WebSphere MQ
parameters, and WebSphere MQ Workflow system domain parameters.

2. Enter the name of the database as planned in Table 2-1 on page 39 (see
WebSphere MQ Workflow Runtime database name) and the database,
container, and log file location. Remember that these values refer to folder
names on the remote system where the database server is running. The
names are listed in Table 2-1 on page 39 (see Runtime database location).

3. In the lower section of the window (Figure 3-11), provide values for the
System Group and System properties, as well as the name of the queue
manager and a prefix for the queues owned by this server. Every WebSphere
MQ Workflow server communicates via WebSphere MQ to the other
components or servers in a multimachine solution.

Figure 3-11 Provide runtime database parameters

4. The next section of the configuration is the Queue Manager tab. (See
Figure 3-12 on page 57.) Here you specify more options that will direct the
definition of MQ components used by Workflow such as the queue manager
name and log type (circular or linear) and the desired queue prefix. Note that
56 Administering and Implementing WebSphere Business Integration Server V4.3

linear logging is required if you want to be able to recover persistent
messages in all circumstances, including hard disk failure.

MQ communication parameters are also specified on this tab. These values
are used to define the listener component of the queue manager and to define
a client channel to the queue manager. This client channel definition is stored
in a client channel definition table in the file that you specify. The client
channel definition table is required for use of the standard WebSphere MQ
Workflow clients and tools. (The Web-based client does not require the client
channel definition table. So it is not necessary to distribute the client channel
definition table to every Workflow end user machine.)

Figure 3-12 Queue Manager tab

5. WebSphere MQ Workflow utilizes WebSphere MQ queue manager clustering
technology. A cluster is a network of queue managers that are logically
associated in some way. The primary benefits of queue manager clustering
are reduced system administration, increased fault tolerance, and workload
balancing. Queue manager clustering is relevant when building a group of
Workflow servers.
 Chapter 3. Implementing the runtime components 57

The Cluster tab (Figure 3-13) allows you to define your Workflow server
queue managers as members of a WebSphere MQ queue manager cluster.
When defining the first Workflow server in a cluster, you specify the name of
the cluster. The configuration utility then creates a queue manager belonging
to that cluster and labels this queue manager as a full repository for the
cluster. For any additional Workflow servers, use the Cluster tab to provide
the name of the existing cluster and to provide connection parameters to the
first queue manager. The newly defined queue manager can then join the
cluster and interrogate the full repository queue manager about any objects
that are defined to the cluster. A full repository queue manager knows all
about clustered WebSphere MQ objects and can provide connection
parameters automatically to any other queue managers in the cluster.

Figure 3-13 Cluster tab

6. The Client Connections tab (Figure 3-14 on page 59) enables you to manage
the use of client channel definition files. It also enables you to point to an
existing channel definition file and add connection parameters for a new
queue manager to the chosen file. This technique is used when you are
running multiple Workflow servers and want the end user to be able to
58 Administering and Implementing WebSphere Business Integration Server V4.3

connect a standard WebSphere MQ Workflow client application to any server
in the group.

The upper section is used to select the Client Channel Definition Table to be
used. Click Select... to browse for the desired file. Or, you can directly enter
the fully qualified name of the desired Client Channel Definition Table file.

The lower section allows you to add a connect name to your Workflow server.

Figure 3-14 Client Connections tab

7. The Buildtime tab (Figure 3-15 on page 60) allows you to specify the type of
your Buildtime database. Allowable choices are IBM DB2 Universal
Database™ or Microsoft Jet Engine. The dedicated database server in our
example makes use of IBM DB2 Universal Database. So, we select IBM DB2
Universal Database.

Click Next.
 Chapter 3. Implementing the runtime components 59

Figure 3-15 Buildtime tab

8. The Buildtime Database tab is structured similarly to the Runtime Database
tab (Figure 3-8 on page 54). Click DB2 Connect parameters to provide the
database user ID and password, and select the instance name (WBIDB).

Click New to open the New DB2 Database window (Figure 3-16). The values
that are provided here from Table 2-3 on page 41.
60 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-16 Provide Buildtime database parameters

9. The Runtime Client tab (Figure 3-17) is used to specify a directory where
custom icons are kept. These icons are utilized to define your business
processes, and define and change your MQ Workflow process model,
topology, and staff definitions.

Click Done and your configuration will be executed.

Figure 3-17 Runtime Client tab
 Chapter 3. Implementing the runtime components 61

You receive a successful completion code of FMC33910I if the new profile is
created successfully (Figure 3-18).

Figure 3-18 Successful completion

3.1.3 Verify WebSphere MQ Workflow server
This is a short verification procedure to help you ensure that your WebSphere
MQ Workflow environment is operational.

Starting and stopping the WebSphere MQ Workflow system
First we will look at starting the supporting components individually.

Starting the components individually
1. Start the Runtime database. This can be done from a DB2 command window

on the database server (this is a remote database):

dbstart

Alternatively, on the Microsoft windows platforms, you can use the Windows
Services applet to start the DB2 service.

2. WebSphere MQ Workflow runs on top of WebSphere MQ. So, our next step
is to start the WebSphere MQ objects associated with the Workflow
environment.

You can start the WebSphere MQ components using either the Windows
Services applet or the MQSeries Services application. Or, if you prefer to use
the command line, the commands are:

a. Start the Workflow queue manager:

strmqm WFQM

b. Start the Workflow MQ trigger monitor:

runmqtrm -m WFQM -q FMCTRIGGER

3. Start the Workflow server with the Windows Services applet. Having logged
on to your IBM WebSphere Workflow server machine (WBIWF), go to
Start → Settings → Control Panel → Administrative Tools → Services
62 Administering and Implementing WebSphere Business Integration Server V4.3

Here you can start the server by paging down to the WebSphere MQ
Workflow server and highlighting it. Then, right-click the high-lighted item and
select Start (Figure 3-19).

Figure 3-19 Window Services application- Start IBM WebSphere MQ Workflow

4. Check the Windows Event Viewer application log for start-up information
regarding the application. This way you can verify that the server has started
successfully or, if it has not, begin to diagnose and resolve any problems
related to an unsuccessful start of the server.

5. Connect to the Buildtime components. Go to Start → Programs → IBM
WebSphere MQ Workflow → Workflow Buildtime - FMC.

An IBM WebSphere MQ Workflow Buildtime - ODBC Logon window will
appear. Logon with the User ID (ADMIN) and Password (password) to verify
connectivity.

6. The Administration Utility can be accessed by going to Start → Programs →
IBM WebSphere MQ Workflow → Workflow Administration Utility
(Configuration file name).

Another way of initiating the Administration Utility is by entering the following
command:

fmcautil -u user -p password

The Administration Utility can be used to start other Workflow related
components. As you can see in Figure 3-20 on page 64, the utility provides
 Chapter 3. Implementing the runtime components 63

several server related options. Using the Administration Utility you can also
query the status, shutdown, and restart your server environment.

Consult the IBM WebSphere MQ Workflow Administration Guide Version 3.5,
SH12-6289 on command options for administering your environment.

Figure 3-20 Administration utility

7. Finally, a verification of system start-up can be viewed in the logs directory
specific to the identifier profile.

c:\IBM WebSphere MQ Workflow\cfgs\fmc\log\fmcsys.log

See Example 3-1 on page 65 for the output of the fmcsys.log.
64 Administering and Implementing WebSphere Business Integration Server V4.3

Example 3-1 fmcsys.log

10/12/2004 7:30:00 AM FMC10100I Administration server starting.
10/12/2004 7:30:00 AM FMC10110I Administration server for system FMCSYS
started.
10/12/2004 7:30:02 AM FMC10200I Execution server for system FMCSYS started.
10/12/2004 7:30:02 AM FMC10500I Execution server instance started.
10/12/2004 7:30:06 AM FMC10000I System startup complete. System FMCSYS in
system group FMCGRP is now running.

Sequence for stopping the components
When stopping the entire IBM WebSphere Workflow environment, the
components should be stopped in the following sequence:

1. Stop all WebSphere MQ Workflow components.
2. Stop the WebSphere MQ services.
3. Stop DB2.

Start-up using the WebSphere MQ Workflow Windows service
We just described the start-up of each component in the WebSphere MQ
Workflow environment individually. We can also start the environment using the
Windows service WebSphere MQ Workflow, which starts the dependent
components automatically. This is not true for the remote database server, of
course. You will always have to make sure that the database server and the
database instance are up and running before you can do any work with the
workflow server.

The link between the workflow service and the IBM MQSeries service can be
inspected. When you double-click the WebSphere MQ Workflow service in the
Windows Services applet, a window opens with several configuration options.
Select the Dependencies tab to inspect the dependent services, IBM MQSeries
and DB2 Security Server. See Figure 3-21 on page 66. Note that the local DB2
instance is not a dependent service. Whenever the service WebSphere MQ
Workflow is started, the operating system will make sure that the dependent
services get started first.
 Chapter 3. Implementing the runtime components 65

Figure 3-21 Details of the MQSeries Workflow service

While this feature simplifies the tasks of a system administrator, it also can have
some side effects. Assume that a Windows server™ has several Automatic
services and that this server has more than a single queue manager or other
resource-hungry services. This means that starting up the workflow server can
take some time. On the other hand, the operating system only allows a limited
amount of elapsed time for each service to report its start-up completion. If the
start-up is not completed within this time frame, the operating system will report
that the start-up has failed. To avoid this, you might want to configure the service
for a manual start-up.

Using a local Runtime client
By choosing all components during the installation phase of WebSphere MQ
Workflow, you will have access to a Runtime client. As mentioned earlier in the
text, the Client feature provides a medium for local and remote validation. To
login to the Runtime Client, follow these steps:

1. Select Start → Programs → IBM WebSphere MQ Workflow → WebSphere
MQ Workflow Client - FMC.
66 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-22 Runtime client login

2. As in Figure 3-22, enter the User ID (ADMIN) and Password (password). There
is no need to enter the System or System Group information because the
Workflow Client automatically defaults to the local profile identifier (FMC). The
Force option allows you the ability to log-on in the event that a Client session
is already open.

3. After a successful logon, a Tree View of your System Group appears
(Figure 3-23). Along with the System Group, you can see undefined Process
Templates, Instances, and a Worklist. These objects will be configured later in
the text.

Figure 3-23 Runtime client
 Chapter 3. Implementing the runtime components 67

This completes the setup for the Workflow server component. The setup of the
Web client, a development client, and a management client is discussed in
Chapter 4, “Implementing client components” on page 119.

3.2 InterChange Server installation and configuration
In this section, we install and configure WebSphere InterChange Server.
Additionally, information pertaining to the installation and configuration of
software upon which InterChange Server is dependent is discussed.

Each InterChange Server instance has an associated repository database. The
database will be created on a remote machine.

The installation and configuration process includes the following tasks:

� Confirm that your system meets the hardware and software requirements that
are appropriate to your planned InterChange Server environment.

� Ensure that all supporting software is available. This includes Java runtime,
DB2, and WebSphere MQ.

� Create and configure a database to act as the InterChange Server repository.

� Install and configure InterChange Server.

3.2.1 Prerequisite tasks
Before installing the InterChange Server component, ensure that all of the
necessary prerequisite software is installed. Up-to-date information about system
requirements can be found at:

http://www.ibm.com/software/integration/wbiserver/requirements/

Configuring the database server
With the architecture upon which we have decided, we have to create a
database on the WBIDB machine, which is our DB2 server machine:

1. Execute the following command in a DB2 command window:

db2 CREATE DATABASE ISDB ALIAS ISDB

2. We give our WebSphere Business Integration Server administrator the
necessary permissions by executing these commands in a DB2 command
window:

Note: WebSphere MQ and a database system such as DB2 should be
installed before installing WebSphere InterChange Server.
68 Administering and Implementing WebSphere Business Integration Server V4.3

http://www.ibm.com/software/integration/wbiserver/requirements/

db2 CONNECT TO ISDB USER db2admin USING sas313r
db2 GRANT DBADM, CREATETAB, BINDADD, CONNECT, CREATE_NOT_FENCED_ROUTINE,
IMPLICIT_SCHEMA, LOAD, CREATE_EXTERNAL_ROUTINE, QUIESCE_CONNECT ON DATABASE
TO USER WBIADMIN;

Configuring the database client
To make this database available to the InterChange Server, we must catalog the
instance from the database server and then the database.

1. To catalog the instance execute the following command:

CATALOG TCPIP NODE WBIDB REMOTE server name SERVER 50000 REMOTE_INSTANCE
WBIDB SYSTEM server name OSTYPE WIN

2. To validate that the DB2 instance is available from our InterChange Server
machine, execute the command:

db2 LIST NODE DIRECTORY

3. To catalog the database that we created initially, execute the following
command, which catalogs this database on the client machine.

db2 CATALOG DATABASE ISDB AS ISDB AT NODE wbidb AUTHENTICATION SERVER

4. To validate our database catalog, execute:

db2 LIST DATABASE DIRECTORY

5. To confirm that the InterChange Server database user can access the
database, issue the following command:

db2 CONNECT TO isdb USER wbiadmin USING itso4you

Tuning the InterChange Server database
To configure our database instance and database, we executed the commands
that are shown below. Use a database administrator account and execute these
commands (using your own appropriate parameters) on the database server
itself in a DB2 command window. You can also perform these updates by using
the DB2 Control Center.

� db2 update db cfg for ISDB using applheapsz 4096
� db2 update db cfg for ISDB using dbheap 4800
� db2 update db cfg for ISDB using maxappls 1000
� db2 update db cfg for ISDB using locklist 400
� db2 update db cfg for ISDB using logbufsz 512
� db2 update db cfg for ISDB using logfilsiz 4000

Attention: The values in the commands listed here are for our configuration
and will not fit your requirements. Take this example as a guideline for the
parameters to configure when running the database.
 Chapter 3. Implementing the runtime components 69

� db2 update db cfg for ISDB using logprimary 6
� db2 update db cfg for ISDB using logsecond 10
� db2 update db cfg for ISDB using buffpage 64000
� db2 alter bufferpool ibmdefaultbp size -1
� db2 update dbm cfg using maxagents 1000
� db2 update dbm cfg using mon_heap_sz 1024
� db2set DB2_RR_TO_RS=YES
� db2set DB2COMM=tcpip

Installing JDK
The InterChange Server system uses Java technology to execute the
collaborations. Besides a Java runtime, the InterChange Server also needs a
Java compiler to compile development objects such as maps and collaborations.
The WebSphere InterChange Server requires JDK™ Version 1.4.2 for the
compiler and runtime. This version is provided as part of both the InterChange
Server product and the Adapter Framework. It consists of two self-extracting files
that are stored in the IBM_JDK_WIN32 folder on the product CD. Copy the files
to a temporary directory and execute them. After extraction, run the install
program.

3.2.2 Installation of WebSphere BI Server components
Besides installing the InterChange Server software itself, other WebSphere
Business Integration components might be required depending on your
integration project. These components may include WebSphere Business
Integration Adapters, Data Handlers, or prebuilt Industry Collaborations.

Installing InterChange Server
The installation of the InterChange Server is a standard administrator’s task.
When the installation program is started, the usual steps about language
selection and license acceptance are presented.

1. The first major decision is the choice of the installation folder. This name
should not include spaces. You can accept the default, which is
C:\IBM\WebsphereICS.

2. In the next step, select the product components to be installed. We are
currently installing the product for a runtime server, and we chose to install
development and administration tools as well. (See Figure 3-24 on page 71.)

Tip: To check the Java version in a Microsoft Windows environment, use the
command:

java -version
70 Administering and Implementing WebSphere Business Integration Server V4.3

In the next chapter, we look at the installation of the product for the purpose of
development or administration only.

Figure 3-24 Select WebSphere InterChange Server components

3. In the next step, choose the database provider, IBM DB2 V8 in our
environment. Also, select the option to use WebSphere MQ as the provider
for messaging services.
 Chapter 3. Implementing the runtime components 71

Figure 3-25 Provide details about the prerequisite software

4. Each InterChange Server instance has to have a name, and this name is set
during installation. The name of the InterChange Server should be chosen in
such a way that it is unique within the local network.

5. For each prerequisite software product, DB2 and WebSphere MQ, the
installation program might ask additional questions, such as the installation
folder for DB2 and the name of the folder that holds the Java libraries for
WebSphere MQ.

6. During the installation process, you can also choose components to run as
Windows services. We do not perform this step at this time.

When the installation is finished, the configuration program is launched. You
could perform the configuration task at this time, but we choose to end this
program at this point and continue with the installation of additional WebSphere
Business Integration components.

If you are familiar with earlier versions of the InterChange Server, you might note
that we did not install the familiar VisiBroker component. This component was
replaced in Version 4.2.2 by a new Object Request Broker (which is installed by
the installer). There is no specific configuration to be performed now. See
Figure 3-26 on page 73.

Note: If you choose to run the InterChange Server as a Windows service
during the installation, you must select a valid port during the installation for
use by the ORB. However, this port number could be chosen later, as well.
72 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-26 Select port number for use by the ORB

3.2.3 Configuration of the InterChange Server
Now that all WebSphere InterChange Server components are installed, we can
start configuring it. This configuration could be done right after the WebSphere
InterChange Server installation, but we prefer to complete all of the installations
before starting to configure the InterChange Server.

You can configure the InterChange Server in two ways. First, a configuration
wizard is used to create a basic configuration that enables you to start the
InterChange Server for the first time. This utility is used to set the following
parameters:

� InterChange Server: log file path and locale configuration

� WebSphere MQ: parameters that are needed for a client WebSphere MQ
connection

� Database configuration: parameters that are needed to connect to the
database server

Then, using the System Manager, you can alter these and other configuration
settings.
 Chapter 3. Implementing the runtime components 73

To start the configuration wizard, select Start → Programs → IBM InterChange
Server → IBM InterChange Server → IBM InterChange Server Configuration
Wizard.

1. The first tab is used to configure the WebSphere InterChange Server
parameters (Figure 3-27) by specifying the InterChange Server log location,
name, and the locale. We accepted the default values.

Figure 3-27 InterChange Server configuration for WebSphere InterChange Server

2. When the InterChange Server configuration is complete, click the
WebSphere MQ tab to proceed with the WebSphere MQ configuration. In
this tab (Figure 3-28), we specify the Host Name, Queue Manager Port,
Queue Manager Name, and Channel from Table 2-4 on page 41.

Figure 3-28 WebSphere MQ configuration for WebSphere InterChange Server

3. When the WebSphere MQ configuration is complete, click the Database tab
to proceed with the database configuration.
74 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-29 Database configuration for WebSphere InterChange Server

In this tab (Figure 3-29), we specify the Database Driver, Database Max
Connections, Database name, Database login, and Database password from
Table 2-4 on page 41. Notice that you can distribute the database workload
over one to four different databases. For information about database tuning
and sizing, refer to Chapter 11, “Tuning a WebSphere BI Server
infrastructure” on page 461.

Note: If a different database driver is used, you might have to specify
different parameters.
 Chapter 3. Implementing the runtime components 75

4. When the database configuration is complete click the Security tab. In this
tab, we specify the user registries to be either a database repository or LDAP.
Select Repository and specify the name of the database, login user ID and
the password as shown in Figure 3-30.

Figure 3-30 Security configuration for WebSphere InterChange Server

5. After all of the parameters have been modified to match the configuration,
click Apply and Exit.

This configuration utility generates an XML file called InterchangerSystem.cfg,
which is located in the installation directory. The InterChange Server uses the
configuration file when it starts. Other parameters in this file enable further
tuning. However, for a first start-up of the server, the generated configuration file
should be sufficient.

Configuring WebSphere MQ
The installation of the InterChange Server has created several scripts in the
D:\IBM\WebSphereICS\mqseries folder that can be used to configure
WebSphere MQ. We should configure these scripts to match our WebSphere
MQ configuration. Table 3-1 lists the scripts that are used by WebSphere MQ.

Table 3-1 WebSphere MQ scripts

Script name Script description

configure_mq.bat Creates WebSphere MQ queue manager.

crossworld_mq.tst Objects to create in WebSphere MQ queue manager.

start_mq.bat Starts WebSphere MQ queue manager and listener.

test_mq.bat Stops WebSphere MQ queue manager.
76 Administering and Implementing WebSphere Business Integration Server V4.3

Using configure_mq.bat
This command file is called with a shortcut in the Start → Programs menu. It is
used to create a queue manager. The same command file is also used to define
the WebSphere MQ objects that are listed in the file crossworld_mq.tst. This
latest file contains a template of queue names that you would define for each
adapter instance.

The shortcut in the Start menu has several parameters, including the name of
the queue manager and the name of the file that contains MQ definitions
(crossworld_mq.tst). Before using the shortcut, you should ensure that it has the
name of the queue manager that you expect. This shortcut was created during
the installation (that is, before we used the configuration wizard), which is where
we designated what queue manager to use.

The crtmqm command in configure_mq.bat is used with only one parameter, -q,
which indicates that the queue manager is the default queue manager. This is
fine as long as your system does not contain a queue manager that happens to
be the default as well. Using the parameter -q simply means that now this new
queue manager will be the default, which can break applications or scripts that
you might have for the existing queue manager. As a general rule, for machines
that have multiple queue managers, it is probably better to not label a certain
queue manager as the default queue manager. No other parameters are used for
the crtmqm command. However, you should consider altering the command to
include the parameter -u for naming the dead letter queue. You should also
consider changing the logging parameters for the queue manager.

Example 3-2 on page 78 shows the MQ definitions that are executed as part of
using configure_mq.bat. Except for the channel definition, all of these objects are
required for adapters only. The file should be considered as a template. As such,
when we configure an adapter, we will use this template to define the queues
that the adapter requires.

Be sure that the name of the client channel matches your settings in Figure 3-28
on page 74.
 Chapter 3. Implementing the runtime components 77

Example 3-2 crossworlds_mq.tst

DEFINE QLOCAL(IC/SERVER_NAME/DestinationAdapter)
DEFINE QLOCAL(AP/DestinationAdapter/SERVER_NAME)

DEFINE QLOCAL(AdapterName/AdminInQueue)
DEFINE QLOCAL(AdapterName/AdminOutQueue)
DEFINE QLOCAL(AdapterName/DeliveryQueue)
DEFINE QLOCAL(AdapterName/RequestQueue)
DEFINE QLOCAL(AdapterName/ResponseQueue)
DEFINE QLOCAL(AdapterName/FaultQueue)
DEFINE QLOCAL(AdapterName/SynchronousRequestQueue)
DEFINE QLOCAL(AdapterName/SynchronousResponseQueue)
DEFINE QLOCAL(DLQ)

DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP)

1. After these scripts are configured, execute configure_mq by selecting Start →
Programs → IBM WebSphere InterChange Server → IBM WebSphere
MQ → Configure queue manager.

As an alternative to using the configure_mq.bat script, you can use the
WebSphere MQ Explorer application to define the queue manager and the
client channel. Besides the fact that you do not need to remember command
line option, it has the additional advantage that the IBM MQSeries service will
be configured correctly for the queue manager and the TCP/IP listener for
WebSphere MQ. This then removes the need to use the Start Listener
shortcut in the Start → Programs menu for the InterChange Server.

For WebSphere MQ tuning purposes, we should modify the LogBufferPages
parameter. This increases the performance when using persistent messages.
In general, adapters communicate with the InterChange Server by sending
and receiving persistent messages.

To change this parameter, start the IBM MQSeries services application. See
Figure 3-31 on page 79.
78 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-31 Using WebSphere MQ Services application

2. Right-click the root element WebSphere MQ Services (Local) and select
Properties. Select the Default Log Settings tab and increase the value for
the LogBufferPages parameter, as shown in Figure 3-32.

Figure 3-32 Increase the log buffer

3. In order to check the WebSphere MQ configuration related to InterChange
Server a test program is shipped with WebSphere InterChange Server. This
script is located in <ICS>/bin and it is called testMQ.bat. Execute the test
program to test the configuration.
 Chapter 3. Implementing the runtime components 79

3.2.4 Verifying the configuration
To verify the configuration of the InterChange Server, we start it for the first time,
connect to it using the System Manager, and change a few more server settings.

Starting the InterChange Server
The InterChange Server relies mostly on the database manager and also on
WebSphere MQ during its operations. Before starting the InterChange Server,
make sure that the remote database server is running. The InterChange Server
also relies on the name server for communication between the server and tools
such as the System Manager. If the name server has not been configured to run
as a Windows service, start it manually by launching the
PersistentNameServer.bat script, which can be found in
D:\IBM\WebSphereICS\bin.

When the name server is active, you can start the InterChange Server by
selecting Start → Programs → IBM InterChange Server → IBM InterChange
Server → IBM InterChange Server.

This launches a command window that shows logging and error information.
However, given the current configuration of the logging component, the complete
log is available at this time only in the InterChangeSystem.log file in
D:\IBM\WebSphereICS, which we had specified in Figure 3-27 on page 74. This
file shows that the InterChange Server first creates several tables in the
repository server. When the initialization of the server is finished, it reports a
Ready message.

For easy visualization of the log messages, you can use the Log Viewer tool
(Start → Programs → IBM InterChange Server → IBM WebSphere Business
Integration Toolset → Administrative).

Using System Manager
During the installation of the InterChange Server, we selected the option to also
install the toolset, which includes the System Manager. The System Manager is
a specialized perspective within WebSphere Studio Workbench that is used to
administer and configure the InterChange Server.

In this section, we use this locally installed version of the System Manager to
verify that the InterChange Server is running correctly and that we can make
changes to it by using the System Manager. However, in Chapter 4,
“Implementing client components” on page 119, we create a dedicated
administration and monitoring client, which enables administration of remote
InterChange Servers, including non-Windows instances of the InterChange
Server.
80 Administering and Implementing WebSphere Business Integration Server V4.3

1. The first time that you start WebSphere Studio Workbench, it likely will open
on the Resource perspective instead of the System Manager perspective. To
switch perspectives, select Window → Open Perspective → Other. Select
System Manager from the list (Figure 3-33), and click OK.

Figure 3-33 Open the System Manager perspective

A Studio perspective is a collection of specialized views, editors, and tools to
manage a given collection of resources. In the bottom-left pane, you can set
up the connection between the System Manager and any InterChange Server
instance in the network.

1. To add our new and local instance called ICS, right-click the InterChange
Server Instances folder in the InterChange Server Component Management
view and select Register Server.

This opens the window shown in Figure 3-34 on page 82. Enter the Server
name (ICS), the administrative user ID (admin), and its default password
(null). Click OK.
 Chapter 3. Implementing the runtime components 81

Figure 3-34 Register a server in System Manager

The System Manager connects to the InterChange Server and retrieves the
names of deployed components in that InterChange Server instance. No
components are deployed for now, so this results in an empty tree structure
(Figure 3-35 on page 83).
82 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-35 System Manager connected to InterChange Server

2. To further configure the InterChange Server, right-click the new instance and
select Edit Configuration to open the system editor. We want to change the
logging and tracing component in such a way that log messages are written to
both the log file and the console window. Select the Trace/Log Files tab.
Select the To Console and To File options for both Logging and Tracing.
Enter the same file name for both types of information, as shown in
Figure 3-36 on page 84.
 Chapter 3. Implementing the runtime components 83

Figure 3-36 Changing the logging and tracing components of InterChange Server

3. Save the changes and close the editor. Saving the changes results in a
deployment process to the InterChange Server.

In previous releases of InterChange Server, the next step would have been to
load the repository. However, in this release, the Load Repository shortcut no
longer exists. The repos_copy utility is still there, but most standard objects are
now provided as .jar files, which we can import in System Manager. From there,
we can deploy one or more objects as a user project to the InterChange Server.

3.2.5 Using role-based access control
WebSphere InterChange Server Version 4.3 introduces a new feature called
role-based access control (RBAC). Role-based access control provides the
ability to create users, roles, and the authorization policies associated with those
roles and, using those roles, to authorize permissions for users accessing the
system.

Roles can be defined easily by the Administrator and assigned to a group of
users, restricting access to key components only to verified users. Roles can be
assigned along functional associations and greatly reduce the administrative
burden. Assigning a role to a user or users permits them to access only the
components of the system included in the role definition. Also, the use of RBAC
functionality ensures that only an Administrator, or users with permission to
administer roles, would be allowed to create users and assign roles. Role-based
access control addresses access control and authentication.
84 Administering and Implementing WebSphere Business Integration Server V4.3

RBAC user information is stored in a user registry held in either a database or in
a Lightweight Directory Access Protocol (LDAP) server. The roles and
authorization policies are stored in the InterChange Server repository as they
normally pertain to a particular server environment.

Steps for setting up RBAC
Before setting up RBAC, at least one user must be assigned the role of
Administrator. If no user is assigned the Administrator role and RBAC is enabled,
then InterChange Server, when restarted, will automatically disable RBAC.

Perform the following steps within the System Manager to set up role-based
access control:

1. Right click the InterChange Server name in the Component Management
view and select Edit configuration.

2. On the Security-RBAC tab, select the check box for Enable RBAC as seen in
Figure 3-37.

Figure 3-37 Enable RBAC

3. Select the user registry to which to apply role-based access controls, that is,
Repository or LDAP. We chose Repository.
 Chapter 3. Implementing the runtime components 85

4. In the Server Start User Name field, enter the user name to start the server.

5. In the Server Start Password field, enter the password associated with the
user name.

6. If you selected Repository, enter details in the following fields as shown in
the Repository details section in Figure 3-37:

– Host name

– Database

– Port Number

– User Name

– Password

– Max Connections, the maximum number of connections that a user can
open

– Max connect retries, the maximum number of times you can attempt to
start a connection

– Connect retry interval, the amount of time between connection retries

7. If you selected LDAP, enter details in the following fields as shown in
Figure 3-38 on page 87:

– LDAP URL, which is the URL of the LDAP installation

– User name, which is the user account and is not case-sensitive

– Password, which is the password for the user account

– User base DN, which is the base distinguished name and acts as the root
of all searches and updates

– User name attribute, which the attribute in the schema that InterChange
Server uses as a user name

– Search criteria, which is the search criteria to use when retrieving LDAP
users and is optional

– Max search returns, which is the maximum number of entries returned
from a search

– SSL, which when set to True secures the connection using SSL protocol
86 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-38 RBAC LDAP configuration

8. To turn on audit settings, select the check box for Enable Audit and enter
details in the following fields:

– Audit log directory, which is the path of the audit log file
– Audit log frequency, for example, Daily, Weekly or Monthly
– Audit file size, which is the maximum size for the audit file in MB

How to deactivate RBAC
If it is necessary to deactivate RBAC on a particular InterChange Server, select
the Security-RBAC tab of the InterChange Server configuration within the
Systems Manager and deselect the Enable RBAC configuration property. This
will cause the other configuration parameter fields to become grayed out.

Note: For details on configuring an LDAP server as a user registry for
role-based access control for our scenario, see Appendix B, “Configuring
LDAP for use with RBAC” on page 507.
 Chapter 3. Implementing the runtime components 87

Administering roles
Role-based access control supports multiple users and enhanced security
features based on roles. A role is a collection of users who share common
administrative authority. Assigning authority policies into roles allows the
administrator to work more effectively by reducing the burden on the
administrator during the assignment of permissions.

Steps for creating roles
Perform the following steps to create a role:

1. Right-click the InterChange Server name in the Components Management
view and select Users and roles. The view opens in the right upper pane.

2. Click the Roles tab at the bottom of the view.

3. Right-click the Roles tree and select New role. This displays the Create role
dialog box as shown in Figure 3-39.

Figure 3-39 Create RBAC role

4. Enter the role name. Note that once you name a role, it cannot be renamed.

5. Enter a role description, if necessary. Role description is an optional field.

Steps for deleting roles
Perform the following steps to delete a role:

1. Right-click the desired role.

2. Select OK to delete the role.

Note: Role names are case-sensitive. After a role is deleted, it cannot be
restored without creating it as a new role. The role administrator is the default
and cannot be deleted.
88 Administering and Implementing WebSphere Business Integration Server V4.3

Administering users
On the User and Roles Management screen, roles are listed downward in a tree
directory display. You can assign a user to any number of roles. Users assigned
to a role are listed in the tree directory beneath the role to which they are
assigned, making for a quick and easy scan of permissions and responsibilities.

Additionally, you can import or export user information for use with the RBAC
functionality.

Steps for adding users
Perform the following steps to add users to RBAC:

1. Right-click the InterChange Server name in the Components Management
view and select Users and roles. The view opens in the right upper pane.

2. Right-click the Users tree and select New user. The Create User dialog
window opens, as seen in Figure 3-40.

Figure 3-40 Create RBAC User

3. In the User name field, enter the name of the user.

4. In the Password field, enter the password for the user.
 Chapter 3. Implementing the runtime components 89

Steps for deleting users
Perform the following steps to delete users from RBAC:

1. Right-click the user name and select Delete user.

2. Select OK to delete the user.

Steps for importing users and passwords
Perform the following steps to import users and passwords into RBAC:

1. Right-click the InterChange Server name in the Components Management
view and select Import → User Registry. This displays the Import dialog
box, where you specify the path for the binary file. This path should be valid
on the server machine which is running the InterChange Server.

2. Select the file to import.

Steps for exporting users and passwords
Perform the following steps to export users and passwords into RBAC:

1. Right-click the InterChange Server name in the Components Management
view and select Export → User Registry. This displays the Export dialog
box, where you can specify the file path.

2. Select the destination for the file to export. This path should be valid on the
server machine which is running the InterChange Server.

Note: guest is the only default user and cannot be deleted.

Note: When DATABASE is the user registry, support is available for importing
users. However, this function is not supported for the LDAP user registry. It is
recommended that you create a central user registry database or central
LDAP registry, enabling multiple InterChange Server machines to use this
central repository as opposed to transferring the user registry across various
InterChange Server machines.

Note: When DATABASE is the user registry, support is available for exporting
users. However, this function is not supported for the LDAP user registry. It is
recommended that you create a central user registry database or central
LDAP registry, enabling multiple InterChange Server machines to use this
central repository as opposed to transferring the user registry across various
InterChange Server machines.
90 Administering and Implementing WebSphere Business Integration Server V4.3

Administering user and role assignments
Assigning roles to the available users greatly reduces the burden upon the
administrator to assign individual permissions to vital functionality. Users can be
assigned to numerous roles, all regulated by the user's login ID. Users assigned
to a role are listed in the tree directory beneath the role to which they are
assigned.

Steps for assigning roles to users
Perform the following steps to assign roles to users:

1. If the Users and roles view is no longer active, right-click the InterChange
Server name in the Components Management view and select Users and
roles. The view opens in the right upper pane.

2. Locate the desired user in the Users tree and right-click the user name and
select Add roles. This displays the Add Role dialog box, which lists all
available roles as shown in Figure 3-41.

Figure 3-41 Add roles to RBAC user

3. Select single or multiple roles to assign to the user and click OK.
 Chapter 3. Implementing the runtime components 91

Steps for removing users from roles
Perform the following steps to remove users from the roles listing:

1. Expand the Users tree and right-click the role displayed under the desired
user. Select Remove role.

2. Select OK to remove the role.

Administering security policy permissions
As an administrator, you can assign permissions to default roles within RBAC.
These security policies are listed in a tree directory, along with the operations
that each role is allowed to access.

The operations that can be secured on a server are shown in Table 3-2.

Table 3-2 Securable server operations

Securable component Access-controlled operations

Server � Start
� Shutdown
� Security/Administering users/roles
� Monitoring
� View Failed Events
� Deploy
� Export
� Delete
� Compile
� Export config files
� Deploy config files

Collaboration Templates � Compile

Collaboration Objects � Start
� Stop
� Pause
� Shutdown
� Execute (AccessFramework call)
� Resolve transactional status
� Submit Failed Events
� Delete Failed Events
� Cancel LLBP flow

Connectors � Start
� Stop
� Pause
� Shutdown Agent
� Submit Failed Events
� Delete Failed Events
92 Administering and Implementing WebSphere Business Integration Server V4.3

Steps for assigning operations to roles
Perform the following steps to assign operations to roles:

1. Right-click the InterChange Server name in the Components Management
view and select Security policy. The view opens in the right upper pane.

2. Locate the desired role in the Roles tree, right-click the role, and select Grant
access. This displays the Select Operations dialog box, which lists all
available operations as shown in Figure 3-42 on page 94.

3. Select single or multiple operations to assign to the role.

4. Click OK to create the policy.

Business Objects

Maps � Compile
� Start
� Stop

Relationships � Start
� Stop

BenchMark � Start
� Stop

Scheduler

DBConnectionCache

Tip: Changes to security policies are not automatically saved to the repository
database. Make sure to save the changes before or while exiting the view.

Securable component Access-controlled operations
 Chapter 3. Implementing the runtime components 93

Figure 3-42 Select operations for role

Administering membership and security policy information
Administrators can import membership and security policy information to be used
with the RBAC functionality from any authorized server. Conversely,
membership and security policy information can also be exported to a file for use
on an additional server or for storage.

Importing membership and security policy information
Perform the following steps to import membership or security policy information:

1. Right-click the InterChange Server name in the Components Management
view and select Import → Role and Security Policy. This displays the
Import dialog box, where you specify the path for the binary file. This path
should be valid on the machine that is running InterChange Server.
94 Administering and Implementing WebSphere Business Integration Server V4.3

2. Select the file to import. If you import information when the User/Roles
Management view is active, the changes will not display until you close and
reopen the view.

Exporting membership and security policy information
Perform the following steps to export membership or security policy information:

1. Right-click the InterChange Server name in the Components Management
view and select Export → Role and Security Policy. This displays the
Export dialog box, where you can specify the file path.

2. Select the destination for the file to export. This path should be valid on the
machine that is running InterChange Server.

Administering the RBAC password
Each user in RBAC has an associated password. When a user logs in to the
server, the password is used to verify the roles assigned to that user.
Occasionally it might become necessary to change or reset the user password.
Perform the following steps to reset the user password:

1. Right-click the InterChange Server name in the Components Management
view and select Reset password.

2. In the Reset Password dialog box, select the user name and enter the new
password in both the New Password field and the Confirm Passworld field.

3. Click the Reset Password button to reset the password.

Security Administration
As an administrator, you can monitor the use of the roles in RBAC using the
security administration functionality. InterChange Server lists active users in a
table which displays user name, session ID, and the amount of time the user has
spent logged onto the server. It also allows an administrator to force the logoff of
users.

Note: You can also import information using repos_copy with the -xmsp
option. For information about using repos_copy, refer to “Using repos_copy” in
the IBM WebSphere InterChange Server System Administration Guide
Version 4.3.0, (30 September 2004).

Note: You can also import information using repos_copy with the -xmsp
option. For information about using repos_copy, refer to “Using repos_copy” in
the IBM WebSphere InterChange Server System Administration Guide
Version 4.3.0, (30 September 2004).
 Chapter 3. Implementing the runtime components 95

To display the Security Administration panel, right-click the InterChange Server
name in the Components Management view and select Security
Administration.

3.3 Installing WebSphere Business Integration Adapters
The WebSphere Business Integration Adapters are an integral part of an
integration solution. In our implementation, InterChange Server uses the
adapters to communicate with external applications and technologies, thus it is
important to discuss how to install these components successfully.

Our implementation involves installing the adapters on the same machine as the
InterChange Server and communicating only within the local network. But, there
are actually three ways in which you can configure and install an adapter within
the local network:

� On the same machine as the integration broker.
� On a machine that hosts the target application.
� On a machine dedicated for one or more adapters that has access to both the

target application and InterChange Server.

The WebSphere Business Integration Adapters are each standalone entities that
rely upon the Adapter Framework for communication with InterChange Server.

The following order must be used when installing individual adapters.

1. Install the Adapter Framework. This only needs to be performed once for
each server on which the adapters will be running.

2. Install any required data handlers. This only needs to be performed once for
each server on which the adapters will be running.

3. Install the needed adapter.

Tip: It is recommended that you refresh the user listing occasionally to retain
an accurate user display.

Note: In WebSphere InterChange Server V4.3.0 the Adapter Framework is
not automatically installed. You must install it manually.

In Versions 4.2.2 and previous, the Adapter Framework was installed
automatically and it was very important to not install the Adapter Framework
again because it would overwrite critical InterChange Server files.
96 Administering and Implementing WebSphere Business Integration Server V4.3

Installing WebSphere BI Adapter Framework
The installation of the Adapter Framework is a standard administrator’s task.
When the installation program is started, the usual steps about language
selection and license acceptance are presented.

1. Check IBM WebSphere InterChange Server to indicate that InterChange
Server is the integration broker to be used with the WebSphere Business
Integration Adapters. (Figure 3-43)

Figure 3-43 Select broker for WebSphere Business Integration Adapters
 Chapter 3. Implementing the runtime components 97

2. Select the install location, which must be different than the base InterChange
Server install directory (Figure 3-44).

Figure 3-44 Select Adapter Framework install location

3. The next step in the installation is to verify the location of the WebSphere MQ
Java libraries. The value should be filled in correctly, but if it is not, modify the
directory name to point to the correct location (Figure 3-45).

Figure 3-45 WebSphere MQ Java libraries location
98 Administering and Implementing WebSphere Business Integration Server V4.3

4. Complete the installation by selecting Next on the final summary screen.

Installing data handlers
Data handlers are the components that allow for the translation of serialized data
streams to and from the hierarchical structure of business objects. Particular
adapters require the use of data handlers. A commonly used data handler is the
XML data handler, the installation of which is described here.

The installation of data handlers is very simple, thus only one screen from the
installation is shown. Verify the location of the already installed Adapter
Framework (Figure 3-46).

Figure 3-46 Set the target location for the XML data handler
 Chapter 3. Implementing the runtime components 99

Installing the JDBC Adapter
Installing the JDBC Adapter is very similar to installing the Adapter Framework
and the data handlers. There is one additional install screen, as seen in
Figure 3-47, where the InterChange Server name is specified.

Figure 3-47 Provide InterChange Server name

3.4 WebSphere BI Message Broker installation and
configuration

For our business integration infrastructure, we installed WebSphere Business
Integration Message Broker on a Microsoft Windows 2000 server on which we
configured the configuration manager and broker.

As Figure 3-48 on page 101 shows, both the broker and the configuration
manager have their own queue manager. The broker database is created on the
local server, and the configuration manager’s database is created on the

Note: The installation of additional adapters involves the same procedures as
outlined in “Installing the JDBC Adapter” on page 100. For the scenario
solutions described later in this book, we also installed the WebSphere MQ
Workflow Adapter.
100 Administering and Implementing WebSphere Business Integration Server V4.3

database server that also hosts the databases for WebSphere MQ Workflow and
the InterChange Server.

Figure 3-48 WebSphere Business Integration Message Broker configuration

Figure 3-48 also specifies the user IDs that will be used. The broker runs with
user ID bkadmin, and the configuration manager logs on with user ID cmadmin.
Database access is performed with user ID wbiadmin, which was used earlier to
access the WebSphere MQ Workflow and InterChange Server database. All
these user IDs are required to have Administrator access rights. Note that having
specific user IDs for each component is not required.

3.4.1 Prerequisite software
The following components must be installed prior to installing WebSphere
Business Integration Message Broker:

� WebSphere MQ Version 5.3 CSD 7.
� DB2 Version 8.1 FixPack 2.
� Microsoft Data Access Components (MDAC) is provided on the product CD.
� IBM Remote Access Agent,provided on the product CD

This component is required for remote access to the broker.

Refer to the corresponding installation guide if installation assistance is needed.

3.4.2 Installation
WebSphere Business Integration Server V4.3 includes an updated version of
WebSphere Business Integration Message Broker (V5.0.1), which includes the
first service pack for the WebSphere Business Integration Message Broker.

Windows:wbimb

Broker
Toolkit

Broker
ToolkitBroker

Toolkit

Broker
UserID:bkadmin

wbiadmin

BKQMBKDB CMQM

Windows:wbidb

Configuration Manager
UserID:cmadmin

ISDB

BTDB

RTDB

CMDB

wbiadmin

MQ Connection
Database Connection
 Chapter 3. Implementing the runtime components 101

Installing this updated version is slightly different from installing Version 5.0.
When using Version 5.0, you have to define user groups manually. In Version
5.0.1, a graphical utility is provided to perform this task, and this utility is
launched immediately after the installation completes.

1. The installation of this component of WebSphere Business Integration Server
begins with preparing the Java Virtual Machine environment (Figure 3-49).

Figure 3-49 Prepares Java Virtual Machine for the installation

2. The installer wizard provides a language selection screen. Select a language
and click OK.

3. This is followed by a welcome screen and a license acceptance windows.

4. The installation program displays the screen in Figure 3-50. Click Next to
proceed with the installation.

Figure 3-50 The Install Shield Wizard will install Message Broker on your computer
102 Administering and Implementing WebSphere Business Integration Server V4.3

5. The installation program asks you to confirm that you have performed the
migration steps. (This would be the case where you are installing the latest
version of the broker on top of an existing V2.x installation.) If you are
performing a migration, refer to Migration to WebSphere Business Integration
Message Broker V5, SG24-6995. The screen in Figure 3-51is displayed. Click
Yes and Next if you are doing a fresh installation of WebSphere Business
Integration Message Broker V5 or you have completed the necessary
migration steps.

Figure 3-51 Migration step confirmation

6. This is followed by the software license screen. Click Next if you agree with
the license agreement.
 Chapter 3. Implementing the runtime components 103

7. You are then asked to designate an installation directory (Figure 3-52). Do so
and select Next.

Figure 3-52 Provide an installation directory for Message Broker

8. Select the Custom installation option (Figure 3-53).

Figure 3-53 Choose the setup type that best suits your needs
104 Administering and Implementing WebSphere Business Integration Server V4.3

9. Select the appropriate components, as shown in Figure 3-54. Select Next.

Figure 3-54 Select the components you wish to install

10.When the installation is finished, a new tool is launched - the Security Wizard
(Figure 3-55 on page 106). This new tool automates the task of creating user
groups and assigning a user ID to the broker process. You can run this tool at
this time, or end it and run it later. Click Next to continue and create the
groups.
 Chapter 3. Implementing the runtime components 105

Figure 3-55 Security Wizard - create the local groups that Message Broker requires

11.The Security Wizard enables you to select an existing user ID to be used by
the broker or to create a new user ID, and to provide a new password for this
user ID (Figure 3-56).

Figure 3-56 Create a new user ID for the broker
106 Administering and Implementing WebSphere Business Integration Server V4.3

12.This new user ID is created with all of the required authorities and group
memberships, as shown in Figure 3-57.

Figure 3-57 New user ID created

13.To match our graphical overview of the WebSphere Business Integration
Message Broker configuration, we also create the user ID cmadmin, which will
be used by the configuration manager. Also, you should consider setting the
password for both user IDs as nonexpiring.

3.4.3 Create the WebSphere BI Message Broker infrastructure
To create the WebSphere Business Integration Message Broker infrastructure,
we create the databases, WebSphere MQ-related components, the configuration
manager and the broker.

These tasks can all be accomplished by using the new Getting Started Wizard,
which you access by starting the Broker Toolkit with the Start menu.

When the toolkit is started for the first time, it might have to complete a few
installation tasks, after which the Welcome view is shown. When the toolkit is not
started for the first time, it might not display this Welcome view. To open it again,
select Help → Welcome and select the Welcome view for the Message Broker
(Figure 3-58 on page 108).
 Chapter 3. Implementing the runtime components 107

Figure 3-58 Welcome window in Broker Toolkit

This Getting Started Wizard is well-suited for installations in which all
components are on a single system. Figure 3-59 on page 109 shows the tasks
that the wizard will complete:

� Create local databases.
� Create a queue manager shared by the broker and configuration manager.
� Create the broker and the configuration manager.

The wizard does not enable you to use or create a remote database.
108 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 3-59 Using the Getting Started Wizard

The following sections walk you through a manual configuration process to
create the different broker components and their required resources.

Create and connect to databases
Figure 3-48 on page 101 shows that we are using a remote database for the
configuration manager. To create a database, we can either:

� Log on to the database server, create the database locally, and catalog the
existing database on the machine used by the configuration manager.

� Catalog the remote system on the broker machine and create the database
from the client machine. These commands in Example 3-3 on page 109
perform this option (explanations follow):

Example 3-3 Creating the database remotely

CATALOG TCPIP NODE WBIDB REMOTE <server name> SERVER 50000 REMOTE_INSTANCE
WBIDB SYSTEM <machine name> OSTYPE WIN
 Chapter 3. Implementing the runtime components 109

db2 attach to wbidb user db2admin using sas313r
db2 create database CMDB
db2 connect to CMDB user db2admin using sas313r
db2 GRANT DBADM, CREATETAB, BINDADD, CONNECT, CREATE_NOT_FENCED_ROUTINE,
IMPLICIT_SCHEMA, LOAD, CREATE_EXTERNAL_ROUTINE, QUIESCE_CONNECT ON DATABASE
TO USER WBIADMIN
db2 catalog system odbc data source CMDB

a. First, the remote system is cataloged.

b. Next, we attach to the remote database instance using the user ID
db2admin, which is the database instance owner.

c. The next step creates the actual database on the remote server. When the
database is created, we connect to it as the database instance owner.
This enables you to give the necessary authorities to the user ID
wbiadmin.

d. Finally, the database is cataloged as a system ODBC data source.

Similar commands are required to create the broker database on the local
database instance (Example 3-4):

Example 3-4 Create the database locally

db2 attach to db2 user db2admin using sas313r
db2 create database BKDB
db2 connect to BKDB user db2admin using sas313r
db2 GRANT DBADM, CREATETAB, BINDADD, CONNECT, CREATE_NOT_FENCED_ROUTINE,
IMPLICIT_SCHEMA, LOAD, CREATE_EXTERNAL_ROUTINE, QUIESCE_CONNECT ON DATABASE TO
USER WBIADMIN
db2 catalog system odbc data source BKDB

Instead of using the DB2 command window, you can also use the DB2 Control
Center to perform these tasks.

To verify that the user ID wbiadmin can log on to these databases using the
ODBC interface, you can use the Data Sources utility in the Windows Control
Panel’s Administrative Tools folder.

WebSphere MQ configuration
Before we create the broker and the configuration manager we create the
WebSphere MQ infrastructure. This includes:

� Creating queue managers with the appropriate logging options.
� Creating listeners.
� Creating a channel initiator.
� Configuring channels between the queue managers.
110 Administering and Implementing WebSphere Business Integration Server V4.3

These tasks can be performed using either a graphical tool, such as WebSphere
MQ Explorer, or with the command line (explanations follow):

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE -lf 2048 -lp 5 BKQM
amqmdain crtlsr BKQM tcp 1414
amqmdain auto BKQM

The first of these commands creates the queue manager with an associated
dead letter queue, and its -lp and -lf parameters increase the logging capacity for
the broker. The second command creates a TCP/IP listener for this queue
manager on port 1414. The third command sets the start-up mode of the queue
manager to automatic.

Nearly identical commands can be used to create the queue manager supporting
the configuration manager.

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE -lf 2048 -lp 5 CMQM
amqmdain crtlsr CMQM tcp 1415
amqmdain auto CMQM

Table 2-5 on page 42 shows the options that are used to create these queue
managers.

To enable communication between the configuration manager and the broker,
we set up channels and transmission queues between the two queue managers.
You can use the runmqsc utility to create these objects or use WebSphere MQ
Explorer. The commands in Example 3-5 are used for the queue manager
BKQM:

Example 3-5 Creating transmission queues in BKQM

def chl(BKQM.TO.CMQM) chltype(sdr) trptype(tcp) conname(‘wbimb(1415)’)
xmitq(CMQM)
def chl(CMQM.TO.BKQM) chltype(rcvr)
def ql(CMQM) usage(xmitq) trigger trigtype(first) trigdata(BKQM.TO.CMQM)
initq(SYSTEM.CHANNEL.INITQ)

The commands in Example 3-6 are for the queue manager CMBK, and values in
these commands match the commands for BKQM:

Example 3-6 Creating transmission queues in CMBK

def chl(CMQM.TO.BKQM) chltype(sdr) trptype(tcp) conname(‘wbimb(1414)’)
xmitq(BKQM)
def chl(BKQM.TO.CMQM) chltype(rcvr)
def ql(BKQM) usage(xmitq) trigger trigtype(first) trigdata(CMQM.TO.BKQM)
initq(SYSTEM.CHANNEL.INITQ)
 Chapter 3. Implementing the runtime components 111

Building command scripts is recommended for deploying brokers in a more
controlled and reproducible manner.

Create the broker and configuration manager
Now that we have a prepared database and a queue manager, we can create the
broker itself. One more command is required before we can create the
components. When you obtain a license for WebSphere Business Integration
Message Broker, you get several capacity units. The number of capacity units
that is required to run WebSphere Business Integration Message Broker
depends on your platform and number of processors. However, in all cases, you
must inform the product about the number of purchased capacity units.

To assign one capacity unit, use this command:

mqsisetcapacity -c 1

To create the broker, use the mqsicreatebroker command:

mqsicreatebroker BROKER -i bkadmin -a sas313r -q BKQM -n BKDB -u wbiadmin -p
sas313r
mqsistart BROKER

To create the configuration manager, use this command:

mqsicreateconfigmgr -i cmadmin -a sas313r -q CMQM -l 0 -n CMDB -u wbiadmin -p
sas313r -m CMDB -e wbiadmin -r sas313r
mqsistart ConfigMgr

The option -l 0 in the previous command implies that we do not use Windows
Domain security, but only local security.

Both the broker and the configuration manager run as Windows services. To
learn the status of these services, inspect the Windows Event Viewer. This is
where WebSphere Business Integration Message Broker reports any warning or
error messages during runtime operations.

If the Windows Event Viewer reported the following error messages during the
configuration manager creation, ensure that the user ID cmadmin is a member of
the Administrators group.

Example 3-7 Windows Evenbt Viewer ID error

(ConfigMgr) Missing or blank configuration repository JDBC driver name.
The configuration repository JDBC driver name supplied to the Configuration
Manager is either blank or is missing. This is a mandatory property of the
Configuration Manager.
112 Administering and Implementing WebSphere Business Integration Server V4.3

Using the Broker Toolkit
Similar to what we have done for WebSphere MQ Workflow and WebSphere
InterChange Server, we have installed the administrative interface for
WebSphere Business Integration Message Broker on the runtime server. In
Chapter 4, “Implementing client components” on page 119, we describe the
steps to make a development and management environment for WebSphere
Business Integration Message Broker. Here, we describe how to connect the
Broker Toolkit to the configuration manager and broker and how to complete the
broker domain definition.

The Broker Toolkit provides two distinct perspectives:

� The Broker Development perspective is used to develop solution components
for the broker.

� The Broker Administration perspective is used to manage the broker domain,
assemble solutions, and deploy them to one or more brokers.

At this stage in the setup of WebSphere Business Integration Message Broker,
we have a broker and a configuration manager that are not yet joined in a broker
domain. To do this, we use the Broker Toolkit Broker Administration perspective:

1. Start the Broker Toolkit and switch to the Broker Administration perspective.
Right-click in the Domains view and select New → Domain, as in Figure 3-60
on page 114.
 Chapter 3. Implementing the runtime components 113

Figure 3-60 Create a new broker domain
114 Administering and Implementing WebSphere Business Integration Server V4.3

2. In the Domain window (Figure 3-61), enter your environment’s values for the
configuration manager that we defined earlier: the name of the queue
manager that supports the configuration manager, that machine’s host name,
and the port on which the TCP/IP listener is listening. Click Next to proceed.

Figure 3-61 Create a connection to a configuration manager
 Chapter 3. Implementing the runtime components 115

3. The Broker Toolkit holds connection information to one or more broker
domains or configuration managers. The connection information for each
domain is stored in a file that is located in a server project. The default name
of that server project is Servers. The file holding the actual connection
information can also be named. Figure 3-62 shows that we named this file
LocalDomain. Click Finish.

Figure 3-62 Create a connection to a configuration manager

The Broker Toolkit creates an MQ client connection to the queue manager
that is used by the configuration manager. This implies that the logged-on
user ID must be authorized to use that queue manager and that this ID must
be a member of the groups that are used by the WebSphere Business
Integration Message Broker product.

When the connection is successful, the Domain view shows an empty folder
called Broker Topology (Figure 3-63). Right-click this folder and select New →
Broker. This adds a new broker to the domain. However, it does not create
the broker because the broker was created previously. You can think of this
step as registering the broker in the domain.

Figure 3-63 Empty broker domain
116 Administering and Implementing WebSphere Business Integration Server V4.3

4. To add the broker to the domain, give the configuration manager the broker’s
name and the name of the queue manager that it uses (Figure 3-64).

Figure 3-64 Create a new broker

When the configuration manager and the broker use different queue managers,
as is the case in our environment, it is assumed that MQ messages can be
exchanged between these two queue managers using standard MQ facilities
such as channels and transmission queues. This is why we defined channels
and transmission queues before we actually created the configuration manager
and broker. (See “WebSphere MQ configuration” on page 110.)

After you click Finish, the configuration manager deploys the changes to its
domain and contacts the broker. When successful, the Domains view lists the
broker and a single execution group called Default. If the deployment operation
fails, you can find detailed information about the error in the Windows Event
Viewer or in the Event Log, which is part of the Broker Toolkit (Figure 3-65). The
Event Log is available in the Domains view.

Figure 3-65 on page 118 also shows that the broker and the execution group are
not really running. (See the Alerts view.) The alert about the broker will eventually
 Chapter 3. Implementing the runtime components 117

clear. Figure 3-65 was taken before the deployment was completely finished. The
alert about the execution group disappears when a broker solution has been
deployed to this execution group. As long as there are no deployed components,
the execution group will show as not running in the Broker Toolkit.

Figure 3-65 Broker added to domain

3.5 Summary
In this chapter we described a multi-machine setup of a WebSphere Business
Integration infrastructure containing runtime servers for workflow, process
integration, and message-based integration. The next chapter describes how we
can create a development and management environment for this infrastructure.
118 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 4. Implementing client
components

This chapter describes the implementation of various clients for interaction with
the WebSphere Business Integration Server components that were created in
Chapter 3, “Implementing the runtime components” on page 45. We describe the
implementation of:

� A WebSphere MQ Workflow Web client infrastructure.

� A development client for developing artifacts for WebSphere MQ Workflow,
InterChange Server, and WebSphere Business Integration Message Broker.

� A management client to deploy solutions to the infrastructure and to
administer the runtime environment.

4

© Copyright IBM Corp. 2006. All rights reserved. 119

4.1 Implementing WebSphere MQ Workflow Web Client
In this section we cover the installation, configuration, and validation of
WebSphere MQ Workflow Web Client. We also cover the application server
preparation and the WebSphere MQ configuration.

The WebSphere MQ Workflow Web Client is a servlet, (a Java program running
on a Web server, that enables a browser-based interface for the WebSphere MQ
Workflow Runtime. When you deploy the Web Client in your application server, it
allows a user with a Web browser with JavaScript™ support to access MQ
Workflow process template lists, process instance lists, worklists, user settings,
list settings, and object properties (input and output containers), including
worklist control, and process monitoring.

Also, Web client enablement makes for easier WebSphere MQ Workflow client
setups (only the server changes, no client updates necessary) and allows for a
client concentrator machine to share WebSphere MQ workload with the server.
Furthermore, the client concentrator setup is necessary for multiple WebSphere
MQ Workflow Runtime servers to share a growing workload.

You can also link the WebSphere MQ Workflow Web client feature to the
workflow server through WebSphere MQ Client connections. This opens a
WebSphere MQ Client connection from the WebSphere Application Server to the
workflow Runtime server for every client that needs workflow services.

The advantage of using a concentrator server is that it takes some of the
WebSphere MQ workload from the workflow Runtime server. Instead of a client
connection channel for every client that connects to the workflow system, there is
now only one pair of sending/receiving channels between the workflow
concentrator server and the workflow Runtime server.

Because WebSphere MQ Workflow inherently makes use of WebSphere MQ
cluster technology, a client concentrator setup also does load-balancing and
fail-over when needed.

Figure 4-1 on page 121 is a high-level graphic representation of all components
that are involved in this setup.
120 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-1 WebSphere MQ Workflow Web client components topology

4.1.1 Setting up the application server on Windows

To set up a Windows based server, follow these steps:

1. Log on with an administrator ID on the server where WebSphere Application
Server is installed.

2. Install WebSphere MQ server as described in the product documentation.

It is important to use WebSphere MQ server on this platform because if you
only use WebSphere MQ client, then every client that connects to the
application server will also result in a WebSphere MQ client connection to the
WebSphere MQ Workflow Runtime server. This, in turn, will result in severe
scalability problems when many users try to work with the system.

3. Before we continue, we verify that the application server is running.

WBIWF

WMQWF Runtime
UserID:ADMIN

db2inst1

WMQWF
BuildtimeWMQWF

Buildtime

WBIWAS

Browser
WF Web ClientBrowser

WF Web Client

MQ Connection
Database Connection

HTTP Connection

ASQM

WAS
UserID:Administrator

WMQWF Web Client

WFQM

Browser
WF Web Client

WMQWF
Buildtime

ISDB

BTDB

RTDB

CMDB

WMQWF
Runtime clientWMQWF

Runtime clientWMQWF
Runtime Client

WBIDB

Important: This redbook does not cover the installation and configuration of
the application server and WebSphere MQ. For information about installation
and configuration, refer to the redbook ??????

Note: A WebSphere MQ license for the application server is included in
the WebSphere MQ Workflow license as long as that copy of WebSphere
MQ is only used for WebSphere MQ Workflow.
 Chapter 4. Implementing client components 121

– If the application server is not running, select Start → Programs → IBM
WebSphere → Application Server v.5.1 → Start the Server. This starts
the application server that hosts the administrative console and sample
applications. You can use the same application server to host the Web
client, or you can create a separate application server on the same host.

– To verify that the server is up and running, go to the command prompt and
change directories to <WAS_Home>\bin. Enter:

serverStatus -all

– To use the administrative console to check the status, follow these steps:

Select Start → Programs → IBM WebSphere → Application Server
v5.1 → Administrative Console.

The WebSphere Server - Administrative Console opens. Provide the
administrative user ID, wbiadmin in our case, and click OK.
122 Administering and Implementing WebSphere Business Integration Server V4.3

After login, the Administrative Console appears as is seen in Figure 4-2.

Figure 4-2 Administrative Console

4. Expand Servers in the upper left of the window (Figure 4-2) to see all servers.
 Chapter 4. Implementing client components 123

5. Under Servers, click the Application Servers link. At this point, you can see
the name of your application server in the right-hand pane. In our case, this is
server1. See Figure 4-3.

Figure 4-3 Administrative Console - Application Servers list
124 Administering and Implementing WebSphere Business Integration Server V4.3

6. Click the server1 link and select the Runtime tab.

Figure 4-4 Application server state

As you can see in Figure 4-4, the application server is showing a Started state.
We are now ready to begin the installation and configuration of the WebSphere
MQ Workflow Web Client.
 Chapter 4. Implementing client components 125

4.1.2 WebSphere MQ Workflow Web Client installation
This section details the installation of the WebSphere MQ Workflow Web Client.

1. Launch the WebSphere MQ Workflow setup, accept the license agreement,
and select your installation language.

2. Click Next and select All Components (Figure 4-5).

Figure 4-5 Setup type
126 Administering and Implementing WebSphere Business Integration Server V4.3

3. On the Select Components screen (Figure 4-6), select Administration
Utility, API Runtime Libraries, Java Agent, Java API Beans, LDAP
Bridge, and Portal Client.

Figure 4-6 Select Components

After a successful completion of the installation, the WebSphere MQ
Workflow Configuration window opens (Figure 4-7). If it does not, select
Start → Programs → IBM WebSphere MQ Workflow → IBM WebSphere
MQ Workflow Configuration Utility.

Figure 4-7 WebSphere MQ Workflow Configuration
 Chapter 4. Implementing client components 127

4.1.3 WebSphere MQ Workflow Web Client configuration
In this section, we cover the configuration needed to establish successfully a
WebSphere MQ Workflow Web Client environment. As part of the configuration,
we add an additional WebSphere MQ queue manager to the already established
WebSphere MQ clustered queue manager environment on the Workflow server
(WBIWF). This newly created queue manager will reside on the same server
where the application server is running (WBIWAS), and will communicate with
the repository queue manager on WBIWF. Because of the simplified
management inherent in the WebSphere MQ queue manager clustering
technology, we have to create only one pair of sender/receiver channels
between the queue manager on the application server, and the WebSphere
Workflow Runtime server.

1. On the General tab of the configuration utility, click New to create the
configuration profile for the WebSphere MQ Workflow Web Client setup.
Provide a name for the new configuration (Figure 4-8), and click OK to
continue.

Figure 4-8 General and Configuration ID
128 Administering and Implementing WebSphere Business Integration Server V4.3

2. Select the Web client check box and note that all of the necessary tabs are
added to the top of the window (Figure 4-9).

Figure 4-9 WebSphere MQ Workflow Web Client configuration: General tab

Note: If the window does not show that the MQ Server API is the active
WebSphere MQ API, then make sure that WebSphere MQ server is
installed on the application server and that the path environment variable
points to the WebSphere MQ Workflow server directory and not the client
directory.
 Chapter 4. Implementing client components 129

3. Select the Queue Manager tab and provide the name of the queue manager
for the application server machine (see Table 2-2 on page 40). For TCP/IP
port configuration, enter the host name of the WebSphere Application Server
machine and the queue manager port, from the same table. (Figure 4-10
shows this screen.)

Click Next to continue.

Figure 4-10 WebSphere MQ Workflow Web Client configuration: Queue Manager tab

4. Now we are on the Cluster tab (Figure 4-11). Because we already have
another active queue manager in workflow queue manager cluster, we select
the appropriate radio button to specify that the queue manager in this
configuration is an additional Queue Manager in this Cluster. For the Cluster
name, use the MQ cluster name (FMCGRP in our case) as planned in
Table 2-1 on page 39.

In the First Queue Manager portion of the screen, provide the Queue
Manager name as planned in Table 2-1 on page 39. (See Queue Manager
Name.) Use the WebSphere MQ Workflow Runtime machine’s TCP/IP
address or host name and Queue Manager TCP/IP Port information (see
130 Administering and Implementing WebSphere Business Integration Server V4.3

TCP/IP address or host name and Queue Manager TCP/IP Port respectively
in Table 2-1 on page 39) for the TCP/IP port configuration input fields.

Click Next to continue.

Figure 4-11 WebSphere MQ Workflow Web Client configuration: Cluster tab
 Chapter 4. Implementing client components 131

5. On the Client Connections tab (Figure 4-12), in the Connect names portion
of the screen, press the Add button to add information about the existing
workflow server.

Figure 4-12 WebSphere MQ Workflow Web Client configuration: Client Connections tab

6. This opens the window shown in Figure 4-13 on page 133. Verify the system
information and make sure that the Queue Manager field contains the
Application Server Queue Manager Name as planned in Table 2-2 on
page 40. Click Add to return to the Configuration window.
132 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-13 WebSphere MQ Workflow Connection

As you can see in Figure 4-14 the Connect name is now specified.

Figure 4-14 Client Connections tab with Connect names
 Chapter 4. Implementing client components 133

7. Click the Web Client tab. Enter the Web Client URL from Table 2-2 on
page 40 and ensure that the correct version of the application server is
selected. Click Next to continue.

Figure 4-15 WebSphere MQ Workflow Web Client configuration: Web Client tab
134 Administering and Implementing WebSphere Business Integration Server V4.3

8. Click the WebSphere tab, review the values, and click Next to continue.

Figure 4-16 WebSphere MQ Workflow Web Client configuration: WebSphere tab
 Chapter 4. Implementing client components 135

9. On the JDK/JRE tab (Figure 4-17), verify that the JDK/JRE Installation
Directory is correct and click Done.

Figure 4-17 WebSphere MQ Workflow Web Client configuration: JDK/JRE tab
136 Administering and Implementing WebSphere Business Integration Server V4.3

10.This will start the creation and configuration of all the defined components
(Figure 4-18). During this process the configurator creates the queue
manager and deploys the Web Client in the WebSphere Application Server.

Figure 4-18 Executing the configuration steps for the Web Client

11.After the configuration is complete, you will be notified that you should start
the newly created enterprise application in the WebSphere Application Server
and will receive a message about restarting the HTTP Server.
 Chapter 4. Implementing client components 137

12.After restarting the HTTP Server, reopen the WebSphere Administrative
Console. Expand Applications in the tree menu, and in the Enterprise
Applications field, locate MQWF Web Client FMC. To the right of the
application, you will see a status arrow (Figure 4-19). A red status arrow
indicates that the application is stopped. A green status arrow indicates that
the application is running.

Figure 4-19 Status of Web Client enterprise application

If the arrow is red (stopped), check the box next to the MQWF Web Client
FMC application and restart it.

4.1.4 WebSphere MQ Workflow Web Client validation
Before you use the Web client, several other tests can be performed to validate
the configuration. Start the WebSphere MQ Explorer application and expand the
tree structure WebSphere MQ → Queue Managers → ASQM → Advanced →
Channels. You should see a cluster sender channel called TO.WFQM.TCP and a
138 Administering and Implementing WebSphere Business Integration Server V4.3

cluster receiver channel TO.ASQM.TCP. Both channels should have a channel
status of Running. If this is not the case, try to start them manually. If they fail to
start, use WebSphere MQ tools to determine the problem. Often, this is the result
of a misspelling of a choice in the configuration tool.

If the channels are running, open a browser and go to the Web Client using the
URL http://wbiwas/MQWFClient/RTC.html, where wbiwas is the host name of
the server that is running WebSphere Application Server (Figure 4-20). Use the
User ID ADMIN and password password to log on.

Figure 4-20 WebSphere MQ Workflow Web Client logon

Note: Figure 4-20 indicates that we have installed FixPak 1 for the Web Client
(i.e. Web Client V3.5.0.1). This FixPak is installed on the workflow server, and
also on the application server. You should install the desired FixPak before
creating the Web Client configuration.
 Chapter 4. Implementing client components 139

When the logon is successful, this opens the uncustomized Web Client interface
shown in Figure 4-21.

Figure 4-21 Successful logon via Web client

4.2 Implementing a development client
This section describes the implementation of a development client for each of the
runtime servers.

4.2.1 WebSphere MQ Workflow development environment

In Chapter 3, “Implementing the runtime components” on page 45, we install all
WebSphere MQ Workflow components. However, there are instances where you
might only want certain Workflow components. Hardware cost, team structure,
and user roles and responsibilities are just a few examples that could drive
certain installation decisions. Considering that a typical team structure might
consist of developers, administrators, and project and team managers, certain
access restrictions can apply. Thus, a development team might need an
environment to build and share common Workflow objects. Keeping this in mind,
we look at installing and configuring a WebSphere Workflow development
environment.

WebSphere MQ Workflow Buildtime is a graphical tool that enables you to model
the business processes. The Buildtime component is responsible for depicting
your business activities, adding the staff to support such tasks, and providing the
140 Administering and Implementing WebSphere Business Integration Server V4.3

programs and network infrastructure that to support the people. In addition, flow
of control, information between activities, and modeling are kept in this database.

WebSphere MQ Workflow Buildtime is implemented as a DB2 client application,
although you could also use a Microsoft Jet Engine database. However, a typical
development environment consists of more than one developer, and usually they
share common objects, so a shared DB2 database is often used instead of an
individual Jet Engine database. This implies that the DB2 client software is
required before we can use the Buildtime tool.

In “Implementing the runtime components” on page 45, we set up a Buildtime
database while we were creating the Runtime database. Because of this, we only
have to set up a DB2 client connection to the existing Buildtime database on
each development machine.

The install and configuration procedures are as follows:

1. Before we can set up the DB2 client connection from the development
machine to the database server (WBIDB), we must update the local DB2
catalogs with the remote system information. This is done using the following
commands. At the db2cmd prompt execute:

catalog tcpip node WBIDB remote <machine name> server 50000 remote_instance
WBIDB system <server name> ostype win

catalog database FMCBTDB AS FMCBT at node WBIDB

In our example, WBIDB is the host name of the database server, FMCBTDB is the
name of the database on the database server, and FMCBT is the local
database name.
 Chapter 4. Implementing client components 141

2. Run the Workflow installation program and select Buildtime as the Setup
type, as shown in Figure 4-22, and click Next.

Figure 4-22 Installation Type for WebSphere MQ Workflow Buildtime

3. For this setup type, there are two selectable components (Figure 4-23); the
Buildtime component is preselected. If the developer needs access to the
Runtime database (for example, to import the workflow model) select the
Runtime Database Utilities component as well. Similarly, select the
Samples, if you want those. Select Next.
142 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-23 WebSphere MQ Workflow Buildtime - select components for installation

4. As with the product installation, you have the option to select a Program
Folder where setup will install add program icons. And, of course, you can
review or change previously selected install settings. Click Next, when you
are finished.
 Chapter 4. Implementing client components 143

5. After the completion of the install you should receive a 'Setup Complete'
message (Figure 4-24). Click Finished.

Figure 4-24 WebSphere MQ Workflow Buildtime - Setup Complete

6. After the installation is finished, reinstall the FixPak for WebSphere MQ
Workflow that was also installed for the Runtime component.

When the product installation is complete (including installing the FixPak), use
the configuration utility to setup a profile for Buildtime.
144 Administering and Implementing WebSphere Business Integration Server V4.3

1. To start the configuration utility, select Start → Programs → IBM
WebSphere MQ Workflow → IBM WebSphere MQ Workflow
Configuration Utility. Figure 4-25 opens.

Figure 4-25 General tab
 Chapter 4. Implementing client components 145

2. After entering the Configuration ID (FMC), select Buildtime as the installed
component to configure (Figure 4-26).

Figure 4-26 Buildtime - configure installed components
146 Administering and Implementing WebSphere Business Integration Server V4.3

3. Click Next to go to the Buildtime tab. The Buildtime tab is used to specify the
database type. We will be connecting to our existing DB2 Buildtime database.
So, verify that IBM DB2 Universal Database is selected (Figure 4-27).

Figure 4-27 Buildtime tab
 Chapter 4. Implementing client components 147

4. Select the Buildtime Database tab. First we set the DB2 connection
properties that will be used to connect to the database server. To do this, click
the DB2 Connect parameters button (which can be seen in Figure 4-28).
Provide a user ID with database administrator authority and it’s password.

Figure 4-28 Buildtime Database tab
148 Administering and Implementing WebSphere Business Integration Server V4.3

5. Select the catalogued instance WBIDB. The existing database appears in list
box 2, select an existing database or create a new database, as shown in
Figure 4-29. Select the database, and systems appear in the bottom list box,
Select a system. Select the workflow system and click Done.

Figure 4-29 Configuring access to an existing Buildtime database

In our example, WBIDB is the previously established instance,
FMCBTDB(FMCBT) is the existing database, and our workflow system is
FMCSYS,FMCGRP,FMC,WFQM.

We are now ready to start the Buildtime Tool. To start the Buildtime tool:

1. Select Start → Programs → IBM WebSphere MQ Workflow →
WebSphere MQ Workflow Buildtime - FMC, where FMC is the name of the
configuration profile.
 Chapter 4. Implementing client components 149

2. When Buildtime is launched, it might present two logon windows. The first
window is the database logon. Enter a database user ID and password
(Figure 4-30). Click OK.

Figure 4-30 Database logon window in Buildtime

3. Following a successful database logon, a second window appears requesting
a workflow logon. Provide the user ID ADMIN (or another user ID defined in the
workflow database) and its password (Figure 4-31). Click OK.

Figure 4-31 Workflow logon window in Buildtime

The second logon window appears in the exact same position as the first
window did. This can cause some confusion because you might think that you
have made an error in the first logon window. To know which user ID to
provide, check the window heading as circled in Figure 4-31.

To simplify the start-up of Buildtime, make sure that the Windows logon ID
that is used to run Buildtime is a valid and authorized database user ID.

4. When both logon steps are successful, a warning message appears about
changing the password of the system administrator ID ADMIN to a
nonstandard password. When the tool is launched, select the Staff tab and
expand the Persons folder. Double-click the user ADMIN to open the
properties, which includes password. Note that changing the password here
only affects Buildtime. To update the Runtime password as well, you must
export the changes from Buildtime and import them into Runtime.
150 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-32 Using Buildtime to change password

Note: WebSphere MQ Workflow keeps its own repository of users and
user IDs, but bridges exist to support, for example, LDAP-based user
repositories.
 Chapter 4. Implementing client components 151

5. To import the exported runtime definitions into Buildtime, in the Buildtime tool,
select Buildtime → Import and provide the name of the runtime export file.
Make sure to select the option that this file is FDL from WebSphere MQ
Workflow Runtime, as shown in Figure 4-33.

Figure 4-33 Import runtime definitions in Buildtime

You can now make any changes in Buildtime, export them to an FDL file and
import them into the runtime environment. These steps are explained in detail in
Chapter 6, “Implementing a process model in WebSphere MQ Workflow” on
page 201.

4.2.2 WebSphere InterChange Server development environment

In this section, we show how to start and configure the WebSphere InterChange
Server System Manager to work with the InterChange Server that we installed
and configured in 3.2.3, “Configuration of the InterChange Server” on page 73.

Also, we want to create a test environment for the InterChange Server developer.
This test environment consists of a specially configured InterChange Server
instance that is registered in the System Manager as a local test server.

Tip: Before changing anything in Buildtime, import the runtime
configuration into Buildtime so that it matches the runtime setup. This is not
required, but it helps keep things consistent.

To import the runtime definitions into Buildtime, first export them from the
runtime environment. This command exports the definitions and stores
them in the runtime.fdl file:

fmcibie -u admin -p password -e runtime.fdl -y FMC
152 Administering and Implementing WebSphere Business Integration Server V4.3

To allow for a true test and development environment, it is common to install a
complete InterChange Server platform, including a local DB2 V8 server and a
local WebSphere MQ server.

1. Install the base software required by the InterChange Server as defined in the
latest WebSphere InterChange Server installation manuals. At the time of this
writing, that included IBM JDK 1.4.2, WebSphere MQ Server, and IBM DB2
UDB.

2. When installing WebSphere InterChange Server for development purposes,
you select most of the same options as you would for a runtime machine. You
need both the development and administration toolsets and the InterChange
Server itself as well as any collaborations for your development.

3. During the installation, you are asked to provide the name of the InterChange
Server. Choose a name that is unique in the local network.

Figure 4-34 Set name for development InterChange Server instance

4. The configuration of a local development server is similar to the creation of a
regular server:

– Create and configure the repository database. (See installation manual.)
– Create and configure the queue manager.
– Use the configuration wizard of the InterChange Server.

5. If your development task consists of developing application-specific business
objects, developing transformation maps, configuring the WebSphere
Business Integration Adapters, or implementing pre-built WebSphere
 Chapter 4. Implementing client components 153

Business Integration Collaborations, then you will need to install those
packages after installing the InterChange Server.

6. To be able to run an InterChange Server in test mode, you must add a
start-up parameter to the shortcut that launches the InterChange Server.
Open the Properties of the IBM InterChange Server shortcut and add the
-design -test option at the end of the command line. (See the Target field in
Figure 4-35.)

Figure 4-35 Running the InterChange Server in design mode

Note: Before installing WebSphere Business Integration Adapters,
WebSphere InterChange Server v4.3 now requires a separate installation
of the WebSphere Business Integration Adapter Framework. Please
review the adapter installation manuals for more details.
154 Administering and Implementing WebSphere Business Integration Server V4.3

7. When the InterChange Server has completed its first startup, you can start
the System Manager and register the new design server. This time, during
server registration, make sure to set the Local Server option (Figure 4-36).

Figure 4-36 Register InterChange Server as a Test Server

8. When connected, open the perspective Integrated Test Environment
(Window → Open Perspective). The interface should look similar to
Figure 4-37 on page 156.
 Chapter 4. Implementing client components 155

Figure 4-37 Integrated Test Environment

4.2.3 WebSphere BI Message Broker development environment

Installation of the Broker Toolkit for development purposes has no major
prerequisites. The toolkit does require Microsoft Data Access Components
(MDAC), which is provided on the supplemental CD.
156 Administering and Implementing WebSphere Business Integration Server V4.3

When installing the product, select the installation option Custom and choose to
install only the Message Brokers Toolkit component. (Figure 4-38)

Figure 4-38 Select components to install

In general, as a developer, you would like to have an environment that enables
you to debug a solution. Facilities within the Message Brokers Toolkit exist. One
of those facilities is a test server. However, before we can create a test server,
we need to have a deployable component, such as a message flow.
 Chapter 4. Implementing client components 157

To create a message flow, follow these steps:

1. We first create a message flow project. Select File → New → Message flow
project. Give it a name such as SimpleFlow (Figure 4-39).

Figure 4-39 Create message flow project
158 Administering and Implementing WebSphere Business Integration Server V4.3

2. Within this message flow project, create a message flow by selecting File →
New → Message flow. Provide a name for this flow (Figure 4-40).

Figure 4-40 Create a message flow

After the message flow editor is opened, we can actually build the flow. For our
purpose of setting up a test server, the flow can be simple: an MQInput node and
MQOutput node that are connected to each other will do fine. This flow simply
copies messages from one queue to another.

1. Open the properties of the MQInput node and select the category Basic.
Provide a queue name for input.

2. Change to the Default tab and set the message domain to XML.

3. Open the properties of the MQOutput node and select the category Basic.
Provide a queue name for output.

4. Connect from the output terminal of the MQInput node to the input terminal of
the MQOutput node.

5. Save the message flow.

6. Log on to the broker machine and define the queues that are named in the
MQOutput and MQInput nodes to the queue manager of the broker. See
Figure 4-41 on page 160.
 Chapter 4. Implementing client components 159

Figure 4-41 Simple message flow

7. Switch to the Server perspective by selecting Window → Open
Perspective → Other. Select Server from the presented list.
160 Administering and Implementing WebSphere Business Integration Server V4.3

8. Select File → New → Server and Server Configuration to create a test
server. Provide a name for the server and select the correct type, which is
Broker Unit Test Execution Group. (Figure 4-42) Click Next.

Figure 4-42 Create new server and server configuration
 Chapter 4. Implementing client components 161

9. The Broker Unit Text Execution Group page (Figure 4-43) is used to provide
connection information for the configuration manager. Enter the queue
manager name (CMQM), the host name (wbimb), and the port number for
TCP/IP (1415). Click Next.

Figure 4-43 Provide information about the configuration manager
162 Administering and Implementing WebSphere Business Integration Server V4.3

10.At this point, the toolkit retrieves broker topology information from the
configuration manager. The next window (Figure 4-44) enables you to select
the existing broker to which you want to add a test execution group. By
default, the new execution group is named after the user ID with which you
are logged on. The name of the execution group has to be unique. Click Next.

Figure 4-44 Select broker and name the execution group
 Chapter 4. Implementing client components 163

11.The final step is to select solution components to run in the test server. As of
now, we have only one message flow to add. Select it and click Finish.
(Figure 4-45)

Figure 4-45 Select message flow to run in test server

The test server is now created (Figure 4-46 on page 165). From now on, for any
given project, we can simply select Run on Server or Debug on Server, making
it easier to debug a flow.
164 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-46 Server perspective in the Brokers Toolkit
 Chapter 4. Implementing client components 165

4.3 Implementing a management client
This section discusses the implementation of a management client for each of
our runtime environments. From a functional perspective, we want to provide an
environment that enables the administrator to deploy solutions to the runtime,
monitor the runtime, and possibly alter the runtime to correct any error condition
that may occur.

4.3.1 WebSphere MQ Workflow management client
As a workflow system administrator, you need access to the following tools:

� The WebSphere MQ Workflow administration utility (command interface)
which enables you to stop and start components, view logs, and query status
and configuration information.

� A Web browser based client (Web Client) for interacting with the Runtime
environment which allows the administrator to monitor and work with process
instances.

� Database utilities that are part of the workflow product to manage the
workflow database.

To be able to use the administration utility, the administrator’s machine must
have at minimum the WebSphere MQ Client software, which can be downloaded
for free from the Internet. To use the database utilities, DB2 client software also
must be installed. The database server should be catalogued as a remote
instance on the client machine.

To install the relevant WebSphere MQ Workflow components, run the same
installation program as you did for the runtime server.

1. Launch the WebSphere MQ Workflow setup, accept the license agreement,
and select the install language.
166 Administering and Implementing WebSphere Business Integration Server V4.3

2. Select Administrative Components as the setup type (Figure 4-47). Click
Next.

Figure 4-47 Select components to install
 Chapter 4. Implementing client components 167

3. In the next window (Figure 4-48), we choose to install all of the available
product components. (Runtime Database Utilities is automatically selected
when LDAP is selected.)

Figure 4-48 Select product components to install

When the installation is complete, the configuration utility is started.

4. Click the New button and provide a name for the configuration profile. Check
Clients and API, Custom Clients and Admin Utility, as shown in
Figure 4-49 on page 169.

Note: The administration utility can use the MQ Client and MQ Server API.
If you have the full WebSphere MQ product on your system, the
configuration utility will automatically configure the administration utility to
use the MQ Server API to define and configure a queue manager for you.
On Windows platforms, you cannot force the administration utility or any
other workflow client component to use the MQ Client API. On UNIX®
platforms, you can set the environment variable MQConnectionType to
MQClient so that the MQ Client API will be used.
168 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-49 Select components to configure

5. Click the Client Connections tab and enter the name and location of the
client channel connection file that is stored and maintained on the server.
Copy this file from the server to the workstation and provide the name and
folder to the configuration utility.
 Chapter 4. Implementing client components 169

6. To provide information about the workflow system that you want to
administer, click the Add button and provide the System Group, System
(name), Queue Prefix, and Queue Manager, as shown in Figure 4-50.

Figure 4-50 Providing connection information
170 Administering and Implementing WebSphere Business Integration Server V4.3

You can add more connections to the configuration if you have more than one
workflow server or workflow system group. Figure 4-51 shows the completed
Client Connections tab.

Figure 4-51 Client configuration complete

To verify that the configuration is working on the client system, select Start →
Programs → IBM WebSphere MQ Workflow → WebSphere MQ Workflow
Administration Utility - FMC.

When the utility starts, provide the password of the ADMIN user ID, which is
normally the word password. Figure 4-52 shows a sequence of commands that
result in providing the status of the workflow server on the remote machine.
Using this utility the administrator can also consult error and system logs.
 Chapter 4. Implementing client components 171

Figure 4-52 WebSphere MQ Workflow Administration Utility

4.3.2 InterChange Server management client
Management tools for the InterChange Server can be classified in two
categories:

� Standalone GUI tools, such as the System Manager and the Log Viewer
� Web-based tools, such as the System Monitor

In this section we step through the implementation of these two categories of
tools and describe their function. The actions are described from the perspective
of an administrator that has requirements to install the administration tools on a
separate windows workstation.

Implementing the System Manager
The System Manager and other ICS related administration tools do not require
any other software, such as WebSphere MQ. The System Manager interacts
with the InterChange Server via the name server or object request broker (ORB).
172 Administering and Implementing WebSphere Business Integration Server V4.3

1. Start the installation program for the InterChange Server and select only the
Administrative toolset, as shown in Figure 4-53.

Figure 4-53 Select InterChange Server components to install
 Chapter 4. Implementing client components 173

2. Enter the host name and port number of the ORB, which is 14500 by default.
The host name for our environment is wbiics.

Figure 4-54 Provide information about the ORB

3. Because the System Manager will communicate with the InterChange Server
through the ORB, it is important to configure the System Manager startup to
point to the ORB host machine where the InterChange Server is registered.
Locate the CWSharedEnv.bat file and modify the ORB_HOST variable to be
the host name of the system where the ORB is implemented. (See
Example 4-1 on page 175)
174 Administering and Implementing WebSphere Business Integration Server V4.3

Example 4-1 Modifying CWSharedEnv.bat

REM Licensed Materials - Property of IBM
REM 5724-C10, 5724-E30, 5724-I78
REM (C) Copyright IBM Corporation 1997, 2004. All Rights Reserved
REM US Government Users Restricted Rights- Use, duplication or disclosure
REM restricted by GSA ADP Schedule Contract with IBM Corp.

goto setenv

:setenv

set ORB_PORT=14500
set ORB_HOST=wbiics
set ORB_PROPERTY=-DORBNamingProvider=CosNaming
-Dorg.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
-Dorg.omg.CORBA.ORBInitialPort=%ORB_PORT%
-Dorg.omg.CORBA.ORBInitialHost=%ORB_HOST% -Dcom.ibm.CORBA.Debug.Output=nul

set JRE_HOME="%CROSSWORLDS%"\jre
set JRE_LIB=%JRE_HOME%\lib
set JRE_BIN=%JRE_HOME%\bin
set CWJAVA="%CROSSWORLDS%\jre\bin\java"
set CWJAVAW="%CROSSWORLDS%\jre\bin\javaw"
REM set jre part of java.ext.dirs
set JRE_EXT_DIRS=%JRE_LIB%\ext

set PATH=%JRE_BIN%;"%CROSSWORLDS%"\bin;%PATH%

4. When the installation is finished, start System Manager and switch to the
System Manager perspective. Register the existing InterChange Server
wbiics within this System Manager the same way as in the previous chapter.
See Figure 4-55 on page 176.
 Chapter 4. Implementing client components 175

Figure 4-55 Register existing server

5. The System Manager connects to the InterChange Server and retrieves
information about deployed components from its repository. See Figure 4-56
on page 177. We can now use this instance of the System Manager to inspect
runtime statistics, to administer role based access, configure data security, to
start and stop components, and to deploy new components.
176 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-56 System Manager connected to remote InterChange Server

Implementing the System Monitor
The System Monitor is a Web-based application that enables an InterChange
Server administrator to perform operational tasks, interpret historical data, and
analyze real-time server statistics. Similar information and options are available
as part of the Component Management View in System Manager. However, the
System Monitor Web application has the added advantage that the InterChange
Server administrator does not have to have a machine with System Manager
installed.

Implementing System Monitor on a machine that has WebSphere Application
Server and InterChange Server installed is relatively simple. When WebSphere
Application Server is installed, the monitoring application is installed
automatically during the installation of the InterChange Server.
 Chapter 4. Implementing client components 177

However, in the environment that was created for this redbook, this was not the
case. We had a dedicated system for use by WebSphere Application Server and
a dedicated system for use by the InterChange Server.

What must be installed on WebSphere Application Server to deploy the
Web-based System Monitor? The installation options for InterChange Server
(shown in Figure 4-53 on page 173) do not list the System Monitor application
explicitly; it is included in the Administrative Toolset section. Thus, an easy
answer to our question is - install this subset on the machine that hosts
WebSphere Application Server.

However, this answer might not be acceptable. For example, if WebSphere
Application Server runs on a different platform than the InterChange Server, you
might not have installation media. If WebSphere Application Server is running on
Linux®, it might not even be possible to install any component of the
InterChange Server.

For those situations in which it is not possible to use the automated installation
program, you can use the following steps.

1. Copy the installation folder WBSM in the InterChange Server installation
folder from the InterChange Server machine to the WebSphere Application
Server machine.

Follow a similar folder structure on the WebSphere Application Server
machine where the WBSM folder is copied in a WebSphereICS folder on the
WebSphere Application Server machine.

2. To install the Web-based application, copy two command files,
CWSharedEnv.bat and CWDashboard.bat from the bin directory of
InterChange Server. Note that these command files do little more than setting
the right environment variables and invoking the WebSphere Application
Server utility wsadmin. The command file CWSharedEnv.bat is called by
CWDashboard.bat.

3. To ensure that the command file CWSharedEnv.bat creates an environment
that is correct on the WebSphere Application Server machine, update
ORB_HOST to point to the host name of the InterChange Server instead of
local host.

4. While WebSphere Application Server is not running, execute the following
command:

D:\WebSphereICS\bin>cwdashboard.bat d:\websphere\appserver
wbiwas.itso.ral.ibm.com D:\WebSphereICS D:\SQLLIB\java

The first parameter tells where WebSphere Application Server is installed.
The second parameter is the fully-qualified host name. D:\WebSphereICS is
the folder on the WebSphere Application Server machine where the WBSM
178 Administering and Implementing WebSphere Business Integration Server V4.3

folder was copied. The last parameter points to the folder where the JDBC
driver for DB2 is stored.

5. When this command completes successfully, you can start the administrative
server with the command:

startServer server1

6. Open a browser and point it to the administrative console of WebSphere
Application Server. Update the Web server plugin configuration file. In the
menu in the left-hand pane, select Environment → Update Web Server
Plugin. Click OK to confirm your request (Figure 4-57).

Figure 4-57 Update the web server plugin configuration file

7. Start the application server that hosts the System Monitor Web application:

startServer ICSMonitor

Note that the ICSMonitor parameter is case-sensitive.

The browser that is used to work with the System Monitor should have the
SVG Viewer plugin installed. This plugin is used by certain features of the
System Monitor to visualize graphical data. This plugin is freely available from
the Adobe Web site at:

http://www.adobe.com/svg/viewer/install/main.html
 Chapter 4. Implementing client components 179

http://www.adobe.com/svg/viewer/install/main.html

8. Point your browser to http://wbiwas/ICSMonitor (where wbiwas is the host
name of the WebSphere Application Server). A logon page opens, as shown
in Figure 4-58.

Figure 4-58 Login page of System Monitor

9. Enter the name of the InterChange Server (ICS in our example), the user ID
(admin), and its password (the word null, by default).
180 Administering and Implementing WebSphere Business Integration Server V4.3

When the login is successful, the System Overview page is shown.
(Figure 4-59 on page 181)

Figure 4-59 System Overview page

10.Select a menu option that uses the SVG Viewer plugin, such as Server
Statistics. If you have to install this plugin, accept its license when it is
invoked for the first time by the browser.
 Chapter 4. Implementing client components 181

Figure 4-60 Server statistics

Figure 4-60 shows statistics only about Calls, Events, and Flows. However, this
page also contains statistics about database connections and usage and MQ
queue depth.

4.3.3 WebSphere Message Broker management client

As a system administrator for a broker domain, you use the Message Brokers
Toolkit (Broker Toolkit) to perform the following tasks:

� Create and manage the broker domain:

– Add and remove brokers.
– Add and remove execution groups.

� Assemble solution components into broker archives and deploy them to
brokers.

� Manage topics and subscriptions.
182 Administering and Implementing WebSphere Business Integration Server V4.3

� Start and stop deployed components.

� Start and stop broker and configuration manager.

� Initiate runtime problem determination:

– Trace a solution

– Inspect the Windows Event Viewer, which is used by the broker and by
WebSphere MQ to report errors

These tasks can be performed by either the Broker Toolkit or standard Windows
utilities.

Setting up the Broker Toolkit for management purposes
The Broker Toolkit uses WebSphere MQ communication techniques to interact
with the configuration manager on the remote machine. The configuration
manager also distributes requests (a deployment, for example) to the target
broker through WebSphere MQ. As a result, the management client must have at
least WebSphere MQ Client software. This software is freely available from the
following Web site:

http://www-306.ibm.com/software/integration/support/supportpacs/

The Broker Toolkit also requires that Microsoft Data Access Components
(MDAC) is available on the machine. MDAC is distributed with the WebSphere
Business Integration Message Broker product.

From a software perspective, there is not much difference between a
development client and a management client for WebSphere Business
Integration Message Broker. However, while a developer does not have to
interact with the configuration manager to develop components, an administrator
must interact with the configuration manager to do her job. A developer interacts
with the configuration manager when testing solutions by using the unit test
component. The developer can control the use of the services that are offered by
the configuration manager by making user IDs members of certain groups. The
configuration manager checks the user ID that is logged on to the client side.
This user ID is contained in the Broker Toolkit WebSphere MQ message sent to
the configuration manager.

Besides making the user ID of the broker administrator a member of the
WebSphere Business Integration Message Broker user groups, you should
consider adding WebSphere MQ authorizations to ensure that the WebSphere
MQ client can connect to the configuration manager’s queue manager, and that
the WebSphere MQ client can read and write messages to the required queues.
 Chapter 4. Implementing client components 183

http://www-306.ibm.com/software/integration/support/supportpacs/

To install the Broker Toolkit, go through the same steps as when the full product
was installed. Select a Custom setup and in the next window select only the
Message Brokers Toolkit component, as shown in Figure 4-61.

Figure 4-61 Install Broker Toolkit component only

When the installation is complete, create a connection file that contains
information about how to interact with the configuration manager. Start the toolkit
and switch to the Broker Administration perspective. Locate the Domains view
and select New → Domain. This starts the wizard to create a connection file. In
the first step, enter the name of the queue manager that is used by the
configuration manager, the host name, and port number. Click Next. (Figure 4-62
on page 185)
184 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-62 Provide connection information

In the next step, enter a local folder as the name of the server project and a
name for the connection file. This file holds the information entered in the
previous step. Click Finish. (Figure 4-63 on page 186)
 Chapter 4. Implementing client components 185

Figure 4-63 Provide Server Project folder and Connection name file

The Broker Toolkit accesses the configuration manager and retrieves the broker
topology from it. The returned information is used to populate the Domains view.
Contrasting Figure 4-64 on page 187 with Figure 3-44 on page 98, you see that
this time the view is populated. There is no need to register the broker again.
186 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-64 Management client connected to configuration manager

We use this management client in a later chapter when we deploy our first
solution to the broker.

Using Windows system tools
While the Broker Toolkit can perform many management tasks for the brokers
that are deployed in your domain, not everything is possible through this
interface. To stop and start the broker or the configuration manager, you must
have access to operating system tools.
 Chapter 4. Implementing client components 187

Open the Computer Management application by right-clicking My Computer
icon on the Windows Desktop and selecting Manage. Right-click Computer
Management and select Connect to another computer (Figure 4-65 on
page 188). Depending how your Windows security environment is configured,
you might be prompted to provide a user ID and password.

Figure 4-65 Connect to another computer

When connected, you can open the Event Viewer on the remote machine
(Figure 4-66 on page 189) to inspect runtime messages from WebSphere
Business Integration Message Broker. You also have access to the Windows
Services through this interface. This enables you to stop and start the
WebSphere Business Integration Message Broker components.
188 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 4-66 Event Viewer of remote broker machine

4.4 Summary
This chapter provided information about creating a runtime client environment, a
development client environment, and a management client environment.

The full power of having dedicated machines for each task or role becomes
apparent when we build, test, deploy, and manage a business integration
solution in the second part of this book.
 Chapter 4. Implementing client components 189

190 Administering and Implementing WebSphere Business Integration Server V4.3

Part 2 Implementing
business
integration
solution
components

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 191

192 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 5. Application scenario and
solution design

This chapter describes a business scenario and solution design that is deployed
within the business integration infrastructure discussed in Part 1, “Implementing
a BI solution framework” on page 1.

5

© Copyright IBM Corp. 2006. All rights reserved. 193

5.1 Business scenario
Within the business integration infrastructure that is described in the first part of
this book, we implement an integration solution. The scenario that we use is a
pared-down version of a real-life scenario that is described in another redbook,
Business Integration Management using WebSphere BI Modeler and Monitor A
Real World Case Study, SG24-7024. You can find the book at this Web site:

http://www.redbooks.ibm.com/abstracts/sg247024.html?Open

That redbook describes full details of the business process and uses WebSphere
Business Integration Modeler and Monitor to model, simulate, and measure the
business process. The business process that is described in that redbook
contains many human interaction points and a few application integration points.
In our book, we have simplified the process model to demonstrate two integration
points and a limited amount of human interaction.

The following drawings illustrate, from a high-level to the most detailed view, all
the business process elements we are working on for this case study. We start
first with the high-level view of the main elements in Figure 5-1 on page 195.
194 Administering and Implementing WebSphere Business Integration Server V4.3

http://www.redbooks.ibm.com/abstracts/sg247024.html?Open

Figure 5-1 High-level view of the real case business process

Figure 5-2 on page 196 shows the business process as a flow of main functions.
We have numbered the processes and some of the functions, for reference.

Machines

Shipping

Group

End of lease
or repurchase

Logistic
Vendor

Manufacturing
Entry audit: Receive, check, and put materials in stock

Shipping

Group
Machines

(stored in logistic vendor warehouse)

Customer order: Manage customer order, build, test, invoice, and ship

Shipping group
(stored in

manufacturing line)

Manufacturing

Shipping

Group

Parts replenishment
if needed

Shipping

Group

Logistic
Vendor

Shipping group (stored in manufacturing line)
 Chapter 5. Application scenario and solution design 195

Figure 5-2 Chain of functions overview

5.1.1 Customer order process
The customer order business process starts when an order arrives from an SAP
system. This is the business process trigger. Orders are validated in terms of
machine configuration, and in-stock supply is checked before releasing the order
to production. If the order is valid and supply is available in used stock, the
production line receives machines and feature codes (memory, power supplies,
channel cards, and so forth) and configures the order. Alteration performs
hardware operations by adding or removing feature codes. Feature codes that
have been removed are stored in the production line warehouse.

In parallel, the production line warehouse produces the shipping group, which is
dependent on the order configuration. The machine is tested, and the order is
closed and sent out to the logistics vendor, which performs finalization (clean,
pack, and cover) if it is a product C, and, for all product types, sends it to shipping
and invoicing activities. The business process ends when the SAP sales system
is updated after shipping and invoicing.

Parts
Replenishment

3

Entry
Audit

Order
validation

Release in
production TestAlteration

Costs
Reconciliation

Shipping
Group

Scrap

StorageEntry Audit
Planification

2- Entry Audit

1- Customer Order

Clean-up

Production line
Warehouse

Scrap program

Clean, Pack & Cover
Shipping - Invoicing

Pre-Audit
Storage

Product C

Product A, B

Close
Work
Order

Production line
Warehouse

Product A, B
Product C

30% of
A Products

5

4

Storage Perform by Logistic
contractor

Storage

Materials reception
196 Administering and Implementing WebSphere Business Integration Server V4.3

Orders can be made on feature codes only when the customer requires a
configuration upgrade of a machine that he already owns.

If the used inventory does not have all of the parts to build the machine, the
alteration and shipping group detects missing parts, or if a test detects defective
parts, parts can be replenished from an external source according to price and
replenishment time rules. On parts arrival, the order is completed and can
proceed to the end of the business process.

5.1.2 Entry audit process
Entry audit, the first subprocess in this business process, consists of storing
materials in warehouses and recording them in the inventory system.

Materials are received in the logistic vendor’s warehouse and stored until
manufacturing calls for the machine to check the configuration. At this time, if
disposition instructions are available for the machine, meaning that only some
feature codes are interesting to keep, the machine is delivered to test. The
feature codes with disposition instructions are tested, removed from the
machine, and stored in the production line warehouse. This is the case for 30%
of product A machines. This enables the customer order process to respond
quickly to an order on feature codes only, especially if they are already tested. In
this case, all that is needed is to pack the tested feature codes, as they are ready
to be shipped without having any other operations performed. The rest of the
machine, and any defective parts that were detected during test operations, are
sent directly to scrap.

When materials’ configuration has been checked, they are stored in two different
locations:

� In the logistic vendor warehouse for machines (large-dimension)
� In the production line warehouse for feature codes and shipping group

5.1.3 Subprocesses
Three subprocesses are identified in the business process. They are labeled 3
(parts replenishment), 4 (scrap), and 5 (test) in Figure 5-2 on page 196.

Parts replenishment
This is critical to manufacturing fulfillment of customer orders. It must be very
responsive (taking less than 0.5 day) to be able to assess order feasibility. Parts
can be replenished from up to four different locations, which can be internal to
the plant or even in other countries. Although shipment tracking of these parts in
completing customer orders is stopped while waiting for them, it is key with
respect to the manufacturing cycle time-committed target. This is where the
 Chapter 5. Application scenario and solution design 197

business integration that is associated with workflow management was
perceived to be necessary in order to monitor and closely manage the
completeness of the business process.

Scrap
This program is common to the customer order process and the entry audit
process. It is triggered by the entry audit process after advanced testing of
feature codes and by the customer order process when parts are found to be
defective during test operations. The customer order process also has its scrap
program based on yearly financial decisions and inventory analysis. Scrap
operations are approved by different people in different organizations. Scrap
operations is an excellent prospect for part of an implementation of a business
integration management system with a workflow to track the scrap progress and
keep archives for audit purposes.

Test
Test is common to the customer order process and the entry audit process.
Capacity conflicts can occur at this step, as seen during the reengineering study.
A close monitoring of this process helps production-line management to deal
with solving capacity issues.

5.2 What we implemented
Instead of implementing the whole business process in this book, we create a
reduced business process designed to demonstrate the use of WebSphere
Business Integration Server in three situations:

� Human workflow integration
� Process integration
� Message-based integration

If you are is interested in modeling, simulating, and business monitoring of a
business process with real-life complexity, consult the redbook Business
Integration Management using WebSphere BI Modeler and Monitor A Real
World Case Study, SG24-7024.

Our implemented the business process involves the creation of a new order, the
saving of that order information into a master order database, aggregating part of
the information from multiple suppliers, manually approving the final order, and
acting upon that final approval to prepare for billing and shipment.

Figure 5-3 on page 200 shows the simplified model as it is implemented in
WebSphere MQ Workflow. The first integration point involves a ‘hand-shake’
between WebSphere MQ Workflow and InterChange Server. This integration
198 Administering and Implementing WebSphere Business Integration Server V4.3

point occurs at the Create Sales Order node in the process model. Through the
use of WebSphere MQ Workflow Web Client, a new process instance is created
(the actual sales order). Included in the new process instance are the following
details about the sales order:

� OrderDate
� CustomerNumber
� ExpectedDeliveryDate
� NumberOfParts
� OrderDetail (PartNumber, Quantity)

After this information is entered, WebSphere MQ Workflow generates and sends
an XML message to an input queue (MQWF.INPUT) residing on the InterChange
Server queue manager. From there, the Interchange Server retrieves the
message and uses the Sales Order Collaboration to control the inserting of the
order and order line items data into a database. A new order number is
automatically created in the database and returned to the collaboration, which in
turn sends the information back to the controlling workflow through the output
queue (FMC.FMCGRP.EXE.XML) where it is retrieved with the MQ Workflow
Server.

The second integration point involves a hand-shake, the exchange of credentials,
between WebSphere MQ Workflow and Message Broker. This integration point
occurs at the Order Parts node in the process model. Without any manual
intervention, the Message Broker retrieves the XML message sent from the
Workflow server (ORDER.INPUT). The WebSphere Business Integration
Message Broker behaves as a supplier simulator by inserting the following items
in the message:

� Supplier
� Order Reference
� Expected Shipment, Reception, and Registration dates
� Case number
� Invoice Price

Next, the data is routed back to the Workflow server through an alias queue
(FMC.FMCGRP.EXE.XML). When Workflow acquires the response message
from the Message Broker, human intervention is required to approve the order.
The order approval is based on whether the unit price per part is too high or is
appropriate and, in the process, validating whether or not it is cost effective to
fulfill the sales order. Through the Workflow Web Client, you are required to
insert a response in the Authorization field of the activity instance (1 to authorize
the transaction) and to fill in the corresponding order status (Active or Canceled).
Based on your response, the Workflow directs the message to the Confirm Order
or Delete Sales Order node. Both the Confirm Order activity and the Delete
 Chapter 5. Application scenario and solution design 199

Sales Order activity send an asynchronous message to the InterChange Server
to update the status of the order appropriately.

Figure 5-3 Customer order process
200 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 6. Implementing a process
model in WebSphere MQ
Workflow

To accommodate a long-running business process with human interactions, the
decision was made to implement the business process in WebSphere MQ
Workflow.

This chapter describes how to model, deploy, and test the workflow.

6

© Copyright IBM Corp. 2006. All rights reserved. 201

6.1 Overview
To model a business process for use in WebSphere MQ Workflow Runtime
server, you can use the modeling tool provided by WebSphere MQ Workflow,
called Buildtime, or you can use the WebSphere BI Modeler product. The use of
this product and its integration with WebSphere MQ Workflow and other products
is demonstrated in the redbook Business Integration Management using
WebSphere BI Modeler and Monitor A Real World Case Study, SG24-7024. In
this book, we use the standard Buildtime tool.

Chapter 4, “Implementing client components” on page 119 described the setup
of a development client that included WebSphere MQ Workflow Buildtime. This
environment is used in this chapter to implement the process model.

Modeling and validating a business process is often an iterative task. It would be
unwise to model the process with all integration aspects from the beginning. A
good approach is:

� Implement the business process with all activities, including conditions. All
activities contain dummy programs so that a process tester can easily walk
through the process model using the Web client.

� Deploy this simplified process model to the runtime server.

� Validate the condition logic using the Web client. Make sure that all paths are
tested and that they can be reached.

� Add rules to assign activities to the correct persons or groups. Deploy again.
This time, the validation requires the use of multiple sessions where each
session is used by a different person representing a different role in the
process model.

� Add integration logic. Update those activities that link to external programs or
integration platforms, such as WebSphere InterChange Server and
WebSphere Business Integration Message Broker.

� Deploy and validate again. This time, the validation will require the assistance
of developers who are responsible for the programs or systems that
WebSphere MQ Workflow is integrating with.

As such, each iteration adds complexity. If a defect is discovered and it requires
a change at an already validated level, the test process should resume at that
level again, to make sure that the change did not affect other interfaces.
202 Administering and Implementing WebSphere Business Integration Server V4.3

6.2 Creating the process model
The technique to get from a blank model to a completed model can be different
for each user of a modeling tool, in the same way that each developer will have a
way to go from class specification to class implementation. The approach we
favor is demonstrated below:

1. Start with creating data structures.
2. Create program objects that implement activities in the process model.
3. Add activities to the process model.
4. Connect the activities to each other with appropriate condition settings.
5. Add data mapping between output and input data structures.

6.2.1 Creating data structures
Defining data structures is performed within the Implementations tab in
Buildtime. Buildtime considers two types of implementation objects: programs
and data structures.

To create a new data structure, right-click the Data structures folder and select
New Data Structure. This opens an interface on which you can add elements to
the data structure. Elements can either be a simple data type or a complex data
type, which is one that has been defined previously to Buildtime.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 203

Figure 6-1 shows the elements in the Part_Order data structure.

Figure 6-1 Details of the Part_Order data structure
204 Administering and Implementing WebSphere Business Integration Server V4.3

Defining complex data structures, such as the Order_Form structure shown in
Figure 6-2, is a bottom-up process. First, define the data structures that are used
as types in the overall structure, such as Part_Order. Then you can define the
overall structure, Order_Form, that has an element of the Part_Order type.

Figure 6-2 Tree view of data structure Order_Form
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 205

While Figure 6-2 shows a structural view of the data structure Order_Form, it
does not provide details about the data structure of each element. These details
are shown in Figure 6-3. The tree view is shown when clicking the button that is
circled in the figure.

Figure 6-3 Detailed view of data structure Order_Form

The Order_Form structure is used to provide details about the actual order from
a customer. To fulfill the order, parts might have to be ordered from suppliers.
206 Administering and Implementing WebSphere Business Integration Server V4.3

The Parts_Replenishment_Form data structure is used for these purposes.
Figure 6-4 shows a tree view of this structure. Note again that another data
structure has to be defined first: Part_Detail.

Figure 6-4 Tree view of the data structure Parts_Replenishment_Form
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 207

Figure 6-5 shows a third data structure, Completed_Order_Form, which
combines elements from the preceding two data structures.

Figure 6-5 Tree view of the data structure Completed_Order_Form

6.2.2 Creating program objects
Developing and validating a process model is a repetitive process; you should
deploy and validate the process model before adding more features to it. The
first model that we deploy and validate only has human interaction by a single
person. It enables us to validate the control logic and the data mapping. For this
level of validation we only need one single program object that does not
represent anything specific.
208 Administering and Implementing WebSphere Business Integration Server V4.3

To create such a dummy program object, follow these steps:

1. Right-click the Programs folder and select New Program. An interface
similar to Figure 6-6 appears, on which you provide details about the program
that will run.

2. Enter a name for the program on the General tab.

3. On the Data tab, make sure that the Program can handle any data
structures option is selected.

4. On the Windows NT® tab, provide the name of the executable, which in this
case does not even have to exist physically on the WebSphere MQ Workflow
server system. Of course, when you want to invoke a real program as part of
the process model, you will have to provide the path and name of the
program.

Figure 6-6 Creating a dummy program object
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 209

6.2.3 Creating the process diagram
To create a process, switch to the Processes tab in Buildtime. Processes can be
organized in categories. For the purposes of this implementation, we do not need
a separate categorization, so we use the default category.

1. Right-click the No category assigned folder and select New Process.

2. On the General tab, provide a name for the new process, such as
OrderProcess.

3. On the Data tab, identify the input and output data structures for the process
itself, which is Order_Form in our case.

4. The Control tab, shown in Figure 6-7 on page 211, provides several options
that are usually set at a higher level, for example at the domain or server level.
However, here we can override the global settings with specific values. One
option that we would like to override is the setting that controls whether
finished processes are kept in the system for a period of time or deleted as
soon as they are completed. In this case, we deselect the Inherited box to
choose to Keep finished processes in the system For 1 day.
210 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-7 Control properties of a process

5. When all properties of the process have appropriate values, click OK.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 211

To see the completed process model diagram, as shown in Figure 6-8, right-click
the process and select Diagram. Here, we provide details about this process
model and how to build it.

Figure 6-8 Simplified process model

1. The first step in modeling the process is to add a source node and a sink
node to the diagram. These two nodes basically represent the incoming and
outgoing data structure of the process. Usually, the source node has a data
connector pointing to the first activity of the process model.

2. Add activities for each step in the process. Each activity is linked to a program
that has to be executed. This program can be a dummy entry or a real
program. Figure 6-9 on page 213 shows the details of the Order_Parts
activity. The program activity is the dummy program that we created earlier.

default
connector
212 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-9 General details about an activity

3. On the Execution tab, select the User program execution agent option. For
automated activities, we change this to point to User program execution
server (UPES), which is, at the lowest level, an MQ queue that acts as the
input queue for a server component.

4. On the Start tab, set the option to start the activity automatically.

5. On the Exit tab, set the option to end the activity automatically. An alternative
is the use of an exit condition in which the workflow server validates the
output and, if the exit condition is not met, the activity is restarted.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 213

At this time, all five activities have the same kind of details, except for the Data
tab. Figure 6-10 shows the Data tab for the Order_Parts activity. Note that the
Data structure is the same (Parts_Replenishment_Form) for both Input and
Output.

Figure 6-10 Data structures for the Order_Parts activity

Table 6-1 lists the data structures that are used for the other activities in the
process model.

Table 6-1 Data structures for the other activities

Activity Data structure

Create Sales Order Order_Form

Approve Order Parts_Replenishment_Form

Delete Sales Order Order_Form

Confirm_Order Completed_Order_Form
214 Administering and Implementing WebSphere Business Integration Server V4.3

The next step is to add the control logic to the process model by adding control
connectors between the activities. Except for the link between Approve Order
and Delete Order, the links are all standard connectors.

The connector between Approve Order and Confirm Order has a condition
attached to it. Right-click the connector and select Properties. Figure 6-11
shows the properties of this connector and the transition condition. The condition
refers to an element of the output data structure. If the value of the element
Authorized is 1, then the condition evaluates to true. One of the start conditions
of the activity is that at least one incoming connector has to evaluate to true.

Figure 6-11 Transition condition to test approval

The connector between Approve Order and Delete Order is a default connector,
which is represented by a small circle in the middle (see Figure 6-8 on
page 212). This type of connector is essentially the equivalent of the concept of
else in the programming language construct if-then-else. The effect is that the
runtime engine will traverse this path in the process model as long as the
Authorized element does not have the value 1.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 215

Besides a control flow, a process diagram also has a data flow, which is modeled
with data connectors. Data connectors are represented with dotted lines. Data
flow can be different from control flow. For example, the input to the Confirm
Order activity is populated with the output of Create Sales Order and Approve
Order, while the Confirm Order activity is only executed after the Approve Order
is completed and the transition condition evaluates to true. There is no control
link directly from the Create Sales Order to the Conform order activity.

6.2.4 Creating a data mapping
The final step before we can perform the first deployment and validation of the
process model is the addition of data mapping.

Mapping to Create Sales Order activity
To map the process input to the activity input, right-click Create Sales Order and
select Container Mapping → Mapping To. This opens the data mapping
window (Figure 6-12 on page 217).

Note: For more complex process models, it might be a good idea to perform
process deployment and validation before adding data mapping. In such a
case, use a default data structure for each activity. This makes it easier to
perform validation of the process logic, as long as the conditions do not refer
to any elements in the data structures.
216 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-12 Data mapping for activity Create Sales Order

The actual mapping for this activity is easy because it uses the same data
structure as the actual process. Drag the member _STRUCT from the left data
structure and drop it onto the member _STRUCT on the right side to create the
mapping statement _BLOCK:_STRUCT. This means that the runtime engine will
copy the complete structure from the process input to the activity input.

Mapping to the Order Parts activity
The mapping for the Order Parts activity is a bit more complex. This time, the
input data structure for Order Parts is different from the output data structure for
Create Sales Order.

Right-click the activity and select Container Mapping → Mapping To.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 217

Table 6-2 shows the different mappings. Each is created by dragging the element
from Order_Form to the corresponding element in Parts_Replenishment_Form.

Table 6-2 Data mapping from Order_Form to Parts_Replenishment_Form

Order_Form Parts_Replenishment_Form

WorkOrderNumber WorkOrderNumber

NumberOfParts NumberOfParts

OrderDetail(0) PartOrder inside PartList(0)

OrderDetail(1) PartOrder inside PartList(1)

OrderDetail(2) PartOrder inside PartList(2)

OrderDetail(3) PartOrder inside PartList(3)

OrderDetail(4) PartOrder inside PartList(4)
218 Administering and Implementing WebSphere Business Integration Server V4.3

When the mapping is completed, the data mapping window looks as shown in
Figure 6-13.

Figure 6-13 Data mapping for activity Order Parts

Mapping to the Approve Order activity
This mapping is similar to the mapping for Create Sales Order. Both activities,
Order Parts and Approve Order, use the same data structure. It is sufficient to
map the _STRUCT members to each other.

Mapping to the Confirm Order activity
The mapping for this activity is a bit more complex because it has two incoming
data connectors. The Confirm Order activity must have access to the details of
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 219

the actual order and the details of the parts ordering step. The combined data is
stored in the Completed_Order_Form data structure.

Right-click the Confirm Order activity and select Container Mapping →
Mapping To. This time, the data mapping window shows two structures in the
left part of the window, corresponding with the two incoming data connectors.

Table 6-3 lists the mappings to populate the input data structure for the Confirm
Order activity. The overall values for the order are copied from the Create Sales
Order activity, and the specific details about each part are copied from the output
of the Approve Order activity.

Table 6-3 Data mapping for Confirm Order

Parts_Replenishment_Form Completed_Order_Form

PartsForm.PartList OrderDetail

Authorized Authorized

Order_Form

OrderNumber OrderNumber

OrderDate OrderDate

CustomerNumber CustomerNumber

ExpectedDeliveryDate ExpectedDeliveryDate

NumberOfParts NumberOfParts

WorkOrderNumber WorkOrderNumber

OrderStatus OrderStatus
220 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-14 shows the data mapping window when the mappings of Table 6-3
are implemented.

Figure 6-14 Data mapping for the Confirm Order activity

Mapping to the Delete Order activity
The mapping to the Delete Order activity is similar to mapping to Confirm Order.
The two sources are the Order_Form from the Create Sales Order activity and
the Parts_Replenishment_Form from the Approve Order activity. The target data
structure this time is the Order_Form data structure, because there is no need to
carry the details of the parts ordering step into the Delete Order activity. The only
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 221

element to be mapped from the Parts_Replenishment_Form is the Authorized
element that carries the disapproval code for this order.

Table 6-4 lists the mapping details for this activity, and Figure 6-15 on page 223
shows the data mapping window with the mapping statements.

Table 6-4 Data mapping for Delete Order

Parts_Replenishment_Form Order_Form

Authorized Authorized

Order_Form

OrderNumber OrderNumber

OrderDate OrderDate

CustomerNumber CustomerNumber

ExpectedDeliveryDate ExpectedDeliveryDate

NumberOfParts NumberOfParts

WorkOrderNumber WorkOrderNumber

OrderStatus OrderStatus
222 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-15 Data mapping for the Delete Order activity

Mapping to the sink node
The final mapping is to the sink node, which represents the output data structure.
Here we want to copy the original Order_Form and the Authorized field from the
approval step. The mapping details are similar to the previous activities.
Figure 6-16 on page 224 shows the details.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 223

Figure 6-16 Data mapping for the sink node

This completes the process definition. We can now deploy it to the runtime and
verify that the model is correct.
224 Administering and Implementing WebSphere Business Integration Server V4.3

6.3 Deploying the process flow in Runtime server
To ensure that no errors are present in the newly created FDL file, a sanity check
can be done within the Buildtime environment.

Go to Process → Verify (Figure 6-17).

Figure 6-17 Buildtime verification

Figure 6-18 Verification response

When the FDL is validated (Figure 6-18), you may proceed to export the FDL.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 225

To start the export, follow these steps:

1. Select File → export. A new dialog box opens (Figure 6-19).

Figure 6-19 Export process model

2. Deselect Select all objects. By deselecting this item, you have the option of
choosing specific objects to be exported (Figure 6-20 on page 227).
226 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-20 Export choices

3. After choosing the objects to be included in the FDL file, select OK and enter
a file name. Press save.

A log of the export is generated (Figure 6-21 on page 228). Review it to see
that everything is as expected.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 227

Figure 6-21 Messages during export to FDL

After the FDL is exported, the file must be transferred and imported into the
WebSphere MQ Worklfow runtime environment. The import process can be
performed either directly on the runtime server or by using a client machine that
has the administrative components of WebSphere MQ Workflow installed, such
as the administrative client we implemented in Chapter 4, “Implementing client
components” on page 119.

To import the process model into the runtime, we use the fmcibie utility. The
-i option is used to point to the file that we want to import. The -y parameter
points to the name of the configuration. The -u and -p parameters are used to
provide the user ID and password of the workflow administrator. Finally, the
-to parameter tells the utility to overwrite any existing objects if required and to

Note: To use the import utility, the administrative client machine must have
DB2 installed. For other functions, only an MQ client is required.
228 Administering and Implementing WebSphere Business Integration Server V4.3

translate the process model into a process template, which can be executed in
the runtime environment.

Figure 6-22 shows the output of the import (fmcibie) utility. When the import
completes, we can use the runtime client facilities to test the workflow process.

Figure 6-22 Output from fmcibie utility

6.4 Validating the workflow process flow
There are many different ways to start a WebSphere MQ Workflow process flow,
including:

� WebSphere MQ Workflow runtime client
� WebSphere MQ Workflow Web client
� Custom-written client interface
� Sending a WebSphere MQ message to WebSphere MQ Workflow

For our test and validation purposes, the Web client is the most appropriate
interface. In 4.1, “Implementing WebSphere MQ Workflow Web Client” on
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 229

page 120 we described the implementation of the Web Client. This is the process
to test it.

1. Open a browser and point it to:

http://wbiwas/MQWFClient/RTC.html

wbiwas is the host name of the server where WebSphere Application Server is
running and where the Web Client is deployed.

2. After logging on with the user ID admin and password password, you see the
interface shown in Figure 6-23 in which we now create the lists to customize
the Web Client interface. Click the icon next to Create a list.

Figure 6-23 Create a list
230 Administering and Implementing WebSphere Business Integration Server V4.3

3. In the window that popped up, select Process Template List and provide a
name for the list such as Templates (Figure 6-24). Click OK.

Figure 6-24 Create a template list

As shown in Figure 6-24, this is a public list, meaning that every workflow user
can use it. This figure also shows that more advanced features can be used to
create filtered and or private lists.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 231

Our list of templates (Figure 6-25) is displayed. The list contains only one
process because we have imported only one single process model
(OrderProcess).

Figure 6-25 List of templates

4. Follow the same steps to create a list of process instances (we named ours
Instances) and a list of work items (which we named Work List).

5. In the Navigate list, select the view List of Lists to generate a list of defined
lists (Figure 6-26). Click the Templates link.

Figure 6-26 List of lists
232 Administering and Implementing WebSphere Business Integration Server V4.3

6. This brings us back to our list of templates (Figure 6-27). Click the Create
and Start Instance icon to create an instance and provide it with input data.

Figure 6-27 Process templates - create and start an instance icon
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 233

7. When the Create and start instance page appears (Figure 6-28), enter data
for the process and click Create and start Instance.

Figure 6-28 Create and start instance from template “OrderProcess”

When the instance is created, the first activity usually starts automatically. In
any case, this first activity will appear in an individual’s work list. Use the
Navigate list to switch to the work list, which is shown in Figure 6-29 on
page 235.
234 Administering and Implementing WebSphere Business Integration Server V4.3

8. Click the check-out icon (circled in the left of Figure 6-29) to see the output
data structure for this activity.

Figure 6-29 Work list for user ID admin

By providing data and stepping through the process, you can validate that
data is passed along as expected and that conditions are evaluated as
expected. At any time, you can access the process monitor interface by
selecting the camera icon (circled in the right of Figure 6-29) in the work list.

Figure 6-30 shows an example of a process instance that is now in the Confirm
Order step. All other steps have been completed successfully.

Figure 6-30 Process monitor

By repeating the tests in this section, we can validate the control logic and the
mapping of our process model. When the testing is complete, we can return to
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 235

the Buildtime to update activities that are implemented by other server
components, such as the Message Broker and the InterChange Server.

6.5 Update activities to integrate automated activities
Now that the process model is validated, we can make the appropriate activities
automated activities instead of user activities.

6.5.1 Create user-defined program execution servers
To create user-defined program execution servers, follow these steps:

1. Within the Buildtime tool, select the Network tab to define two UPES objects
corresponding with the InterChange Server and the Message Broker.

2. Right-click FMCSYS and select New User-Defined Program Execution
Server (Figure 6-31).

Figure 6-31 New UPES

A UPES has a name and points to a remote queue defined on a local queue
manager (WFQM).
236 Administering and Implementing WebSphere Business Integration Server V4.3

3. To create the UPES for the InterChange Server, we use the InterChange
Server of the development environment. Provide a name for this UPES, for
example ICSDEV, on the General tab (Figure 6-32).

Figure 6-32 The General tab of the UPES ICSDEV

4. On the Message Queue tab (Figure 6-33 on page 238), enter the name of
the remote queue (MQWF.OUPUT), and the local queue manager (WFQM). The
remote queue defined on WFQM, will point to a local queue (MQWF.INPUT)
on the WBIICS server. Defining these WebSphere MQ objects will allow the
XML message generated by Workflow to be delivered to the input queue
defined on the remote queue manager (ICS.queue.manager). Through the use
of a WebSphere MQ Workflow connector, WebSphere InterChange Server
will pull in the newly delivered message. Refer to Chapter 7, “Sales order
management in InterChange Server” on page 249 about the setup of the
WebSphere MQ Workflow connector.

Note: For purposes of deploying FDL’s across various development, test,
and production environments, the queue manager name can be left blank
in the Messaging Queuing tab (Figure 6-33). In doing so, you do not have
to edit the FDL every time a promotion occurs. The runtime environment
defaults to the WebSphere Workflow queue manager running on the given
server.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 237

Figure 6-33 The Message Queuing tab for the UPES ICSDEV

5. Repeat the same steps to create a UPES that represents the broker
(Figure 6-34 on page 239).
238 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-34 The General tab of the UPES WBIBRKR

6. Unlike ICS.queue.manager, the Message Broker queue manager is in a
queue manager cluster with the Workflow queue manager. So, in Figure 6-35
on page 240, the queue, ORDER.INPUT (a shared queue), acts as the input
queue for a message flow. The name of the queue manager is BKQM. Refer to
Chapter 8, “Replenishing parts in WebSphere BI Message Broker” on
page 377 for the details about this message flow.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 239

Figure 6-35 The Message Queuing tab of the UPES WBIBRKR

6.5.2 Create program objects for InterChange Server
The WebSphere MQ Workflow connector requires that specific parameters be
passed to it through the program object. Therefore, we must create three new
program objects:

� Create_Order
� Delete_Order
� Confirm_Order

Follow similar steps to those used to create the dummy program object:

1. As shown in Figure 6-36 on page 241, the command line requires specific
parameters. The command line string is:

collab=SalesOrderProcessing_MQWF_to_MQWF; verb=Create

This string is used to tell the WebSphere MQ Workflow connector what
collaboration to use and what verb to use to process the incoming message.
Note that the name of the business object is derived directly from the name of
the data structure.
240 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 6-36 Details of the Create_Order program

2. Create the Delete_Order program using the command line string:

collab=SalesOrderProcessing_MQWF_to_MQWF; verb=Delete

3. For the program Confirm_Order, the command line string is:

collab=SalesOrderProcessing_MQWF_to_MQWF; verb=Update

There are no specific requirements for the broker, so we can continue to use the
dummy program for the Order Parts activity.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 241

6.5.3 Update activities in process diagram
With new programs defined, we can return to the process diagram and link the
automated activities to the corresponding program objects:

1. Open the properties of the Create Sales Order activity. On the General tab,
update the name of the program to point to the Create_Order program
(Figure 6-37). You can use the flashlight icon to pick the program from a
pop-up window.

Figure 6-37 Update Create Sales Order activity
242 Administering and Implementing WebSphere Business Integration Server V4.3

2. In the Execution tab (Figure 6-38), unselect User program execution
agent.

Because we expect a reply from the InterChange Server about the new sales
order, we should select Synchronous. This means that this activity will keep
running and waiting for a response. However, the actual runtime engine will
not wait for a response; it will switch to execute another process instance if
one is available. When the actual reply message arrives, this waiting process
is reactivated.

Figure 6-38 Update activity Create Sales Order

Also, the underlying mechanism for passing the request message from
WebSphere MQ Workflow to the UPES and to pass the response back to
WebSphere MQ Workflow is implemented by message queuing, which is
clearly not a synchronous mechanism.

Tip: You can click the flashlight icon to pick the correct UPES from the
pop-up window shown in Figure 6-39 on page 244.
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 243

Figure 6-39 Pick the correct UPES

3. The Order Parts activity only has to be updated on the Execution tab. Select
the UPES WBIBRKR and ensure that Mode is set to Synchronous, as we
expect a response from the broker about the ordering of parts.

4. The Delete Order and Confirm Order activities have their respective programs
on the General tab. For the Execution tab, they point to the same UPES that
was used for the Create Sales Order activity.
244 Administering and Implementing WebSphere Business Integration Server V4.3

However, the Mode is different, as the process instance does not have to wait
for the completion of these activities. Select Asynchronous for both activities
(Figure 6-40).

Figure 6-40 Asynchronous mode for Confirm and Delete Order activities

When all of these changes are completed, we can again export the process
model and reimport it into the runtime environment. Make sure that the new
UPES objects and the new program objects are exported.

The import into the runtime environment is made in the same way as before.

The UPES objects rely on MQ definitions, so we must define these objects.
Detailed instructions about the definitions for the setup of the ICSDEV UPES are
included in Chapter 7, “Sales order management in InterChange Server” on
page 249 for the setup of the ICSDEV UPES. Refer to Chapter 8, “Replenishing
parts in WebSphere BI Message Broker” on page 377 for details about MQ
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 245

definitions to support the use of the WBIBRKR UPES. In short, these instructions
help define:

� Sender and receiver channels between the Workflow queue manager on one
side and the InterChange Server and Message Broker queue managers on
the other side

� Transmission queues that are used to store messages before transmission

� Remote queue objects

� Local queue objects

When this setup is in place, we can use the WebSphere MQ Workflow Web
Client to create and start an instance. When the instance is started, an MQ
message is sent for pick-up by the WebSphere MQ Workflow connector. This
component has not yet been created, so no response will come. The activity
remains in a running state, which can be seen by looking at the process monitor
for this instance. In Figure 6-41, the double green triangle icons indicate that
Create Sales Order is running.

Figure 6-41 Process monitor view with a running UPES activity
246 Administering and Implementing WebSphere Business Integration Server V4.3

When browsing the MQWF.INPUT queue on ICS.queue.manager, we can see
the structure of the message that is waiting for processing by the WebSphere
MQ Workflow connector (Example 6-1).

Example 6-1 Sample XML message for the WebSphere MQ Workflow connector

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
 <WfMessageHeader>
 <ResponseRequired>Yes</ResponseRequired>
 </WfMessageHeader>
 <ActivityImplInvoke>

<ActImplCorrelID>RUEAAAABAAQAGgAAAAAAAAAAAAAAAwAAAAEABQAAAAAAAAAAAAAAAAADQQAAAAEABAAbAAAAAAAAAA
BF</ActImplCorrelID>
 <Starter>ADMIN</Starter>
 <ProgramID>
 <ProcTemplID>AAAAAQAFAAAAAAAAAAAAAA==</ProcTemplID>
 <ProgramName>Create_Order</ProgramName>
 </ProgramID>
 <ImplementationData>
 <ImplementationPlatform>WindowsNT</ImplementationPlatform>
 <ProgramParameters>collab=SalesOrderProcessing_MQWF_to_MQWF; verb=Create</ProgramParameters>
 <ExeOptions>
 <PathAndFileName>fmcnshow.exe</PathAndFileName>
 <InheritEnvironment>true</InheritEnvironment>
 <StartInForeGround>true</StartInForeGround>
 <WindowStyle>Visible</WindowStyle>
 </ExeOptions>
 </ImplementationData>
 <ProgramInputData>
 <_ACTIVITY>Create Sales Order</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQAEABoAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Order_Form>
 <OrderNumber></OrderNumber>
 <OrderDate>06/11/2004</OrderDate>
 <CustomerNumber>17854</CustomerNumber>
 <ExpectedDeliveryDate>06/12/2004</ExpectedDeliveryDate>
 <NumberOfParts>1</NumberOfParts>
 <OrderDetail>
 <PartNumber>PartNumber1</PartNumber>
 <Quantity>2</Quantity>
 <InStock>5</InStock>
 </OrderDetail>
 <OrderDetail>
 <PartNumber></PartNumber>
 </OrderDetail>
 <OrderDetail>
 Chapter 6. Implementing a process model in WebSphere MQ Workflow 247

 <PartNumber></PartNumber>
 </OrderDetail>
 <OrderDetail>
 <PartNumber></PartNumber>
 </OrderDetail>
 <OrderDetail>
 <PartNumber></PartNumber>
 </OrderDetail>
 <WorkOrderNumber></WorkOrderNumber>
 <OrderStatus></OrderStatus>
 </Order_Form>
 </ProgramInputData>
 <ProgramOutputDataDefaults>
 <_ACTIVITY>Create Sales Order</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQAEABoAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Order_Form> </Order_Form>
 </ProgramOutputDataDefaults>
 </ActivityImplInvoke>
</WfMessage>

In the next chapter, we describe the development of the sales order collaboration
and the connector configuration, so that this message can be processed and a
response can be sent for the workflow server.
248 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 7. Sales order management in
InterChange Server

This chapter discusses the implementation of the required artifacts to complete
the InterChange Server portion of this overall integration solution. This involves
the usage of a prebuilt Sales Order Management Collaboration and two
WebSphere Business Integration Adapters, namely the WebSphere Business
Integration Adapter for WebSphere MQ Workflow and the WebSphere Business
Integration Adapter for JDBC.

We start by defining the overall interaction between various integration
components. This includes WebSphere MQ Workflow, WebSphere Business
Integration Adapters, WebSphere InterChange Server, and the backend Order
DB2 database.

7

© Copyright IBM Corp. 2006. All rights reserved. 249

7.1 Introduction
In this chapter, we explain all aspects for the scenario that are related to creating,
deploying and testing the integration artifacts for the InterChange Server. The
heart of the InterChange Server artifacts is the Sales Order Management
Collaboration that uses business logic to choreograph the interactions with our
source and target systems. This collaboration object is instantiated by certain
activities of the workflow process.

To simulate our target backend system, we used a simple database. (See 7.3,
“Application database ORDERMGT” on page 256.) Our Sales Order
Management Collaboration listens on its From Port for the delivery of an Order
Generic Business Object (GBO). The MQ Workflow Adapter originally receives
the WebSphere MQ Workflow message. This XML message is parsed to the
Application-Specific Business Object (ASBO) by the MQ Workflow Adapter and
mapped to the GBO, which is passed to the collaboration. In order to pass the
GBO to our backend, as directed by the collaboration logic, the InterChange
Server converts it to the corresponding database ASBO and sends it to the
JDBC Adapter.

The response message follows the inverse path, to return the response message
to the WebSphere MQ Workflow calling activity. Figure 7-1 shows this interaction
schematically.

Figure 7-1 Overview interaction between WebSphere MQ Workflow and InterChange Server

Note: Throughout this book the words adapters and connectors are used
synonymously to reference the WebSphere Business Integration Adapters.

M
Q

W
or

kf
lo

w
C

on
ne

ct
or

MQ

WMQWF ICS

App.
DB2JD

B
C

C
on

ne
ct

orSalesOrderMgt

From ToJMSJMSUPES
Activity

MQ
XML
MQ
XML

Data
Handler
250 Administering and Implementing WebSphere Business Integration Server V4.3

7.2 Scenario implementation overview
In our scenario, there are three different MQ Workflow activities that call the
InterChange Server. Those MQ Workflow activity names are:

� Create_Order
� Confirm_Order
� Delete_Order

Create_Order activity uses the MQ Workflow data structure called Order_Form,
while both the Confirm_Order and Delete_Order activities share the same MQ
Workflow data structure called Completed_Order_Form. The InterChange
Server defines these data structures as ASBOs.

The Create_Order activity directs the InterChange Server to create a record in
the ORDER table and ITEMS table. Confirm_Order changes the status of the
existing ORDER record that was created in the original Create_Order activity,
while Delete_Order performs a soft delete of the original record by changing the
status field to Rejected status.

WebSphere MQ Workflow communicates with the InterChange Server by placing
XML messages on a predefined queue that are in the form of the corresponding
data structure, namely Order_Form or Completed_Order_Form. Example 7-1 on
page 252 and Example 7-2 on page 254 are examples of those XML input
message from MQ Workflow for the two data structures. Notice that the
Create_Order activity is synchronous, while the Confirm_Order and
Delete_Order activities are each asynchronous and thus do not require a
response from the InterChange Server.
 Chapter 7. Sales order management in InterChange Server 251

Example 7-1 Sample input message from MQ Workflow for Create_Order activity

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
 <WfMessageHeader>
 <ResponseRequired>Yes</ResponseRequired>
 </WfMessageHeader>
 <ActivityImplInvoke>

<ActImplCorrelID>RUEAAAABAA1ABAAAAAAAAAAAAAAAAwAAAAEADAAAAAAAAAAAAAAAAAADQQAAAA
EADUAFAAAAAAAAAABF</ActImplCorrelID>
 <Starter>ADMIN</Starter>
 <ProgramID>
 <ProcTemplID>AAAAAQAMAAAAAAAAAAAAAA==</ProcTemplID>
 <ProgramName>Create_Order</ProgramName>
 </ProgramID>
 <ImplementationData>
 <ImplementationPlatform>WindowsNT</ImplementationPlatform>
 <ProgramParameters>collab=SalesOrderProcessing_MQWF_to_MQWF;
verb=Create</ProgramParameters>
 <ExeOptions>
 <PathAndFileName>fmcnshow.exe</PathAndFileName>
 <InheritEnvironment>true</InheritEnvironment>
 <StartInForeGround>true</StartInForeGround>
 <WindowStyle>Visible</WindowStyle>
 </ExeOptions>
 </ImplementationData>
 <ProgramInputData>
 <_ACTIVITY>Create Sales Order</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQANQAQAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Order_Form>
 <OrderNumber></OrderNumber>
 <OrderDate>10/20/2004</OrderDate>
 <CustomerNumber>TRAVIS001</CustomerNumber>
 <ExpectedDeliveryDate>10/30/2004</ExpectedDeliveryDate>
 <NumberOfParts>5</NumberOfParts>
 <OrderDetail>
 <PartNumber>PartNumber1</PartNumber>
 <Quantity>22</Quantity>
 <InStock>35</InStock>
 </OrderDetail>
 <OrderDetail>
 <PartNumber>PartNumber2</PartNumber>
 <Quantity>21</Quantity>
 <InStock>52</InStock>
 </OrderDetail>
 <OrderDetail>
 <PartNumber>PartNumber3</PartNumber>
252 Administering and Implementing WebSphere Business Integration Server V4.3

 <Quantity>12</Quantity>
 <InStock>15</InStock>
 </OrderDetail>
 <OrderDetail>
 <PartNumber>PartNumber4</PartNumber>
 <Quantity>2</Quantity>
 <InStock>5</InStock>
 </OrderDetail>
 <OrderDetail>
 <PartNumber>PartNumber5</PartNumber>
 <Quantity>21</Quantity>
 <InStock>54</InStock>
 </OrderDetail>
 <WorkOrderNumber></WorkOrderNumber>
 <OrderStatus></OrderStatus>
 </Order_Form>
 </ProgramInputData>
 <ProgramOutputDataDefaults>
 <_ACTIVITY>Create Sales Order</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQANQAQAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Order_Form> </Order_Form>
 </ProgramOutputDataDefaults>
 </ActivityImplInvoke>
</WfMessage>
 Chapter 7. Sales order management in InterChange Server 253

Example 7-2 Sample input message from MQWorkflow for Confirm_Order activity

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
 <WfMessageHeader>
 <ResponseRequired>No</ResponseRequired>
 </WfMessageHeader>
 <ActivityImplInvoke>

<ActImplCorrelID>RUEAAAABABDAAgAAAAAAAAAAAAAAAgAAAAEAD8AAAAAAAAAAAAAAAAACQQAAAA
EAEIAGAAAAAAAAAABF</ActImplCorrelID>
 <Starter>ADMIN</Starter>
 <ProgramID>
 <ProcTemplID>AAAAAQAPwAAAAAAAAAAAAA==</ProcTemplID>
 <ProgramName>Confirm_Order</ProgramName>
 </ProgramID>
 <ImplementationData>
 <ImplementationPlatform>WindowsNT</ImplementationPlatform>
 <ProgramParameters>collab=salesOrderProcessing_MQWF_to_MQWF;
verb=Update</ProgramParameters>
 <ExeOptions>
 <PathAndFileName>fmcnshow.exe</PathAndFileName>
 <InheritEnvironment>true</InheritEnvironment>
 <StartInForeGround>true</StartInForeGround>
 <WindowStyle>Visible</WindowStyle>
 </ExeOptions>
 </ImplementationData>
 <ProgramInputData>
 <_ACTIVITY>Confirm Order</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQAQwAIAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Completed_Order_Form>
 <OrderNumber>78945620041021160735</OrderNumber>
 <OrderDate>10/21/2004</OrderDate>
 <CustomerNumber>789456</CustomerNumber>
 <ExpectedDeliveryDate>12/21/2004</ExpectedDeliveryDate>
 <NumberOfParts>5</NumberOfParts>
 <OrderDetail>
 <PartOrder>
 <PartNumber>L1</PartNumber>
 <Quantity>1</Quantity>
 <InStock>2</InStock>
 </PartOrder>
 <Supplier></Supplier>
 <OrderReference></OrderReference>
 <ExpectedDate>2004-10-28</ExpectedDate>
 <ShipmentDate>2004-11-04</ShipmentDate>
 <CaseNumber>12</CaseNumber>
 <ReceptionDate></ReceptionDate>
254 Administering and Implementing WebSphere Business Integration Server V4.3

 <RegistrationDate></RegistrationDate>
 </OrderDetail>
 <OrderDetail>
 <PartOrder>
 <PartNumber>L2</PartNumber>
 <Quantity>1</Quantity>
 <InStock>2</InStock>
 </PartOrder>
 <Supplier></Supplier>
 <OrderReference></OrderReference>
 <ExpectedDate>2004-10-28</ExpectedDate>
 <ShipmentDate>2004-11-04</ShipmentDate>
 <CaseNumber>12</CaseNumber>
 <ReceptionDate></ReceptionDate>
 <RegistrationDate></RegistrationDate>
 </OrderDetail>
 <OrderDetail>
 <PartOrder>
 <PartNumber>L3</PartNumber>
 <Quantity>1</Quantity>
 <InStock>2</InStock>
 </PartOrder>
 <Supplier></Supplier>
 <OrderReference></OrderReference>
 <ExpectedDate>2004-10-28</ExpectedDate>
 <ShipmentDate>2004-11-04</ShipmentDate>
 <CaseNumber>12</CaseNumber>
 <ReceptionDate></ReceptionDate>
 <RegistrationDate></RegistrationDate>
 </OrderDetail>
 <OrderDetail>
 <PartOrder>
 <PartNumber>L4</PartNumber>
 <Quantity>1</Quantity>
 <InStock>2</InStock>
 </PartOrder>
 <Supplier></Supplier>
 <OrderReference></OrderReference>
 <ExpectedDate>2004-10-28</ExpectedDate>
 <ShipmentDate>2004-11-04</ShipmentDate>
 <CaseNumber>12</CaseNumber>
 <ReceptionDate></ReceptionDate>
 <RegistrationDate></RegistrationDate>
 </OrderDetail>
 <OrderDetail>
 <PartOrder>
 <PartNumber>L5</PartNumber>
 <Quantity>1</Quantity>
 <InStock>2</InStock>
 Chapter 7. Sales order management in InterChange Server 255

 </PartOrder>
 <Supplier></Supplier>
 <OrderReference></OrderReference>
 <ExpectedDate>2004-10-28</ExpectedDate>
 <ShipmentDate>2004-11-04</ShipmentDate>
 <CaseNumber>12</CaseNumber>
 <ReceptionDate></ReceptionDate>
 <RegistrationDate></RegistrationDate>
 </OrderDetail>
 <WorkOrderNumber></WorkOrderNumber>
 <RejectOrder>1</RejectOrder>
 <OrderStatus>Confirmed</OrderStatus>
 </Completed_Order_Form>
 </ProgramInputData>
 <ProgramOutputDataDefaults>
 <_ACTIVITY>Confirm Order</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQAQwAIAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Completed_Order_Form>
 </Completed_Order_Form>
 </ProgramOutputDataDefaults>
 </ActivityImplInvoke>
</WfMessage>

7.3 Application database ORDERMGT
Before we start developing the different components, consider the database
application for storing the sales orders. The backend system is a simple
database that contains two tables, ORDERS (Table 7-1) and ITEMS (Table 7-2
on page 257).

Table 7-1 ORDERS table structure

Name Type Primary key Others

ORDER_ID INTEGER Yes Self-generated

CUSTOMER_ID VARCHAR(50) No

STATUS VARCHAR(10) No

ORDER_DATE VARCHAR(10) No

PO_NUMBER VARCHAR(10) No

DELIVERY_DATE VARCHAR(10) No
256 Administering and Implementing WebSphere Business Integration Server V4.3

Table 7-2 ITEMS table structure

1. Create the database and assign the correct privileges to access it. The
database is called ORDERMGT, and we grant the user wbiadmin to access it.
Enter the commands shown in Example 7-3 to create the database in a DB2
command window, or use the DB2 Control Center.

Example 7-3 Create ORDERMGT database and assign user privileges

ATTACH TO DB2 user db2admin using sab414r
CREATE DATABASE ORDERMGT;
GRANT DBADM,CREATETAB,BINDADD,CONNECT,CREATE_NOT_FENCED_ROUTINE,
IMPLICIT_SCHEMA,LOAD,CREATE_EXTERNAL_ROUTINE,QUIESCE_CONNECT ON DATABASE TO
USER WBIADMIN;

2. We must catalog this new database to access it. Execute the following
command in a DB2 command window:

catalog tcpip node WBIDB remote WBIDB server 50000
catalog database ORDERMGT at node WBIDB

The first command registers the remote DB2 instance, and the second
command registers the remote database on that remote node.

3. Example 7-4 on page 258 shows the script for creating the database tables.
You could also use the DB2 Control Center, using the structure defined in
Table 7-1 and Table 7-2.

REJECT_ORDER VARCHAR(10) No

NUM_PARTS VARCHAR(10) No

ORDER_NUM VARCHAR(50) No

Name Type Primary key Foreign key

ORDER_ID INTEGER No Yes

PART_CODE VARCHAR(50) No No

QUANTITY INTEGER No No

ITEM_ID INTEGER Yes No

IN_STOCK INTEGER No No

Attention: The wbiadmin user will be used when we configure the JDBC
adapter in 7.7.3, “JDBC adapter configuration” on page 325.

Name Type Primary key Others
 Chapter 7. Sales order management in InterChange Server 257

Example 7-4 Scripts to create the ORDERS and ITEMS tables

CONNECT TO ORDERMGT USER wbiadmin USING sab414r

CREATE TABLE ORDERS (ORDER_ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY
(START WITH 1, INCREMENT BY 1, NO CACHE), CUSTOMER_ID VARCHAR(50) NOT NULL,
STATUS VARCHAR(10), ORDER_DATE VARCHAR(10),PO_NUMBER VARCHAR(10), DELIVERY_DATE
VARCHAR(10), REJECT_ORDER VARCHAR(10), NUM_PARTS VARCHAR(10), ORDER_NUM
VARCHAR(50), PRIMARY KEY(ORDER_ID))

CREATE TABLE ITEMS (ORDER_ID INTEGER, PART_CODE VARCHAR(50) NOT NULL, QUANTITY
INTEGER NOT NULL, ITEM_ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START
WITH 1, INCREMENT BY 1, NO CACHE), IN_STOCK INTEGER, PRIMARY KEY(ITEM_ID),
FOREIGN KEY(ORDER_ID) REFERENCES ORDERS(ORDER_ID) ON DELETE CASCADE ON UPDATE
RESTRICT)

7.4 Preparing Development Environment
In preparing our development environment for the InterChange Server we were
conscious to the fact that by using a prebuilt industry collaboration, our overall
development time would be greatly reduced. As a result, the majority of our
development effort would be spent developing transformation maps. Our initial
work was to draw out and document these mapping interactions as shown in
Figure 7-2.

Figure 7-2 Processing in the InterChange Server

Sales Order
Managem ent

M
Q
W
o
r
k
f
l
o
w

C
o
n
n
e
c
t
o
r

MQW F_Completed_Order_Form_to_Order

MQW F_Order_Form_to_Order

Order_to_MQW F_Order_Form

J
D
B
C

C
o
n
n
e
c
t
o
r

Order_to_JDBC_ORDERS

JDBC_ORDERS_to_Order

T
o

F
r
o
m

258 Administering and Implementing WebSphere Business Integration Server V4.3

The development steps for this integration solution are as follows:

1. Generate ASBOs for the database schema using the JDBC Object Discovery
Agent.

2. Create maps between the JDBC business object and the generic business
object.

3. Generate ASBOs for the MQ Workflow process using the fdlborgen utility.

4. Create maps between the MQ Workflow business object and the generic
business object.

5. Configure and test the WebSphere MQ Workflow connector.

6. Configure and test the JDBC connector.

7. Create the collaboration object from the pre-built collaboration template.

The main development environment and tools for the WebSphere InterChange
Server V4.3 are accessed through the System Manager. Typically, all of these
solution components are stored in a single Integration Component Library (ICL)
within the System Manager. You can think of an ICL as an artifact repository in
your local workspace.

To create a new ICL in System Manager, follow these steps:

1. Right-click the Integrated Component Libraries folder and select New. This
opens the New Integration Component Library window (Figure 7-3 on
page 260).

2. Provide a name for the new ICL. If you want to import components from an
existing InterChange Server, you can select it now and click Next.
 Chapter 7. Sales order management in InterChange Server 259

Figure 7-3 Create a new Integration Component Library

3. If you selected to import components from an existing, choose the
components to download from that server. We did not deploy any
components to our new server, so we selected no options and clicked Finish.

Figure 7-4 Importing components from a running InterChange Server
260 Administering and Implementing WebSphere Business Integration Server V4.3

4. When the ICL is created, a folder structure opens (Figure 7-5) in which you
can store the components that must be developed for this project.

Figure 7-5 New ICL is created
 Chapter 7. Sales order management in InterChange Server 261

7.5 Create business objects
This section describes the generation of the application-specific business objects
for the Order and Item tables and for WebSphere MQ Workflow. Figure 7-6
shows the circled business objects at each diagram end used in the overall
solution.

Figure 7-6 Business objects overview

7.5.1 DB2 application-specific business object
To generate the Order and Items ASBOs, we used the JDBC Object Discovery
Agent (ODA). An ODA inspects the application data structure and automatically
generates business objects that correspond to that specific application and
adapter used, in this case the JDBC adapter.

MQW F_Order_
Form_Input

Input

MQW F_Order_Form

MQW F_Completed_
Order_Form_Input

Input

MQW F_Completed_Order_Form

MQW F_Order_
Form_Output

Output

MQW F_Order_Form

Application Specific
Business Objects

MQWF_Completed_
Order_Form_to_Order

MQW F_Order_
Form_to_Order

Order_to_MQW F_
Order_Form

Order

Generic
Business

Object

Sales Order
Processing

Mapping

M
Q

W
o
r
k
f
l
o
w

C
o
n
n
e
c
t
o
r

F
r
o
m

Order_to_
JDBC_
ORDERS

JDBC_
ORDERS_
to_Order

Mapping
Application Specific
Business Objects

JDBC_ORDERS

JDBC_
Items

T
o

JDBC_ORDERS

JDBC_
Items

J
D
B
C

C
o
n
n
e
c
t
o
r

262 Administering and Implementing WebSphere Business Integration Server V4.3

Configuring the JDBC ODA
The script that starts the JDBCODA is called start_JDBC.bat and is located in
\WebSphereICS\ODA\JDBC. In this script, we modify the environment variables
DRIVERPATH and DRIVERLIB. For DB2, add a reference to DB2Java.zip to the
variable DRIVERPATH.

REM Modify this Driver path to point to the specific driver you want to use.
set DRIVERPATH=C:\SQLLIB\java\db2java.zip;"%CROSSWORLDS%"\lib\xwutil.jar;...

REM Modify DRIVERLIB path to point to the specific driver dll libraries you
want to use.
set DRIVERLIB=C:\SQLLIB\bin

Starting the JDBC ODA
To start the JDBC ODA, select Start → Programs → IBM WebSphere
Business Integration Adapters → Adapters → Object Discovery Agent →
JDBC Object Discovery Agent. This launches a command-line-based program
that listens for discovery requests from the Business Object Designer.

Create the ASBO
To create a JDBC ASBO, open the Business Object Designer and select File →
New Using ODA. Search for all ODAs that are available in the subnet where the
Business Object Designer is installed. Provide the necessary information and
click Next. See Figure 7-7 on page 264. Either of these two methods can be
used to connect with the JDBC ODA.

� If your ODA is running on a different subnet, click Configure Discovery and
enter the IP address where the ODA is executing. You can also find available
agents on that system outside your subnet.

� If you want to search for all available ODAs instead of entering the
information, click Find Agents, select the appropriate ODA in the located
agents, and click Next.
 Chapter 7. Sales order management in InterChange Server 263

Figure 7-7 Using the Object Discovery Agent to create ASBOs

The Business Object Designer is now connected with the ODA.

1. Because we are using a JDBC ODA, the wizard asks about the appropriate
values to connect to the database. Figure 7-8 on page 265 shows the values
for the User name, Password, DatabaseUrl, DatabaseDriver, and
DefaultBOPrefix. Click Next.
264 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-8 Enter properties values for the JDBC ODA

2. Select the tables to generate the corresponding business object (Figure 7-9).
In our case, we select ITEMS and ORDERS. Click Next.

Figure 7-9 Select the database tables
 Chapter 7. Sales order management in InterChange Server 265

3. A confirmation window opens, showing the tables to generate the business
object. Verify the tables and the select Next.

4. In the window shown in Figure 7-10, we indicate the properties for the
business object that would be created. These properties are the prefix, the
verbs, and the option to add stored procedure. Verify that the prefix is JDBC_
and that all verbs are marked. Set the Add Store Proc property to No. Click
OK.

Figure 7-10 JDBC ODA Properties for the business object to create
266 Administering and Implementing WebSphere Business Integration Server V4.3

5. The business objects are now created. Select the project to store the
business objects; we choose OrderManagement. You can also indicate that
the ODA is no longer needed and can be shut down (Figure 7-11). Click
Finish.

Figure 7-11 JDBC ODA business object creation final screen
 Chapter 7. Sales order management in InterChange Server 267

Figure 7-12 shows the business object immediately after creation. As we can
see in the JDBC_ITEMS business object, the foreign key is not preserved and
the ITEMS are not included in the JDBC_ORDERS business object.

Figure 7-12 Saved to project

6. Add a new entry in JDBC_ORDERS called ITEMS with type JDBC_ITEMS and
cardinality N.

7. Now expand the element that we just created and select the Foreign property
for the ORDERNUMBER element. Add to the App Spec Info the relation with
the parent. In this case the relation is:

FK=JDBC_ORDERS.ORDERID

8. Also, add the line UID=AUTO to the field Application-Specific Info for the
element ORDERID. This indicates to the JDBC connector that it is a
generated field.

Attention: The delimiter in the App Spec Info for the JDBC Adapter is a
colon. This delimiter is not the same for all adapters. Check the
corresponding manual to verify the delimiter.
268 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-13 shows the parent business object with all of the changes that we
have made.

Figure 7-13 Displays JDBC_ORDERS business object in its final form

7.5.2 WebSphere MQ Workflow application-specific business object
To generate the WebSphere MQ Workflow ASBOs, we use the fdlborgen utility
that comes with the WebSphere MQ Workflow adapter. There are two ASBOs
required to be generated for the WebSphere MQ Workflow.

� Order_Form
� Completed_Order_Form

Order_Form is the Workflow data structure used in Create Sales Order activity
and the Completed_Order_Form is the data structure used in the Confirm_Order
activity and the Delete_Order activity.

The fdlborgen utility generates a single ASBO each time it is executed, thus we
executed the utility three times to generate the three needed objects, each time,
specifying the different workflow data structure name.
 Chapter 7. Sales order management in InterChange Server 269

The syntax for the command is as follows:

fdlborgen -i[input-file] -o[output-file] -n[object-name] -p[prefix]

The variables stand for the following:

� input-file is the exported FDL file.
� output-file is the generated business object file.
� object-name is the Workflow data structure name.
� prefix is the prefix specified before the business object name.

The fdlborgen utility is available only when you have installed the WebSphere
MQ Workflow Adapter. Move the FDL file that contains the data structures to
\WebSphereICS\connectors\WebSphereMQWorkflow\utilities.

To generate MQWF_Order_Form business object, run the following command.

fdlborgen -iprocess_model.fdl -oOrder_Form.in -nOrder_Form -pMQWF_

In this command, the variables are:

� process_model.fdl is the exported process model.

� Order_Form.in is the name of the file that will contain the generated business
object.

� Order_Form is the name of the data structure.

� MQWF_ is the prefix to be used when generating business objects.

To generate MQWF_Completed_Order_Form business object, run the following
command.

fdlborgen -iprocess_model.fdl -oCompleted_Order_Form.in -nCompleted_Order_Form
-pMQWF_

In this command:

� process_model.fdl is the exported process model.

� Completed_Order_Form.in is the name of the file that will contain the
generated business object.

� Completed_Order_Form is the name of the data structure.

� MQWF_ is the prefix to be used when generating business objects.
270 Administering and Implementing WebSphere Business Integration Server V4.3

When the utility completes, start the Business Object Designer from the System
Manager:

1. Select File → Open From File.

2. Browse for the generated file Order_Form.in and change the file type, which
is by default *.xsd, to *.in (Figure 7-14). Also, make sure to select the correct
project. The Business Object Designer will save the business objects in the
selected ICL.

Figure 7-14 Select business object file

3. Save the generated business object as MQWF_Order_Form_Input and
MQWF_Order_Output also within the OrderManagement ICL (Figure 7-15).

Figure 7-15 Create input child business object
 Chapter 7. Sales order management in InterChange Server 271

4. Re-open and modify the parent business object, MQWF_Order_Form, to
have the input and output child business objects that we created. Remove all
of the existing attributes and create two new attributes with the type of the
child objects we just created, MQWF_Order_Form_Input and
MQWF_Order_Form_Output.

5. Set the child object Input as a key, and the final MQWF_Order_Form parent
business object is shown in Figure 7-16.

Figure 7-16 Workflow-specific MQWF_Order_Form business object
272 Administering and Implementing WebSphere Business Integration Server V4.3

6. Repeat steps 1-5 for the Completed_Order_Form data structure as shown in
Figure 7-17.

Figure 7-17 Workflow specific business object MQWF_Completed_Order_Form
 Chapter 7. Sales order management in InterChange Server 273

7. When the two parent business objects have been successfully modified, save
all changes and close the Business Object Designer. In the System Manager
(Figure 7-18), we can see all of the ASBOs we created.

Figure 7-18 List of business objects

7.5.3 Generic business object
We use the Order business object as our GBO because it is the business object
that is used by the collaboration in 7.8, “Collaboration template” on page 333.

The Order GBO is provided in a JAR file that contains many other business
objects. This JAR file is obtained by either installing the Collaboration Foundation
or by installing an Industry Collaboration as we did in Chapter 3, “Implementing
the runtime components” on page 45.

To import this file in System Manager, right-click the ICL OrderManagement and
select Import from Repository File. Click Browse to locate
274 Administering and Implementing WebSphere Business Integration Server V4.3

BIA_BO_BaseCollabBOs.jar in the
C:\IBM\IndustryCollabs\OrderMgmt\WBICoreCollabs directory.(Figure 7-19).

Figure 7-19 Import Order business object

Now the System Manager shows all of the business objects that are part of this
jar file, including Order.

7.6 Create maps
The next step is to create the maps that are used when converting from an
ASBO to GBO and from GBO to ASBO.

As we are going from WebSphere MQ Workflow to WebSphere InterChange
Server and to DB2 and then back to WebSphere InterChange Server and back to
WebSphere MQ Workflow, we need four main maps. And as our business object
contains child objects, we need four extra maps for the child business objects.
 Chapter 7. Sales order management in InterChange Server 275

That makes a total of eight maps and plus one additional map for
MQWF_Completed_Order_Form business object to Order.

7.6.1 From ASBO MQWF_Order_Form to GBO Order
This section discusses the development of the main map and submap to
transform the incoming workflow input objects to the generic business object
Order. Figure 7-20 shows these maps within the overall solution.

Figure 7-20 Mapping the workflow input objects to the GBO Order

MQWF_Order_Form_OrderDetail_to_OrderLineItem
This submap maps the information that is contained in the application-specific
object MQWF_Order_Form_Detail to the generic object OrderLineItem. Both
objects are child objects.

1. Start the Map Designer from System Manager or from the Start Programs
menu and select File → New Map.

MQW F_Order_
Form_Input

Input

MQW F_Order_Form

MQW F_Completed_
Order_Form_Input

Input

MQW F_Completed_Order_Form

MQW F_Order_
Form_Output

Output

MQW F_Order_Form

Application Specific
Business Objects

MQWF_Completed_
Order_Form_to_Order

MQW F_Order_
Form_to_Order

Order

Generic
Business

Object

Sales Order
Processing

Mapping

M
Q

W
o
r
k
f
l
o
w

C
o
n
n
e
c
t
o
r

F
r
o
m

Order_to_
JDBC_
ORDERS

JDBC_
ORDERS_
to_Order

Mapping
Application Specific
Business Objects

JDBC_ORDERS

JDBC_
Items

T
o

JDBC_ORDERS

JDBC_
Items

J
D
B
C

C
o
n
n
e
c
t
o
r

MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order

MQW F_Order_
Form_OrderDetail_
to_LineItem

Sub_Order
LineItem_to_
JDBC_
ORDERS

JDBC_
ORDERS_to_
Order

JDBC_
ORDERS_to_
Order

Sub_JDBC_
ITEMS_to_
OrderLineItem

Order_to_MQWF_
Order_Form

Sub_OrderLineItem_
to_MQWF_Order_
Form_OrderDetail
276 Administering and Implementing WebSphere Business Integration Server V4.3

2. Select the ICL where the new map will be created (Figure 7-21). Select
OrderManagement and click Next.

Figure 7-21 Select the ICL

3. Select the source business object, MQWF_Order_Form_OrderDetail, as
shown in Figure 7-22, and click Next.

Figure 7-22 Select source business object
 Chapter 7. Sales order management in InterChange Server 277

4. Select the destination business object, OrderLineItem, as shown in
Figure 7-23, and click Next.

Figure 7-23 Select destination business object

5. Enter Sub_MQWF_Order_Form_OrderDetail_to_OrderLineItem as the map
name, and select the map direction as Application-Specific to Generic, as
shown in Figure 7-24. Click Finish.

Figure 7-24 Select the map direction
278 Administering and Implementing WebSphere Business Integration Server V4.3

The Map Designer now shows the Diagram tab, where you can drag and drop
elements from the source object to the target object. Table 7-3 shows the
mapping specification.

Table 7-3 Mapping in Sub_MQWF_Order_Form_OrderDetail_to_OrderLineItem

Source Destination

Verb Verb

Quantity QtyRequired

PartNumber ItemId

InStock VerifyItemFlag

Attention: While doing the mapping, make sure to set the rule to Move.

Tip: If the Move mapping is your most common action, make that the default
drag and drop action by selecting View → Preferences → Key Mapping and
changing the characteristics to match your preferences.
 Chapter 7. Sales order management in InterChange Server 279

Figure 7-25 shows the Map Designer after all mapping has been finished. Save
and compile the map.

Figure 7-25 Completed submap
280 Administering and Implementing WebSphere Business Integration Server V4.3

Due to space constraints, this figure shows only the first three mappings. The
Table tab shows all the mappings.

Figure 7-26 The Table tab of the Map Designer

MQWF_Order_Form_to_Order
This maps the information that is contained in the application-specific object
MQWF_Order_Form to the generic object Order. This map uses the submap
Sub_MQWF_Order_Form_OrderDetail_to_OrderLineItem.

The information for creating the map is:

Source business object MQWF_Order_Form
Destination business object Order
Map name MQWF_Order_Form_to_Order
Mapping direction Application-Specific to Generic

Note: The process for creating a new map is always the same. Therefore, the
information in this and later sections about mapping contains only the
information that is required to build the map, not detailed instructions. Use the
instructions in the previous section to continue creating new maps.
 Chapter 7. Sales order management in InterChange Server 281

Table 7-4 shows the mapping specification.

Table 7-4 Mapping in MQWF_Order_Form_to_Order

When mapping the OrderDetail to OrderLineItem, set the mapping rule to
Submap. A new window (Figure 7-27 on page 283) opens so you can select the
submap.

Source Destination

Verb Verb

OrderNumber OrderNumber

OrderDate OrderDate

CustomerNumber CustomerId

ExpectedDeliveryDate PODate

NumberOfParts Notes

OrderDetail OrderLineItem

WorkOrderNumber PONumber

RejectOrder OrderType

OrderStatus OrderStatus
282 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-27 Select the submap
 Chapter 7. Sales order management in InterChange Server 283

Figure 7-28 shows the Table tab of the Map Designer after all mapping is
complete. Save and compile the map.

Figure 7-28 Map the attributes

Testing the map
Before proceeding, test the maps as part of a standard unit testing development
process. To test the map, click the corresponding tab in the Map Designer.

Select EVENT_DELIVERY as the Calling Context in the Source Testing Data
pane. You might also need to add an instance for child business objects.
Right-click the child business object (Input of OrderItem) and select Add
Instance. Add also one or more instances of OrderItem. Enter test values for
each element to test the map.
284 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-29 Testing the map

To test the map, click the Test icon circled in Figure 7-29. A new window to
connect to the InterChange Server opens.
 Chapter 7. Sales order management in InterChange Server 285

Enter the options to connect to the InterChange Server and select the options
Deploy map and Deploy dependent objects, as shown in Figure 7-30. The
second option would deploy the submap and the application-specific object
related with this map.

Figure 7-30 Test the maps
286 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-31 shows the result of applying the map to our input data.

Figure 7-31 Finished testing maps

Save both business objects to file for use in later unit testing.

MQWF_Completed_Order_Form_to_Order
This maps the information that is contained in the application-specific object
MQWF_Completed_Order_Form to the generic object Order. This map is to
cater for the MQWorkflow Delete_Order and Confirm_Order activities.

To add MQWF_Completed_Order_Form, follow the instructions in 7.6.1, “From
ASBO MQWF_Order_Form to GBO Order” on page 276. Use the data in this list
as well as Table 7-5 on page 288.

Source business object MQWF_Completed_Order_Form
Destination business object Order
Map name MQWF_Completed_Order_Form_to_Order
Mapping direction Application-Specific to Generic
 Chapter 7. Sales order management in InterChange Server 287

Table 7-5 Mapping in MQWF_Completed_Order_Form_to_Order

The resulting map is shown in Figure 7-32.

Figure 7-32 Completed map

Source Destination

Verb Verb

OrderNumber OrderNumber

CustomerNumber CustomerId

OrderStatus OrderStatus
288 Administering and Implementing WebSphere Business Integration Server V4.3

7.6.2 From the GBO order to the ASBO JDBC_ORDERS
This section discusses the development of the main and submap to transform
the Order generic business object to the ASBO JDBC. Figure 7-33 shows these
maps within the overall solution.

Figure 7-33 Mapping the Order business object to JDBC_Orders

Sub_OrderLineItem_to_JDBC_ITEMS
This submap maps the information that is contained in the generic object
OrderLineItem to the application-specific object JDBC_ITEMS.

To add Sub_OrderLineItem_to_JDBC-ITEMS, follow the instructions in 7.6.1,
“From ASBO MQWF_Order_Form to GBO Order” on page 276. Use the data in
this list as well as Table 7-6 on page 290.

Source business object OrderLineItem
Destination business object JDBC_ITEMS
Map name Sub_OrderLineItem_to_JDBC_ITEMS
Mapping direction Generic to Application-Specific

MQW F_Order_
Form_Input

Input

MQW F_Order_Form

MQW F_Completed_
Order_Form_Input

Input

MQW F_Completed_Order_Form

MQW F_Order_
Form_Output

Output

MQW F_Order_Form

Application Specific
Business Objects

MQWF_Completed_
Order_Form_to_Order

MQW F_Order_
Form_to_Order

Order

Generic
Business

Object

Sales Order
Processing

Mapping

M
Q

W
o
r
k
f
l
o
w

C
o
n
n
e
c
t
o
r

F
r
o
m

Order_to_
JDBC_
ORDERS

JDBC_
ORDERS_
to_Order

Mapping
Application Specific
Business Objects

JDBC_ORDERS

JDBC_
Items

T
o

JDBC_ORDERS

JDBC_
Items

J
D
B
C

C
o
n
n
e
c
t
o
r

MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order

MQW F_Order_
Form_OrderDetail_
to_LineItem

Sub_Order
LineItem_to_
JDBC_
ORDERS

JDBC_
ORDERS_to_
Order

JDBC_
ORDERS_to_
Order

Sub_JDBC_
ITEMS_to_
OrderLineItem

Order_to_MQWF_
Order_Form

Sub_OrderLineItem_
to_MQWF_Order_
Form_OrderDetail
 Chapter 7. Sales order management in InterChange Server 289

Make sure to select the correct mapping direction (Generic to Application
Specific), as shown in Figure 7-34.

Figure 7-34 Direction of a map

The mapping specification can be seen in Table 7-6.

Table 7-6 Mapping in Sub_OrderLineItem_to_JDBC_ITEMS

Source Destination

Verb Verb

QtyRequired QUANTITY

ItemId PARTCODE

LineItemId ITEMID

VerifyItemFlag INSTOCK
290 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-35 shows the Map Designer after all of the mapping has been done.
Save and compile the submap.

Figure 7-35 Map the attributes

Order_to_JDBC_ORDERS
This map maps the information contained in the generic object Order to the
application-specific object JDBC_ORDERS. This map uses the submap
Sub_OrderLineItem_to_JDBC_ITEMS that we created in a previous section.

To create Order_to_JDBC_ORDERS, follow the instructions in 7.6.1, “From
ASBO MQWF_Order_Form to GBO Order” on page 276. Use the data in this list
as well as Table 7-7 on page 292.

Source business object Order
Destination business object JDBC_ORDERS
Map name Order_to_JDBC_ORDERS
Mapping direction Generic to Application-Specific
 Chapter 7. Sales order management in InterChange Server 291

The maps can be seen in Table 7-7.

Table 7-7 Mapping in Order_to_JDBC_ORDERS

Figure 7-36 on page 293 shows the Map Designer after all of the mapping has
been completed. Save and compile the map. Note the different color for the rule
Custom for attribute STATUS, indicating that custom code has been written for
this mapping.

Source Destination

Verb Verb

CustomerId CUSTOMERID

OrderId ORDERNUMBER

OrderStatus STATUS

OrderDate ORDERDATE

PONumber PONUMBER

Notes NUMPARTS

OrderType REJECTORDER

PODate DELIVERYDATE

OrderLineItem ITEMS
292 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-36 Mapping the attributes

The STATUS field in the destination business object has a particular behavior
depending on the Order business object OrderStatus value. If the OrderStatus is
empty or null, the new STATUS field will be set to NEW. If the OrderStatus
contains non empty value, the new STATUS field will be set to the OrderStatus
value.

To create this behavior, we create a custom rule:

1. Specify Custom as the rule for the STATUS attribute. The custom rule can be
created by entering Java code or with a graphical interface. In our scenario,
we use graphical interface to create the custom rule. To enter the code,
right-click in the rule and select Open.
 Chapter 7. Sales order management in InterChange Server 293

2. The graphical editor is opened by double-clicking a custom rule. Figure 7-37
shows the GUI interface with graphics that create the custom rule.

Figure 7-37 Creating a custom rule

The ORDERNUM field destination business object follows a custom mapping
rule. If the OrderNumber is not empty (has a value), the new ORDERNUM field
will be set to OrderNumber value. If the OrderNumber is empty, the new
ORDERNUM field will be set CustomerId appended with current date and time
stamp.
294 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-38 shows the GUI interface with graphics for the ORDERNUM mapping
rule.

Figure 7-38 Custom rule map for ORDERNUM field

Testing the map
The final task before finishing a map is to test the map. To test the map, click the
corresponding tab in the Map Designer.

We can use the resulting business object from our previous map testing as our
source destination data. To use the file we saved, select the source business
object, click Load From to browse for the file, and select OK. Now we have our
input data.

Select ACCESS_REQUEST as the Calling Context in the Source Testing Data
pane, and test the map.
 Chapter 7. Sales order management in InterChange Server 295

In Figure 7-39, we can see the result of applying the map to our input data.

Figure 7-39 Finished testing maps

Save both business objects to a file to use them in later unit testing.
296 Administering and Implementing WebSphere Business Integration Server V4.3

7.6.3 From ASBO JDBC_ORDERS to GBO Order
This section discusses the development of the main and submap to transform
the JDBC ASBO to the generic business object Order. Figure 7-40 shows these
maps within the overall solution.

Figure 7-40 Mapping the business object JDBC_Orders to Order

Sub_JDBC_ITEMS_to_OrderLineItem
This submap maps the information contained in the application-specific object
JDBC_ITEMS to the generic object OrderLineItem.

To create Sub_JDBC_ITEMS_to_OrderLineItem, follow the instructions in 7.6.1,
“From ASBO MQWF_Order_Form to GBO Order” on page 276. Use the data in
this list as well as Table 7-8:

Source business object JDBC_ITEMS
Destination business object OrderLineItem
Map name Sub_JDBC_ITEMS_to_OrderLineItem
Mapping direction Application-Specific to Generic

The map specification is shown in Table 7-8.

Table 7-8 Mapping in Sub_JDBC_ITEMS_to_OrderLineItem

MQW F_Order_
Form_Input

Input

MQW F_Order_Form

MQW F_Completed_
Order_Form_Input

Input

MQW F_Completed_Order_Form

MQW F_Order_
Form_Output

Output

MQW F_Order_Form

Application Specific
Business Objects

MQWF_Completed_
Order_Form_to_Order

MQW F_Order_
Form_to_Order

Order

Generic
Business

Object

Sales Order
Processing

Mapping

M
Q

W
o
r
k
f
l
o
w

C
o
n
n
e
c
t
o
r

F
r
o
m

Order_to_
JDBC_
ORDERS

JDBC_
ORDERS_
to_Order

Mapping
Application Specific
Business Objects

JDBC_ORDERS

JDBC_
Items

T
o

JDBC_ORDERS

JDBC_
Items

J
D
B
C

C
o
n
n
e
c
t
o
r

MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order

MQW F_Order_
Form_OrderDetail_
to_LineItem

Sub_Order
LineItem _to_
JDBC_
ORDERS

JDBC_
ORDERS_to_
Order

JDBC_
ORDERS_to_
Order

Sub_JDBC_
ITEMS_to_
OrderLineItem

Order_to_MQWF_
Order_Form

Sub_OrderLineItem_
to_MQWF_Order_
Form_OrderDetail

Source Destination

Verb Verb
 Chapter 7. Sales order management in InterChange Server 297

Figure 7-41 shows the Map Designer for Sub_JDBC_ITEMS_to_OrderLineItem

Figure 7-41 Completed map

JDBC_ORDERS_to_Order
This map maps the information that is contained in the application-specific object
JDBC_ORDERS to the generic object Order. This map uses the submap
Sub_JDBC_ITEMS_to_OrderLineItem that was created before.

To create JDBC_ORDERS_to_Order, follow the instructions in 7.6.1, “From
ASBO MQWF_Order_Form to GBO Order” on page 276. Use the data in this list
as well as Table 7-9 on page 299:

Source business object JDBC_ORDERS
Destination business object Order
Map name JDBC_ORDERS_to_Order

QUANTITY QtyRequired

ORDERID CustomerItemId

PARTCODE ItemId

ITEMID LineItemId

INSTOCK VerityItemFlag

Source Destination
298 Administering and Implementing WebSphere Business Integration Server V4.3

Mapping direction Application-Specific to Generic

The maps can be seen in Table 7-9.

Table 7-9 Mapping in Order_to_JDBC_ORDERS

Source Destination

Verb Verb

ORDERID OrderId

CUSTOMERID CustomerId

STATUS OrderStatus

ORDERDATE OrderDate

PONUMBER PONumber

REJECTORDER RejectOrder

NUMPARTS Notes

DELIVERYDATE PODate

ITEMS OrderLineItem

ORDERNUM OrderNumber
 Chapter 7. Sales order management in InterChange Server 299

Figure 7-42 shows the Map Designer for JDBC_ORDERS_to_Order.

Figure 7-42 Map the attributes

Testing the map
To test the map, click the corresponding tab in the Map Designer.

Select SERVICE_CALL_RESPONSE as the Calling Context in the Source
Testing Data pane, key in the input data and test the map.
300 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-43 shows the result of applying the map to our input data.

Figure 7-43 Test the map

Save the destination business object to file.
 Chapter 7. Sales order management in InterChange Server 301

7.6.4 From GBO Order to ASBO MQWF_Form_OrderDetail
This section discusses the development of the main and submap to transform
the Order generic business object to the MQWF_Form_OrderDetail ASBO.

Figure 7-44 shows these maps within the overall solution.

Figure 7-44 Mapping the generic business object Order to the ASBO MQWF_Form_OrderDetail

Sub_OrderLineItem_to_MQWF_Order_Form_OrderDetail
This submap maps the information that is contained in the OrderLineItem
business object to the MQWF_Order_Form_OrderDetail business object.

To create Sub_OrderLineItem_to_MQWF_Order_Form_OrderDetail, follow the
instructions in 7.6.1, “From ASBO MQWF_Order_Form to GBO Order” on
page 276. Use the data in this list as well as Table 7-10 on page 303:

Source business object OrderLineItem
Destination business object MQWF_Order_Form_OrderDetail
Map name Sub_OrderLineItem_to_MQWF_Order_Form_OrderDetail
Mapping direction Generic to Application-Specific

MQW F_Order_
Form_Input

Input

MQW F_Order_Form

MQW F_Completed_
Order_Form_Input

Input

MQW F_Completed_Order_Form

MQW F_Order_
Form_Output

Output

MQW F_Order_Form

Application Specific
Business Objects

MQWF_Completed_
Order_Form_to_Order

MQW F_Order_
Form_to_Order

Order

Generic
Business

Object

Sales Order
Processing

Mapping

M
Q

W
o
r
k
f
l
o
w

C
o
n
n
e
c
t
o
r

F
r
o
m

Order_to_
JDBC_
ORDERS

JDBC_
ORDERS_
to_Order

Mapping
Application Specific
Business Objects

JDBC_ORDERS

JDBC_
Items

T
o

JDBC_ORDERS

JDBC_
Items

J
D
B
C

C
o
n
n
e
c
t
o
r

MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order
MQW F_Order_
Form_to_Order

MQW F_Order_
Form_OrderDetail_
to_LineItem

Sub_Order
LineItem_to_
JDBC_
ORDERS

JDBC_
ORDERS_to_
Order

JDBC_
ORDERS_to_
Order

Sub_JDBC_
ITEMS_to_
OrderLineItem

Order_to_MQWF_
Order_Form

Sub_OrderLineItem_
to_MQWF_Order_
Form_OrderDetail
302 Administering and Implementing WebSphere Business Integration Server V4.3

The maps can be seen in Table 7-10.

Table 7-10 Mapping in Sub_OrderLineItem_to_MQWF_Order_Form_OrderDetail

Figure 7-45 shows the Map Designer.

Figure 7-45 Completed map

Source Destination

Verb Verb

ItemId PartNumber

QtyRequired Quantity

VerifyItemFlag InStock
 Chapter 7. Sales order management in InterChange Server 303

Order_to_MQWF_Order_Form
To create Order_to_MQWF_Order_Form, follow the instructions in 7.6.1, “From
ASBO MQWF_Order_Form to GBO Order” on page 276. Use the data in this list
as well as Table 7-11:

Source business object: Order
Destination business object: MQWF_Order_Form
Map name: Order_to_MQWF_Order_Form
Mapping direction: Generic to Application-Specific

Table 7-11 Mapping in Sub_OrderLineItem_to_MQWF_Order_Form_OrderDetail

Source Destination

Verb Verb

OrderNumber OrderNumber

OrderDate OrderDate

CustomerId CustomerNumber

PODate ExpectedDeliveryDate

OrderStatus OrderStatus

Notes NumberOfParts

OrderLineItem OrderDetails

PONumber WorkOrderNumber

OrderType RejectOrder
304 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-46 shows the Map Designer after the mapping has been done.

Figure 7-46 Completed map

Testing the map
To test the map, click the corresponding tab in the Map Designer.

We can use the resulting business object from our previous map testing as our
source destination data. To use the file that we saved, select the source
business object, click Load From to browse for the file, and select OK. Now we
have our input data.
 Chapter 7. Sales order management in InterChange Server 305

Figure 7-47 shows the result of applying the map to our input data.

Figure 7-47 Test the map
306 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-48 shows all the maps that we have created for the collaboration.

Figure 7-48 List of maps

Automatic and Reverse Mapping

The InterChange Server V4.3 Map Designer has two new features, called
Automatic and Reverse Mapping. Automatic mapping allows for the mapping
tool to compare the attributes in both the source and target business objects and
automatically map between attributes that have matching names. There is also
the ability to configure synonyms whereby you can associate ID in the source
business object to Customer_ID in a target business object. Reverse mapping is
exactly as it sounds, the ability to create a reverse map automatically.

In this section, we demonstrate a simple reverse mapping, using
Order_to_JDBC_ORDERS map to generate JDBC_ORDERS_to_Order map.

Open the Order_to_JDBC_ORDERS map, then select Tools and Reverse
Mapping.
 Chapter 7. Sales order management in InterChange Server 307

Figure 7-49 Select reverse mapping
308 Administering and Implementing WebSphere Business Integration Server V4.3

The map designer requests you to save the newly generated map.

Figure 7-50 Saved the newly created map

At this time, you can see a warning message with the information in
Example 7-5.

Example 7-5 Reverse mapping creation warning message

Starting Reverse Map...
Warning: Reverse transformation could not be performed for 'Custom'
tranformation from 'ObjOrder.OrderStatus'.
Warning: Reverse transformation could not be performed for 'Custom'
tranformation from 'ObjOrder.OrderNumber'.
Completed Reverse Map.

Note: It is important to note that the reverse mapping will not handle any
Custom rule mapping and developer has to manually input the custom rule
mapping if any.
 Chapter 7. Sales order management in InterChange Server 309

7.7 Adapter configuration
In this section we describe the configuration of the two adapters that we use with
our Order Management Collaboration. These adapters are the WebSphere MQ
Workflow adapter and the JDBC adapter.

Figure 7-51 Use of adapters in solution

7.7.1 Importing the adapters into System Manager
In general, there are a few ways to start working with an adapter. Also, there are
several different ways to define an adapter. The most common ways are as
repository JAR files that you can import into the System Manager and as a
template view within the Connector Configuration tool. The most productive
alternative is to use the adapter templates as described in this section.

1. From within the System Manager, expand the Integration Component Library
(ICL) you are working with and right-click the Connector folder.

2. From the list select Create new connector, which launches the Connector
Configuration tool with the template selection window as shown in Figure 7-52
on page 311. Select the correct template, and type in the name of the new
adapter, then select OK.

M
Q

W
or

kf
lo

w
C

on
ne

ct
or

MQ

WMQWF ICS

App.
DB2JD

BC
C

on
ne

ct
orSalesOrderMgt

From ToJMSJMSUPES
Activity

MQ
XML
MQ
XML

Data
Handler

Note: If the adapter you want to work with is not in the adapter template
list, you must import the adapter JAR file from the repository directory
where you installed the WebSphere Business Integration Adapters. To do
this, right-click the name of the ICL and select Import from repository file
browse for the correct file name.
310 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-52 Creating new adapter configuration with a template

3. The normal Connector Configuration window opens, from which you can save
the connector configuration to your ICL.

4. Repeat steps 1 on page 310 through 3 for each of the adapters you will use
during the project. Repeat the steps to also create the configuration for the
JDBC adapter.

We configure both the WebSphere MQ Workflow adapter and the JDBC adapter
later in this chapter.

Later in the implementation when we create and configure our Sales Order
Management Collaboration object, it will be a requirement to bind each of the
collaboration ports to an adapter. For our implementation we will only be using
the From and To ports, thus we will bind the remaining ports to the Port
connector. To import the Port connector into our ICL, right click the ICL name
and select Import from repository file. The needed JAR file for our
implementation is found in this directory:

C:\IBM\IndustryCollabs\OrderMgmt\repository\Port\CN_Port.jar
 Chapter 7. Sales order management in InterChange Server 311

See Figure 7-53.

Figure 7-53 Importing Port connector

7.7.2 WebSphere MQ Workflow adapter configuration
In this section, we show how to configure, start, and stop the WebSphere MQ
Workflow adapter to work with WebSphere InterChange Server.

Configuring an adapter consists, in general, of the following steps:

1. Import any required meta objects.

2. Use the Connector Configurator to configure standard properties.

Tip: You might have to refresh the view in order to see the imported objects in
the System Manager.
312 Administering and Implementing WebSphere Business Integration Server V4.3

3. Use the Connector Configurator to configure application-specific properties.

4. Create any resources that the connector relies on, such as WebSphere MQ
queues, event tables, and so forth.

5. Customize start-up scripts for the connector if required.

Importing required meta objects
The WebSphere MQ Workflow adapter requires the use of meta objects to store
additional configuration information. These meta objects are actually business
objects with predefined attributes that are specific to the operation of the
WebSphere MQ Workflow adapter. These meta objects need to be imported into
the System Manager for configuration and deployment along with the adapter.

To import the WebSphereMQWorkflow_MetaObjects.jar file, which holds the
meta-objects, right click the ICL name and select Import from repository file.
The file in our implementation was located at:

C:\IBM\WBIAdapters\repository\WebSphereMQWorkflow\WebSphereMQWorkflow_
MetaObjects.jar

For those adapters that use datahandlers it is also necessary to import the
datahandler meta objects into the System Manager. The WebSphere MQ
Workflow adapter requires the use of the XML datahandler, so we must import
those meta objects before completing the configuration of the adapter. The
datahandler meta objects are not stored in a JAR file, instead they are in TXT
files. To import these files, follow these steps:

1. Expand the ICL that you are using within the System Manager, right-click the
Business Objects folder, and select Create New business object.

2. Cancel the window to create a new object, that window is shown in
Figure 7-54.

Figure 7-54 Cancel the New Business Object window
 Chapter 7. Sales order management in InterChange Server 313

3. Select File → Open From File and select all the following TXT files (all in the
list) from the directory:

C:\IBM\WebSphereICS\DataHandlers\repository\DataHandlersdirectory

To see the files, change the file type to *.txt, as shown in Figure 7-55. Make
sure that the Open the imported business objects option is not selected.

Figure 7-55 Select Datahandler MO files for import
314 Administering and Implementing WebSphere Business Integration Server V4.3

4. During the import process, multiple Import Results windows will be displayed.
For each of these windows, select Overwrite Local and click OK. One of
these windows is shown in Figure 7-56.

Figure 7-56 Overwrite Local objects

Configuring the connector object
To start the configuration process, double-click the imported WebSphere MQ
Workflow connector located in your ICL. This will start the Connector
Configurator. First, select the Standard Properties tab.

Many parameters enable you to tune the behavior of the connector, but the most
important ones are listed here:

� BrokerType: ICS
� DeliveryType: MQ
� ApplicationName: WebSphereMQWorkflowConnector

The ApplicationName attribute is the real name of the connector. This will also be
the name that you provide as a parameter in the start-up of the connector agent.
When the connector agent connects to the InterChange Server, a connector
controller must be available with the same name (similar to the way that the
names of a sender channel and a receiver channel have to match when setting
up communication between two queue managers).

Note: Note that selecting MQ as the delivery type requires the completion of
the Messaging tab.
 Chapter 7. Sales order management in InterChange Server 315

Figure 7-57 Standard properties of the WebSphere MQ Workflow connector

Select the Connector-Specific Properties tab. One set of properties is related
to the characteristics of the workflow server to which we want to connect. Provide
or verify:

� ApplicationUserID and ApplicationPassword, which will be used by the
connector to log on to the workflow server

� WorkflowSystemName and WorkflowSystemGroup, which identifies the
workflow server in a workflow domain

Another group of properties enables you to name the queues and the queue
manager that are used by the adapter to receive and manage work that is being
316 Administering and Implementing WebSphere Business Integration Server V4.3

sent to and from the workflow server. There are queues to archive events, to
report errors, to store work-in-progress, and so forth.

There are several options that you can implement when referring to the queues
and queue manager:

� The adapter uses an MQ client connection to the workflow queue manager.
This means that the queues that are listed on this tab of the configuration are
to be added to the workflow queue manager WFQM.

� The adapter uses its own queue manager. This means that you must define
this queue manager and create channels between this adapter queue
manager and the workflow queue manager.

� The adapter uses the InterChange Server queue manager. This means that
you must create channels between the InterChange Server queue manager
and the workflow queue manager. However, it also means that the adapter is
using only one queue manager to communicate with the workflow server and
the InterChange Server. It also means that we must define a remote queue on
the InterChange Server queue manager to point to the workflow input queue
(FMC.FMCGRP.EXE.XML). This option is shown in Figure 7-58 on page 318.
and is the approach we used in our scenario.

A last group of properties controls the parsing and generation of messages for
the adapter. Workflow output messages are in XML. Therefore, we have values
for DataHandlerMimeType and DataHandlerClassName that relate to the
processing of text messages with an XML structure. The use of the property
DataHandlerConfigMO is explained later.

Attention: Please compare the IBM Software License Agreement and your
implementation of your WebSphere MQ licenses to verify you are in
compliance with using the WebSphere MQ Queue Manager to contain the
configured queues for the WebSphere MQ Workflow adapter.
 Chapter 7. Sales order management in InterChange Server 317

Figure 7-58 Connector specific properties

1. Click the Supported Business Objects tab and add MQWF_Order_Form,
MQWF_Completed_Order_Form and Order business objects (Figure 7-59
on page 319). Add agent support for the business object
MQWF_Order_Form and MQWF_Completed_Order_Form.

Agent support is always needed for the application-specific business objects
and for the meta-objects. Verify that the WebSphere MQ Workflow adapter
contains all the supports all the business objects displayed in Figure 7-62 on
page 327, if not, add them now as shown.
318 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-59 Adding business objects to WebSphere MQ Workflow adapter

2. To associate maps with the business objects, click the Associated Maps tab
and mark the Explicit binding check box for the MQWF_Order_Form,
MQWF_Completed_Order, and Order business object. Select the
corresponding maps, as shown in Figure 7-60 on page 320. These are the
maps built in 7.6, “Create maps” on page 275. Note that we do not refer to the
child business objects or to the submaps.

Note: If tab you cannot see the objects on the Associated Maps that you
have added on the Supported Objects tab, save the configuration first to
refresh the view.

If you cannot select the expected map, you might have to verify the
mapping direction.
 Chapter 7. Sales order management in InterChange Server 319

Figure 7-60 Associating maps to workflow connector

3. When all of the properties are configured, the connector should be saved to
the project. To save the connector configuration, select File → Save → To
Project. We save the connector configuration to a file as well by selecting
select File → Save → To File. Provide a location and a name for the
connector configuration file. For our implementation we used:

C:\IBM\WBIAdapters\connectors\WebSphereMQWorkflow\
WebSphereMQWorkflowConnector.cfg

Runtime configuration
Two tasks must be completed at this stage:

� Several WebSphere MQ queues must be defined, including communication
between ICS.queue.manager and the workflow queue manager WFQM.

� The agent component is started by a script that needs customization. This
script also takes several parameters that must be reviewed and possibly
changed.

Note: A configuration file is required if you are using JMS as the delivery
transport. Without this file, the connector does not have sufficient
information to connect to the InterChange Server at startup.
320 Administering and Implementing WebSphere Business Integration Server V4.3

WebSphere MQ configuration
In our scenario, communication between the InterChange Server queue
manager and the MQ Workflow server queue manager is through an MQ
channel. The MQ Workflow adapter is also using WebSphere MQ as the
transport delivery mechanism.

The names of these queues are listed on the standard properties of the
connector configuration (Figure 7-57 on page 316). A sample script to define
these queues can be found in crossworlds_mq.tst file in the
\WebSphereICS\mqseries folder. Create a copy of this file for back-up purposes
and open the original in a text file editor.

The names of the queues used by the connector should adopt the following
naming standard.

DEFINE QLOCAL(IC/SERVER_NAME/DestinationAdapter)
DEFINE QLOCAL(AP/DestinationAdapter/SERVER_NAME)

As a result, the queues defined in the crossworld_mq.tst has the following queue
definitions in Example 7-6.

Example 7-6 Sample MQ definitions

DEFINE QLOCAL(IC/ICS/WebSphereMQWorkflowConnector)
DEFINE QLOCAL(AP/WebSphereMQWorkflowConnector/ICS)

In addition, there are other queues to be defined and listed on the
Connector-Specific Properties tab (see Figure 7-58 on page 318). These queues
are to be hosted by the InterChange Server queue manager in our
implementation.

The crossworld_mq.tst contains the following MQ-defined commands for the
following queues:

� Local queues:

– MQWFCONN.ARCHIVE
– MQWF.INPUT
– MQWFCONN.REPLYTO
– MQWFCONN.IN_PROGRESS
– MQWFCONN.ERROR
– MQWFCONN.UNSUBSCRIBED

The queue commands are listed in Example 7-7 on page 322.
 Chapter 7. Sales order management in InterChange Server 321

Example 7-7 MQ Workflow Adapter required queues

DEFINE QLOCAL(MQWFCONN.ARCHIVE)
DEFINE QLOCAL(MQWF.INPUT)
DEFINE QLOCAL(MQWFCONN.REPLYTO)
DEFINE QLOCAL(MQWFCONN.IN_PROGRESS)
DEFINE QLOCAL(MQWFCONN.ERROR)
DEFINE QLOCAL(MQWFCONN.UNSUBSCRIBED)

� Remote queue:

– FMC.FMCGRP.EXE.XML

This remote queue object is basically an alias for an object that resides on
the queue manager WFQM. To define this object, you can use a
command similar to Example 7-8:

Example 7-8 Remote queue

DEFINE QREMOTE(FMC.FMCGRP.EXE.XML) RNAME(FMC.FMCGRP.EXE.XML) RQMNAME(WFQM)
XMITQ(WBIWF)

� Transmission queue:

The parameter XMITQ in the previous command refers to a transmission
queue that must be added as well (Example 7-9):

Example 7-9 Transmission queue:

DEFINE QLOCAL(WBIWF) USAGE(XMITQ) TRIGGER TRIGTYPE(FIRST)
INITQ(SYSTEM.CHANNEL.INITQ) TRIGDATA(WBIICS.TO.WBIWF)

� Channels

MQ channels are the objects that represent the way that communication will
be set up at runtime. One queue manager should be a sender, and the other
a receiver channel, both with matching names as in Example 7-10 and
Example 7-11 on page 323.

Example 7-10 ICS.queue.manager channel definition

DEFINE CHL(WBIICS.TO.WBIWF) CHLTYPE(SDR) CONNAME(‘wbiwf(5010)’) XMITQ(WBIWF)
TRPTYPE(TCP)
DEFINE CHL(WBIWF.TO.WBIICS) CHLTYPE(RCVR)
322 Administering and Implementing WebSphere Business Integration Server V4.3

Example 7-11 WFQM channel definition

DEFINE CHL(WBIICS.TO.WBIWF) CHLTYPE(RCVR)

DEFINE CHL(WBIWF.TO.WBIICS) CHLTYPE(SDR) CONNAME(‘wbiics(1414)’) XMITQ(WBIICS)
TRPTYPE(TCP)

DEFINE QLOCAL(WBIICS) USAGE(XMITQ) TRIGGER TRIGTYPE(FIRST)
INITQ(SYSTEM.CHANNEL.INITQ) TRIGDATA(WBIWF.TO.WBIICS)

These objects together create full communication between the two queue
managers. The objects are created in such a way that communication starts
automatically whenever a message is created for the other queue manager.

For our implementation we added the definitions from Example 7-6 on page 321,
Example 7-7 on page 322, Example 7-8 on page 322, Example 7-9 on page 322,
and Example 7-10 on page 322 to our open crossworlds_mq.tst file and then
saved and closed the file. To create the definitions within WebSphere MQ, select
Start → Programs → IBM WebSphere InterChange Server → IBM
WebSphere MQ → Configure Queue Manager.

An alternative to this classical MQ setup is to exploit the fact that the workflow
queue manager WFQM is part of an MQ cluster. The InterChange Server queue
manager could join this cluster.

To join the existing cluster FMCGRP, the following objects are required:

DEFINE CHL(TO.WFQM.TCP) CHLTYPE(CLUSSDR) CONNAME(‘wbiwf(5010)’) TRPTYPE(TCP)
CLUSTER(FMCGRP)

DEFINE CHL(TO.WBIICS.TCP) CHLTYPE(CLUSRCVR) CONNAME(wbiics) TRPTYPE(TCP)
CLUSTER(FMCGRP)

Finally, make sure that the input queue of the connector is shared in the cluster:

ALTER QLOCAL(MQWF.INPUT) CLUSTER(FMCGR)

No objects have to be defined or altered on the workflow queue manager. Note
that the cluster name FMCGRP was named during the creation of the workflow
server. The names of the channels are fixed this time, because the workflow
configuration object has created matching objects during initial setup of the
workflow server.
 Chapter 7. Sales order management in InterChange Server 323

Start-up script and parameters
During the installation of the WebSphere Business Integration Adapters for
WebSphere MQ Workflow, a shortcut has been created in the Start →
Programs → IBM WebSphere Business Integration Adapters → Adapters →
Connectors folder to start the connector agent. However, this shortcut needs
modification to point to the configuration file we generated earlier with the
Connector Configuration tool.

1. To modify this shortcut, open the properties of the shortcut used to start the
connector agent and inspect the Target field. This command line usually does
not reference the configuration file. Add it with the -c parameter, as shown in
Example 7-12.

Example 7-12 Parameters for the start-up of the WebSphere MQ Workflow connector

C:\IBM\WBIAdapters\connectors\WebSphereMQWorkflow\start_WebSphereMQWorkflow.bat
WebSphereMQWorkflow ICS
-cC:\IBM\WBIAdapters\connectors\WebSphereMQWorkflow\WebSphereMQWorkflowConnecto
r.cfg

The start-up script, to which this shortcut points, is in the
C:\IBM\WBIAdapters\connectors\WebSphereMQWorkflow folder and is
called start_WebSphereMQWorkflow.bat. Open this script file in a text editor
to make any changes that are required.

The script sets an environment variable MQWF_JAVA_LIB to point to the
Java support files of WebSphere MQ Workflow. The default value is:

set MQWF_JAVA_LIB="C:\Program Files\IBM WebSphere MQ Workflow\BIN\Java3320"

2. In our distributed environment, this folder does not exist on the development
machine. The corresponding folder on the WebSphere MQ Workflow runtime
server is called \WMQWF\BIN\Java3500. The different version number in the
folder name is a consequence of using Version 3.5 for WebSphere MQ
Workflow.

Note: To allow for TCP/IP communication, an MQ listener task for TCP/IP
must be created and started. For the workflow queue manager, this is created
during initial setup. For the InterChange queue manager, this object does not
get created by default. You can use IBM MQSeries services application to
create and start such a listener task. Make sure that you create this object for
the correct TCP/IP port, which is set to 1414 in the previous commands.

Note: Example 7-12 displays the Target information, a single line entry into
the shortcut properties
324 Administering and Implementing WebSphere Business Integration Server V4.3

Copy this folder from the runtime server to the InterChange Server in an
appropriate directory and adjust the value of MQWF_JAVA_LIB accordingly.
This folder should contain two jar files that are named in the script:

set CONN_LIB=%MQWF_JAVA_LIB%\fmcojagt.jar;%MQWF_JAVA_LIB%\fmcojapi.jar

3. Save the changes to the script.

This completes the configuration of the WebSphere MQ Workflow connector.
Before we can start it, we deploy it to the server, which is covered in 7.11,
“Deploy user project” on page 343.

7.7.3 JDBC adapter configuration
The JDBC adapter enables the exchange of business objects with any database
that provides a JDBC driver that implements the JDBC 2.0 specification. The
connector connects to the database using the JDBC connect mechanism and
establishes a connection pool with the database. This connection pool is used in
any interaction with the database.

1. To start the configuration process, double-click the imported JDBC connector
to start the Connector Configurator. Select first the tab Standard Properties.

Similar to what we described for the WebSphere MQ Workflow connector, the
most important properties are:

– BrokerType: ICS
– DeliveryType: MQ
– jms.MessageBrokerName: ICS.queue.manager

2. On the Connector-Specific properties tab, we configure the values that
control database access. Table 7-12 shows these properties.

Table 7-12 JDBC connector properties

Property Value

ApplicationPassword sab414r

ApplicationUserName wbiadmin

DatabaseURL jdbc:db2:ORDERMGT

JDBCDriverClass COM.ibm.db2.jdbc.app.DB2Driver

RDBMSVendor DB2
 Chapter 7. Sales order management in InterChange Server 325

For our scenario we used the values listed in Table 7-12, as shown in
Figure 7-61.

Figure 7-61 Configuring JDBC connector

3. Click the Supported Business Objects tab and add the JDBC_ORDERS
and Order business objects (Figure 7-62 on page 327). Add Agent Support
for JDBC_ORDERS.

Save the JDBC adapter configuration to the project.
326 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-62 Adding business objects to JDBC connector

4. To associate maps with the business objects, select the Associated Maps
tab and mark the Explicit binding check box for the business objects
JDBC_ORDERS and Order. Select the corresponding maps, as shown in
Figure 7-63.

Figure 7-63 Associating maps to JDBC connector

5. Save the configuration to the project and also to file.
 Chapter 7. Sales order management in InterChange Server 327

Runtime configuration
In this section, we complete three tasks:

� Three tables, which the JDBC connector is using for event processing, must
be defined.

� Several WebSphere MQ queues must be defined. These queues are used for
communication between the connector agent and the InterChange Server.

� The agent component is started by a script that requires customization. This
script also takes several parameters that must be reviewed and possibly
changed.

Event table definition
The JDBC connector uses three tables in the application database for event
management. In our scenario, the database is not an initiator of events so we are
not required to define event and archive tables for the JDBC connector.
However, for future scenarios in which events might have to be processed by the
JDBC connector and the InterChange Server, it is a good idea to define these
tables anyway.

Example 7-13 shows customized DDL for the archive events table. Note that it
has the same schema name as the user ID that is used by the JDBC connector
to interact with the application database.

Example 7-13 SQL DDL for storing archived events

CREATE TABLE WBIADMIN.XWORLDS_ARCHIVE_EVENTS
(EVENT_ID INTEGER NOT NULL ,
CONNECTOR_ID VARCHAR (40) ,
OBJECT_KEY VARCHAR (80) NOT NULL ,
OBJECT_NAME VARCHAR (40) NOT NULL ,
OBJECT_VERB VARCHAR (40) NOT NULL ,
EVENT_PRIORITY INTEGER NOT NULL ,
EVENT_TIME TIMESTAMP ,
ARCHIVE_TIME TIMESTAMP ,
EVENT_STATUS INTEGER NOT NULL ,
EVENT_COMMENT VARCHAR (100) ,
CONSTRAINT CC1086984972799 PRIMARY KEY (EVENT_ID)) ;
328 Administering and Implementing WebSphere Business Integration Server V4.3

Example 7-14 shows SQL DDL for the events table. It is defined under the
schema name of WBIADMIN.

Example 7-14 SQL DDL for storing events

CREATE TABLE WBIADMIN.XWORLDS_EVENTS
(EVENT_ID INTEGER NOT NULL ,
CONNECTOR_ID VARCHAR (40) ,
OBJECT_KEY VARCHAR (80) NOT NULL ,
OBJECT_NAME VARCHAR (40) NOT NULL ,
OBJECT_VERB VARCHAR (40) NOT NULL ,
EVENT_PRIORITY INTEGER NOT NULL ,
EVENT_TIME TIMESTAMP ,
EVENT_STATUS INTEGER NOT NULL ,
EVENT_COMMENT VARCHAR (100) ,
CONSTRAINT CC1086984972799 PRIMARY KEY (EVENT_ID)) ;

Finally, Example 7-15 shows SQL DDL for the identifiers table.

Example 7-15 SQL DDL for the storing identifiers

CREATE TABLE WBIADMIN.XWORLDS_UID
(ID INTEGER NOT NULL ,
CONSTRAINT CC1086986241113 PRIMARY KEY (ID)) ;

WebSphere MQ configuration
Similar to the configuration for the WebSphere MQ Workflow connector, we
create several queues that are named on the Standard Properties tab of the
JDBC connector.

Opening the same crossworlds_mq.tst file that was used previously, add the
definitions as shown in Example 7-16.

Example 7-16 Sample MQ definitions

DEFINE QLOCAL(IC/ICS/JDBCConnector)
DEFINE QLOCAL(AP/JDBCConnector/ICS)

To create the queues, select Start → Programs → IBM WebSphere
InterChange Server → IBM WebSphere MQ → Configure Queue Manager.
 Chapter 7. Sales order management in InterChange Server 329

Start-up script and parameters
During the installation of the WebSphere Business Integration Adapters for
JDBC, a shortcut has been created in the Start → Programs → IBM
WebSphere Business Integration Adapters → Adapters → Connectors
folder to start the connector agent. However, this shortcut needs modification to
point to the configuration file we generated earlier with the Connector
Configuration tool.

To modify this shortcut, open the properties of the shortcut used to start the
connector agent and inspect the Target field. This command line usually does not
reference the configuration file. Add it with the -c parameter, as shown in
Example 7-17.

Example 7-17 Parameters for the start-up of the JDBC connector

C:\IBM\WBIAdapters\connectors\JDBC\start_JDBC.bat JDBC ICS
-cC:\IBM\WBIAdapters\connectors\JDBC\JDBC.cfg

The start-up script, to which this shortcut points, is in the
C:\IBM\WBIAdapters\connectors\JDBC folder and is called start_JDBC.bat.
Open this script file in a text editor to make any changes that are required.

The script file contains a definition for an environment variable to point to the
JDBC driver:

REM SET JDBCDRIVERPATH=

Change this to the location of the file db2java.zip:

SET JDBCDRIVERPATH=C:\IBM\SQLLIB\java\db2java.zip

This zip file contains the class that was named on the Connector-Specific
Properties tab during the configuration of the JDBC connector.

Also in this script file, java.exe is launched with a long list of parameters. One of
these parameters is -Djava.library.path, which is set to a concatenation of
directories. Add the bin directory of DB2 to this concatenation, for example
C:\IBM\SQLLIB\bin. Make sure that you do not add it in a way that adds a blank,
which could have adverse effects.
330 Administering and Implementing WebSphere Business Integration Server V4.3

The full and corrected command and its parameters are shown in Example 7-18.

Example 7-18 Starting the JDBC connector

%CWJAVA% -mx128m -ms64m -Djava.ext.dirs="%MQ_LIB%";%JRE_EXT_DIRS%
-Djava.library.path="%CROSSWORLDS%"\bin;%CONNDIR%;"%MQ_LIB%";%JRE_EXT_DIRS%;C:\
IBM\SQLLIB\BIN\ %ORB_PROPERTY% -Duser.home="%CROSSWORLDS%" -cp
%JCLASSES%;%CONNDIR%\%CONNJAR%; AppEndWrapper -l%CONNPACKAGENAME%
-n%CONNAME%Connector -s%SERVER% %3 %4 %5

Port connector configuration
The configuration of the Port connector is relatively simple because it does not
provide any interaction with an application.

Similar to what we described for the WebSphere MQ Workflow connector, the
most important properties are:

� BrokerType: ICS
� DeliveryType: IDL

� jms.MessageBrokerName: ICS.queue.manager

See Figure 7-64 on page 332.

Note: Because the Port Connector will not actually be used for sending or
receiving data, it is easier to configure the Delivery Type as IDL.
 Chapter 7. Sales order management in InterChange Server 331

Figure 7-64 Standard properties for the Port connector

For the Port connector, there are no connector-specific properties.

1. Select the Supported Business Objects tab (Figure 7-65 on page 333) and
the following business objects:

– Order
– Item
– Customer
– Contact

2. Make sure to select Agent Support for all of them. These four business
objects are the generic business objects that the collaboration sends to the
ports that we are going to bind to the Port connector.
332 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-65 Supported business objects for the Port connector

To see what objects are used by a certain port, look at the collaboration
object or the collaboration template. Refer to Figure 7-73 on page 341 to find
these objects.

3. Save the configuration to the project. You can also save it to a file, which
could be used by the Test connector.

To import these meta objects into the workspace, follow these steps:

1. Open the Business Object Designer tool. When it is launched, select File →
Open from file.

2. Point to the file in the \WebSphereICS\repository\DataHandler directory.

3. Repeat these steps until you have imported all of meta objects that you
require.

7.8 Collaboration template
We used an Industry Solution Sales Order Management Collaboration in our
implementation. This requires importing the collaboration into the System
Manager.

1. To do this, right-click the ICL name and select Import.
 Chapter 7. Sales order management in InterChange Server 333

2. In Figure 7-66, click Browse to locate the BIA_CT_SalesOrderProcessing.jar
file in the C:\IBM\IndustryCollabs\OrderMgmt\WBICoreCollabs directory
folder. Click Finish.

Figure 7-66 Import the Sales Order Processing template
334 Administering and Implementing WebSphere Business Integration Server V4.3

3. Now the SalesOrderProcessing template is loaded in the ICL, as shown in
Figure 7-67.

Figure 7-67 Collaboration templates imported in System Manager
 Chapter 7. Sales order management in InterChange Server 335

7.9 Collaboration object
The final step is to develop the collaboration object, which uses the
SalesOrderProcessing template that we just imported into our ICL. To create the
collaboration, follow these steps:

1. Right-click the Collaboration Objects folder inside the ICL and select Create
New Collaboration Object.

2. Enter SalesOrderProcessing_MQWF_to_MQWF as the collaboration object name
and select the SalesOrderProcessing collaboration object (Figure 7-68).
Click Next.

Figure 7-68 Creating a new collaboration object: Step 1
336 Administering and Implementing WebSphere Business Integration Server V4.3

3. Now we bind the different ports that are available in the
SalesOrderProcessing collaboration to the adapters. SalesOrderProcessing
uses six different ports, but we bind only two of them for our configuration.
Figure 7-69 shows port bind details. After you have finished binding the port,
click Next.

Figure 7-69 Creating a new collaboration object: Step 2
 Chapter 7. Sales order management in InterChange Server 337

4. The traces are the last configuration in our collaboration object. Set the
System Trace Level and Collaboration trace level to 5, as shown in
Figure 7-70. Click Finish.

Figure 7-70 Creating a new collaboration object: Step 3
338 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-71 shows the collaboration object displayed in the System Manager.

Figure 7-71 Collaboration object

There is another way to bind ports to connectors.

1. Switch to Tree view of the collaboration editor (bottom left corner). Right-click
an unbound port and select Bind Port. A pop-up window (Figure 7-80 on
page 348) shows the connectors that have the generic business object of that
port in their list of supported business objects.
 Chapter 7. Sales order management in InterChange Server 339

2. Select the Port connector and repeat this until all ports are connected to the
port connector.

Figure 7-72 Bind a port to a connector

Tip: If an expected adapter name does not show as an option to bind to a
port, check the business objects that the adapter supports.
340 Administering and Implementing WebSphere Business Integration Server V4.3

When all ports are bound to a connector, the tree view of the collaboration
looks similar to Figure 7-73.

Figure 7-73 Tree view of a fully bound collaboration
 Chapter 7. Sales order management in InterChange Server 341

7.10 Create a new user project
A common way to organize integration artifacts for the InterChange Server is to
create a user project. While an Integration Component Library (ICL) is a file
based repository for holding the actual artifacts, a user project is a virtual
grouping of components from one or many ICLs. The components shown in a
user project are only links to the actual components in the ICL. As a result, if you
delete an artifact from the user project, it simply removes the link, while the
physical object is still in the ICL.

From a user project one can export the grouped solution to a JAR file, validate
the project, or even deploy the solution to the InterChange Server runtime.

1. Within the User Project folder in System Manager, right-click InterChange
Server Projects and select New InterChange Server Project.

2. Provide a name for the user project, for example OrderManagement. To
populate the user project, select all business objects, maps, and collaboration
objects from the ICL OrderManagement. Also select the
SalesOrderProcessing collaboration template and the three connectors, as
shown in Figure 7-74. Click Finish.

Figure 7-74 Create new user project
342 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-75 shows the user project that we created with the objects that we
selected.

Figure 7-75 Populated User Project

7.11 Deploy user project
Now we can deploy our user project to the InterChange Server runtime. For this
first-time deployment, the InterChange Server does not contain any active
components. However, in the general case, you should review the Component
Management View in the System Manager, shown in Figure 7-76 on page 344. In
this view, you can stop connector controllers and collaboration objects before
deploying components that would overwrite those active components.
 Chapter 7. Sales order management in InterChange Server 343

Figure 7-76 Component Management View

To deploy the user project there are two options.

� Right-click the user project name and select the Deploy user project option
where you can select the target server and components from the user project
to deploy, as shown in Figure 7-77. Click Finish when you are done.

Note: If you performed unit map testing in a previous section, there might be
some artifacts left on the server from that testing. To remove all the
components from the running server, you can right-click the server name in
the InterChange Server Component Management view and select Delete the
repository.

Note: An optional step to perform before deploying the user project, is to
validate the user project. During validation, the InterChange Server will verify
any dependencies between objects. If one object depends on another, then
that last object must exist in the server or it must be part of the deployment
process.

To perform this validation, right-click the user project and select Validate user
project.
344 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-77 Using the Deploy Wizard to deploy a user project

� The second deployment option is to simply click and drag the user project
name down to the ICS server name in the Component Management view and
drop the project on the server.
 Chapter 7. Sales order management in InterChange Server 345

With either of these two options a deployment bar is displayed showing the
current status of the deployment procedure (Figure 7-78).

Figure 7-78 Deployment status bar

New in WebSphere InterChange Server v4.3 is the ability to deploy components
without having to restart the InterChange Server runtime. You can see the active
components in Figure 7-79.

Figure 7-79 Active InterChange Server components
346 Administering and Implementing WebSphere Business Integration Server V4.3

7.12 Runtime validation of infrastructure
As shown in Figure 7-79 on page 346 the components are now active within the
InterChange Server runtime. What is left to test for runtime component validation
are the two individual adapters, the WebSphere MQ Workflow adapter and the
JDBC adapter.

Starting the adapters
To start these adapters, click the short cut for each:

� Start → Programs → IBM WebSphere Business Integration Adapters →
Adapters → Connectors → WebSphere MQ Workflow Connector

� Start → Programs → IBM WebSphere Business Integration Adapters →
Adapters → Connectors → JDBC Connector

Each connector runs by default in its own command window where, by default, it
displays logging and tracing to standard out. Depending on your settings for
agent trace level, these log messages can be numerous and new log messages
can be generated almost constantly.

One way to look at these log messages without scrolling away almost
immediately is to click in the command window. The title bar shows the name of
the connector prefixed with the word Select. By doing this, the scrolling stops.

At this time, no application messages are expected because we just started the
adapters for the first time, so look for the ready message. You can see this
message at the bottom of the standard out window and is displayed as:

[Mesg: Connector Agent state is active.]

Instead of scrolling hundreds of log messages, you could expand the
InterChange Server entry in the Component Management View in the System
Manager. This shows the different connectors, maps, and collaborations, each
prefixed with a little status icon (Figure 7-79 on page 346).

Important: Be aware that when you click in the command window, the
connector pauses as well. As a result, you one must be careful when doing
this in a running system because it can have adverse effects.
 Chapter 7. Sales order management in InterChange Server 347

For connectors, this view merely shows the status of the connector controller. To
view the status of the connector agents, right-click the Connectors folder and
select Overview. This opens a new view in the System Manager (Figure 7-80).

Figure 7-80 Status of connector agents

In this view, the agent state is running for the JDBC connector and the
WebSphere MQ Workflow connector. Note that the Port connector is in a
stopped state, which is normal.

Troubleshooting a stopped connector agent
If one of the connector agents does not show as running, the first step is to
discover whether the connector controller is running correctly. This means
verifying the status icon in front of the connector in the Component Management
View:

� Green for running
� Red for stopped
� Two black bars for paused

Obviously, if the connector controller is not working correctly, the connector
agent will not be able to communicate with it. Thus, the first task is to see why the
connector controller is not starting correctly. You can try to restart it and then
verify immediately the output of the InterChange Server. The most common
problem is a setup problem with the underlying queues. For example, the queues
might be defined in the wrong case or the names might not match due to a
spelling mistake. Verify whether the queue manager is running. Errors at this
level are usually caused by wrong information about the Standard Properties tab
of the Connector Configurator.

After errors at the controller level are fixed and the connector controller is running
correctly, you can then focus on the agent itself. Two broad categories of
problems can occur.

� The connector agent cannot communicate with the controller due to a
mismatch between the configuration file and the actual configuration. The
most important settings in the configuration file are the settings about
communication with the connector controller, such as queue names and
348 Administering and Implementing WebSphere Business Integration Server V4.3

queue manager names. When communication is established, the remaining
configuration parameters are pushed from the server to the agent.

� You might have forgotten to save your latest changes to the configuration file
and instead saved them only to the project. Alternatively, you might have
pointed to the wrong configuration file. Check that the configuration file
contains your latest changes.

When communication happens between controller and agent, the agent receives
its runtime parameters, which can be verified in the standard out window. When
the agent has received its runtime parameters, it uses them to connect to the
application. For the WebSphere MQ Workflow connector, the term application
means: Can it communicate with the configured queue manager that is defined
with interaction with the WebSphere MQ Workflow server? For the JDBC
connector, it means: Can it connect to the database and can it find its event
tables? Thus, if errors occur at this level, they are caused by errors on the
Connector-Specific Properties tab of the Connector Configurator.

7.13 Runtime validation of integration solution
To validate our integration solution, it is a good practice to perform component
testing, unit testing, and end-to-end testing.

Component testing includes validating that the individual adapters successfully
start (which involves connecting with the target application) as discussed in 7.12,
“Runtime validation of infrastructure” on page 347 and using the Map Designer’s
test environment to assure the intended data transformations are occurring,
discussed in , “Testing the map” on page 300.

Unit testing involves testing the integration interfaces, namely the automated
process defined by the collaboration and the interaction between the
collaboration and the source and target systems. The most efficient fashion in
which to perform unit testing with the collaboration is to first use the Integrated
Test Environment. Then to test interaction between one actual source or target
system and the collaboration a Virtual Test Connector is often used. These two
approaches are described in detail in this section.

End-to-end testing is usually done with the adapters having live connections to
development source and target systems, where those source and target systems
are providing production type of data events and responses.
 Chapter 7. Sales order management in InterChange Server 349

7.13.1 Unit testing with the Integrated Test Environment
The order and content of the information in this section was based upon the
“Using the Integrated Test Environment” chapter in the System Implementation
Guide that is located at this Web site:

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

To perform a test in the Integrated Test Environment, you must do a number of
tasks such as register InterChange Server as a test server, create a test unit,
deploy the components in the interface to the server, start the server, emulate the
connectors in the interface, and exchange business objects between the
connectors. The following characteristics describe the use of Integrated Test
Environment:

� You only have to perform some of the tasks a single time. For instance, you
only have to create a test unit for an interface once.

� You have to perform some tasks multiple times. For instance, you might test
how an interface responds when you change the value in a particular
attribute, so you will have to send business object requests for the interface
multiple times.

� You can perform some tasks in multiple ways. For instance, you can deploy
components to the server before you prepare the test unit, or you can deploy
all of the components for a test unit by using the Task Manager view, or you
can deploy single components by using the Test Unit view.

The next portion of this section describes the sequence which you would typically
follow to perform a test. This section incorporates most of the subtasks and
involves most of the interface elements. This section also recommends the most
efficient and effective techniques in situations where there are multiple ways of
accomplishing a subtask.

1. Although you can deploy components to an InterChange Server instance by
using Integrated Test Environment, it is recommended that you perform all
deployment activities beforehand for the following reasons:

– You avoid having to compile maps and collaboration templates as part of
the testing process.

– You can start the components prior to the testing stage as well;
components must be deployed before they can be started. When you
deploy connectors you must restart the server to start them, and almost

Note: New in WebSphere InterChange Server V4.3.0 is the ability to use the
Integrated Test Environment to connect to a remotely running InterChange
Server.
350 Administering and Implementing WebSphere Business Integration Server V4.3

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

any interface involves a connector, so it is typically not efficient to deploy
the components for an interface as part of the testing process.

– If you have to test several interfaces you can do a single deployment prior
to testing, rather than having to make sure you oversee the proper
deployment for each interface during testing.

2. Ensure that all of the components required to test the interface are in an
active state.

To start components, use one of the following interfaces:

– System Monitor, as described earlier in this book
– InterChange Server Component Management view,
– Managing component states using the Test Unit view in the Integrated

Test Environment

3. Register the InterChange Server you want to test with as a Test Server as
described in.

4. Start the Integrated Test Environment perspective as described in

5. Select the server you want to test with as described in Selecting a server
configuration.

Select Integrated Test Environment → Test Server Configuration from the
menu bar of the Integrated Test Environment. Select the test server
(Figure 7-81) to which to connect and click OK.

Figure 7-81 Testing Server Configuration for Integration Test Environment

Tip: If the server instance you want to use is not listed in the dialog, try
deleting it from the Server Instances view and re-registering it.
 Chapter 7. Sales order management in InterChange Server 351

6. Create a test project to contain the test unit.

Do the following to create a test project to store the individual test units you
will create:

a. Select File → New → Integrated Test Environment Project from the
menu bar (Figure 7-82).

Figure 7-82 Creating new Integration Test Environment Project
352 Administering and Implementing WebSphere Business Integration Server V4.3

b. At the New Integrated Test Environment Project screen, type a name for
the test project in the Project name field. We used OrderManagementITE.

Project names can only contain alphanumeric characters and
underscores, and must be specified in English.

Figure 7-83 Naming new Integration Test Environment Project

7. Create a test unit for the interface you want to test.

You can either create a test unit from within Integrated Test Environment, or
from within System Manager.

– Do the following to create a test unit from within Integrated Test
Environment:

i. Select File → New → Integrated Test Environment Test Unit from
the menu bar.
 Chapter 7. Sales order management in InterChange Server 353

ii. At the Select collaboration screen (Figure 7-84), select the
collaboration object you want to test from the list of all the collaboration
objects in all the integration component libraries defined in the system.

Figure 7-84 Adding unit from Integration Test Environment

– Do the following to create a test unit from within the System Manager:

Change to the System Manager perspective and right-click the
collaboration object that represents the interface. Select Debug in
Integrated Test Environment from the context menu.
354 Administering and Implementing WebSphere Business Integration Server V4.3

With either method used to create the Test Unit, the Create Integrated Test
Environment Test Unit screen will open (Figure 7-85). At this screen, type a
name for the test unit in the Test Unit field, and select the test project it should
be created in from the Integrated Test Environment Project drop-down
menu.

Figure 7-85 Complete Test Unit creation

8. It is recommended, but not required, that you deploy the components outside
of the Integrated Test Environment. If you plan to deploy the components in
the interface you are testing using Integrated Test Environment, do the
following:

a. Verify that all the artifacts that you deployed are displayed in the
Dependents section.

In the Outline view, expand the Artifacts node and then the Dependents
node.

b. If you want to add additional dependents to the list, you can:

i. In the Outline view, expand the Artifacts node, right-click the User
Artifacts node and select Add User Artifacts from the context menu.
 Chapter 7. Sales order management in InterChange Server 355

ii. At the User Dependents window (Figure 7-86) select the components
you want to add. You can use standard multiple-selection techniques,
such as holding down Shift to select contiguous rows and holding
down Ctrl to select noncontiguous rows.

Figure 7-86 Add user dependents

9. Make sure the IBM Java Object Request Broker is started on the machine
where the InterChange Server is installed. This is accomplished by launching
the Persistent Name Server.

10.Use the Task Manager view to start the server (if it is not already started),
bind the Integrated Test Environment agent to it, and connect the Integrated
Test Environment to it.
356 Administering and Implementing WebSphere Business Integration Server V4.3

This is accomplished by checking or unchecking the desired options in the
Task Manager view and then clicking the green Play button on the Task
Manager view menu bar (Figure 7-87).

Figure 7-87 Integrated Test Environment Task Manager
 Chapter 7. Sales order management in InterChange Server 357

When the Integrated Test Environment is bound to the running InterChange
Server, the interface looks similar to Figure 7-88.

Figure 7-88 Integrated Test Environment bound to icsdev1 for OrderManagement integration project

For detailed information about options within the Task Manager view, review
the Using Integrated Test Environment section of the System Implementation
guide located at this Web site:

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

11.Enable the Server Context Overlay by right-clicking the background of the
Test Unit view and select Server Context Overlay from the context menu. By
default, the Server Context Overlay is already enabled.

The Server Context Overlay displays information about the components in the
interface within the Test Unit view and enables context menu options for
deploying components and manipulating their states.

12.Show Client Simulator views for the clients in the interface.
358 Administering and Implementing WebSphere Business Integration Server V4.3

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

It is recommended that you organize the Client Simulator views in a way that
makes sense to you. For instance, you might find it easiest to have the view
for the source connector in position 1 in the perspective (shared with the
Integrated Test Environment Navigator view), and to have the view for the
destination connector in position 4 in the perspective (shared with the
Properties view).

In the Eclipse-based tooling, it is easy to change the views by simply clicking
a view’s title bar and dragging the view to a different location on the screen.
Feel free to experiment with different configurations of the views. Knowing
that you can easily reset the views by clicking the Windows menu option and
selecting the individual view or resetting the perspective.

Figure 7-89 Working with views and resetting perspectives

13.Connect the Client Simulator views to the server. This can be accomplished
by using the adapter configuration stored in the InterChange Server

Tip: If you reset the perspective, you can restart the Client Simulator from
the Task Manager to bring all the Client Simulators views to the forefront.
 Chapter 7. Sales order management in InterChange Server 359

repository or by the externally saved configuration file. Each client simulator
to be used in testing needs to be started.

To start the client simulators, click the menu button on the title bar of the
targeted Client Simulator view (Figure 7-90), then click Server and your
connection option, either Connect or Connect with *.cfg.

Figure 7-90 Client Simulator connection menu

j

When the Status View for that client simulator displays Ready, it has
successfully connected.

After you have confirmed that the clients connected to the server
successfully, configure the Client Simulator view for the source connector to
use the Input Pane by clicking the Input Pane button located at the top of that

Tip: The DeliveryTransport property of the adapter you are emulating must
be set to the value IDL to connect to the server using the repository
definition. Otherwise, you must use the Connect with *.cfg option.
360 Administering and Implementing WebSphere Business Integration Server V4.3

particular client simulator view. For the destination connector, click the to
Result Pane button.

14.If you want to use business object tracing, start it at this point so that the data
is captured when you begin to send business objects in the next steps. To
start business object tracing use the Task Manager view.

15.Use the Outline view to confirm that the interface is ready for testing. Click the
Outline tab in the bottom left corner of the Integrated Test Environment
window and verify that all the required components are highlighted in green.

16.Do the following to create and send a business object request from the
source connector:

a. Create a business object instance within the
WebSphereMQWorkflowConnector client window by:

i. In the Input Pane, select the name of the business object you want to
create from the Business Object Type drop-down menu.

ii. Click Create next to the Business Object Instance field.

iii. When presented with the New Instance dialog, type a name for the
instance in the Enter Name field, any name can be used.

iv. Select the desired verb from the Verb drop-down menu.

v. Select the desired locale from the Business Object Locale drop-down
menu.

vi. Provide values for the simple attributes and child business objects
within the top-level object.

i. Click OK. See Figure 7-91 on page 362.
 Chapter 7. Sales order management in InterChange Server 361

Figure 7-91 Creating the Business Object instance in the client simulator

b. Save the business object instance to a file to be used in subsequent tests
by clicking the menu triangle button on the right side of the client simulator
title bar, then by clicking Edit and Save All Business Objects.

c. Send the business object instance as a synchronous request by first
changing to synchronous mode.

To change to synchronous mode, click the menu button, then Server,
Mode, and select synchronous object requests synchronously as
appropriate.

To send the business object instance click the send business object
button and select the appropriate collaboration to which to post the
business object (Figure 7-92 on page 363).
362 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-92 Submit business object

17.Use the InterChange Server Console view (Figure 7-93) to observe the
processing of the business object.

Figure 7-93 Integrated Test Environment InterChange Server Console view
 Chapter 7. Sales order management in InterChange Server 363

18.Examine the business objects as different components finish processing it
(Figure 7-94 on page 365).

If you use business object tracing, Integrated Test Environment gathers
information about a business object while the system processes the business
object. Integrated Test Environment captures an image of the business object
after it has been processed by a map and after it has been processed by a
collaboration.

For example, if you are testing an interface in which a connector sends a
business object request to a collaboration object which sends it to a
destination connector, which processes it and then returns a response, then
Integrated Test Environment captures the following business object data:

– The generic business object produced by the map that is called by the
source connector when sending the business object request to
InterChange Server

– The generic business object supplied as input to the map that is called by
the destination connector

– The generic business object produced by the map that is called by the
destination connector when returning the business object response to
InterChange Server

– Exception messages related to failed flows
364 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-94 Integrated Test Environment BO Inspector View
 Chapter 7. Sales order management in InterChange Server 365

19.Edit the response business object in the Result Pane of the destination Client
Simulator view with the appropriate values (Figure 7-95).

Figure 7-95 Edit response business object
366 Administering and Implementing WebSphere Business Integration Server V4.3

20.Send the business object response as a reply by clicking the business object
in the result pane and the Reply Successful button shown in Figure 7-96.
Because we were set for synchronous mode, the reply will then be forwarded
to the result pane of the client simulator view for the
WebSphereMQWorkflowConnector also shown in Figure 7-96.

Figure 7-96 Integrated Test Environment reply success

21.Repeat steps 16 through 20 to test this interface again, or repeat steps 6
through 20 to test another interface

7.13.2 Unit testing with the Visual Test Connector
The Visual Test Connector is a utility for simulating a running adapter’s
connectivity with a target or source application. By using the Visual Test
Connector, you can unit test various sections of the integration solution. For
testing our scenario, we started all the corresponding InterChange Server
components except for the WebSphere MQ Workflow adapter, which we
simulated with the Visual Test Connector.

1. To start the test connector, click Start → Programs → IBM WebSphere
InterChangeServer → IBM WebSphere Business Integration Toolset →
Development → Test Connector.

2. After the Visual Test Connector is started, a new window opens (Figure 7-97
on page 368). In this window, there are three panes:

– The Supported Business Object pane, in the upper left corner

This pane is used to create business object instances and send them to
the InterChange Server.
 Chapter 7. Sales order management in InterChange Server 367

– The BO Request List pane, in the upper right corner

This pane is used to display the business objects that are received by the
connector.

– The Output pane, at the bottom

This is used to display messages about the interaction between the Visual
Test Connector and the InterChange Server.

Figure 7-97 Test connector

3. Because the Visual Test Connector can simulate any connector that is
installed in the system, it is possible to have different profiles for each adapter
that is configured in the system. To create a new profile or to open an existing
profile, click File → Create/Select Profile.
368 Administering and Implementing WebSphere Business Integration Server V4.3

4. Because this is the first time that we have used the Visual Test Connector, no
profiles are defined (Figure 7-98) so we must create a new profile. Select
File → New Profile or click the corresponding icon.

Figure 7-98 Create connector profile

5. In the New Profile window (Figure 7-99 on page 370), specify the following
information:

– The Connector configuration file contains all information that is related to
the connector that we want to simulate.

– The Connector Name must be the same name as was specified in the
Standard Properties tab. It is also the name that is passed to the
connector as a parameter on the command line.

– The Broker Type is ICS when working with the InterChange Server.

The following information is needed only if we use the ICS broker type
option:

• Server: InterChange Server name
• Password: InterChange Server Administrator password

6. In our case, we use the Visual Test Connector to simulate the WebSphere
MQ Workflow connector and use the ICS as the Broker Type. Browse the
system for the WebSphere MQ Workflow connector configuration file, enter
 Chapter 7. Sales order management in InterChange Server 369

WebSphereMQWorkflowConnector as the connector name, and enter as the
server name ICS and null as the password. Click OK.

Figure 7-99 Connector profile properties

7. The profile has been created (Figure 7-100). Select it and click OK.

Figure 7-100 Select the connector profile

8. The next step is to activate the Visual Test Connector. To do this select
File → Connect.

Attention: Before connecting the Test connector (which simulates the
WebSphere MQ Workflow connector) to the InterChange Server, make
sure that the real connector is not running. If it is, stop it first by typing q in
the command window.
370 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 7-101 shows in the Output pane the messages indicating the Visual
Test Connector. Also, the BOType box has been activated to enable selection
of one of the business objects selected by this connector.

Figure 7-101 Test connector is active

9. We want to test the collaboration object we had created. The input
application-specific business object to our collaboration object is
MQWF_Order_Form; select this as the BOType. Click Create to create the
application-specific business object.

10.Enter the business object name Test_Message and click OK (Figure 7-102).

Figure 7-102 Enter the Business Object name
 Chapter 7. Sales order management in InterChange Server 371

11.Now the business object top-level structure is displayed (Figure 7-103). To
create the child element in our structure, right-click the Input element and
select Add instance.

Figure 7-103 Add an instance to the child business object
372 Administering and Implementing WebSphere Business Integration Server V4.3

12.Enter data in the business object (Figure 7-104) and create additional
instances for the OrderDetail child business object. Specify a different verb if
you wish.

Figure 7-104 Enter business object values

13.We want to test our collaboration in synchronous mode, so change mode by
selecting Request → Mode → Synchronous.

14.To send the business object to the InterChange Server, select Request →
Send.
 Chapter 7. Sales order management in InterChange Server 373

15.Because we are sending the message in a synchronous mode, select the
collaboration to start, SalesOrderProcessing_MQWF_to_MQWF, and click
OK. (Figure 7-105).

Figure 7-105 Select the collaboration

Figure 7-106 shows that the business object has been sent and the response
has been received.

Figure 7-106 Successfully sent the message
374 Administering and Implementing WebSphere Business Integration Server V4.3

16.To see the response business object, double-click the business object that
was created in the BORequest pane, as shown in Figure 7-107.

Figure 7-107 Response Business Object

7.13.3 End-to-end testing using the Web Client
We can now stop the Virtual Test connector and restart the real WebSphere MQ
Workflow connector, allowing real testing between the WebSphere MQ Workflow
server and the InterChange Server.

This time, when using the WebSphere MQ Workflow Web Client to create a new
process instance, the workflow XML message is picked up by the WebSphere
MQ Workflow adapter where it is parsed into a business object and delivered to
the collaboration. When the JDBC adapter gets the new Order information, the
records are inserted into the database and the new order number is passed back
to the collaboration, the WebSphere MQ Workflow adapter, and, eventually, to
the WebSphere MQ Workflow server. This completes the Create Sales Order
activity (Figure 7-108 on page 376), and the MQ Workflow runtime engine
executes the Order Parts activity.
 Chapter 7. Sales order management in InterChange Server 375

The process monitor shows us now that the activity Order Parts is running, which
means that the WebSphere MQ Workflow server has sent an XML message to
the WebSphere Business Integration Message Broker, which provides the
implementation of that activity. The implementation of that activity is the subject
of the next chapter.

Figure 7-108 Completed Sales Order Activity

When the Message Broker has passed the return data back to the running
workflow, the user completes the manual step (Approve Order) of approving or
rejecting the order. If the order is approved, the Confirm Order activity is invoked,
which will send a message to the InterChange Server to update the status of the
order from NEW to Approved within the database.

If the user rejected the sales order the Delete Sales Order activity will be invoked
that will send a message to the InterChange server with a status that informs the
InterChange Server to perform a soft delete of the previously entered order.
376 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 8. Replenishing parts in
WebSphere BI Message
Broker

This chapter describes the development and deployment of message flows that
implement the part replenishment section of the business process. The actual
logic of the message flows is relatively simple, because we focus more on the
integration between the runtime components of WebSphere Business Integration
Server and implementation techniques.

8

© Copyright IBM Corp. 2006. All rights reserved. 377

8.1 Overview
Now that the order is created in the order management system, you can order
the individual parts.

The purpose of the message flow is to accept the order message from the
workflow and then to split out every part of the order into a separate message.
These separate messages flow to another flow the simulates an external
application sending order response messages.

To do this, the message flow uses the aggregation nodes in WebSphere
Business Integration Message Broker. The message flow waits for all of the
answers to return from the simulation flow and combines all answers into one
message, formatted according to WebSphere MQ Workflow rules.

This reply message flows back to WebSphere MQ Workflow Runtime where the
activity completes and the process flow continues to the next activity.

The aggregation is done by two message flows: fan-out and fan-in. Fan-out picks
up the message from workflow and splits it into a separate message for every
part in the order. Fan-in retrieves the response messages and, as soon as all
responses have arrived, builds the combined response.

8.2 Implementation steps
Before we start the development of these message flows, we first make sure that
workflow XML messages arrive at the broker and that the broker can send
responses back to the workflow server. Several MQ objects must be created to
achieve this state.

We can then develop the fan-in and fan-out flow using Aggregate node. We also
develop the response flow, which calculates a random price for committed price
and invoiced price, date on expected date, shipment date, reception date and
registration date, case number information and other information.

After we have deployed the flows to the broker, we can resume the business
process and test the message flows.
378 Administering and Implementing WebSphere Business Integration Server V4.3

8.3 WebSphere MQ configuration
For the broker to be able to receive WebSphere MQ Workflow XML messages, it
must have MQ communication with the FMCQM queue manager associated with
the WebSphere MQ Workflow server. Because the FMCQM queue manager is,
by default, part of a cluster, it is sufficient that the broker queue manager joins
this cluster. This can be accomplished by defining a cluster receiver channel and
a cluster sender channel. The role of the cluster receiver channel is to publish to
the cluster the way in which other queue managers in the cluster should
communicate with it. The role of the cluster sender channel is to enable
communication with a full repository queue manager in the cluster. The FMCQM
queue manager of the WebSphere MQ Workflow server is by default a full
repository queue manager.

1. The following commands are to be executed in a runmqsc session for the
BKQM queue manager.

This command creates a cluster receiver channel:

def chl(TO.BKQM.TCP) chltype(clusrcvr) conname(wbimb) trptype(tcp)
cluster(FMCGRP)

This command creates a cluster sender channel, connecting the BKQM
queue manager to the FMCQM queue manager:

def chl(TO.FMCQM.TCP) chltype(clussdr) conname('wbiwf(5010)') trptype(tcp)
cluster(FMCGRP)

2. The next step is to define the queue toward which the WebSphere MQ
Workflow server will send the XML message. The name of this queue was set
in the UPES definition in WebSphere MQ Workflow. The following command
defines this queue and makes it part of the cluster. This means that the
WebSphere MQ Workflow queue manager FMCQM will know about it as
soon as it is defined.

def ql(ORDER.INPUT) cluster(FMCGRP)

3. The XML response message for the WebSphere MQ Workflow server must
be sent to a predefined queue (FMC.FMCGRP.EXE.XML) on the FMCQM
queue manager. Because this queue is by default part of the cluster, no
special definitions have to be made on the BKQM queue manager.

4. The XML request message is broken into several submessages, one for each
part that must be ordered. Each message for a single part is sent to an
ORDER.REQUEST queue. To define this queue, use a command such as:

def ql(ORDER.REQUEST)

Note that the ORDER.REQUEST queue is not part of the cluster. It is not
visible to other queue managers in the cluster.
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 379

The ORDER.REQUEST queue could be the input queue for some
business-to-business product that forwards the order message to the
supplier. In our simplified scenario, we simulate the supplier interaction via
another message flow. This message flow’s input queue is the
ORDER.REQUEST queue. This message flow builds a response message
for each order request for a single part. This response message is sent to the
ORDER.REQUEST queue, which you define with this command:

def ql(ORDER.RESPONSE)

The ORDER.REQUEST queue acts as the input queue for the fan-in
message flow where all response messages are aggregated into a single
response for the WebSphere MQ Workflow server. The fan-in and the fan-out
message flows work together by exchanging a control message via another
queue, called ORDER.CONTROL. Define this queue with the following
command:

def ql(ORDER.CONTROL)

One last queue is required to pass the original workflow request message to
the fan-in flow. Usually, this can be accomplished by passing along the
required context information for workflow in the so-called LocalEnvironment.
However, when the fan-in and fan-out flows are detached, the
LocalEnvironment is not preserved and other techniques are required. For the
time being, accept that another queue is required. Define this queue using the
following command:

def ql(ORDER.SAVE)

This completes the required setup for the message broker queue manager.
380 Administering and Implementing WebSphere Business Integration Server V4.3

8.4 Implementation of the fan-out and fan-in flow
Example 8-1 shows a sample WebSphere MQ Workflow request message as it
will be received by the fan-out flow in the message broker.

Example 8-1 Sample workflow input XML message to message broker

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WfMessage>
 <WfMessageHeader>
 <ResponseRequired>Yes</ResponseRequired>
 </WfMessageHeader>
 <ActivityImplInvoke>

<ActImplCorrelID>RUEAAAABACrAGwAAAAAAAAAAAAAABQAAAAEALEAAAAAAAAAAAAAAAAAFQQAAAAEAKsAdAAAAAAAAAA
BF</ActImplCorrelID>
 <Starter>ADMIN</Starter>
 <ProgramID>
 <ProcTemplID>AAAAAQAsQAAAAAAAAAAAAA==</ProcTemplID>
 <ProgramName>Dummy Unattended</ProgramName>
 </ProgramID>
 <ImplementationData>
 <ImplementationPlatform>WindowsNT</ImplementationPlatform>
 <ExeOptions>
 <PathAndFileName>DummyUnattended.cmd</PathAndFileName>
 <InheritEnvironment>true</InheritEnvironment>
 <StartInForeGround>true</StartInForeGround>
 <WindowStyle>Visible</WindowStyle>
 </ExeOptions>
 </ImplementationData>
 <ProgramInputData>
 <_ACTIVITY>Order Parts</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQAqwBsAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Parts_Replenishment_Form>
 <WorkOrderNumber>552345</WorkOrderNumber>
 <PartsForm>
 <NumberOfParts>5</NumberOfParts>
 <PartList>
 <PartOrder>
 <PartNumber>CPU</PartNumber>
 <Quantity>5</Quantity>
 <InStock>7</InStock>
 </PartOrder>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>Monitor</PartNumber>
 <Quantity>3</Quantity>
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 381

 <InStock>5</InStock>
 </PartOrder>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>Keyboard</PartNumber>
 <Quantity>3</Quantity>
 <InStock>9</InStock>
 </PartOrder>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>Power adapter</PartNumber>
 <Quantity>4</Quantity>
 <InStock>9</InStock>
 </PartOrder>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>USB drive</PartNumber>
 <Quantity>3</Quantity>
 <InStock>6</InStock>
 </PartOrder>
 </PartList>
 </PartsForm>
 </Parts_Replenishment_Form>
 </ProgramInputData>
 <ProgramOutputDataDefaults>
 <_ACTIVITY>Order Parts</_ACTIVITY>
 <_PROCESS>OrderProcess$AAAAAQAqwBsAAAAAAAAAAA==</_PROCESS>
 <_PROCESS_MODEL>OrderProcess</_PROCESS_MODEL>
 <Parts_Replenishment_Form> </Parts_Replenishment_Form>
 </ProgramOutputDataDefaults>
 </ActivityImplInvoke>
</WfMessage>

The fan-out message flow picks up the message from the ORDER.INPUT queue
and generates one or more order request messages on the ORDER.REQUEST
queue, depending on the NumberofParts information set at Workflow server.
Example 8-2 shows a sample order request message that this flow has to build.

Example 8-2 Sample order request message

<Part_Replenishment>
 <WorkOrderNumber>WO3483</WorkOrderNumber>
 <PartNumber>PartNumber1</PartNumber>
 <Quantity>2</Quantity>
 <InStock>5</InStock>
382 Administering and Implementing WebSphere Business Integration Server V4.3

</Part_Replenishment>

The sample output message from message broker to Workflow server is shown
in Example 8-3.

Example 8-3 Sample output message to Workflow

<WfMessage>
 <WfMessageHeader>
 <ResponseRequired>No</ResponseRequired>
 </WfMessageHeader>
 <ActivityImplInvokeResponse>

<ActImplCorrelID>RUEAAAABACrAGwAAAAAAAAAAAAAABQAAAAEALEAAAAAAAAAAAAAAAAAFQQAAAAEAKsAdAAAAAAAAAA
BF</ActImplCorrelID>
 <ProgramRC>0</ProgramRC>
 <ProgramOutputData>
 <Parts_Replenishment_Form>
 <PartsForm>
 <NumberOfParts>5</NumberOfParts>
 <PartList>
 <PartOrder>
 <PartNumber>CPU</PartNumber>
 <Quantity>5</Quantity>
 <InStock>7</InStock>
 </PartOrder>
 <Supplier>IBM ITSO</Supplier>
 <CommittedPrice>1.64E+0</CommittedPrice>
 <OrderReference>2004-10-26 10:30:34.585</OrderReference>
 <ExpectedDate>2004-11-02</ExpectedDate>
 <ShipmentDate>2004-11-09</ShipmentDate>
 <CaseNumber>16</CaseNumber>
 <ReceptionDate>2004-10-28</ReceptionDate>
 <RegistrationDate>2004-10-29</RegistrationDate>
 <InvoicedPrice>8.2E-1</InvoicedPrice>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>Monitor</PartNumber>
 <Quantity>3</Quantity>
 <InStock>5</InStock>
 </PartOrder>
 <Supplier>IBM ITSO</Supplier>
 <CommittedPrice>1.46E+0</CommittedPrice>
 <OrderReference>2004-10-26 10:30:34.605</OrderReference>
 <ExpectedDate>2004-11-02</ExpectedDate>
 <ShipmentDate>2004-11-09</ShipmentDate>
 <CaseNumber>14</CaseNumber>
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 383

 <ReceptionDate>2004-10-28</ReceptionDate>
 <RegistrationDate>2004-10-29</RegistrationDate>
 <InvoicedPrice>7.3E-1</InvoicedPrice>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>Keyboard</PartNumber>
 <Quantity>3</Quantity>
 <InStock>9</InStock>
 </PartOrder>
 <Supplier>IBM ITSO</Supplier>
 <CommittedPrice>1.46E+0</CommittedPrice>
 <OrderReference>2004-10-26 10:30:34.635</OrderReference>
 <ExpectedDate>2004-11-02</ExpectedDate>
 <ShipmentDate>2004-11-09</ShipmentDate>
 <CaseNumber>14</CaseNumber>
 <ReceptionDate>2004-10-28</ReceptionDate>
 <RegistrationDate>2004-10-29</RegistrationDate>
 <InvoicedPrice>7.3E-1</InvoicedPrice>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>Power adapter</PartNumber>
 <Quantity>4</Quantity>
 <InStock>9</InStock>
 </PartOrder>
 <Supplier>IBM ITSO</Supplier>
 <CommittedPrice>1.55E+0</CommittedPrice>
 <OrderReference>2004-10-26 10:30:34.645</OrderReference>
 <ExpectedDate>2004-11-02</ExpectedDate>
 <ShipmentDate>2004-11-09</ShipmentDate>
 <CaseNumber>15</CaseNumber>
 <ReceptionDate>2004-10-28</ReceptionDate>
 <RegistrationDate>2004-10-29</RegistrationDate>
 <InvoicedPrice>7.7E-1</InvoicedPrice>
 </PartList>
 <PartList>
 <PartOrder>
 <PartNumber>USB drive</PartNumber>
 <Quantity>3</Quantity>
 <InStock>6</InStock>
 </PartOrder>
 <Supplier>IBM ITSO</Supplier>
 <CommittedPrice>1.46E+0</CommittedPrice>
 <OrderReference>2004-10-26 10:30:34.665</OrderReference>
 <ExpectedDate>2004-11-02</ExpectedDate>
 <ShipmentDate>2004-11-09</ShipmentDate>
 <CaseNumber>14</CaseNumber>
 <ReceptionDate>2004-10-28</ReceptionDate>
384 Administering and Implementing WebSphere Business Integration Server V4.3

 <RegistrationDate>2004-10-29</RegistrationDate>
 <InvoicedPrice>7.3E-1</InvoicedPrice>
 </PartList>
 </PartsForm>
 <ReturnCode>0</ReturnCode>
 </Parts_Replenishment_Form>
 </ProgramOutputData>
 </ActivityImplInvokeResponse>
</WfMessage>

The following steps guide you through building such a message flow in the
Message Broker Toolkit of WebSphere Business Integration Message Broker
V5. (The implementation of the toolkit is discussed in Chapter 4, “Implementing
client components” on page 119.)

1. As with all solution components that are developed in an Eclipse-based
development tool, solution components are grouped in a project. To create a
project to hold message flows, in the Broker Development perspective of the
Broker Toolkit, select File → New → Message Flow Project. Name this
project Parts_Replenishment_Project, as shown in Figure 8-1.

Figure 8-1 Create a message flow project
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 385

2. Next, we create a message flow. Select File → New → Message Flow. If the
cursor was not positioned on the message flow project, you might have to
provide its name (Figure 8-2). You can do this by clicking the Browse button
or by typing the name of the project. Name the new flow
Parts_Replenishment_Flow.

Figure 8-2 Create new message flow

8.4.1 Building the graphical flow
The message flow editor is now open. A palette of existing nodes enables you to
add to the message flow editor to build the required logic. Figure 8-3 on
page 387 shows the completed message flow, consisting of the fan-out flow (top
flow in the figure) and the fan-in flow (bottom flow).
386 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 8-3 Completed fan-in and fan-out flow

The fan-out flow consists of the following nodes, from left to right:

� An MQInput node, renamed as ORDER.INPUT
� An AggregateControl node
� A Compute node, renamed as Create sub-orders
� An MQOutput node, renamed as Send sub-orders
� An AggregateRequest node
� A Compute node, renamed as Build control msg
� An MQOutput node, renamed as Send order control

The fan-in flow consists of the following nodes, from left to right:

� An MQInput node, renamed as ORDER.CONTROL
� An MQInput node, renamed as ORDER.RESPONSE
� An AggregateReply node
� A Compute node, renamed as Build workflow response
� An MQReply node, renamed as Send to Workflow

Figure 8-3 shows all of the nodes connected to each other. The Outline view in
Figure 8-4 on page 388 gives another view of how they connect to each other.
The selected node in the figure marks the start of the fan-in flow. The nodes
above it are part of the fan-out flow.
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 387

Figure 8-4 Outline view for the message flows
388 Administering and Implementing WebSphere Business Integration Server V4.3

Now we look at the properties of each node. Starting with the MQInput node
ORDER.INPUT of the fan-in flow, the Basic section of this node’s properties refer
to the MQ queue ORDER.INPUT. In the Default section, shown in Figure 8-5, we
select XML as the message domain.

Figure 8-5 Default properties of the MQInput node ORDER.INPUT
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 389

The node following the MQInput node, an AggegrateControl node, initializes the
aggregation control logic within the flow. It has two properties: a time-out value
and the name of the aggregation.

If a broker has multiple flows that use the aggregation nodes, then each of these
flows has an AggregationControl node. Each of these nodes should have a
different name. For our scenario, we used Parts_Replenishment.

Figure 8-6 Properties of the AggegrateControl node

We skip the Compute nodes Create suborders and Build control msg for now.
390 Administering and Implementing WebSphere Business Integration Server V4.3

The next node is the MQOutput node named Send sub-orders. In the Basic
section of this node’s properties, we set the name of the ORDER.REQUEST
queue and the BKQM queue manager. In the Request section, shown in
Figure 8-7, we select the option that the broker should build a Request message,
and we provide a reply-to queue manager and reply-to queue. The reply-to
queue, of course, is the input queue for the fan-in flow.

Figure 8-7 Request properties of the MQOutput node Send sub-orders
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 391

The last node in that part of the fan-out flow is the AggregateRequest node. This
node should always be at the end of a sequence of nodes that results in a
request message that is part of an aggregation. There is only one important
property for this node: the Folder Name. This is the name within the message
tree that contains the response message.

Figure 8-8 Properties of the AggregateRequest node

The properties of the MQOutput node named Send control msg has the
ORDER.CONTROL queue as its target queue. No other properties are being
used by this node.

The two nodes named MQOutput and AggregateRequest1 are used to make
sure that the fan-in flow has access to the workflow context. In the workflow
request message, several elements are provided that must be part of the
response message to workflow. However, the subflow that builds this workflow
response message does not have access to this information. It only has access
to the information that is being received from the suppliers. There are several
ways to get around that problem. One way is to store that information in a table
and then retrieve it when the responses from the suppliers have arrived. Another
elegant way is to send out a dummy supplier request message and make that
dummy message part of the aggregation logic. This is being done by the
MQOutput and AggregateRequest1 nodes. The MQOutput node is configured
similar to the Send suborders node. The only difference is that it is uses the
ORDER.SAVE queue. It also has the same settings for the request processing.
The AggregateRequest1 node uses a different folder name: Request. Thus,
when the aggregation is complete, we have a Request folder with the original
392 Administering and Implementing WebSphere Business Integration Server V4.3

workflow message in it and a Response folder with an array of responses from
the suppliers.

We now look at the fan-in flow. The MQInput node named ORDER.RESPONSE
has the ORDER.RESPONSE queue in the Basic section of its properties. In the
Default section, we select XML as the message domain.

Figure 8-9 Default properties of the MQInput node ORDER.RESPONSE

The MQInput node ORDER.CONTROL is similar, with the ORDER.CONTROL
queue in the Basic section of its properties. It also has XML as message domain.
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 393

The next node is the AggregateReply node, which has as its task the actual
aggregation of messages. This node has to know what responses to expect. All
responses should belong to the same Aggregate Name: Parts_Replenishment.

Figure 8-10 Properties of the Aggregate Reply node

We again skip the Compute node Build workflow message. The last node is the
MQOutput node Send reply to workflow, which sends the reply message to the
FMC.FMCGRP.EXE.XML queue of the WebSphere MQ Workflow queue
manager FMCQM.

8.4.2 Developing ESQL in the Compute nodes
In the previous section we skipped the discussion about the Compute nodes to
focus on the visual programming logic. In this section, we discuss the ESQL that
sits behind each Compute node.

Compute node Create suborders
The Compute node Create suborders breaks the input message into one
message for every part in the original order. (See the ESQL in Example 8-4.)

In the Main() function of this ESQL module, we first declare a reference to a
section of the message tree. (This is an easy way to save on typing and avoid
typing errors.) Then, the loop counter is initialized by retrieving the value of the
NumberOfParts element. Note that you cannot use anything like CARDINALITY
394 Administering and Implementing WebSphere Business Integration Server V4.3

for the array PartList, because the WebSphere MQ Workflow server will also
send empty elements.

Within the WHILE loop, we build an output message for every pass through the
loop. Thus, we first copy all the message headers from the full request message,
then copy those elements from the message that are required for the supplier of
the parts. When the message is built, we use the PROPAGATE function, which
sends the current OutputRoot tree to the out terminal, which is connected to the
MQOutput node Send suborders. Then, the loop counter is incremented and the
loop is repeated if the loop condition still evaluates to true.

When we get out of the loop, we end the Main function by returning FALSE.
Usually, you end the ESQL for a Compute node by returning TRUE. But here it is
important to return FALSE so that the Compute node does not try to propagate
another message. At the end of the loop, the OutputRoot is an empty message
tree. Returning TRUE results in forwarding an empty message tree to the
MQOutput node and thus in an error.

Example 8-4 ESQL module for Compute node Create suborders

CREATE COMPUTE MODULE Parts_Replenishment_Flow_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

DECLARE refInput REFERENCE TO
 InputRoot.XML.WfMessage.ActivityImplInvoke.ProgramInputData.Parts_Replenishment_Form;

DECLARE i, partsNumber INTEGER;
SET i = 1;
SET partsNumber = refInput.PartsForm.NumberOfParts;

WHILE i <= partsNumber DO
 CALL CopyMessageHeaders();
 SET OutputRoot.XML.Part_Replenishment.WorkOrderNumber = refInput.WorkOrderNumber;
 SET OutputRoot.XML.Part_Replenishment.PartNumber =

refInput.PartsForm.PartList[i].PartOrder.PartNumber;
 SET OutputRoot.XML.Part_Replenishment.Quantity =

refInput.PartsForm.PartList[i].PartOrder.Quantity;
 SET OutputRoot.XML.Part_Replenishment.InStock =

refInput.PartsForm.PartList[i].PartOrder.InStock;
 SET OutputRoot.XML.Part_Replenishment.InvoicedPrice =
RAND(CAST(refInput.PartsForm.PartList[i].PartOrder.Quantity AS INTEGER)) * 1000;

 SET OutputRoot.XML.Part_Replenishment.CommittedPrice =
RAND(CAST(refInput.PartsForm.PartList[i].PartOrder.Quantityy AS INTEGER)) * 1000;

 PROPAGATE;
 SET i = i + 1;

END WHILE;
RETURN FALSE;
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 395

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

END WHILE;
END;

END MODULE;

Compute node Build control msg
Example 8-5 shows the Build Control message Compute node’s ESQL. It does
nothing more than pass the Complete message to the out terminal of the
Compute node. This message is needed by the AggregateReply node.

Example 8-5 ESQL module for the Compute node Build control message

CREATE COMPUTE MODULE Parts_Replenishment_Flow_Compute1
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyEntireMessage();
RETURN TRUE;

END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

Compute node Build workflow response
The fan-in message flow retrieves the control message, which is used by the
AggregateReply node. It also retrieves one or more response messages from the
suppliers and the original request message. The AggregateReply node
constructs a special message tree that has all message headers, all message
properties, and all message data grouped in a single structure. This message
tree is not usable, for example, in an MQOutput node. A Compute node is
required to copy the appropriate parts of the message tree into a new message
tree. Example 8-6 on page 398 shows this logic.

The Main function starts with declaring two references to the two distinct parts of
the AggregateReplyBody: the Request folder and the Response folder.
Remember that the Request folder holds the original workflow request message.
396 Administering and Implementing WebSphere Business Integration Server V4.3

In building the OutputRoot, its first child element has to be Properties. While we
do not really use any of the properties, we still initialize it. By referring to one
single property (MessageSet), the broker adds the standard structure Properties
to the message tree.

The same is true for the second child of the OutputRoot message tree, the
message descriptor. By referring to the Version element of the MQMD, the
broker knows to add the standard structure MQMD to the message tree. We do a
little more with the MQMD: We set the MsgType element to MQMT_REPLY,
indicating that this message is a reply message. We set the Format to
MQFMT_STRING and we set Persistence to MQPER_PERSISTENT.

Below that shows the first use of the information from the original workflow
request message. We copy the UserIdentifier element from the request message
to the response message that we are building now to ensure that the user ID is
known to the workflow.

The next lines of code sets up the actual XML message for WebSphere MQ
Workflow. We indicate that we do not expect a response, because our message
will be a response on its own. If you send a request message to WebSphere MQ
Workflow, for example to start a process instance, you would normally set this
flag to Yes. We then have another use of the original request message.
WebSphere MQ Workflow uses its own correlation identifiers, which are part of
the request message and must be part of the response message so that the
WebSphere MQ Workflow server knows what to do with the incoming XML
message. Finally, we set the return code for the execution of this activity.

The next block of code is used to populate the user data structure. This data
structure has several simple elements and an array. The first lines of code
populate the simple elements. All of those simple elements are populated by
copying data from the original request message. The NumberOfParts element is
calculated by counting the number of responses in the Response array, which is
populated by the AggregateReply node.

To save on typing, we declare a reference, this time to the PartList array in the
OutputRoot. The loop condition logic uses yet another way to do a controlled
traverse of an array structure. Within the body of the loop, we copy all of the
required elements for the i-st entry of Response to the i-st entry of the
OutputRoot structure. We then move the pointer refResponse to its sibling, which
basically means the same thing as going to the next element in the array. The
condition logic of the loop verifies whether the last move operation was
successful. An unsuccessful move means that we were moving beyond the
boundaries of the array.
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 397

Finally, when the loop is completed, we set the ReturnCode element of the data
structure and complete the ESQL module.

Example 8-6 ESQL module for Compute node Build workflow response

CREATE COMPUTE MODULE Parts_Replenishment_Flow_Compute2
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

DECLARE refResponse REFERENCE TO InputRoot.ComIbmAggregateReplyBody.Response;
DECLARE refRequest REFERENCE TO InputRoot.ComIbmAggregateReplyBody.Request;
SET OutputRoot.Properties.MessageSet = ' ';

 SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
 SET OutputRoot.MQMD.MsgType = MQMT_REPLY;
 SET OutputRoot.MQMD.Format = MQFMT_STRING;

SET OutputRoot.MQMD.Persistence = MQPER_PERSISTENT;
 SET OutputRoot.MQMD.UserIdentifier = refRequest.MQMD.UserIdentifier;

SET OutputRoot.XML.WfMessage.WfMessageHeader.ResponseRequired = 'No';
SET OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ActImplCorrelID =

refRequest.XML.WfMessage.ActivityImplInvoke.ActImplCorrelID;
SET OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ProgramRC = '0';

SET
OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ProgramOutputData.Parts_Replenishment_Form.
WorkOrderNumber =

refRequest.XML.Part_Replenishment_Form.WorkOrderNumber;
SET

OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ProgramOutputData.Parts_Replenishment_Form.
FlowOriginator =

refRequest.XML.Part_Replenishment_Form.FlowOriginator;
SET

OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ProgramOutputData.Parts_Replenishment_Form.
Authorized =

refRequest.XML.Part_Replenishment_Form.Authorized;

SET
OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ProgramOutputData.Parts_Replenishment_Form.
PartsForm.NumberOfParts =

CARDINALITY(InputRoot.ComIbmAggregateReplyBody.Response[]);

Note: By the way that the condition logic is set up, we assume that there is at
least one response. The condition LASTMOVE(refResponse) always returns true
the first time. This technique might not always be appropriate. Another way
relies on the actual size of the array, which we calculated earlier by calling the
CARDINALITY function.
398 Administering and Implementing WebSphere Business Integration Server V4.3

DECLARE refParts REFERENCE TO

OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ProgramOutputData.Parts_Replenishment_Form.
PartsForm;

DECLARE i INTEGER;
SET i = 1;

WHILE LASTMOVE(refResponse) DO
 SET refParts.PartList[i].PartOrder.PartNumber =

refResponse.XML.Part_Replenishment.PartNumber;
 SET refParts.PartList[i].PartOrder.Quantity =

refResponse.XML.Part_Replenishment.Quantity;
 SET refParts.PartList[i].PartOrder.InStock =

refResponse.XML.Part_Replenishment.InStock;
 SET refParts.PartList[i].Supplier = refResponse.XML.Part_Replenishment.Supplier;
 SET refParts.PartList[i].CommittedPrice =

refResponse.XML.Part_Replenishment.CommittedPrice;
 SET refParts.PartList[i].OrderReference =

refResponse.XML.Part_Replenishment.OrderReference;
 SET refParts.PartList[i].ExpectedDate =

refResponse.XML.Part_Replenishment.ExpectedDate;
 SET refParts.PartList[i].ShipmentDate =

refResponse.XML.Part_Replenishment.ShipmentDate;
 SET refParts.PartList[i].CaseNumber = refResponse.XML.Part_Replenishment.CaseNumber;
 SET refParts.PartList[i].ReceptionDate =

refResponse.XML.Part_Replenishment.ReceptionDate;
 SET refParts.PartList[i].RegistrationDate =

refResponse.XML.Part_Replenishment.RegistrationDate;
 SET refParts.PartList[i].InvoicedPrice =

refResponse.XML.Part_Replenishment.InvoicedPrice;

 MOVE refResponse NEXTSIBLING NAME FIELDNAME(refResponse);
 SET i = i + 1;
END WHILE;

SET
OutputRoot.XML.WfMessage.ActivityImplInvokeResponse.ProgramOutputData.Parts_Replenishment_Form.
ReturnCode = '0';

RETURN TRUE;
END;

END MODULE;
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 399

8.5 Supporting message flow
In our setup, there is no implemented business-to-business solution that
interacts with suppliers. The response of the suppliers is simulated with another
message flow consisting of two subflows: the first one builds actual response
messages and calculates values for elements such as InvoicedPrice, and the
other subflow is responsible for passing back the original workflow request
message so that it seems to be part of the aggregation.

1. While in the Broker Application Development perspective, select File →
New → Message Flow. Provide a name for the flow (we use
Part_Replenishment_Supplier_Flow) and make sure it is defined in the same
message flow project, as shown in Figure 8-11.

Figure 8-11 Create new message flow

2. Add two MQInput nodes and two MQReply nodes to the message editor, and
add a Compute node and connect them as shown in Figure 8-12.

Figure 8-12 Connected flow
400 Administering and Implementing WebSphere Business Integration Server V4.3

The top MQInput node refers to the ORDER.SAVE queue and expects an
XML message. The bottom MQInput node refers to the ORDER.REQUEST
queue and also expects XML messages. There are no specific parameters to
configure for the MQReply nodes.

Example 8-7 lists the ESQL module that sits behind the Compute node in
Figure 8-12. It first copies the full request message in the OutputRoot message
tree. then adds the ExpectedDate and ShipmentDate elements. These elements
are calculated based on the current date and by adding either 7 or 14 days to it.

The CaseNumber is calculated using a randomizer, which is initialized by casting
the input element Quantity as an Integer. The resulting random value is
multiplied by 10,000 and then truncated. It is then cast as an Integer.

Similar logic is used for the InvoicedPrice element. Here the actual value is
truncated to two decimal digits.

Example 8-7 ESQL module to build a supplier response message

CREATE COMPUTE MODULE Part_Replenishement_Supplier_Flow_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyEntireMessage();
SET OutputRoot.XML.Part_Replenishment.ExpectedDate = CURRENT_DATE + INTERVAL '7' DAY;
SET OutputRoot.XML.Part_Replenishment.ShipmentDate = CURRENT_DATE + INTERVAL '14' DAY;
SET OutputRoot.XML.Part_Replenishment.CaseNumber =

CAST(TRUNCATE(RAND(CAST(InputRoot.XML.Part_Replenishment.Quantity AS INTEGER)) * 10000, 0) AS
INTEGER);

SET OutputRoot.XML.Part_Replenishment.InvoicedPrice =
TRUNCATE(RAND(CAST(InputRoot.XML.Part_Replenishment.Quantity AS INTEGER)) * 500, 2);

SET OutputRoot.XML.Part_Replenishment.CommittedPrice =
TRUNCATE(RAND(CAST(InputRoot.XML.Part_Replenishment.Quantity AS INTEGER)) * 1000, 2);

SET OutputRoot.XML.Part_Replenishment.ReceptionDate = CURRENT_DATE + INTERVAL '2' DAY;
SET OutputRoot.XML.Part_Replenishment.RegistrationDate = CURRENT_DATE + INTERVAL '3'

DAY;
 SET OutputRoot.XML.Part_Replenishment.Supplier = 'IBM ITSO';

 SET OutputRoot.XML.Part_Replenishment.OrderReference = CURRENT_TIMESTAMP;
 RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER 1;
DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

Note: The logic in the ESQL module is not really intended to be standard
business logic. It is merely intended to populate the response message with
some data that is different for each incoming request.
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 401

WHILE I < J DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

8.6 Deployment and testing of the message flow
The development of the message flows is now complete and we can deploy the
solution to the broker.

1. The deployment process is performed in the Broker Toolkit Broker
Administration. Within this perspective, select File → New → Message
Broker Archive to start the deployment process.

2. Provide a name for the archive, such as
Deployed_Parts_Replenishment_Flows, and select a target folder (Figure 8-13).
402 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 8-13 Create new message broker archive

The broker archive editor is now open.
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 403

3. Click the green icon (see Figure 8-15) to add resources to this archive. The
Add to Broker Archive window is now shown, enabling you to select message
flows and message sets from workspace projects. Select
Parts_Replenishment_Project and click OK.

Figure 8-14 Add resources to the broker archive

The resources are now compiled. Save the broker archive. See Figure 8-15 for a
a view of the populated broker archive.
404 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 8-15 Populated broker archive

4. Switch to the Broker Administration Navigator view (Figure 8-16), where you
will find the broker archive. Before deploying this archive to the broker, make
sure that you are connected to the configuration manager of your broker
domain. You can verify the connection status by inspecting the Domains view
shown in Figure 8-18 on page 407. If you are not connected, right-click the
configuration manager entry (CMQM@wbimb:1415) and select Connect. Of
course, the configuration manager and the broker should be running at this
time.

When you are connected, right-click the archive and select Deploy File.

Figure 8-16 Broker navigator
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 405

5. A new window opens for selecting an execution group within a broker to
which this archive must be deployed. Select the Default execution group and
click OK.

Figure 8-17 Deploy to an execution group of a broker

The deployment process is a two-step asynchronous process. First, the Toolkit
sends the deployment request to the configuration manager, which performs
several validation steps. If these validation steps do not discover any problems,
the configuration manager forwards a modified version of the archive to the
actual broker. At that time, the configuration manager replies back to the Toolkit
and you receive a prompt about successful initiation of the deployment.
406 Administering and Implementing WebSphere Business Integration Server V4.3

When the broker receives the deployment message from the configuration
manager, it also performs validation and stores the archive in its database. When
the process completes, either successfully or unsuccessfully, the broker
publishes the status of the deployment. The configuration manager subscribes to
deployment status messages, which you can see by accessing the Event Log in
the Domains view of the Broker Toolkit (Figure 8-18). Note that the Event Log is
not the same tool as the Event Viewer, which is also used by the broker and the
configuration manager.

Figure 8-18 The view Domains

8.7 Testing from the Web Client
When we create an instance of the Order Process in the WebSphere MQ
Workflow Web Client, the process executes the first two activities automatically.
The Create Sales Order activity is implemented by the SalesOrderManagement
collaboration in the InterChange Server and returns to the WebSphere MQ
Workflow server a new order number. It also stores the order and order line items
in the database.

The next activity is implemented by the message flow that is discussed in this
chapter. When the response messages are retrieved from the supplier simulator
message flow and the workflow response message is picked up in the
WebSphere MQ Workflow server, the activity completes and we move on to the
Approve Order activity.

Performing the Approve Order activity is a user activity that we discuss in
Chapter 6, “Implementing a process model in WebSphere MQ Workflow” on
page 201.
 Chapter 8. Replenishing parts in WebSphere BI Message Broker 407

Figure 8-19 Process monitor after completing the Order Parts activity
408 Administering and Implementing WebSphere Business Integration Server V4.3

Part 3 Managing a
business
integration
solution

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 409

410 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 9. Handling deployment and
change

The previous chapters in this book are mostly about developing and testing
integration solutions. In this chapter we discuss production run time issues: how
we move integration solutions from a development or test environment to a
production environment and how we handle changes in a production
environment.

A production WebSphere Business Integration Server must be able to cope with
changing requirements. Business logic, data models, and enterprise systems
can change during the lifetime of a WebSphere Business Integration Server.

Business processes can run from seconds to several years. It is typically not
possible to wait for termination or to actively terminate all instances of a given
business process. Therefore, different versions of a given business process have
to be able to run at the same time in parallel.

9

© Copyright IBM Corp. 2006. All rights reserved. 411

9.1 Preparing for production deployment
To build a production runtime environment, you can refer to the first part of this
book, in which several installation types were discussed. Implementation of
runtime servers and of runtime and management clients were are discussed in
Chapter 3, “Implementing the runtime components” on page 45 and Chapter 4,
“Implementing client components” on page 119. In this section, we discuss the
process of moving integration solutions from one environment to another.

9.1.1 Preparing an WebSphere MQ Workflow solution for production
There are certain procedures you must take before promoting a WebSphere MQ
Workflow solution for production. As with any application, you would want to be
able to manage it, especially in an environment where the system is setup for
multiple developers. Having said this, WebSphere MQ Workflow (v.3.5) does not
include a versioning control feature. As a result, there are no check in or
checkout options employed by MQ Workflow Buildtime. Unless you are licensed
to use WBI Workbench Server (which makes use of a centralized database), a
common practice is to utilize a library management system that you might have
already. In addition, you must establish a set of standard operation procedures to
be integrated into your change control process.

Other aspects to consider before migrating a FDL from development to
production include object distinction and authorization. Certain definitions might
not reference the same development resources (MQ objects) as in production.
By no means, do you want to grant your user community the same privileges in
production that are recognized in development. Therefore, it recommended that
you segregate all topology settings, people, and individual processes into
separate FDLs.

Assuming that your production environment is up and running with all the
necessary permissions and WebSphere MQ resources, we begin the migration.

The procedures are as follows:

1. After logging-on the test server, go to a command prompt and enter:

fmcibie -e test_environment.fdl -y FMC -p password -u admin
412 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 9-1 Fmcibie Export

As you can see from Figure 9-1, the fmcibie (-e = export) utility extracts all
information about the runtime server, including domain information and
user-defined program execution servers. The export in Figure 9-1 can also be
achieved by utilizing a centralized buildtime environment.

2. Log-in to the Buildtime, Go to Buildtime → import.

Figure 9-2 Importing runtime FDL in Buildtime

When importing runtime FDL into Buildtime, make sure that you mark this in
the import dialog, as shown in Figure 9-2. After the test_environment is
imported into your buildtime database, make the necessary changes to the
FDL to make it production specific. For example, the General and Message
Queuing tab for both UPES ICSDEV and UPES WBIBRKR must be changed
as shown in figures Figure 9-3 and Figure 9-4 on page 414. If you left the
 Chapter 9. Handling deployment and change 413

queue manager name blank in test, there will be no need to edit the Message
queuing tab.

Figure 9-3 UPES General tab

Figure 9-4 UPES Message Queuing tab

3. Review and edit the program objects. Validate whether the names assigned
to the collaboration in the production InterChange Server environment are the
same as in the development Interchange environment. If the names are
different, certain objects such as command line parameters shown in
FigFigure 9-5 on page 415 should be edited.
414 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 9-5 Command line parameters

4. When all necessary modifications are made in Buildtime, export the newly
prepared production solution. If your production environment relies on user ID
management and not on LDAP, for example, be careful not overwrite runtime
server passwords with development server passwords. To avoid this
scenario, deselect the Staff options in bottom of Figure 9-6.

Figure 9-6 Staff

Another way of preparing the test solution for production is to open the FDL in
a text editor, make the necessary changes or additions, and import the file
into the production runtime environment. However, the easier method is to
utilize the Buildtime tool.

The overall goal in preparing a production solution is to selectively export and
import the resources that you need. As part of this promotion process, the
underlying WebSphere MQ framework must be defined. The WebSphere MQ
Workflow server, the InterChange Server, and the message broker all use the
services of a queue manager. Intercommunication among the three runtime
servers is done using WebSphere MQ. Therefore, to move a WebSphere MQ
 Chapter 9. Handling deployment and change 415

Workflow solution to production, make sure that channels and queues are
defined.

The queues that Workflow requires are in the UPES definitions. Workflow does
not make any assumptions about the type of queue. They could be alias queues,
remote queues, or cluster queues. Make sure that the queue defined to the
Workflow server for sending request messages is defined to MQ so that the
message ends up on the queue named in the MQInput node of the message
flow, or on a remote queue that points to an input queue for the WebSphere MQ
Workflow connector. The input queue for the connector is the InputQueue
configuration property.

The WebSphere MQ Workflow server expects to find responses in its
FMC.FMCGRP.EXE.XML queue. This is a clustered queue on the workflow
queue manager. Thus, making the InterChange Server and message broker
queue manager part of the workflow cluster is the quickest way to ensure that the
InterChange Server and the broker can use this queue. Similarly, making the
message flow input queue and the connector input queue part of the cluster is
the quickest way to achieve intercommunication. For our discussion, the broker
and application server queue managers are clustered with the workflow server.
The InterChange server is connected to the Workflow server through
sender/receiver channels. Commands for setting up cluster queues and for
queue managers to join a cluster are given in Chapter 7, “Sales order
management in InterChange Server” on page 249, and in Chapter 8,
“Replenishing parts in WebSphere BI Message Broker” on page 377.

After all changes are made to the process model and to external resources, you
can export the updated FDL from Buildtime and import it to the production
runtime server using the fmcibie utility. Assuming that deploying a solution only
involves adding resources and process models, there are no operational
implications. When the import is completed, the process model is ready for end
users. It appears in their list of process templates if they are authorized to use
the new process template.
416 Administering and Implementing WebSphere Business Integration Server V4.3

9.1.2 Preparing a message broker solution for production
The main solution artifact for message broker solutions is the message broker
archive. To move a solution to production, export the message broker archive
from the development system:

1. While in the Broker Administration perspective, select File → Export. Select
File system (Figure 9-7) as the target for the export and click Next.

Figure 9-7 Select target for export operation
 Chapter 9. Handling deployment and change 417

2. In the next window (Figure 9-8), select the resources that you want to export,
the broker archive Deployed_Parts_Replenishment_Flows. Select a
destination directory and click Finish.

Figure 9-8 Select resources to export
418 Administering and Implementing WebSphere Business Integration Server V4.3

3. This broker archive can now be imported into the Broker Toolkit that is linked
to the production configuration manager and broker, such as the
management client that we implement in Chapter 4, “Implementing client
components” on page 119. Within this instance of the Broker Toolkit, select
File → Import (Figure 9-9). Select File System as the source for the import
and click Next. Identify the directory for the broker archive, select it, and
provide a suitable destination folder in the workspace of this instance of the
Broker Toolkit.

Figure 9-9 Select broker archive to import in production environment

4. Similar to a process model, a message broker solution refers to several
external resources. This could be queue names, file names (for the Trace
node), database names, and so on. The message broker archive editor
enables you to verify and change all of these names without requiring
changes to the message flows themselves. Double-click the imported broker
archive and select the Configure tab in the broker archive editor (Figure 9-10
on page 420).
 Chapter 9. Handling deployment and change 419

Figure 9-10 Updating external references for an MQOutput node

This presents a list of all nodes that rely on some kind of an external resource.
Figure 9-10 shows the external resources for the Send suborders MQOutput
node. The external resources are a destination queue name and queue manager
name, and the reply-to queue name and reply-to queue manager name.
Remember from Chapter 8, “Replenishing parts in WebSphere BI Message
Broker” on page 377 that this node is used to send request messages and that
the broker expects the corresponding responses to arrive at the queue
referenced in the MQInput node of another flow. You can use this editor to
update these names to whatever names are applicable in the production
environment.

Similarly, when you select an MQInput node, such as ORDER.INPUT, you can
change the name of the actual input queue for this message flow. Note that you
cannot change the name of the queue manager because this is fixed to the name
of the queue manager that is used by the broker itself. A broker only receives
messages from its own queue manager, but it can send messages to any queue
manager for which channels are defined.

Selecting one of the Aggregate nodes, such as AggregateControl, enables you
to change the name of the aggregation, as shown in Figure 9-11 on page 421.
Remember that this name has to be unique within a broker. Given that two
integration solutions might have been developed by different teams, there is no
guarantee that they have used different names. As the broker administrator, you
have the option to change it to prevent conflicts between two or more integration
solutions that use the aggregation nodes.
420 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 9-11 Updating the aggregation name

Figure 9-12 shows the external resources for a Compute node. In our scenario,
we did not use any databases in the Compute nodes. However, if you had used
external resources, the broker archive editor could be used to update the name
of the database because you cannot assume that the production database has
the same name as the development database.

Figure 9-12 Updating data source references

The broker archive editor is an easy way to customize the archive before
deployment to the production broker, and the editor can be used to find out which
 Chapter 9. Handling deployment and change 421

resources must be defined and available in the production environment. To
obtain a list of all queues that are used by a message flow, you do not have to
review every possible MQInput, MQOutput, or Compute node. The editor lists
them for you. But you still have to define them manually.

After all changes have been made to the broker archive, it can be deployed to
the production brokers. Assuming that the solution does not depend on other
message flows, there is no operational impact. When the deployment is
completed, the execution group or groups to which the message flow is assigned
open the input queues of the message flows and start retrieving and processing
messages.

9.1.3 Preparing InterChange Server solutions for production
The InterChange Server has a similar archive concept, which is called a
repository JAR file. This file can be exported from the development environment
and imported into the System Manager that is linked to the production
InterChange Server. However, this JAR file is not the only solution artefact.
Start-up scripts for connectors and configuration files for connectors must to be
changed as well. Also, adding or updating connectors has an operational impact.
The new of updated connectors cannot be used until the InterChange Server has
been restarted. This, of course, has operational implications for other integration
solutions that are deployed to the same InterChange Server.

Exporting and importing a repository JAR file is one way to handle deployment
from one environment to another. An alternative way is to export and import a
solution. A solution is the term that is used to describe the collection of artefacts
in an integration component library and the collection of shortcuts in a user
project, which is what is deployed to an InterChange Server.
422 Administering and Implementing WebSphere Business Integration Server V4.3

To export a solution, right-click the InterChange Server Projects folder in
System Manager and select Export Solution. Select one or more user projects
to be exported and provide a folder name (Figure 9-13).

Figure 9-13 Export a solution from System Manager
 Chapter 9. Handling deployment and change 423

The result of exporting a solution is a directory structure that contains a System
folder and a User folder (Figure 9-14). The System folder contains the actual
components in source format. The User folder contains the shortcuts.

Figure 9-14 Structure of an exported solution

When you make such a solution export available to the production environment,
you can perform a solution import. Right-click the InterChange Server projects
folder and select Import Solution (Figure 9-15). Provide the name of the
directory to which the solution was exported and click Finish.

Figure 9-15 Import solution
424 Administering and Implementing WebSphere Business Integration Server V4.3

As you can see in Figure 9-16, the result is that the ICL and the user project are
restored within the production environment. The solution (the user project) can
now be deployed immediately to the production InterChange Server.

Figure 9-16 Imported solution

Before we can deploy this user project, we must ensure that any references to
external resources are consistent with the resources that are available in the
production environment. In most cases, this is limited to reviewing the connector
configuration, which is expected because connectors act as the interface
between the InterChange Server and the production environment of your
applications. Some collaborations, which either are provided with the product or
are available as additional products, also have references to external resources,
such as databases. But that is not the general case.

For all connectors, review the standard properties in the Connector Configurator.
The JMS.MessageBrokerName property refers to the name of the queue
manager that is associated with the InterChange Server. Usually, the name of
the development queue manager is not the same as the name of the production
queue manager. The standard properties also contain several queues for each
connector and you must define these queues on the production queue manager.
In describing the implementation of the connectors in the development
environment, we saved a script for each connector. Use these scripts again for
implementing the connectors in the production environment. The names that we
used are:

� WMQWFconnector_mq.tst
 Chapter 9. Handling deployment and change 425

� JDBCconnector_mq.tst
� Portconnector_mq.tst

When you review the connector-specific properties of the JDBC connector, you
likely will have to make changes for the following properties:

� ApplicationPassword and ApplicationUsername
� DatabaseURL
� SchemaName
� Archive and event tables

Therefore, make sure that the application database is available for the JDBC
connector. For DB2, this means that you must catalog the remote database and
system in the local directory. Depending on your setup, you might have to use a
different user ID to access that database. Also, define the archive and event
tables in the production application database.

When you review the connector-specific properties of the WebSphere MQ
Workflow connector, you likely will make changes for the following properties:

� ApplicationPassword and ApplicationUserID (a WebSphere MQ Workflow
user ID, such as ADMIN)

� WorkflowSystemName and WorkflowSystemGroup

� MQSeriesQueueManager, MQSeriesHostName, MQSeriesPort, and
MQSeriesChannel, which are the properties that the connector uses to
retrieve and send workflow messages

The connector-specific properties also list five queues that the connector uses to
manage its interaction with the WebSphere MQ Workflow server. Likely the
names do not need any changes, but you should define these queues to the
queue manager mention in MQSeriesQueueManager.

If the MQSeriesQueueManager property is not the name of the queue manager
associated with the WebSphere MQ Workflow server (but it is, for example, the
name of the queue manager that is associated with the InterChange Server), set
up MQ communication between both queue managers.

When all of the changes have been made to the connector configuration, save
them to the project and to a file. The need to use an external configuration file for
each connector is a consequence of using JMS as the transport type. For IDL,
this is not required.

The next review task is editing the command files that start the connector. These
are start_JDBC.bat and start_WebSphereMQWorkflow.bat. For the JDBC
connector, add references to DB2 files and directories. For the WebSphere MQ
Workflow connector, this is a reference to the WebSphere MQ Workflow JAR
426 Administering and Implementing WebSphere Business Integration Server V4.3

files that implement the WebSphere MQ Workflow API. This process was
explained when we built the development environment in Chapter 7, “Sales order
management in InterChange Server” on page 249.

Finally, the shortcuts that you use to launch the two connectors must contain a
reference to the external configuration files. The standard installation of the
connectors creates shortcuts that do not have this additional parameter. Refer to
Chapter 7, “Sales order management in InterChange Server” on page 249 for the
specific details.

After all of these changes are made, you can plan for the deployment of the
solution. Make sure that the deployment of the new solution does not affect other
solutions that are in production. A good example of an adverse impact is the
following: Consider that the new solution contains a customized version of a
generic business object. However, other solutions that use this same generic
business object in an unchanged format or with different changes might be
deployed. While changing generic business objects that are part of the product is
not recommended, nothing prevents you from doing it. Its impact might only be
noticed before deploying the new solution or, worse, after it has been deployed.
One way to detect possible conflicts is to start the deployment of the new solution
and then carefully review the output of the second step of the deployment wizard.
At that time, the production InterChange Server lists all objects that will be
overwritten if you continue with the deployment. Make sure that overwriting any
object (business object, map, and so on) that appears in this list will not cause
any impact.

If you find any objects that would be overwritten if the new solution were
deployed, research what components rely on the current definition of that object.
One way to research this is to create an ICL that contains all objects that are
deployed in the InterChange Server:
 Chapter 9. Handling deployment and change 427

1. Create an ICL called ICSDEV_repository (Figure 9-17) for example, and
select ICSDEV as the server from which you want to copy the repository
contents. Click Next.

Figure 9-17 Create an ICL mirroring the repository

2. In the next step (Figure 9-18 on page 429), select all object types and click
Finish.
428 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 9-18 Select objects to import

After all objects are imported, you can use the facilities of the System Manager to
discern if a component is used by another component.

Assume for a moment that the predeployment test has revealed that the generic
business object Order will be overwritten if the deployment is actually performed.
Locate Order in the ICL ICSDEV_repository. Right-click it and select Show
References. Figure 9-19 on page 430 shows the object references for the GBO
Order in our environment. With this information, you can determine whether
overwriting Order will affect any of the listed users of that object.

Attention: Be aware that this process might take significant time and
resources to complete if your InterChange Server contains many objects.
Make sure that your actions do not affect the ongoing processing in the
production InterChange Server.
 Chapter 9. Handling deployment and change 429

Figure 9-19 Find object references

Assuming that you worked out or cleared all possible conflicts between the
deployed solutions and the to-be-deployed solution, you can plan for the
activation of the new solution. Remember that adding or updating connectors to
an existing InterChange Server results in restarting the InterChange Server
before the changes become effective. Even more, components that have an
active state, such as maps, collaborations, and connectors, can only be updated
if these objects have been stopped before the deployment. This means that
performing the deployment and activating the new solution must be planned
carefully. A full impact analysis is required to avoid any disruption to existing
integration solutions. An impact analysis should be performed with the idea that
you have only one opportunity to do it right.

9.2 Managing runtime-specific changes
Today’s business environment is changing at an ever-increasing pace. This is
partly a consequence of more integration among the different actors in a
business process. A few years ago, a bank customer who wanted to know
account balances likely had to visit a branch or make a phone call to the
customer service department. Nowadays, this same bank customer has plenty of
facilities to interact directly with the bank’s IT infrastructure to perform more than
430 Administering and Implementing WebSphere Business Integration Server V4.3

simply learn an account balance. Customers have become accustomed to these
features, which are possible only because there is an integration infrastructure in
place. Customer expectations can change rapidly, so the integration
infrastructure must be ready for change. But also, the administrators of the
integration infrastructure must be prepared for managing changes and they must
understand what it means to perform changes in any component of a complex
integration solution. In this section, we discuss changes that are limited to one
runtime component. We do not consider changes to the interfaces between
components, which we discuss in the next section.

9.2.1 Changes to WebSphere MQ Workflow process model
The life span of a WebSphere MQ Workflow process instance can range from
seconds to years. By design, when a process instance is created and started, it
will follow the process model at time of creation. In addition, all data is saved
along the process path. Therefore, a simultaneous change in the process model
has no affect on the running instances.

This design principle has several consequences. First, implementing a new
version of a process model does not have any impact on existing and running
process instances. For example, if you have deployed a credit approval process
that typically runs for a few days between the initial request and the final
approval, a change to the process model will only effect new credit requests. As
a result, making changes during an existing process run could become
problematic.

Another consequence is in discovering what process model is in use for a given
running process instance. Consider a situation in which a process instance runs
for a few months. An example is a complex insurance claim. If several changes
are made to the process model during the lifetime of an active instance, it might
become difficult to track down the source version of that running process
instance. The WebSphere MQ Workflow administrator can track the identifier of
a given process instance back to its original process model. This makes it easy
for someone on a help desk to correlate a user inquiry with the corresponding
version of the process flow.

Given that a process instance is tied to its original process model for as long as it
is active, some modeling best-practices have been created to provide a way to
implement new functionality that is also picked up by existing process instances.
This technique recommends using a very simple top-level process in which all
activities are subprocesses. The top-level process cannot be changed for the
duration of the process, but changes to the subprocess will be picked up. As
such, you create a process model that is flexible for changes as well as resilient.
 Chapter 9. Handling deployment and change 431

9.2.2 Changes to a message flow
In this section we consider any change to a message flow that does not affect the
input or output message or any other use of external resources. In the message
broker, only one version of a message flow can be active at a given time. The
assumption is that the execution of a message flow is short in time, typically in
the range of a few milliseconds to a few seconds. The execution of a message
flow is usually a single transaction, where we use the term transaction as a
short-living atomic operation.

Deploying an updated message flow means that an active transaction can be
completed and that a new transaction will use the updated message flow.
Because we have made the assumption in this section that the changes do not
affect the users of the message flow, deploying an updated message flow
generally is not a difficult task to complete.

9.2.3 Changes to a collaboration
A change to a solution in the InterChange Server that does not have an impact
on the outside world is by definition limited to changes to the collaboration and,
possibly, the maps. Both types of objects can be updated only if they are stopped
before the deployment. This means that any ongoing work is completed and new
work remains queued. For both maps and collaborations, only one version of
such an object can be deployed in the server at any point in time.

Starting with Version 4.2 of the InterChange Server, a collaboration can be
long-running. Before that, the execution time for a collaboration was also in the
range of a a few milliseconds to a few seconds; a long-running collaboration can
run for a much longer time. Making changes to such a collaboration requires
much more planning.

9.3 Managing interface changes
Managing changes that are limited to the internal logic of a runtime component is
relatively easy. It becomes a lot more complex when the interface requires
changes. In this section, we discuss several changes to the application scenario
that we implemented for this book.

9.3.1 Changes to the data structure used to invoke the collaboration
Consider the Create Sales Order activity in our process model. This activity uses
the Order_Form data structure, which is basically the interface between the
process model and the collaboration.
432 Administering and Implementing WebSphere Business Integration Server V4.3

The Order_Form data structure was used for several activities in the process
model. Consequently, the change might be induced by another component and
not necessarily by the InterChange Server or further downstream the Sales
Order Management system.

In this case, it would be much better to develop a new data structure that is
based on the existing Order_Form data structure and use the new data structure
for activities that induced the change. Assume that the Order Parts activity
requires more data that must be provided at the creation of the process instance.
Because the Order_Form data structure acts as the input of the process and as
the data structure for the Create Sales Order activity, the Create Sales Order
activity is merely the victim of the change. To limit the impact, you could define a
new data structure called Order_Form_Process and update the mapping in
WebSphere MQ Workflow into the Create Sales Order activity. As such, the
changed requirements for one activity is limited.

A more problematic situation involves changes to the Sales Order Management
system that require changes to the process model and its data structures.
Assume that a new data element is required for the Sales Order Management
system. In the ideal case, this can be solved by changing the map that
transforms the generic business object into the application-specific business
object of the Sales Order Management system. Therefore, the impact of the
change is limited. However, a change to the map might not be sufficient and this
new data element might be provided only by the process instance that invokes
the collaboration. In such a case, the change will propagate throughout the whole
system, affecting maps, application-specific business objects, possibly the
collaboration template, and the process model. Additionally, you cannot update a
running process instance. Clearly, updating the integration solution is not an
easy task.

To make this type of change more manageable, it could be easier to implement a
new integration solution that runs in parallel with the old integration solution.
Instead of updating the business objects, we can then create new business
objects based on the old ones. To the outside world, it looks as though there is a
process template and a collaboration template whose names have some kind of
a version indication. By disabling the old template from creating new process
instances, you can basically allow the existing instances to continue to use the
old process model, the old interface to the InterChange Server, and the old
collaboration in the InterChange Server. Implementing the new solution next to
the old one will still have an impact on the WebSphere MQ Workflow connector.
The connector’s configuration has to be updated to support the new business
objects. This again becomes a change that is manageable.
 Chapter 9. Handling deployment and change 433

9.3.2 Changes to the data structure used to invoke the message flow
Consider the Order Parts activity in our process model. This activity uses the
Parts_Replenishment_Form data structure, which acts as the interface between
the process model and the message flow. This data structure is also used by the
Approve Order process. Again, the first step in solving the problem is to
understand the reason for the change.

Assume that the approval step requires more data than is provided by its input
data structure. Adding an additional element to that data structure does not affect
the processing in the message flow because the XML parses will simply ignore
XML elements that it does not need. But it also means that the extra element will
not flow back to the workflow server in the response message. This limitation is
easily solved by appropriate mapping in the process model.

If changes are induced by changed requirements in the interaction with
suppliers, then the change will affect the message flow. Because we are using
self-defining XML, we do not have to make changes to message definitions in the
broker. The change is limited to the ESQL in the Compute or to any other node
that might rely on the specific structure of the messages.

Deploying a changed message flow is not a difficult task. However, it might again
be difficult to synchronize between the process model and the message flow. A
better solution might be to deploy the changed message flow under a new name
and with different external resources such as queues. By doing so, the existing
process instances can continue to use the old message flow, while new
instances that use the new data structure can use the new message flow. Of
course, this assumes that the interface with the suppliers is flexible enough to
handle the old interface and the new interface in parallel.

9.4 Summary
Change management and deploying changed solutions is a very complex
subject. The discussion in this chapter makes it clear that every change to a live
system must be planned and analyzed. The impact of a change can be much
deeper than originally thought. However, by performing some analysis, it is
usually possible to limit the impact of the change.
434 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 10. Operational aspects of a
WebSphere BI
server implementation

Operating an integration infrastructure that spans several systems, possibly
several platforms, and that consists of several components and layers on any
given system can be a difficult task. By understanding the interaction and
dependencies of the components, you can avoid frustration and maintain an
operational system that satisfies the business requirements.

10
© Copyright IBM Corp. 2006. All rights reserved. 435

10.1 Starting and stopping components
The integration infrastructure in this book consists of six main runtime
components:

� An IBM DB2 UDB Server
� A WebSphere Business Integration Message Broker
� A WebSphere InterChange Server
� A WebSphere MQ Workflow Server
� Two WebSphere Application Servers
� A Tivoli® Directory Server

In addition to the runtime servers listed here, there is also a locally installed
WebSphere MQ server with each component, except for the Tivoli Directory
Server. Two additional components, the WebSphere Adapter for JDBC and the
WebSphere Adapter for WebSphere MQ Workflow, were required to be used as
the communication bridge with the WebSphere Interchange Server. The
WebSphere Adapter for JDBC bridges between the WebSphere InterChange
Server and the application database. The WebSphere Adapter for WebSphere
MQ Workflow bridges between the WebSphere MQ Workflow Server and the
WebSphere InterChange Server.

Except for the database server itself, each of these runtime components have
dependencies on their base components. The WebSphere Business Integration
Message Broker, the WebSphere InterChange Server, and the WebSphere MQ
Workflow Server rely on the availability of their repository database and their
queue manager. In fact, the database system and the queue managers are so
crucial that you should avoid stopping them unless the whole system is being
restarted.

The WebSphere MQ Workflow Web Client can only be used if the WebSphere
MQ Workflow server is up and running and if MQ communication is active
between the two servers. However, you can start the Web server and the
WebSphere MQ Workflow server independently from each other. They only start
communicating with each other when a user logs on and requests services from
the WebSphere MQ Workflow server.

Besides WebSphere MQ and DB2, the WebSphere InterChange Server
component of the overall solution consists of four components:

� The Persistent and Transient Name Servers as the Object Resource Broker
� The WebSphere InterChange Server itself
� The two WebSphere BI Adapters for JDBC and WebSphere MQ Workflow
� The optional System Monitor component
436 Administering and Implementing WebSphere Business Integration Server V4.3

The availability of the Persistent Name Server is required before starting (or
using, in the case of the System Monitor) the other components. The Persistent
Name Server will automatically start the Transient Name Server (the IBM Object
Resource Broker). After the name server is started, the next component to start
is the WebSphere InterChange Server. The two adapters can then be started,
that will connect to the WebSphere InterChange Server.

After stopping or restarting the WebSphere InterChange Server, you do not have
to restart the adapters, unless they are the components that you want to update.
When the adapters detect that the WebSphere InterChange Server is
unavailable they automatically go into a paused state until they are able to
reestablish communication with the server.

The System Monitor Web application is installed in an application server called
ICSMonitor under the WebSphere Application Server and can be started using
the startServer ICSMonitor command on the WebSphere Application Server
machine. No interaction with the Transient Name Server or the WebSphere
InterChange Server will take place before a user has logged on to the Web
application.

Starting adapter agents that are configured for the MQ or IDL transports requires
that the name server and that the WebSphere InterChange Server are running. If
the transport is configured for JMS, the name server is not required for adapter
communication. To start an adapter, you can use the shortcut that we created in
Chapter 7, “Sales order management in InterChange Server” on page 249. This
means that you must log on to the system to start the adapter agents. However,
alternatives exist:

� Within the System Manager on the management client machine or within the
Web application System Monitor, you can stop and start adapter controllers
and agent. The feature is called the Object Activation Daemon and it relies on
WebSphere MQ and MQ triggering.

� When installing the adapters on Microsoft Windows, the user is given an
option to create a Window’s service for administering the start and stop of the
adapter.

� On UNIX and Linux, scripts and cron jobs often used to automatically start
and stop adapters.

To configure the Object Activation daemon feature, execute these steps:

1. Enable the MQ Trigger Monitor by including it in the IBM MQSeries services
application.

2. Create the following WebSphere MQ objects:

– An initiation queue
 Chapter 10. Operational aspects of a WebSphere BI server implementation 437

– A process definition, which contains the name and full path to the adapter
start-up script

– An adapter activation queue, which will receive the request message to
start the connector

3. Update the adapter configuration.

A script called mqtriggersetup is provided with the product to assist in defining
those objects. It creates the queue INITIATION.QUEUE, creates a process
called PROCESS.%ADAPTERNAME%.TRIGGER and an adapter activation
queue AGENTACTIVATIONQUEUE/%ADAPTERNAME%CONNECTOR, in
which %ADAPTERNAME% is substituted with the name of the adapter. Because
the name of the queue has a fixed format and the length of a queue name is
limited to 48 characters, ensure that adapter names are shorter than 18
characters.

The mqtriggersetup script has four parameters:

� The name of the WebSphere InterChange Server queue manager
� The name of the adapter
� The name and full path to the adapter’s startup script
� The name of the WebSphere InterChange Server instance

Example 10-1 shows the use of this script for the WebSphere Adapter for JDBC.

Example 10-1 Execute the mqtriggersetup script

C:\WebSphereAdapters\bin>mqtriggersetup ICS.queue.manager WebSphereMQWorkflow
C:\WebSphereAdapters\connectors\WebSphereMQWorkflow\start_WebSphereMQWorkflow.b
at ICS

The script assumes that the adapter can be started without a configuration file,
which is possible when using IDL as the adapter transport. When using JMS as
the adapter transport there is a requirement to use a configuration file in the
adapter startup. You can either update the script to build a process definition that
includes the name of the configuration file, or you can use WebSphere MQ
Explorer to adjust the process definition.

1. In WebSphere MQ Explorer, expand the tree structure in the left pane
(Figure 10-1 on page 439) to locate the Process Definitions folder for the
WebSphere InterChange Server queue manager. The right pane contains the
process definition that the script created.
438 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 10-1 List of process definitions

2. Open the properties of the process definition for the WebSphere Adapter for
JDBC and update the Application Identifier field. Add the parameter -c
followed by the name and full path where the configuration file is stored.

Example 10-2 shows the contents of the Application Identifier field shown in
Figure 10-2 on page 440.

Example 10-2 Application Identifier in process definition

"start C:\WebSphereAdapters\connectors\JDBC\start_JDBC.bat JDBC DEV
-cC:\WebSphereAdapters\connectors\JDBC\JDBCConnector.cfg"
 Chapter 10. Operational aspects of a WebSphere BI server implementation 439

Figure 10-2 Update process definition

To enable the MQ Trigger Monitor, start the IBM MQSeries services application:

1. Right-click the queue manager that is used by the InterChange Server and
select New → Trigger Monitor.

2. In the Create Trigger Monitor Service window, provide the name of the
initiation queue, INITIATION.QUEUE, as shown in Figure 10-3 on page 442,
and click OK.

3. In WebSphere MQ Services, right-click the new trigger monitor and start it.

An alternative way to create the trigger monitor is to use this command:

amqmdain crttrm ICS.queue.manager INITIATION.QUEUE auto

Note, however, that this will not start the trigger monitor.

4. Update the connector configuration. On the Standard Properties tab for the
WebSphere Adapter for JDBC, set the OADAutoRestartAgent property to
true. Save this change and deploy it to the WebSphere InterChange Server.

To verify that the configuration is correct, you can, for example, run the
Trigger Monitor as a foreground program instead of as a background service.
Use the following command to start the Trigger Monitor in a command
window:

runmqtrm -q INITIATION.QUEUE -m ICS.queue.manager
440 Administering and Implementing WebSphere Business Integration Server V4.3

5. Switch to the System Manager and select the JDBC connector in the
Component Management view. Right-click the connector and select Boot
JDBC Connector.

Alternatively, you can use the System Monitor Web application to perform this
action.

10.2 Management and problem determination tools
Solving problems efficiently depends on the information and tools that are made
available by the systems and the applications. Of course, knowing how to use
the information and the tools is also a requirement. From an application and
system-design perspective, a balance must be made between providing a lot of
information and the usability of that information and actual performance. A
constant detailed tracing function might slow down the system significantly. The
option to provide additional information on request is a great advantage.

10.2.1 Sources of information
All components of a WebSphere Business Integration Server solution have
several tools available to assist in managing the system and solving problems.

WebSphere MQ Workflow
When administering a WebSphere MQ Workflow solution, a distinction must be
made between managing process instances and managing the system itself.
Managing process instances means the facility to start, stop, resume, suspend,
or query an active process instance. These options are available through the
WebSphere MQ Workflow Web Client. At the activity level, the Web client feature
enables the process administrator to restart or finish an activity. Also, he can
transfer an activity from one person to another.

After logging on to the Web Client, select the list of process instances. When the
list opens, click the camera icon to open the process monitor. Figure 10-3 on
page 442, the monitor view of an active process, shows which activities have
been completed and which activity is in the active state. Activities that are
marked with a red arrow are not yet ready to execute.
 Chapter 10. Operational aspects of a WebSphere BI server implementation 441

Figure 10-3 Overview of the process monitor

Every activity in Figure 10-3 is a hot link to more details about it. Figure 10-4
shows the details of the completed activity Order Parts. On the General tab, you
can see that this activity is finished. The Input Container and Output Container
tabs show the data structures that have been passed to this activity and that
were returned by this activity when it completed. Other available information
includes the stop time and start time of the activity.

Figure 10-4 Detailed view for an activity
442 Administering and Implementing WebSphere Business Integration Server V4.3

When selecting the Work Items list, you can see what activities are assigned to
you. When logged on as the process administrator, you can see all activities that
are on an indivudual’s work list. Figure 10-5 shows a list with two activities: a
completed activity and, the last one, an activity in a ready state. For that activity,
the owner can check it out to complete it, transfer it to another user, or restart it.

Figure 10-5 Reviewing the work list

To find information about the actual server, have the WebSphere MQ Workflow
Administration component installed. We have installed it on the management
client machine and also on the actual server. To start the administration utility,
select Start → Programs → IBM WebSphere MQ Workflow → WebSphere
MQ Workflow Administration Utility - FMC.

After logging on, you are presented with the main menu (Figure 10-6).

Figure 10-6 Main menu of the administration utility

- FMC16006I Administration Utility started.
 System group name : [FMCGRP] FMCGRP
 System name : [FMCSYS] FMCSYS
 Userid : [ADMIN] ADMIN
 Password : [] ********
= FMC16110I Receive thread for userID 'ADMIN' at system 'FMCSYS' started.
- FMC16301I UserID 'ADMIN' connected to system 'FMCSYS'.
 FMC15010I Main Menu:
 s ... System Commands Menu
 m ... Select Server Menu
 e ... Errorlog Commands Menu
 l ... Systemlog Commands Menu
 u ... User Commands Menu
 x ... Exit Main Menu
 Chapter 10. Operational aspects of a WebSphere BI server implementation 443

On Windows, the information that is available through the Systemlog Commands
Menu option is also available in the Windows Event Viewer. Besides reviewing
the contents of the system log, this menu option enables you to control the
system log. For example, you can clear the contents or change the retention
period for log entries. Note that these settings can also be changed in Buildtime,
but those changes must be exported and imported before they become active.
Using the administration utility, you can make those changes directly to the
runtime server.

Figure 10-7 shows the System Commands menu, with which you can see what
server components are running. You can also stop the server or connect to a
different server, if the WebSphere MQ Workflow system group contains more
than one system.

Figure 10-7 System Commands Menu

Figure 10-7 also shows the current status of the system. The administration
server is active, as are two execution servers. The execution server is the actual
process that navigates through the process model and assigns activities to
users. The cleanup and scheduling server are not active. Note that the
scheduling server is required if you use any time-based settings in a process
model. An example of a timing-based activity could be the Approve Order
activity. You could, for example, model the process such that the approver has to
act on a work item within two hours. It is then the task of the scheduling server to
monitor that this activity is indeed completed within two hours and if it is not, the
scheduling server will perform the appropriate action, such as notifying the
process administrator.

Figure 10-8 on page 445 shows the Server Menu, which contains options for the
different server components. For each server component, you can query its
current status, stop or start it, and obtain runtime parameters. To change those
parameters, review the properties in Buildtime on the Network tab.

FMC15040I System Commands Menu:
 c ... Connect
 i ... Info
 d ... Shutdown
 q ... Query
 w ... Wait
 x ... Exit System Commands Menu
q
- FMC16220I Administration Server is 'active'.
- FMC16220I Cleanup Server is 'inactive'.
- FMC16221I Execution Server is 'active' (2 instance(s) running).
- FMC16220I Scheduling Server is 'inactive'.
444 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 10-8 Server Menu and Administration Server Menu options

Figure 10-9 shows the error log, which can contain runtime errors specific to a
process instance or overall runtime errors. An example of an error that is specific
to a process instance is a badly constructed XML response message. When the
runtime engine reads an XML message from its input queue, any error for that
XML message is reported to the error log.

Figure 10-9 shows an error log entry that is related to a communication problem
between the runtime engine and the database server.

Figure 10-9 Errorlog Commands Menu

m
 FMC15050I Select Server Menu:
 a ... Administration Server Commands Menu
 e ... Execution Server Commands Menu
 s ... Scheduling Server Commands Menu
 c ... Cleanup Server Commands Menu
 x ... Exit Select Server Menu
a
 FMC15051I Administration Server Commands Menu:
 i ... Info
 d ... Shutdown
 q ... Query
 w ... Wait
 x ... Exit Administration Server Commands Menu

 FMC15010I Main Menu:
 s ... System Commands Menu
 m ... Select Server Menu
 e ... Errorlog Commands Menu
 l ... Systemlog Commands Menu
 u ... User Commands Menu
 x ... Exit Main Menu
e
 FMC15060I Errorlog Commands Menu:
 i ... Info
 l ... List
 p ... Purge
 x ... Exit Errorlog Commands Menu
l
- 6/14/2004 3:25:17 PM FmcSQLException, Sqlcode=-30081,
Sqlerrmc=10054ÿ*ÿ0ÿTCP/IPÿSOCKETSÿ192.168.192.136ÿrecvÿ, Sqlerrp=SQLJCMN ,
Sqlerrd[0]=-2127167470, Sqlerrd[1]=18, Sqlerrd[2]=0, Sqlerrd[3]=0,
Sqlerrd[4]=0, Sqlerrd[5]=0, Sqlwarn= , Sqlstate=08001
 Chapter 10. Operational aspects of a WebSphere BI server implementation 445

WebSphere Business Integration Message Broker
To manage the broker and find actual status information about the broker, its
execution groups, and the message flows, you can use the Broker Toolkit. Within
the Broker Administration perspective, the Domains view provides information
about what is deployed and running. From here, you can stop and start message
flows as well.

The Alerts view lists messages about resources that are not running, whether
intentionally or as the result of an error condition. Figure 10-10 shows that the
SimpleFlow message flow is not running.

Figure 10-10 Broker administration tools in the Broker Toolkit

Runtime errors are by default reported to an operating system–specific logging
infrastructure. On Windows, this is the Event Viewer. On UNIX systems, this is
the system logger daemon. For z/OS® brokers, errors are reported to the system
logger. Usually, for a runtime problem, the messages in those logging facilities
provide quite a bit of information about the nature of the problem.
446 Administering and Implementing WebSphere Business Integration Server V4.3

WebSphere InterChange Server
Runtime information is available through two facilities: a Web-based System
Monitor and the Component Management view in the System Manager. Both
tools offer more or less the same functionality; the main difference is the reach of
the tool. The Web-based System Monitor can be used on any system with a
browser. To use the System Manager, you must be on a system that has System
Manager installed.

Figure 10-11 shows the Component Management view in System Manager. This
view gives an immediate report of the status of collaborations, connector
controllers, and maps. The context menu for each of these options provides
more details about what is going on in the system.

Figure 10-11 Component Management view in System Manager

Right-click the InterChange Server instance and select System View, shown in
Figure 10-12 on page 448. This view provides real-time status of the connectors
and the collaborations, and shows which connector agents are running and how
many business objects they have processed.
 Chapter 10. Operational aspects of a WebSphere BI server implementation 447

Figure 10-12 System View

Right-click the instance again and select System Statistics (Figure 10-13). This
view provides information about system-level database services of the
InterChange Server.

Figure 10-13 System Statistics

Right-click the collaboration and select Statistics for the view shown in
Figure 10-14 on page 449. It provides information about processed service calls
and events but also about queued events. For any active collaborations, it
provides the elapsed time of execution for that collaboration and the originator.
448 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 10-14 Collaboration statistics

Statistics are also available for each connector, as shown in Figure 10-15. This
view provides information about sent and received business objects and what
collaboration has subscribed to these business objects.

Figure 10-15 Adapter statistics
 Chapter 10. Operational aspects of a WebSphere BI server implementation 449

WebSphere Application Server
WebSphere Application Server uses a Web-based administration tool, called the
Administrative Console, to manage the server. The Administrative Console can
be used only if WebSphere Application Server itself is started. To be more
correct, start the application server called server1 to operate the Administrative
Console. However, you can use this application to manage other servers,
including the ICSMonitor server.

To solve problems related to WebSphere Application Server, the server logs are
the first place to look. These server logs are accessible through the
Administrative Console, but usually people prefer to open the log files directly if
they have access to the server that hosts WebSphere Application Server. These
log files are located in these directories:

\WebSphere\Application Server\logs\<server name>

Two files are important: SystemOut.txt and SystemError.txt.

WebSphere MQ
On Windows, WebSphere MQ provides two graphical tools to interact with queue
managers and their resources.

One tool, WebSphere MQ Explorer, can be used to manage objects, alter
objects, stop and start channels, review queue depth, and browse the actual
messages. It can also be used to discover who is using a certain queue. While it
is a Windows-specific tool, it can be used to interact with queue managers in
other platforms such as UNIX.

Figure 10-16 on page 451 shows the nonsystem queues for the BKQM queue
manager. The right pane is customized to show the most important properties:

� Name

� Current depth

� Open input count (how many threads or applications have opened this queue
to retrieve messages)

� Open output count (how many threads or applications have opened this
queue to write messages)
450 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 10-16 List of queues in WebSphere MQ Explorer

To customize the right pane, right-click the Queues folder in the left pane and
select View → Select Columns. You can then select which columns to show
and their order of appearance. By double-clicking a queue, you can display the
list of queued messages and to browse a portion of each message.
 Chapter 10. Operational aspects of a WebSphere BI server implementation 451

Figure 10-17 shows the list of non-system channels for this same queue
manager. The list and order of displayed columns can be altered.

Figure 10-17 List of channels in WebSphere MQ Explorer

When using WebSphere MQ Explorer, always make sure that you see the actual
state. The tool will cache objects and their state. If you think that an object status
in the GUI is not consistent with its runtime state, perform a refresh.

The other tool, WebSphere MQ services, is used to manage the IBM MQSeries
service on a Windows platform. IBM MQSeries service is actually called after the
old name of the product. If you open the Windows Services application, you see
a service called IBM MQSeries. This service does not map to a single queue
manager. It can consist of several queue managers and related components
such as listeners and channel initiators. To manage the contents of the IBM
MQSeries service and to manage the state, use WebSphere MQ Services.
452 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 10-18 shows the components that are associated with the BKQM queue
manager. Note that the start-up of each component is Automatic, which means
that the component is started as soon as the Windows service IBM MQSeries is
started. By using this application, you can of course stop and start components
without being dependent on the state of the Windows service IBM MQSeries.

Figure 10-18 WebSphere MQ Services application

WebSphere MQ can use platform-specific error reporting tools as well as its own
facilities. On Windows platforms, the Event Viewer is a good source of
information. Depending on the nature of the problem, additional information
might be reported to log files called AMQERRxx.LOG. These log files are
available in three different locations, depending on the type of problem and
where it is being detected. These locations are:

� \WebSphere MQ\qmgrs\<name of queue manager>\errors
� \WebSphere MQ\qmgrs\@SYSTEM\errors
� \WebSphere MQ\errors

Critical errors also might result in an error report in the \WebSphere MQ\errors
folder. These error files have the extension FDC. Often, understanding these
error reports requires advanced knowledge of the product. They are often
required when reporting errors to IBM.

System design and application design documentation
A source of information that is often forgotten during problem analysis is proper
system design and application design information. Even more, very often this
information is barely available. A simple diagram of the information flows with the
names of the components can reduce problem resolution time significantly. If the
 Chapter 10. Operational aspects of a WebSphere BI server implementation 453

integration infrastructure is managed by a group of people, it helps to include the
names of the responsible people in that diagram.

10.2.2 Obtaining additional information
While all runtime components provide many tools and sources of information,
sometimes you still need to dig deeper. In this section we briefly discuss the
options that increase the level of information at runtime.

WebSphere MQ Workflow
When problems occur that cannot be solved with the information that is provided
through the process monitor or the administration utility, you might have to
activate tracing. Several types of tracing exist; all are activated using the fmczchk
configuration checker utility and are configurable with system environment
variables. Besides operating the trace component, this utility can be used to
check the current configuration. This utility can also be used on client platforms.

Example 10-3 on page 455 shows the output of this utility when it is used on the
WebSphere MQ Workflow server machine by the Windows Administrator user ID.
It reveals, for example, that the configuration of the database server is
insufficient. The agent stack size and the query heap size must be incremented.

Because we are using the user ID administrator to run the tool, and as this user
ID is not authorized to connect to the remote runtime and buildtime databases,
the utility reports errors when trying to access these databases. The user ID that
is configured to access the runtime database in our environment is wbiadmin.
454 Administering and Implementing WebSphere Business Integration Server V4.3

Example 10-3 Output of the configuration check utility

FMC34010I: Configuration checker version 3.5.0.116 started.
FMC34120I: Command-line options specified: -y FMC

FMC34012I: ===> General checks.
FMC34011I: Performing WebSphere MQ Workflow Version 3.5.0 checks.
FMC34101I: The Operating System is Windows 2000 5.0 (Service Pack 4).
FMC34103I: Local time is 2004-10-20 23:50:12.
FMC34104I: Universal time coordinated (UTC) is 2004-10-21 04:50:12.
FMC34301I: WinSock version: WinSock 2.0.
FMC34314I: The local IP address is 192.168.10.129.
FMC34131I: The WebSphere MQ Workflow installation directory is
c:\ibm\webspheremqwf\bin.
FMC34154I: WebSphere MQ Workflow Version 3.5.0.2 is installed.
FMC34143I: The default configuration is 'FMC' (from the general configuration
profile).
FMC34121I: The current configuration is 'FMC'.
FMC34145I: The following configurations are available: FMC.
FMC34113I: Language specification is 'ENU' (from the installation profile).
FMC34115I: The message catalog is c:\ibm\websph~4\bin\fmckmenu.cat.
FMC34132I: The XPG4 locale is EN_US.IBM-1252.
FMC34133I: The ANSI code page is 1252, the OEM code page is 437.
FMC34021W: The LOCPATH directory 'C:\IBM\LDAP\bin\locale' does not exist.
FMC34021W: The LOCPATH directory 'C:\IBM\LDAP\bin\locale' does not exist.
FMC34134I: The locale file used is
c:\ibm\websph~4\bin\locale\en_us\ibm-1252.lcl.

FMC34013I: ===> Admin Server found, checks started.
FMC34122I: Environment variable DB2_RR_TO_RS is set to 'YES'.
FMC34500I: ==> Database Manager configuration for DB2.
FMC34508I: Agent stack size is 96.
FMC34508I: Query heap size is 1500.
FMC34501I: ==> Database configuration for FMCDB.
FMC34508I: Log file size is 4095.
FMC34508I: Log primary is 4.
FMC34508I: Log second is 124.
FMC34508I: Database heap is 400.
FMC34508I: Default application heap is 512.
FMC34508I: Number of page cleaners is 2.
FMC34508I: Log buffer size is 16.
FMC34508I: Lock list is 1000.
FMC34502I: ==> Database connection to FMCDB.
FMC34508I: Buffer pool size is 2000.
FMC34515I: Connect to FMCDB was successful (user ID 'WBIADMIN').
FMC34510I: The DBMS name is DB2/NT (version 08.02.0000).
FMC34511I: The database driver is db2cli.dll (Version 08.02.0000).
FMC34512I: The database name for alias 'FMCDB' is 'fmcdb'.
FMC34700I: ==> Service Control Manager configuration.
 Chapter 10. Operational aspects of a WebSphere BI server implementation 455

FMC34nnnI: Service DB2NTSECSERVER: Startup automatic, account LocalSystem
FMC34nnnI: Service MQSeriesServices: Startup automatic, account LocalSystem
FMC34535I: Service 'DB2' does not exist, assuming DB2 client installation.
FMC34nnnI: Service MQ Workflow - FMC: Startup manual, account LocalSystem

FMC34013I: ===> Server message device found, checks started.
FMC34303I: TCP port fmclFMCQM5010 found at number 5010.
FMC34306I: The local listener for port 5010 is active.
FMC34031I: Successfully loaded TP Monitor library mqmax.dll.
FMC34404I: The MQSeries Server 5.3.0.7 is installed.
FMC34nnnI: System for FMCQM is FMC.FMCGRP.FMCSYS
FMC34031I: Successfully loaded QM switch file library db2swit.dll.
FMC34nnnI: Settings for FMCQM from Queue manager FMCQM registry
FMC34nnnI: XAResourceManager.XAOpenString = DB=FMCDB, TPM=MQ, toc=p,
UID=wbiadmin, PWD=******
FMC34nnnI: Channels.MaxChannels = <null>
FMC34nnnI: Channels.MaxActiveChannels = <null>
FMC34nnnI: Queue Manager wics43.queue.manager not used by WebSphere MQ Workflow
FMC34nnnI: Queue Manager WBRK_QM not used by WebSphere MQ Workflow
FMC34nnnI: Default queue manager is wics43.queue.manager

FMC34013I: ===> Execution Server found, checks started.

FMC34013I: ===> Client message layer (server API) found, checks started.
FMC34nnnI: FMLConnectName is 'FMC.FMCGRP.FMCSYS,FMCQM'
FMC34nnnI: Channel definition file is c:\ibm\webspheremqwf\chltabs\mqwfchl.tab
FMC34410I: Channel table c:\ibm\webspheremqwf\chltabs\mqwfchl.tab has 1
entries.
FMC34411I: 0: Active; Queue Manager FMCQM connecting to WBIServer(5010)
through TCP.
FMC34nnnI: This client can connect to an OS/390 server

FMC34013I: ===> Client message layer (client API) found, checks started.

FMC34013I: ===> WebSphere MQ Workflow C/C++ API found, checks started.
FMC34nnnI: API will use queue manager 'FMCQM' (queue prefix FMC)
FMC34324I: Ping WBIServer successful.

FMC34013I: ===> Java Agent found, checks started.
FMC34nnnI: Agent.Reaper.Cycle is 300000ms
FMC34nnnI: Agent.Reaper.Threshold is 1000 objects
FMC34nnnI: Agent.Reaper.Ratio is 90%

FMC34013I: ===> Buildtime found, checks started.
FMC34130I: The default font for the graphical user interface is 'MS Shell Dlg'.
FMC34129I: The screen resolution is set to 1400x1050.
FMC34nnnI: B/T help file is c:\ibm\webspheremqwf\bin\fmcbhenu.hlp
FMC34nnnI: HTML template file is c:\ibm\webspheremqwf\bin\fmcfdhtm.tem
FMC34031I: Successfully loaded BT resource library fmcbrenu.dll.
456 Administering and Implementing WebSphere Business Integration Server V4.3

FMC34502I: ==> Database connection to FMCBTDB.
FMC34515I: Connect to FMCBTDB was successful (user ID 'WBIADMIN').
FMC34510I: The DBMS name is DB2/NT (version 08.02.0000).
FMC34511I: The database driver is db2cli.dll (Version 08.02.0000).
FMC34512I: The database name for alias 'FMCBTDB' is 'fmcbtdb'.
FMC34nnnI: Unified logon for 'wbiadmin' not possible
FMC34523I: DB2 Enterprise Server Edition 8.1.7 has fixpack WR21342 installed.
FMC34519I: QueryTimeoutInterval is '<null>' in the Common section of
c:\ibm\sqllib\db2cli.ini.
FMC34531I: DB2 authentication is through the server.

FMC34100I: Messages have been written to c:\documents and
settings\wbiadmin\fmczchk.log.
FMC34998I: See fmczchk.htm for more information on the messages.
FMC34999I: Configuration checker ended: 0 error(s), 2 warning(s), rc = 0.

For a more detailed discussion of the use of this tool for debugging runtime
problems, refer to WebSphere MQ Workflow Administration Guide, SH12-6289,
which can be obtained from the following Web site:

http://www-306.ibm.com/software/integration/wmqwf/library/manuals/wmqwf34.html

WebSphere Business Integration Message Broker
The message broker provides a user trace option that can be turned on
dynamically. This facility can also be used by the message flow developers so
that the message flow generates additional information about what is happening
in the system. To use this facility as a developer, add a Trace node at crucial
points in the message flow. Within the properties of the Trace node, you can
provide free text or patterns that are known to the broker to produce additional
information. A typical Trace pattern is:

${Root}
${LocalEnvironment}
${ExceptionList}

To turn on the user trace for one or more message flows, right-click the flow in
the Domains view in the Broker Toolkit and select User Trace → Normal. The
Alerts view lists the message flows for which user tracing is turned on.

Note: The manuals for WebSphere MQ Workflow v3.4 are applicable to the
WebSphere MQ Workflow v3.5 used in this book. At the time of printing this
book, there were no manuals for the WebSphere MQ Workflow v3.5 release.
 Chapter 10. Operational aspects of a WebSphere BI server implementation 457

http://www-306.ibm.com/software/integration/wmqwf/library/manuals/wmqwf34.html

Figure 10-19 User trace activated

The output of the user trace is in binary format. Reading the entries requires two
steps:

1. Request the log entries from the broker with a command similar to this:

mqsireadlog BROKER -e default -o messageflow.log -u

This command requests the user trace entries for the default execution group
of the broker BROKER.

2. The trace entries are stored in the messageflow.log file. This file is readable
but it is still better to format the log entries in a more readable way by
executing the command:

mqsiformatlog -i messageflow.log -o messageflow.txt

Figure 10-20 shows a sample log message that reports that an unexpected
message has arrived at the AggregateReply node.

Figure 10-20 Sample user trace entry

Timestamps are formatted in local time, 240 minutes before GMT.

BIP4412I: Corresponding request record not found for the reply message.
 An AggregateReply node has received a message at its 'in' terminal. No
corresponding record of a request message being sent could be found in the database. See
subsequent messages to determine how this situation has been handled.
 It is possible that extraneous messages are arriving at the AggregateReply node
'in' terminal. Check your flow to ensure that the only messages arriving here are replies to
request messages previously sent out and passed through an AggregateRequest node. It is
possible that this message is a valid reply but part of an aggregation which previously
timed out. It is possible that this is a reply to a message which has not yet been recorded
by an AggregateRequest node. This can happen if request messages are sent outside of
transactional control. Adjust your transaction settings to ensure that messages are sent
under transactional control.

Threads encountered in this trace:
 1928 2024
458 Administering and Implementing WebSphere Business Integration Server V4.3

WebSphere InterChange Server
The level of tracing can be increased dynamically for each component that
provides trace functionality. Within the System Manager, select the Component
Management view. Select, for example, the properties of a connector, as shown
in Figure 10-21. You can increase the level of tracing for either the agent or the
controller. Similar options exist for maps and collaborations.

The trace level of a collaboration can also be exploited by the developer of that
collaboration. As such, the developer can make sure that additional information
is made available when it is needed.

Figure 10-21 Updating the trace options for a connector

To increase the system trace level, right-click the ICS instance and select Edit
configuration. The system editor opens. Select the Trace/Log Files tab to
manage tracing and logging parameters.

WebSphere MQ trace
If tracing and logging information in the other runtime servers cannot help you to
locate the source of the problem, it might be helpful to run a WebSphere MQ
trace. A useful level of tracing is the API trace, which writes to a file with the
invocation and return of every API call from a program that access the
WebSphere MQ API. The API that is being traced is the C API, which sits
underneath the Java and JMS APIs that are used by the WebSphere
InterChange Server, for example. To read the output, you must be familiar with
this C API and with the structures that are passed along API calls such as
MQGET or MQOPEN. To start this trace, you can use the following command:

strmqtrc -t api -t detail
 Chapter 10. Operational aspects of a WebSphere BI server implementation 459

460 Administering and Implementing WebSphere Business Integration Server V4.3

Chapter 11. Tuning a WebSphere BI
Server infrastructure

This chapter presents a lessons-learned discussion about performance-related
settings for the major software components used in the WebSphere InterChange
Server environment. Available tuning parameters for these deployment
components, which through experience were observed to have most often
affected performance, are identified and discussed.

11
© Copyright IBM Corp. 2006. All rights reserved. 461

11.1 Introduction
As with any business process integration project, several major software
components work together to comprise the complete business integration
processing environment. Clearly, a performance bottleneck in one component is
likely to affect system throughput as a whole. Although overall system throughput
and response time remain the primary measurements of interest, site
administrators should possess some level of confidence that all of the major
component parts are functioning at acceptable levels of performance.

In a situation in which end-user performance does not meet customer objectives,
it is usually necessary to perform system-level monitoring in order to isolate the
cause of the performance issue. The tools and techniques that are used for
system-level monitoring differ from platform to platform. To find additional
information about system-level monitoring, consult the system documentation
and the manufacturer's Web site.

As an example, the WebSphere InterChange Server supports three different
database managers. The documentation for each of these database products
contains a wealth of information regarding performance, capacity planning, and
configuration. This documentation offers the best guidance for performance
considerations in a variety of operating environments, assuming that all of these
issues have been addressed from the product’s perspective. Additional levels of
performance implications are introduced at the interface between these products
and the WebSphere InterChange Server.

Several configuration parameters are available to the WebSphere InterChange
Server administrator. This chapter identifies specific parameters that have been
observed to affect performance, but not all available configuration parameters of
the WebSphere InterChange Server. For a complete list of configuration
parameters and possible settings, see Appendix A of WebSphere InterChange
Server V4.3.0 System Installation Guide, which can be downloaded from:

http://www.ibm.com/software/integration/wbiserver/ics/library/infocenter/

11.2 General performance checklist
This section begins with a tuning checklist that enumerates the major
components and their associated tuning concepts. The subsections that follow
address each in more detail, describing performance-related design concepts
and discussing the tuning parameters and their suggested settings (where
appropriate), as well as ways to determine potential settings for a particular
configuration. Although there is no guarantee that stepping through this checklist
462 Administering and Implementing WebSphere Business Integration Server V4.3

http://www.ibm.com/software/integration/wbiserver/ics/library/infocenter/
http://www-306.ibm.com/software/integration/wbiserver/ics/library/infocenter/

provides immediate, acceptable performance, it is likely that degraded
performance can be expected if any of these parameters is set incorrectly.

The checklist includes:

� WebSphere InterChange Server

– Configure threads in collaborations and in adapter controllers
– Use caches for maps and collaborations (instance reuse)
– Configure threading for CORBA / IIOP
– Configure database connection pools
– Setting flow control queue sizes
– Turn off component tracing
– Turn off event sequencing (if appropriate)

� WebSphere Business Integration Adapters

– Configure polling frequency and quantity

� Database (general)

– Place database tablespaces on fast disk subsystem
– Size database cross-referencing tables correctly
– Place logs on separate device from tablespaces

� Database (DB2-specific)

– Maintain current indexes on tables
– Update catalog statistics
– Set buffer pool size correctly

� Database (Oracle-specific)

– Set buffer, block, and shared pool area sizes correctly
– Set processes, Open_Cursors, and IO_Slaves
– Use dedicated connection if possible
– Query optimization

� WebSphere MQ

– Configure MQ log files, buffer pages
– Monitor message queue depth
– Place MQ logs on fast disk subsystem

� Java Virtual Machine

– Set the heap and nursery size to handle garbage collection efficiently
– Set AIX® threading parameters
– Use HotSpot Server instead of client
– Set thread stack size if using many threads
– Reduce or increase heap size if java.lang.OutofMemory occurs
– Set minimum and maximum heap size appropriately for peak loads for

both server and adapter JVMs
 Chapter 11. Tuning a WebSphere BI Server infrastructure 463

� Large objects

– Configure Java heap to appropriate size
– Reduce concurrent activity when processing large objects
– Process large objects as a set of smaller objects when possible

11.3 WebSphere InterChange Server
This section discusses areas where you can impact performance for WebSphere
Interchange Server.

11.3.1 Configure threads in collaborations and adapter controllers
With the WebSphere InterChange Server, you can control the maximum number
of adapter controller and collaboration threads that are created. It also gives you
limited control over when these threads are created and destroyed. Setting these
parameters correctly can have an impact on performance. A basic knowledge of
the InterChange Server threading model is required to best understand what the
appropriate settings should be. The following description uses IBM WebSphere
MQ as the source application delivery transport mechanism and describes the
threading model for asynchronous access (not Server Access Mode). Server
Access (synchronous) mode and the associated thread settings available are
discussed in 11.3.3, “Configure threading for CORBA / IIOP” on page 469.

Within the WebSphere InterChange Server, each adapter controller and running
collaboration is implemented with an associated thread pool. The thread pool is
simply a set of worker threads that wait on an in-memory queue (mailbox) for
work to perform.

After a source application adapter agent places an application-specific business
object (ASBO) on a WebSphere MQ message queue, an MQ listener thread gets
the source application generated objects (messages) off the message queue and
puts them in the adapter controller mailbox. Threads in the adapter controller
thread pool remove the messages from the mailbox and perform the mapping
operation that translates an ASBO to generic business object (GBO), and
publishes the GBO to the correct collaboration. Multiple adapter controller
threads can be active at a time. Note that the ability to configure multiple MQ
listener threads for adapters using MQ or JMS as the transport mechanism was
added recently and can supply a significant boost in performance. This feature is

Note: WebSphere InterChange Server V4.3.0 has new support for larger
object sizes. This does not reduce the need for appropriate architecting of
solutions that contain large objects.
464 Administering and Implementing WebSphere Business Integration Server V4.3

explored in more detail in 11.4.2, “Multiple WebSphere MQ and JMS listener
threads” on page 477.

A thread running in the collaboration pool dequeues the published GBO and
executes the context of the collaboration. As is the case with the adapter
controller threads, multiple collaboration threads can process business objects
concurrently. When business object processing is complete, the destination
adapter is invoked on this thread (with service call), which performs the outbound
GBO to ASBO mapping operation. Note that the same collaboration thread is
used through the mapping operation and any other processing that occurs within
the WebSphere InterChange Server portion of the destination adapter. This
thread then waits on an IIOP call as the service call completes. (Note that the
execution flow is different for Long Lived Business Processing.) It is returned to
the collaboration thread pool upon completion of any destination processing and
subsequent post processing by the collaboration.

As stated above, the WebSphere InterChange Server enables the user to
configure the limit on the total number of threads in any given active connector
controller or collaboration thread pool. Additionally, the value for this parameter
can be set differently for each object instance.

Ideally, the number of threads that are created would be sufficient to do the work
required at peak load, but no more. Obviously, configuring the exact number of
required threads is not feasible, but you can follow certain guidelines. For
instance, if an adapter controller is only used for consume operations (service
call requests), the adapter thread pool will not be used and the number of
threads should be set to 1. For adapters that are used for input, the number of
threads should be configured to avoid a bottleneck to the collaboration. Typical
values are from 10 to 25 threads.

Setting the maximum number of threads in the collaboration depends on the
length of service calls. The threads perform the service calls synchronously, so
they have to wait for a return from the adapter. If the service call is very long,
more threads might be needed. However, having too many threads wastes
resources and has also been observed to increase variable behavior. As always,
monitoring the running workload is the best way to set this value. Typical values
for this thread pool range from 25 to 75. Active collaboration threads can be
viewed in either the System Monitor or the System Manager. See the
Administrators Guide for information regarding the use of these tools.

If the WebSphere InterChange Server is running multiple adapters and
collaborations, then the total number of active threads might become an issue.
There are costs associated with maintaining available threads. For example,
thread limits can be enforced by the operating system on a per-process basis.
Additionally, threads also consume space in the Java heap and in process virtual
memory. (See 11.9.4, “Setting thread stack size if using many threads” on
 Chapter 11. Tuning a WebSphere BI Server infrastructure 465

page 492.) To deal with this issue, an InterChange Server thread pool is made up
of two types of threads: permanent and transient. Permanent threads are created
when a thread pool is initialized. They remain active for the entire life of the
thread pool. Transient threads are created and destroyed depending on the
availability of work.

The existence of transient threads keeps the total number of active threads
lower. By default, a transient thread exits if there is no work in the mailbox. On
some workloads, it makes more sense for a transient thread to wait a specified
amount of time for work to appear before exiting. This improves performance by
not incurring the overhead of thread creation and deletion operations. The time to
wait for work to be added to the mailbox before exiting can be managed by
setting the global parameter ThreadPoolLingeringTime given in milliseconds in
the InterchangeSystem.cfg file, as shown in Example 11-1. The heading
Performance in this example is case-sensitive and is not an available option in
the Configuration View of the System Manager. The full XML stanza is shown
here and it must be added with a text editor.

Example 11-1 Details of the configuration option for performance

<tns:property>
 <tns:name>Performance</tns:name>
 <tns:isEncrypted>false</tns:isEncrypted>
 <tns:updateMethod>system restart</tns:updateMethod>
 <tns:location>
 <tns:reposController>false</tns:reposController>
 <tns:reposAgent>false</tns:reposAgent>
 <tns:localConfig>true</tns:localConfig>
 </tns:location>
 <tns:property>
 <tns:name>ThreadPoolLingeringTime</tns:name>
 <tns:value xml:space="preserve">60000</tns:value>
 <tns:isEncrypted>false</tns:isEncrypted>
 <tns:updateMethod>system restart</tns:updateMethod>
 <tns:location>
 <tns:reposController>false</tns:reposController>
 <tns:reposAgent>false</tns:reposAgent>
 <tns:localConfig>true</tns:localConfig>
 </tns:location>
 </tns:property>
</tns:property>

Note: Changes to the InterchangeSystem.cfg file will not take affect until the
WebSphere InterChange Server is restarted.
466 Administering and Implementing WebSphere Business Integration Server V4.3

Thread configuration example
A methodology describing how a system can be optimized for end-to-end
throughput is beyond the scope of this book. System administration skills are
required for performance monitoring and analysis of a wide range of software
components, and sufficient performance analysis skills are needed to understand
the profiling and trace data that is collected for this purpose. However, the topic
is important enough to warrant some attention. In this section, we present a small
thread-tuning scenario using the background information that we previously
presented. Our scenario touches on possible causes of performance bottlenecks
in the WebSphere InterChange Server system and how such bottlenecks can be
detected and addressed by introducing some general performance-related
concepts and methods.

Before beginning such an exercise, it would be useful to have at least an idea of
what the expected system throughput should be. As an example, suppose a
collaboration thread pool is configured with 15 threads and it calls a destination
adapter that takes 200 milliseconds for service. Each thread in the collaboration
thread pool can execute a maximum of five calls per second (1 sec / 200 ms = 5).
With 15 threads, the maximum throughput of the collaboration cannot exceed 75
calls per second. Obviously, the actual throughput will be less than this
theoretical maximum, but this should provide a good starting estimate. You can
work out similar arithmetic for the adapter threads, if you know how long it takes
to convert an ASBO to a GBO.

Several things could limit the maximum throughput in a WebSphere InterChange
Server system deployment. For example, if the CPU utilization of the server is
close to 100 percent, the throughput could possibly be increased by optimizing
the maps and the collaborations in the system, thus shortening the code path.
This is more of a development issue, which would have to be addressed by the
team who are responsible for the development and integration of the code
modules that support the particular deployment.

A second scenario might show that the CPU utilization and throughput remain
low in spite of what is known to be a sufficient amount of work being injected into
the system. Such a scenario hints at a performance-related issue, indicating that
throughput is limited by some bottleneck in the system. Assuming that
surrounding software components are believed to be performing acceptably, we
can approach the problem through the perspective of the InterChange Server.

Within the InterChange Server, bottlenecks can be identified by monitoring the
adapter and collaboration queues in the system when it is under stress, when
more work is being injected than can be processed. If it is found that an adapter
queue is continually growing, it implies that processing the maps is the
bottleneck. You should then make sure that there are enough threads in the
thread pool associated with the adapter queue. The
 Chapter 11. Tuning a WebSphere BI Server infrastructure 467

ConcurrentEventTriggeredFlows property on the Standard Properties tab of the
Connector Configurator tool specifies the number of threads in the pool.

If the collaboration queue is growing continually, then collaboration processing or
service call time, application latency, is a likely candidate. To mitigate the
problem, increase the size of the thread pool is associated with the collaboration
pool by modifying Maximum Number of Concurrent Events in the Collaboration
general properties. Right-click the collaboration object in the System Manager
and select Properties. As noted, a collaboration queue that grows continually
can also be indicative of long service times or application latencies. If this is the
case, then the destination application should be examined.

The AgentConnections property in the destination adapter is a parameter that
has been known to cause significant confusion due to the property name chosen.
This parameter should not be changed.

If the adapter and collaboration queues are not growing in the stressed system,
then consider the adapter itself. In this example, by monitoring the MQ message
queue for the source adapter and seeing that it is continually growing, it might
indicate that more listener threads are necessary. Increase the
ListenerConcurrency property on the Standard Properties tab of the Connector
Configurator tool. MQ and DB2 accesses are made from these listeners, so it is
imperative to optimize the WebSphere MQ and database accesses. See the
relevant MQ and database sections for more details.

11.3.2 Use caches for maps and collaborations (instance reuse)
The WebSphere InterChange Server provides the user with the ability to cache
collaboration and map objects. This instance reuse can reduce the number of
objects that are created and initialized and, thus, improve performance.

Instance reuse for maps can be enabled by editing the map properties for a given
map and checking the Instance Reuse box. You can also set the map cache size
here. If the map is used for subscription delivery, it will be executed by a thread in
the adapter controller pool and the map cache should be set to the same size as
the number of threads in the adapter controller (see previous section). If the map
is for consuming or being executed after the return from the service call then the
size of the cache should be set to the number of threads in the collaboration.

Enable Instance reuse for collaborations by defining EnableInstanceReuse as a
property in the collaboration template and setting the value to true.
468 Administering and Implementing WebSphere Business Integration Server V4.3

11.3.3 Configure threading for CORBA / IIOP
The VisiBroker Object Request Broker (ORB) that shipped with all the previous
versions of WebSphere InterChange Server is replaced in WebSphere
InterChange Server V4.2.2 with the IBM ORB on all platforms, regardless of the
underlying JVM™. Though it is functionally equivalent, some changes have been
made in the way that ORB services and classes are designated at server startup,
adapter startup, or both. Most of these changes are transparent to the user,
because they are primarily related to system configuration and administration.

The most visible difference is the inclusion of the IBM transient name server, the
CORBA naming registry service that replaces the function previously provided by
the VisiBroker osagent. While the previous naming service was dynamic in
nature, the transient name server is static, meaning that each client machine
must be directed to the naming server to obtain required object references.

Another service that is provided by the VisiBroker ORB is the Object Activation
Daemon, which enables you to restart remote agents from the System Manager.
An equivalent function is now provided through WebSphere MQ triggering. See
the product documentation for a description and how to configure it.

Previous versions of this information described the importance of managing the
ORB thread pool, particularly when using the Server Access Interface. The same
concepts still hold true, but there are differences in both the syntax and
initialization of parameters that control the ORB worker threads starting in
WebSphere InterChange Server V4.2.2 and still present in V4.3.0. Like the
previous ORB, the IBM ORB also maintains a pool of threads used to service
synchronous access client requests through the entire flow, including service
calls. Limiting the number of threads created as well as allowing these threads to
remain active for a designated period after use can produce a noticeable
performance improvement. The idea is to tune the thread pool such that a
sufficient number of worker threads exist and delay exiting long enough to be
reused, thereby decreasing the overhead associated with thread creation and
termination.

Table 11-1 identifies previous and current properties that are associated with the
ORB thread pool.

Table 11-1 Properties used in previous and current versions for the ORB

Previous property (in
InterChangeSystem.cfg)

Setting property for WebSphere InterChange
Server V4.3.0 and Corresponding adapters
(passed as -Dargument to JVM)

Typical
value

OAthreadMax com.ibm.CORBA.ThreadPool.MaximumSize 64

OAthreadMaxIdle com.ibm.CORBA.ThreadPool.InactivityTimeout 600
 Chapter 11. Tuning a WebSphere BI Server infrastructure 469

The System Manager configuration view was updated in the WebSphere
InterChange Server V4.3 to allow for modification of these CORBA settings, as
shown in Figure 11-1. An alternative is to include all desired ORB properties in
the ORB_PROPERTY variable defined in these system-specific environment
variable files.

Figure 11-1 CORBA configuration via System Manager

See “Administering the Object Request Broker” in the Administering problem
scenarios section of the System Administration Guide for a complete description
of all available parameters and how to configure them. This guide is available at:

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

11.3.4 Configure database connection pools
During the course of flow execution, multiple accesses are made to the
WebSphere InterChange Server databases. These accesses are used to
implement recovery, event sequencing, dynamic relationships, flow monitoring,
and transactional control. The number of database connections that the
WebSphere InterChange Server uses varies greatly, based on the configured
services. In an active runtime environment, the event management service is
busy storing state information about events that arrive at the WebSphere
InterChange Server. Collaborations might also add to the traffic by reading tables
in the repository to make application-routing decisions, or by saving and
retrieving transaction state information.

Establishing a new connection to a database is a time-consuming operation. In
order to minimize the time taken to effect a database transaction and improve
performance, the WebSphere InterChange Server maintains dynamic pools of
database connections for each of the following:

� Event Management
� Transactions
470 Administering and Implementing WebSphere Business Integration Server V4.3

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

� Repository
� Flow Monitoring
� Relationships

These pools maintain active database connections that may be used by colla-
borations and mapping processes within the WebSphere InterChange Server.

The maximum number of database connections allowed can be set individually
for each pool or globally for all pools. If all of the listed services are to a single
data source, one database for the WebSphere InterChange Server, then
MAX_CONNECTIONS should be set at the global level. To set this level, it is
best to accept the default at installation time, then monitor connection usage and
adjust accordingly, erring on the side of too many, rather than not enough,
connections.

However, note that a connection limit can exist in the DBMS server configuration.
If the number of connections requested by the WebSphere InterChange Server
is larger than that for which the database is configured, then errors will occur.
Consversly, when the WebSphere InterChange Server cannot meet a
connection request, the server's action varies according to why it needed the
connection. In some cases, the server might simply log an error message; in
others, it might stop completely. For this reason, it is important to avoid restricting
the number of connections so much that the WebSphere InterChange Server
cannot meet the workload. For information about how to check the log for
connection failures, see the System Administration Guide.

To summarize, for best stability and performance, keep enough connections
active in the pool to handle the largest possible load and to make sure that the
database is configured to provide this number of connections.

Note that the maximum number of connection pools that will be created
(MAX_CONNECTION_POOLS) may also be set. By default, the WebSphere
InterChange Server requires a minimum of three connection pools, one each for
event management, transactions, and the repository. The default value of 10 for
this parameter should be sufficient in most cases.

11.3.5 Setting flow control queue sizes
The primary objective of the flow control feature is to prevent the WebSphere
InterChange Server from becoming overwhelmed and potentially halting due to
events backing up in the system and exhausting the Java heap. This situation
could arise, for example, if a destination application is offline but a source
application continues to inject new business objects for processing. In this simple
case, the queues associated with the collaborations would grow unchecked, and
 Chapter 11. Tuning a WebSphere BI Server infrastructure 471

the WebSphere InterChange Server would eventually run out of heap memory,
leading to a system halt.

Beginning with WebSphere InterChange Server Version 4.2.0, the user can
associate a maximum event queue size with each collaboration and connector
queue. If a queue grows to its maximum size, no more events are accepted (a
blocking queue), or the new events are persisted to the database (a nonblocking
queue). Events are requeued only after consumption has resumed and the size
of the queue shrinks below a certain threshold. For the case where a destination
application is offline, a collaboration queue configured for flow control would
reach its maximum capacity and stop accepting objects. The input connector
would not be able to queue any events for processing until the destination
application was back online.

In this section, we present guidelines that can be used to set the primary flow
control-related variables: queue depth and threshold.

Recommended values for flow control queue size, threshold
The recommended setting methodology is straightforward. Each queue feeds a
collaboration or a connector. These components are implemented as thread
pools. It is recommended that the queue depths be set to three times (3x) the
number of threads in the corresponding connector. For example, if a
collaboration has 30 threads, the queue depths should be set to 90.

The logic behind this is also straightforward. The queues are set to small values
so that there is always work for each of the threads in a connector or
collaboration to perform. Performance experiments indicate that a threshold of
0.67 works well with the 3x value:

� Queue depth: three times the number of threads in a collaboration or
connector pool

� Threshold: 0.67

Current flow control queue depths for the connectors and collaborations in the
WebSphere InterChange Server can be monitored using either the System
Monitor or System Manager. To change the flow control parameters, consult the
product documentation.

11.3.6 Turn off component tracing
The ability to configure event tracing at different levels for a variety of system
components has proven be extremely valuable during periods of system analysis
or debugging. However, use of this feature can affect, in some cases
significantly, overall system performance and throughput. It is recommended that
all unnecessary tracing be turned off to ensure optimal performance.
472 Administering and Implementing WebSphere Business Integration Server V4.3

11.3.7 Turn off event sequencing where applicable
The WebSphere InterChange Server is able to process new events in both an
asynchronous and synchronous nature. Asynchronous processing occurs when
receiving new events from adapters with the asynchronous delivery mechanism
of the adapter framework. Synchronous event processing occurs when receiving
events either through the WebSphere InterChange Server Access (previously
the Server Access Interface) or through the synchronous delivery mechanism of
the adapter framework.

Because it is recommended to configure the server to process new events
concurrently, it is imperative to have event sequencing and event isolation.
Where event sequencing ensures that two threads of the same collaboration do
not work on the same data concurrently and event isolation ensures that two or
more collaborations do not work on the same data concurrently. What is not
documented in the product manuals is the fact that event sequencing also exists
within adapter controllers, which prevents maps from working on the same data
at the same time (this happens when Current Event Triggered Flows is set to a
value greater than one). By default, the WebSphere InterChange Server has
both event sequencing and event isolation enabled for all incoming events for
collaborations and event sequencing for adapter controllers.

In the past, it was thought that the majority of integrations using asynchronous
events required event sequencing, while the majority of integrations using
synchronous events did not require event sequencing. It has been found that
these past assumptions are not practical, because many customer
implementations use both asynchronous and synchronous events with different
requirements. Thus, new in WebSphere InterChange Server V4.3.0, is the ability
for implementors to disable event sequencing and event isolation. The purpose
of exposing this feature is that if the integration requirements do not require
event sequencing and event isolation, performance gains can be achieved. This
feature is implemented by the use of two boolean attributes and can be accessed
at a very granular level, namely with individual adapter controllers and
collaborations.

� ControllerEventSequencing (Figure 11-2 on page 474) as an adapter
controller attribute

� Event Isolation (Figure 11-3 on page 474) as a collaboration object property

Note: The Event Isolation attribute in the collaboration object properties
disables both event sequencing and event isolation for that collaboration.
 Chapter 11. Tuning a WebSphere BI Server infrastructure 473

Figure 11-2 Adapter ControllerEventSequencing attribute

Figure 11-3 Collaboration object properties Event Isolation attribute
474 Administering and Implementing WebSphere Business Integration Server V4.3

It is recommended to use this feature only when it is very obvious that event
sequencing and event isolation is not required. These attributes can be
configured dynamically but will only affect new events, not events currently in
progress. By default, both of the mentioned attributes are set to true, to enable
event sequencing and event isolation. In upgrading from a previous version,
these two attributes will be added to your configuration and set to the default
values.

11.4 WebSphere Business Integration Adapters
This section will discuss areas where you can impact performance for
WebSphere Business Integration Adapters.

11.4.1 Configure poll frequency and poll quantity
Two of the most important configuration parameters for the WebSphere BI
Adapters are Poll Frequency and Poll Quantity:

� Poll Frequency specifies the amount of time in milliseconds between the end
of one polling action, and the start of the next polling action.

� Poll Quantity specifies the maximum number of objects to process during a
polling action.

These parameters control the rate and amount of work that an adapter
processes, so the combination of Poll Frequency and Poll Quantity regulate the
number of transactions that are processed first by the adapter, and then by the
broker (for example, the WebSphere InterChange Server). As such, these
parameters influence the performance of the entire solution, not just the adapter.

Nonoptimal values for Poll Frequency and Poll Quantity can result in either low
system throughput (Poll Frequency is too long, Poll Quantity is too low, or both).
Can cause excessive memory usage (and potentially OutOfMemory exceptions)
if the parameters are configured to deliver events to the system at rates that are
higher than the solution is implemented to handle (if Poll Frequency is too short,
Poll Quantity is too high, or both). Both of these conditions dramatically affect
overall system performance, so appropriate settings for Poll Frequency and Poll
Quantity are critical and should be explicitly configured to support the level of
throughput a solution is designed to handle.

Note: To correctly use this feature, you must ensure that all the event
sequencing switches on the path of the event flow are set the same.
 Chapter 11. Tuning a WebSphere BI Server infrastructure 475

In general, the recommendation is to configure Poll Frequency and Poll Quantity
to enable events to be retrieved and processed at a level that matches the peak
throughput of the WebSphere BI solution. This is discussed in more detail below.

The definition of Poll Frequency merits further clarification because it is
sometimes misunderstood. As stated previously, this parameter defines the
amount of time between the end of one polling action and the start of the next
polling action. Note that this is not the interval between polling actions. Rather,
the logic is:

� Poll to obtain (up to) Poll Quantity number of objects

� Process these objects (for some adapters, some of this work is done on
separate threads, which execute asynchronously to the next polling action)

� Delay for the interval specified by Poll Frequency

� Repeat

Note that the default setting for Poll Frequency is 10 seconds (10,000 ms). For
workloads with reasonably high throughput requirements, this default should be
changed to enable more frequent polling.

On the other hand, Poll Quantity is an adapter-specific parameter and the default
is different for different adapters. For example, the default for Poll Quantity for the
JText adapter is 25 and the default for the WebSphere MQ adapter is 1. This
parameter should be checked for each adapter and set accordingly.

As an example, if the peak throughput rate of a solution is 20 events per second,
appropriate settings could be Poll Frequency = 1000 ms and Poll Quantity = 20.
This supports the required peak throughput, while requiring a relatively small
number of events to be concurrently held in the adapter process. Factors that
may require an adjustment to these values include:

� The size of the object being processed

For larger objects, a good general rule is to use a lower Poll Quantity and
longer Poll Frequency. This does not generally apply for relatively small
objects (100 KB or less). However, for larger objects, it is important to
minimize the number of objects that are held concurrently in the adapter
process, in order to avoid potential OutOfMemory exceptions. To extend the
example, if the object size is 1 MB and the throughput rate of the solution is
10 events per second, appropriate settings could be Poll Frequency = 200 ms
and Poll Quantity = 2.

� The Java heap size and physical memory available on the system

In general, the larger the heap, the higher Poll Quantity can be set. However,
several factors are involved in setting the heap size. One very important
factor is to ensure that the heap is not set so large that paging results. Paging
476 Administering and Implementing WebSphere Business Integration Server V4.3

the Java heap dramatically reduces system performance. See the Java
configuration information later in this section for a detailed discussion about
setting the Java heap sizes appropriately.

� The uniformity of event arrival rates

The previous examples assume that events arrive at a relatively constant
rate. This might not be true for many solutions; event arrival is sometimes
very uneven. In these cases, care must be taken to balance processing
events in a timely manner to handle the occasional high arrival rates, while
also not holding too many events in memory concurrently, and potentially
encountering OutOfMemory exceptions.

11.4.2 Multiple WebSphere MQ and JMS listener threads
Prior versions of the WebSphere InterChange Server had known limitations to
the rate at which work could be accepted from a source application when using
WebSphere MQ or JMS as the adapter transport. Each transport contained a
single listener thread that monitored the MQ and JMS mailbox respectively, in
essence providing a single point through which all input objects had to pass.

In WebSphere InterChange Server V4.2.1, the ability to specify the number of
MQ listener threads was introduced, producing significant effect on overall
system throughput. Thus, the recommended adapter transport for events was
WebSphere MQ, but new in WebSphere InterChange Server V4.3.0 is the ability
to specify multiple JMS listener threads allowing the JMS transport to perform
equal to benchmarks established by the same number MQ listener threads.

� When using MQ as the adapter transport, the attribute ListenerConcurrency
can be configured through the Connector Configurator.

� When using JMS as the adapter transport, the attribute
jms.TransportOptimized can be configured to true, followed by the attribute
jms.ListenerConcurrency to the number of listeners desired.

If it is determined that the single listener thread is the bottleneck, the number of
listener threads should be set to the number of processors in the system, but pay
close attention to the CPU usage. If the CPU usage appears high, experiment by
reducing the number listener threads.

11.5 General database performance
This section discusses general areas where you can improve database
performance. The following sections discuss ways to improve the performance of
specific databases.
 Chapter 11. Tuning a WebSphere BI Server infrastructure 477

11.5.1 Place database tablespaces on a fast disk subsystem
The database tablespaces should be placed on a fast disk subsystem with write
back cache. This has a direct bearing on the database performance.

11.5.2 Size database cross-referencing tables correctly
Relationship cross-reference tables for identity relationships and other dynamic
relationships grow continuously and can become quite large in a production
environment. Care must be taken to size these tables accordingly. It is
recommended that the first extent of the table contains as many rows as
possible, even the entire table. This will avoid extent inter-leaving and enable
faster database service times on relationship lookups.

Currently there is no mechanism to specify extent sizes and physical storage
attributes for these tables through the System Manager. Therefore, if these
tables are expected to be large, the recommended method to achieve this is to
export the data in these tables, drop them, r-create them according to the desired
storage parameters, and then reload the data.

Determining which tables in the WebSphere InterChange Server database are
the cross-reference tables is straightforward. Each relationship participant has a
cross-reference table dedicated to itself. For example, if there is a relationship
definition for a dynamic relationship named Customer with participants SAP,
Clarify, and PeopleSoft, there are three distinct tables in the database for each
participant. The name of the table is included in the relationship definition.

Many of the other tables in the WebSphere InterChange Server database do not
grow continuously. but are used for temporary storage. These database tables
grow and shrink. They include: CxWIPObjects, CxWIPBlobs,
CxFailedEventKeys, CxPBusObjState, and CxPBusObjMessage. Additionally, if
transactional collaborations are used, the following tables also grow and shrink:
CxAStateBusObjs, CxCStateBusObjs, CxTransBlobs, CxCompBusObjs, and
CxReposAttributes.

11.5.3 Place logs on separate device from table spaces
A basic strategy for all database storage configurations is to place the database
logs on separate devices from the tablespace containers. This prevents I/O to
tablespace containers from contending with the I/O to the database logs.
478 Administering and Implementing WebSphere Business Integration Server V4.3

11.6 Database: DB2-specific
Providing a comprehensive DB2 tuning guide is beyond the scope of this book.
On the other hand, a few general rules can assist in improving the performance
of DB2 environments. In the paragraphs that follow, we discuss these rules and
provide pointers to more detailed information. A quick reference for DB2
performance tuning can be found at the following Web site:

http://www-106.ibm.com/developerworks/db2/library/techarticle/0205parlapalli/02
05parlapalli.html

11.6.1 Maintain current indexes on tables
While the WebSphere InterChange Server creates a set of database indexes
that are appropriate for many installations, additional indexes might be required
in some circumstances. A database environment that requires additional indexes
often exhibits performance degradation over time; in some cases the
performance degradation can be profound. Environments that need additional
indexes often exhibit heavy read I/O on devices holding the tablespace
containers. To assist in determining which additional indexes could improve
performance, DB2 provides the Design Advisor. The Design Advisor is available
from the DB2 Control Center, or can be started from a command line processor.
Design Advisor has the capability to help define and design indexes suitable for a
particular workload.

11.6.2 Update catalog statistics
It is important to update the DB2 catalog statistics on a regular basis. These are
statistics that are used by the DB2 query optimizer to determine the access plan
for evaluating a query. Statistics are maintained on tables and indexes.
Examples of statistics include the number of rows in a table, and the number of
distinct values in a certain column of a table. These statistics are not maintained
by DB2 in real time; statistics are updated by DB2 commands that are typically
run by the DBA. If statistics are not updated on a regular basis, the DB2 query
optimizer may create poor-performing access plans for evaluating queries. The
following command can be used to update statistics on all tables in the database:

db2 -v reorgchk update statistics on table all

More information about maintaining catalog statistics can be found in the
document “DB2 Administration Guide: Performance,” which is available here:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/db2d3e80.pdf
 Chapter 11. Tuning a WebSphere BI Server infrastructure 479

http://www-106.ibm.com/developerworks/db2/library/techarticle/0205parlapalli/0205parlapalli.html
ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/pdf/letter/db2d3e80.pdf

11.6.3 Set bufferpool size correctly
Although there are many DB2 configuration parameters, one parameter that is
critical to performance and often requires modification in a new installation is the
bufferpool size (BUFFPAGE parameter from the database configuration). In
general, the default value of this parameter is too small to run efficiently; on the
other hand, the parameter should be set small enough so that the database
bufferpool can coexist along with other structures and applications, without
exhausting the real memory on the system.

11.7 Database: Oracle-specific
Compiling a comprehensive Oracle tuning section is beyond the scope of this
book. The guidelines provided here for tuning are generic and the objective is to
highlight areas that require attention while monitoring and tuning an Oracle
database. Database accesses can vary significantly by workload. Optimal
configuration and parameter values depend on the specific WebSphere
InterChange Server installation and can only be arrived at by monitoring the V$
dynamic performance views for status of files and memory.

11.7.1 Set buffer, block, and shared pool area sizes correctly
The following parameters are important to WebSphere InterChange Server
performance with Oracle. They are set in the init<sid>.ora file.

DB_BLOCK_BUFFERS or DB_CACHE_SIZE

Increase the appropriate parameter to reduce the number of physical reads from
disk. As a general rule, set to 25% of total memory allocated to Oracle
processes. The DB_CACHE_SIZE (Oracle 9) parameter is the actual memory
allocated. If DB_BLOCK_BUFFERS (Orracle 8) is specified, the total memory
allocated is equal to DB_BLOCK_SIZE times DB_BLOCK_BUFFERS. The
DB_CACHE_SIZE divided by the DB_BLOCK_SIZE equals the number of
available database buffers.

DB_BLOCK_SIZE and DB_FILE_MULTIBLOCK_READ_COUNT
These values should be tuned in conjunction with database memory buffer
allocation (DB_BLOCK_BUFFERS or DB_CACHE_SIZE). They control the
amount of data fetched in one single read from the disk. It should be noted that
changing DB_BLOCK_SIZE requires re-creation of the Oracle instance. So this
value must be determined at installation time.
480 Administering and Implementing WebSphere Business Integration Server V4.3

SHARED_POOL_SIZE
The shared pool area must be large enough to accommodate the most frequently
used SQL statements and Data Dictionary information. Use V$ views to monitor
shared pool area hit ratio.

LOG_BUFFER
Increase the LOG_BUFFER value to reduce physical reads when processing
redo entries in the redo log file.

LOG_CHECKPOINT_INTERVAL
This is the interval, equal to the number of redo blocks written, before the next
checkpoint. It should be set to 0 to reduce disk writes.

11.7.2 Set processes, Open_Cursors, and IO_Slaves
Consider the values of the following settings:

� PROCESSES specifies the number of operating system user processes that
can connect to an Oracle database server. It should be set to 1000 for
WebSphere InterChange Server usage.

� OPEN_CURSORS should be set to a value of 1200 or more to ensure enough
available cursors for various connections.

� DBWR_IO_SLAVES configures the number of slaves for disk writes. As a
general rule, one slave per disk is recommended.

11.7.3 Use a dedicated connection
With respect to Oracle, if the database happens to be dedicated to the
WebSphere InterChange Server and fewer than 200 connections are active, it is
recommended that a dedicated connection mechanism be used.

11.7.4 Query optimization
OPTIMIZER_MODE specifies the mode that is used to determine how to access
data to fulfill an SQL query. The default setting is choose, which uses a
rule-based optimization if no table statistics are available, or a cost-based
optimization if statistics are available. A setting of rule forces rule-based
optimization. The performance impact of the setting varies with the type of
workload. A production environment, with complex queries, in which up-to-date
table statistics are available, might benefit from a cost-based approach.
 Chapter 11. Tuning a WebSphere BI Server infrastructure 481

11.8 WebSphere MQ
Because WebSphere MQ is one of the primary transports for WebSphere
Business Integration Adapters, it is important to configure it correctly. There are
many documents available about this subject and some are referenced in the
links below. The reader is strongly encouraged to pursue these links for more
detailed information. The purpose of this section is to document those tuning
options that we found particularly useful in maximizing the throughput.

11.8.1 Place MQ logs on fast disk subsystem
WebSphere Business Integration Adapters use persistent messages, which
require significant disk I/O. This disk I/O comes from two sources: the queue
manager's log and queue data itself. If care is not taken, these I/Os can become
a severe system bottleneck. One way to mitigate this issue is to use disk drives
and adapters with fast write-back caches. This cache could be on the drives
themselves (for example, certain SSA disks) or on the disk adapter (for example,
one particular model of the IBM ServeRaid adapter used had 32 MB of onboard
NVRAM).

The steps that ensure that MQ-related I/O is directed to a fast storage device are:

� Install fast-write disks or adapters on the MQ system. If using a RAID adapter,
configure a Raid-0 array of one or more physical drives. Note that the MQ log,
being sequential, does not get any benefit from disk striping, so multiple-drive
arrays are not of much benefit here. The primary use of the RAID adapter is
for its fast-write caching capability.

� Create a filesystem (AIX, Solaris™) or partition (Windows) on the fast disk or
array, and a directory on it to store the MQ logs and queues.

� Configure MQ to use this directory by default for logs and queue data
(Figure 11-4 on page 483). On Windows, this location can be specified at
installation. After installation, this default can be changed using the
WebSphere MQ Services application.

Right-click the WebSphere MQ Services (Local) folder and select Properties.
Change the values on the All Queue Managers tab to change the default
queue folder. You can also change the default log folder.

These changes do not affect existing queue managers. It is possible to edit
registry entries and move directory trees to the desired locations. However, it
is probably safer to recreate the queue manager after changes have been
made to these properties.
482 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 11-4 Changing the properties for all queue managers

On AIX, the LogDefaultPath and DefaultPrefix values can be modified in the
/var/mqm/mqs.ini file.

Additionally, the default log path can be overridden when creating a queue
manager using the -ld option of the crtmqm command.

If you must recreate a queue manager, it can be helpful to use SupportPac™
MS03, which enables you to extract object definitions from a queue manager so
that it can be used in another queue manager or when the queue manager is
re-created. SupportPac MS03 can be downloaded from:

http://www-306.ibm.com/software/integration/support/supportpacs/

11.8.2 Monitor message queue depth
Each message queue has an associated maximum depth, which is the maximum
number of elements that can be in the queue at any one time. This value can be
modified in the MQ Explorer by modifying the Maximum Queue Depth property of
the queue of interest.

Care should be taken to monitor the current depth of the queues of interest
during system operation. This can be done either from the MQ Explorer Queues
view, or the System Manager Server Statistics view. If the queue depths grow
 Chapter 11. Tuning a WebSphere BI Server infrastructure 483

http://www-306.ibm.com/software/integration/support/supportpacs/

over time, it is likely the case that the server is not processing events fast enough
for that adapter. A particularly insidious effect here is that increasing queue depth
tends to make MQGET operations slower, so as a server gets further and further
behind, the service times to read from the input queue get longer and longer.

11.8.3 Configure WebSphere MQ log files and buffer pages
The following WebSphere MQ log file and buffer page settings should be
examined for their applicability to any configuration from a performance
standpoint. The settings and a brief description are given below:

LogFilePages
WebSphere MQ log data is held in a series of files called log files. The log file
size is specified in units of 4 KB pages. A larger value enables bigger log files.
This is not really a performance knob, but it does aid in recoverability. Its value is
set during the creation of the queue manager and cannot be altered.

� Recommended value: 2048
� Default on Windows: 256
� Default on UNIX: 1024

LogPrimaryFiles
Primary log files are the log files that are allocated during queue manager
creation. Its value can be changed for an existing queue manager.

� Maximum value: 62
� Default value: 3

LogSecondaryFiles
Secondary log files are the log files that are allocated when the primary files are
exhausted. This value can be changed for an existing queue manager.

� Maximum: 61
� Default: 2

LogBufferPages
This is the amount of memory that is allocated to buffer records for writing. The
size of the buffers is specified in units of 4 KB pages. Larger values lead to
higher throughput, especially for larger messages, because this reduces the
number of I/Os but increases the size of each I/O.

� Maximum value: 512
� Default value: 18
484 Administering and Implementing WebSphere Business Integration Server V4.3

LogWriteIntegrity
This parameter controls the reliability with which log files are written. There is a
performance trade-off, with the default providing the highest level of reliability,
and a value of SingleWrite providing the best performance.

� Default: TripleWrite

For attributes that can be changed, right-click the queue manager in the
WebSphere MQ Services application and select Properties. Select the Log tab
(Figure 11-5). For UNIX platforms, edit the qm.ini file for that queue manager.

Figure 11-5 Updating the logging parameters for a queue manager

The parameter LogWriteIntegrity (Figure 11-6 on page 486) is not exposed in the
WebSphere MQ Services application on Windows. You can change this
parameter using the registry editor.
 Chapter 11. Tuning a WebSphere BI Server infrastructure 485

Figure 11-6 Reviewing the parameter LogWriteIntegrity

Consult the IBM WebSphere MQ documentation for a description of all
WebSphere MQ log file and buffer pages tuning parameters. The WebSphere
MQ documentation is available at:

http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/

11.9 Java
Because the WebSphere InterChange Server and its components, such as maps
and collaborations, are written in Java, the performance of the Java Virtual
Machine (JVM) has a significant impact on the performance that is delivered by a
WebSphere InterChange Server application. JVMs externalize multiple tuning
parameters that can be used to improve WebSphere InterChange Server
performance. The most important of these are related to garbage collection,
setting the Java heap size, and configuring threading parameters. This section
deals with these topics in detail.

Note: WebSphere InterChange Server V4.3.0 now requires the use of JRE
V1.4.2. Also, as of the WebSphere InterChange Server V4.2.2 release, the
product ships with the IBM JVM on Win32® and AIX platforms, and the Sun™
JVM on Solaris and HP systems. Vendor-specific JVM implementation details
and settings are discussed as appropriate.
486 Administering and Implementing WebSphere Business Integration Server V4.3

http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/

While there are more tuning parameters than are discussed in this section, most
are for specific situations and are not of general use. The following URL provides
a useful summary of JVM options:

http://java.sun.com/docs/hotspot/VMOptions.html

For a detailed description of the IBM JVM, consult the Java Performance issue of
the IBM Systems Journal, Vol. 1, 2000:

http://www.research.ibm.com/journal/sj39-1.html

For a useful FAQ about the Sun HotSpot JVM, vread this page:

http://java.sun.com/docs/hotspot/PerformanceFAQ.html#20

11.9.1 Set heap size and nursery size for efficient garbage collection
Garbage collection (GC) is the process of freeing unused objects so that
portions of the JVM heap can be reused. Because the Java language
specification does not provide explicit delete() or free() byte codes, it is
imperative to occasionally detect and delete objects that no longer have active
references and free that space for reuse.

Garbage collection is triggered automatically when there is a request for
memory, such as for object creation, and the request cannot be readily satisfied
from the free memory that is available in the heap (allocation failure). Garbage
collection can also be programatically activated using a Java class library
System.gc() call. In this case, garbage collection occurs immediately and
synchronously.

While the function that is provided by the SUN HotSpot and IBM garbage
collectors is the same, the underlying technology is different. For both JVMs,
garbage collection takes place in three phases: mark, sweep, and an optional
compact phase. The implementation of the garbage collection phases is very
different. This is mainly due to the fact that the Sun HotSpot engine is what is
known as a generational collector while the IBM JVM is not.

A detailed discussion of the HotSpot generational GC can be found here:

http://java.sun.com/docs/hotspot/gc/index.html

With the IBM JVM, the full heap is consumed before a garbage collection is
triggered. With the SUN JVM a garbage collection is triggered when either the
nursery or the full heap is consumed. Whether a full-heap GC or nursery GC is
being performed, the first phase is to mark all referenced objects in the region
that is being collected. This leaves all unreferenced objects unmarked and
leaves the space they occupy free to be collected and reused. Following the
 Chapter 11. Tuning a WebSphere BI Server infrastructure 487

http://java.sun.com/docs/hotspot/VMOptions.html
http://www.research.ibm.com/journal/sj39-1.html
http://java.sun.com/docs/hotspot/PerformanceFAQ.html#20
http://java.sun.com/docs/hotspot/gc/index.html

mark phase, free chunks of memory are added to a free list. This phase is
referred to as sweeping.

Occasionally, following the sweep phase, a compact phase is performed. The
compaction moves objects closer together to create larger contiguous free
chunks. Several triggers can cause a compaction. For instance, if after sweep
there is still not a large enough contiguous chunk of memory, then compaction
executes. Also, for most System.gc() calls, a compaction is performed. Relative
to the other phases involved, compaction can be a time-consuming process and
should be avoided if possible. The IBM JVM has been optimized to avoid
compactions, as this is an expensive process.

Monitoring garbage collection
In order to set the heap correctly, you must first determine how the heap is being
used. This is easily done by collecting a verbosegc trace, which prints garbage
collection actions and statistics to stderr. The verbosegc trace is activated by
using the Java run-time option of verbose:gc. Output from verbosegc is different
for the IBM JVMs and Sun HotSpot, as shown by Example 11-2 and
Example 11-3 on page 489.

Example 11-2 IBM JVM verbosegc trace output

<AF[8]: Allocation Failure. need 1572744 bytes 5875 ms since last AF>
<AF[8]: managing allocation failure, action=1 (23393256)/131070968) (2096880/3145728)>
<GC: Tue Dec 18 17:32:26 2001
<GC(12): freed 75350432 bytes in 168 ms, 75% free (100840568)/134216696)>
<GC(12): mark: 129 ms, sweep: 39 ms, compact: 0 ms>
<GC(12): refs: soft 0 (age >= 32), weak 0, final 0 , phantom 0>
<AF[8]: completed in 203 ms>

Using the IBM JVM output shown in Example 11-2 as an example, the metric
following the word need is the size of the allocation that caused the garbage
collection. On the same line, the amount of time in milliseconds since the last
allocation failure is given. The next line with the <AF[8]> tag displays the amount
of free space in the heap and in the wilderness. In tExample 11-3 on page 489,
the line reports 23393256 free bytes out of a possible 131070968 bytes. The
(2096880 / 3145728) refers to wilderness area free, which is usually ignored.

The next set of lines provides information about the garbage collection that was
caused to satisfy the allocation failure. The first line is a time stamp. This is
followed by a line that includes the time to complete the GC, 168 ms, and the
amount of free space after the GC, 75%. Both of these metrics are extremely
useful in understanding the efficiency of the garbage collection and the heap
usage. Following this line is a line describing the time for the different
components of the GC. You should look to make sure that the number following
compact is normally 0. That is, a well-tuned heap will avoid compactions. Finally,
488 Administering and Implementing WebSphere Business Integration Server V4.3

for the GC, there is a line about soft, weak, and phantom references, as well as a
count of finalizers. This is then bracketed by a line with a time for the full
allocation failure.

Example 11-3 SUN JVM verbosgc trace output (young and old)

[GC 325816K->83372K(776768K), 0.2454258 secs]
[Full GC 267628K->83769K <- live data (776768K), 1.8479984 secs]

Setting heap size for most configurations
This section contains guidelines for determining the appropriate Java heap size
for most WebSphere InterChange Server configurations. If your configuration
requires that many JVMs run concurrently on the same system (for example, if
you run multiple adapters on the same physical system as the InterChange
Server), then you should also read the next section, “Setting heap size when
running multiple JVMs on one system” on page 490.

For many applications, the default heap size setting for the IBM JVM is sufficient
for good performance. In general, the HotSpot JVM default heap and nursery
size is too small and should be increased. We show you how to set these
parameters later. For optimal performance and for applications with
unpredictable loads or large live sets, the heap size should be optimized.

There are several approaches to setting the optimal heap sizes. Here, we
describe the approach that most applications should use when running the IBM
JVM on AIX. The essentials can be applied to other systems. First, we provide
more background. There is a feature in the IBM JVMs that deals with dynamically
growing the heap that is referred to as rate-trigger heap growth. This process
attempts to set the size of the heap so that pauses are not too long and GC does
not take too much time. This is done dynamically, and it adjusts with the
workload. If too much time is being used in GC (fraction of execution time spent
in GC > .13), the heap grows. If the heap is mostly free, the heap can shrink.

In order to use rate-trigger heap growth effectively, set the initial heap size (-ms
option) to something reasonable (for example, 64 MB or 96 MB), and the
maximum heap size (-mx) option to something reasonable, but large (for
example, 256-512 MB). Of course, the maximum heap size should never force
the heap to page. It is imperative that the heap always stays in physical memory.
The JVM then tries to keep the GC time to something reasonable behind the
covers by growing and shrinking the heap. The output from verbosegc should
then be used to monitor the GC actions.

A similar process can be used to set the size of HotSpot heaps. In addition to
setting the minimum and maximum heap size, you should also increase the
nursery size to approximately 1/4 of the heap size. Note that you should never
 Chapter 11. Tuning a WebSphere BI Server infrastructure 489

increase the nursery to more than 1/2 the full heap. The nursery size is set using
the MaxNewSize and NewSize parameters (XX:MaxNewSize=128m,
XX:NewSize=128m).

After the heap sizes are set, verbosegc traces should be used to monitor the GC
actions. If you find something unpleasant from the verbosegc trace, you can
modify the heap settings accordingly.

For example, if the percentage of time in GC is too high (greater than 10% of the
total time), and the heap has grown to its maximum size, increase that size. Note
that this does not always solve the problem because it is normally a
memory-over-usage problem. If the pause time is too long, decrease the heap
size. If both problems are observed, an analysis of the application heap usage is
required.

Setting heap size when running multiple JVMs on one system

Each running Java program has a heap associated with it. Therefore, if you have
a configuration in which several Java programs are running on a single physical
system, setting the heap sizes appropriately is of particular importance. An
example of one such configuration is when many adapters are on the same
physical system as the InterChange Server. Each adapter is a separate Java
program that has its own Java heap, as does the InterChange Server. If the sum
of all of the Java heap sizes plus all other virtual memory usage exceeds the size
of physical memory, the heap will be subject to paging. As previously noted, this
causes the performance to degrade significantly. To minimize the possibility of
this occurring, use the following guidelines:

� Collect a verbosegc trace for each running JVM.

Based on the verbosegc trace output, set the initial heap size to a relatively
low value. For example, assume that the verbosegc trace output shows that
the heap size grows quickly to 128 MB, and then grows more slowly to
200 MB. Based on this, set the initial heap size to 128 MB (ms128m).

Based on the verbosegc trace output, set the maximum heap size
appropriately. Care must be taken to not set this value too low, or Out Of
Memory errors will occur. The maximum heap size must be large enough to
allow for peak throughput. Using the above example, a maximum heap size of
256 MB might be appropriate (mx256m).

Be careful to not set the heap sizes too low, or garbage collections will occur
frequently, which might reduce throughput. In general, each adapter should
have a heap of at least 128 MB. Again, a verbosegc trace will assist in
determining this. A balance must be struck so that the heap sizes are large
enough that garbage collections do not occur too often, while still ensuring
490 Administering and Implementing WebSphere Business Integration Server V4.3

that the heap sizes are not cumulatively so large as to cause the heap to
page. This balancing act will, of course, be configuration-dependent.

� Enabling large heaps

Utilizing Java V1.4.2 (shipped with WebSphere InterChange Server V4.3.0)
on AIX it has been shown to achieve a Java heap size over 3 GB, a dramatic
improvement over the heap sizes achieved with Java V1.3.1.

Refer to the following link for details regarding making this AIX configuration
change:

http://www.ibm.com/servers/esdd/articles/aix4java

Summary: setting heap sizes
The following list summarizes our recommendations about setting heap sizes:

� Make sure that the heap never pages. That is, on a given system, the sum of
all of the JVMs maximum heap sizes must fit in physical memory.

� Collect and analyze a verbosegc trace in order to optimize memory usage.

� Aim for less than 10% execution time spent in garbage collection (GC).
Analyze the verbosegc trace in order to determine the GC execution time.
Object reuse and heap size tuning can help in this area.

� For optimal performance, the heap should be run with less than 60%, possibly
even 50%, occupancy. This is readily determined from the verbosegc trace
output.

� Avoid finalizers. A developer can never be guaranteed when a finalizer will
run, and often they lead to problems. If you do use finalizers, try to avoid
allocating objects in the finalizer code. An IBM JVM verbosegc trace shows if
finalizers are being called.

� Avoid compaction where possible. A verbosegc trace shows when
compaction is occurring.

� Analyze requests for large memory allocations and then devise a method for
reusing the object.

� Increase the size of the nursery for the Sun HotSpot JVM. A good rule is to
set the nursery to 25% of the size of the heap.

11.9.2 Set AIX threading parameters
The IBM JVM threading and synchronization components are based on the AIX
POSIX–compliant Pthread implementation. The following environment variables
in Example 11-4 on page 492 have been found to improve Java performance in
many situations and have been used for the workloads in this document. The
 Chapter 11. Tuning a WebSphere BI Server infrastructure 491

http://www.ibm.com/servers/esdd/articles/aix4java

variables control the mapping of Java threads to AIX Native threads, turn off
mapping information, and allow for spinning on mutex locks.

Example 11-4 AIX environment variables

export AIXTHREAD_COND_DEBUG=OFF
export AIXTHREAD_MUTEX_DEBUG=OFF
export AIXTHREAD_RWLOCK_DEBUG=OFF
export AIXTHREAD_SCOPE=S
export SPINLOOPTIME=2000

More information about AIX-specific Java tuning information can be found here:

http://www.ibm.com/developerworks/eserver/articles/JavaPart1.html
http://www.ibm.com/developerworks/eserver/articles/JavaPart2.html

11.9.3 Use HotSpot server instead of client
The Sun HotSpot JVM can be configured to run as a server or as a client. When
configured as a server the Just-In-Time Compiler (JIT) uses extra processor
cycles and memory to create more highly optimized code. Because the server is
a long-running process, the extra time and memory spent on JIT at initial
instantiation is well worth the increased performance during run time.

Therefore, on platforms that ship with the Sun HotSpot JVM, the WebSphere
InterChange Server should always be run in server mode. To do this, add the
server parameter to the Java invocation.

11.9.4 Setting thread stack size if using many threads
As mentioned in the section about WebSphere InterChange Server threading,
Java threads consume memory in the heap. In addition, the threads themselves
use virtual memory for their thread stacks. If a configuration is using an
excessive number of threads, memory in either place can become a problem.
The JVM enables a user to configure the amount of virtual memory to set aside
for the thread stack. The default thread stack size is different, depending on the
JVM version and the operating system. However, the mechanism to set the value
is the same. To set the thread stack size to 128 KB, the parameter -ss128k is
passed in on the invocation of the JVM. Care should be taken not to set this
value to small. It is recommended that at least 128 KB be given to each thread
stack, although the system can operate successfully with a lower setting.

11.9.5 Reduce or increase heap size for out-of-memory errors
The java.lang.OutOfMemory exception is used by the JVM in a variety of
circumstances, making it sometimes difficult to track down the source of the
492 Administering and Implementing WebSphere Business Integration Server V4.3

http://www.ibm.com/developerworks/eserver/articles/JavaPart1.html
http://www.ibm.com/developerworks/eserver/articles/JavaPart2.html

exception. There is no conclusive mechanism for telling the difference between
these potential error sources, but a good start is to collect a trace using
verbosegc. If the problem is a lack of memory in the heap, then this is easily seen
in this output. Many garbage collections resulting in very little free heap space
will occur preceding the exception. If this is the problem, increase the size of the
heap.

If, however, there is enough free memory when the java.lang.OutofMemory
exception is thrown, the next item to check is the finalized count from the
verbosegc (only the IBM JVM will give this information). If these appear high then
a subtle effect might be occurring whereby resources outside the heap are held
by objects within the heap and being cleaned by finalizers. Reducing the size of
the heap can alleviate this situation, by increasing the frequency with which
finalizers are run.

11.10 Large objects
A common tuning issue is trying to identify the largest object size that both the
WebSphere InterChange Server and the corresponding adapters can process
effectively and efficiently. Because there is no one simple answer to this
question, we present both a discussion of the issues involved and some practical
guidelines for the current release of the WebSphere InterChange Server and the
WebSphere Business Integration Adapters.

WebSphere InterChange Server V4.3.0 includes support for larger object sizes.
This is made possible by segmenting large business objects into more
managable pieces when allocating those objects to memory. For example,
segmenting a 5MB object into five 1MB objects in memory.

Controlled laboratory tests have been performed to find the current upper
boundary to the maximum object size that the WebSphere InterChange Server
V4.3.0 is capable of consistently processing. Observation shows that the
breaking point differs, depending primarily on the internal state of the
WebSphere InterChange Server and adapters. These tests have shown that in a
standalone environment where the particular InterChange Server is dedicated to
specific actions, up to a 100 MB object could successfully be processed. Testing
in a stressed environment produced consistent results of processing up to a 28
MB object. These tests show a 2X improvement in maximum object size and a
10X improvement in normal environment large object size.
 Chapter 11. Tuning a WebSphere BI Server infrastructure 493

11.10.1 Factors affecting large object size processing
Stated at a high level, the object size capacity for a given installation depends on
the size of the Java heap and the load placed on that heap by the current level of
incoming work. The larger the heap, the larger the business object that can be
processed successfully.

To apply this technically accurate but somewhat general statement, one must
first understand that the business object size limit is based on three fundamental
implementation facts of Java Virtual Machines.

Java heap size limitations
The limit to the size of the Java heap is operating system dependent. Further
details of heap sizes are given later in this section (see Java heap limitations
under Section 11.10.2, “Mitigating large object issues” on page 495), but it is not
unusual to have a heap size limit of around 1.4 GB. The maximum object size
experiments mentioned above were achieved with a heap size on the order of
1.6 GB to 2 GB.

Java heap fragmentation
In a production WebSphere InterChange Server environment, the server and
adapter agents may have been operating for a long period before a large object
arrives. All JVMs implement a heap compaction function that limits but cannot
totally eliminate heap fragmentation. Some objects on the Java heap cannot be
moved. As a result, fragmentation will always exist in the heap, potentially
making the amount of contiguous memory available in a single block much less
than the overall total of available memory. This is normally not an issue, because
most Java object requests are small and easily allocated in a fragmented heap.

Contiguity of Java objects
If a large Java object is requested and, after compaction, there is not a
sufficiently large contiguous chunk of Java heap available, then Java throws an

Note: It is recommended that you architect integration solutions to reduce
object size whenever possible. Ideally, the solution design should be
architected to break the object into multiple objects sized at or below 1 MB,
and process them individually. This approach generally produces a more
robust and a higher performing solution. When this is not possible, it is
recommended to avoid using object sizes in excess of 28 MBs in a stressed
production environment. Also, it is important to understand that even though
the InterChange Server can support large objects, the adapters might not be
able to support the same size objects.
494 Administering and Implementing WebSphere Business Integration Server V4.3

out-of-memory exception. This is a typical scenario that is encountered with very
large business objects, and it brings to light two very important facts:

� First, even though there is plenty of free space available in the heap, an
out-of-memory exception can still occur. We have seen instances in the field
where half of a 1.6 GB heap was free (800 MB), but a 38 MB allocation
caused an out-of-memory exception. This is due to the fact that the Java
heap becomes fragmented over time. The impact of this tendency is
somewhat alleviated by WebSphere InterChange Server V4.3.0's ability to do
Business Object Chunking; but the overall concern still exists.

� Second, there is an issue concerning the relationship between a WebSphere
InterChange Server business object (ASBO, GBO) and the Java objects that
represent them. An ASBO which appears as a 10 MB message on the MQ
input transport might result in the allocation of many larger Java objects as it
flows through WebSphere InterChange Server and the adapters. That is, an
ASBO will be 10 MB on the input message queue, but might result in
allocations of 20 MB to 30 MB on the Java heap. The fact that an ASBO or
GBO consumes more of the Java heap than the actual size of the
corresponding message is due to the implementation details of the
WebSphere InterChange Server (and WebSphere Business Integration
Adapters) as well as possible growth in the mappings of objects.

11.10.2 Mitigating large object issues
It has been observed that the use of large objects in an architected solution is
frequently associated with batch-oriented business processes, where a large
number of smaller transactions are assembled and submitted as a single object
for processing. Given that, one must address the three issues outlined in the
previous section (Java heap size limitations, Java heap fragmentation, and
Contiguity of Java objects),

Java heap limitations
Increase the Java heap to its maximum. This change can be implemented in
different ways depending on the operating system.

Windows
On the Windows platforms, WebSphere InterChange Server V4.3.0 and
WebSphere Business Integration Adapters V2.6.0 ship with IBM Java V1.4.2 for
Windows.

Because of adress space limitations in the Windows operating system, the
largest heap that can be obtained is around 1.4 GB to 1.6 GB.
 Chapter 11. Tuning a WebSphere BI Server infrastructure 495

AIX
WebSphere InterChange Server V4.3.0 and WebSphere Business Integration
Adapters V2.6.0 support the 32-bit version of IBM Java V1.4.2 for AIX.

Utilizing the normal Java heap settings for IBM Java V1.4.2 for AIX, it has been
shown that the IBM JVM V1.4.2 supports a Java heap size in excess of 3 GB.
For details, refer to the article Getting more memory in AIX for your Java
applications available here:

http://www.ibm.com/developerworks/eserver/articles/aix4java/

Solaris
On Solaris, WebSphere InterChange Server V4.3.0 and WebSphere Business
Integration Adapters V2.6.0 ship with the 32-bit version of Java V1.4.2 from Sun
Microsystems. Laboratory experiments indicate a maximum of approximately a
3.5 GB heap for WebSphere InterChange Server V4.3.0 workloads.

Java heap fragmentation
The only way to reduce significantly the fragmentation in the Java heap and
allow for larger object sizes is to limit the concurrent processing activity occurring
within the JVM. Obviously, you should not expect to be able to process a steady
stream of the largest objects possible concurrently with other WebSphere
InterChange Server activities. The operational assumption that must be made
when considering large objects is that not all objects will be large and that large
objects will not arrive very often, perhaps once or twice per day. If more than one
large object is being processed by the WebSphere InterChange Server
concurrently, the likelihood of failure increases dramatically.

The size and number of the normally arriving smaller objects affect the amount of
Java heap memory fragmentation that exists and also play a role in the
processing of large objects. Generally speaking, the heavier the load on a
system when a large object is being processed, the more likely it is that memory
problems will be encountered.

For adapter agents, the amount of concurrent processing can be influenced by
setting the Poll Frequency and Poll Quantity parameters. To allow for larger
object sizes, set a relatively high value for Poll Frequency and low value for Poll
Quantity this will minimize the amount of concurrent processing that occurs. For
a detailed discussion about setting these parameters, see Section 11.4.1,
“Configure poll frequency and poll quantity” on page 475.

Contiguity of Java objects
If a large object, one greater than 28 MB, must be processed on current
WebSphere InterChange Server and adapter technologies, then the solutions
engineer must find a way to limit the large Java objects that are being allocated.
496 Administering and Implementing WebSphere Business Integration Server V4.3

http://www.ibm.com/developerworks/eserver/articles/aix4java/

While significant enhancements in the internal processing of large business
objects have been delivered in WebSphere InterChange Server V4.3.0 and
WebSphere Business Integration Adapters V2.6.0, the business process
designer is ultimately responsible for managing the maximum object size
processed by the system. The primary technique for doing this is to decompose
the large object into smaller objects and submit them individually.

If the large objects are actually a collection of small objects as assumed, the
solution is to group the smaller objects into objects less than 1 MB in size. If there
are temporal dependencies or an all-or-nothing requirement for the individual
objects, then the solution becomes more complex. Implementations have shown
that dealing with this complexity is worth the effort, as demonstrated by both
increased performance and stability.

An exploration of large object processing
Driven by observations of memory usage patterns within solutions using
WebSphere InterChange Server and WebSphere Business Integration Adapters,
a study of the ways that memory is used within the server and adapters was
initiated. As a result of this study, several enhancements have been incorporated
into WebSphere InterChange Server V4.3.0 and WebSphere Business
Integration Adapters V2.6.0 that greatly improve their ability to process large
business objects. In laboratory experiments using the JText adapter (with the
Fixed Width Data Handler) and a simple collaboration, the system has
successfully processed 100 MB business objects (as measured by the size on
the input delivery queue). Some of the issues discovered in the study are
detailed here. However, keep in mind that there are several significant
differences between the laboratory and a production environment. The purpose
of this memory work was to improve general product reliability, not to support the
processing of business objects of any particular size. In almost every case, a
solution is better off limiting the size of the largest object processed. Many of the
most powerful techniques for dealing with memory constraints reside in solution
design. Refer to Section 11.10.2, “Mitigating large object issues” on page 495 for
several important suggestions.

Several of the efficiency improvements incorporated into the server and adapters
are equally applicable to the application code running within the server, or
custom data handlers developed for adapters. Some of them are detailed here:

� Reduce overall Java memory use.

Allocation and initialization of Java objects can be expensive. This is
particularly true for larger objects. Both the allocation and initialization cost
increases as object sizes increase. Whenever possible, an application should
reuse a previously allocated Java object, rather than allocating a new one.
Reusing previously allocated Java objects reduces stress on the memory
allocation subsystem and improves overall system performance. It is
 Chapter 11. Tuning a WebSphere BI Server infrastructure 497

interesting to note that the allocation improvements also drove improvements
to core adapter and server throughput.

� Reduce the peak live set.

A Java server receiving requests for more memory than is available in the
heap will begin to throw runtime errors (OutOfMemory exceptions). Many of
the problems observed in processing large business objects simply result
from exhaustion of the Java heap. One technique that helped to reduce the
live set involved explicitly releasing a Java reference when it was no longer
required. Frequently, Java programmers wait for a local variable to go out of
scope before the object it references is available to be freed by the garbage
collector. If the reference is nullified, prior to a method invocation for example,
the garbage collector might be able to free that object to satisfy the allocation
requests within the called method.

� Reduce the size of the largest contiguous object allocated.

A new class of objects, CxListBuffer, has been created within the WebSphere
InterChange Server and WebSphere Business Integration Adapters
packages. This class offers a representation of string-like objects that makes
more efficient use of available Java heap space. CxListBuffer offers many of
the same services as Java’s String and StringBuffer classes, but the internal
implementation is significantly different. Rather than storing the string
contents in a single character array, CxListBuffer uses a collection of
character arrays, thereby limiting the maximum size of any of the individual
objects. Because each Java object occupies a contiguous memory region
within the Java heap, it is typically easier to allocate ten 1 MB objects than
one 10 MB object.

In spite of the enhancements introduced in these releases, some limitations exist
in the overall system capacity for processing large objects. One common
limitation to the ability to design for maximum capacity occurs at process
boundaries. For instance, WebSphere InterChange Server and WebSphere
Business Integration Adapters use the WebSphere MQ messaging server for
interprocess communication. WebSphere MQ imposes a limit of 100 MB to the
size of any message placed on a queue. Additionally, business object expansion
can occur in the mappings within a data handler or collaboration. Cases have
been observed in which the size of the business event delivered to a queue is
significantly different from the size of the internal representation of a business
object, or the size of the event on disk (in the case of the JText adapter used for
this study). Particular care should be given to the possibility of these expansions
at solution design time.

The process boundary limitations might be even more severe when using the
JMS delivery transport because the 100 MB message size limitation remains, but
there are additional constraints imposed by the JMS protocol itself. As a result,
498 Administering and Implementing WebSphere Business Integration Server V4.3

the maximum object size observed when using the JMS delivery transport was
less than that seen with the MQ delivery transport.

11.11 Tuning other WebSphere BI runtime components
For information about performance and tuning for WebSphere Business
Integration Message Broker and WebSphere MQ Workflow, refer to the
performance section of the SupportPacs Web site. New reports are added
frequently and existing reports are updated to reflect new functionality in the
different runtime engines. These reports can be found here:

http://www-306.ibm.com/software/integration/support/supportpacs/perfreppacs.html
 Chapter 11. Tuning a WebSphere BI Server infrastructure 499

http://www-306.ibm.com/software/integration/support/supportpacs/perfreppacs.html

500 Administering and Implementing WebSphere Business Integration Server V4.3

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2006. All rights reserved. 501

502 Administering and Implementing WebSphere Business Integration Server V4.3

Appendix A. Our hardware and software
configuration

This appendix provides information about the hardware and software that was
used to create the scenario described in this redbook.

A

© Copyright IBM Corp. 2006. All rights reserved. 503

Configuration of client machines
The development client and management client machines were created on the
following hardware configuration:

� IBM NetVista PC, Model 6792-MHU
� Pentium® 4 processor running at 1800 MHz
� 1 GB memory
� 40 GB hard disk

Configuration of runtime servers
The runtime servers, including the Web server and the database server, were
implemented on the following hardware configuration:

� IBM ^® xSeries® 230, Model 8658-61Y
� Pentium III processor running at 1GHz
� 2 GB memory
� 24 GB hard disk

The software setup for these runtime servers was:

1. Database server

IBM DB2 V8.2 Server (8.1 with FixPak 7a (WR12342)).

2. WebSphere Application Server

WebSphere Application Server V5.1
WebSphere MQ V5.3 and CSD7
IBM DB2 V8.2 Client (8.1 with FixPak 7a (WR12342))
WebSphere MQ Workflow V3.5 Web Client feature with service pack 1

3. WebSphere MQ Workflow runtime server

WebSphere MQ V5.3 and CSD7
IBM DB2 V8.2 Client (8.1 with FixPak 7a (WR12342))
WebSphere MQ Workflow V3.5 Web Client feature with service pack 1

4. WebSphere Business Integration Message Broker server

WebSphere MQ V5.3 and CSD7
IBM DB2 V8.2 Server (8.1 with FixPak 7a (WR12342))
WebSphere Business Integration Message Broker V5 with fix pack 4(498270)

5. WebSphere InterChange Server

WebSphere MQ V5.3 and CSD7
IBM DB2 V8.2 Client (8.1 with FixPak 7a (WR12342))
WebSphere InterChange Server V4.3
504 Administering and Implementing WebSphere Business Integration Server V4.3

WebSphere Business Integration Adapters Framework V2.6
WebSphere Business Integration Adapters for JDBC
WebSphere Business Integration Adapters for WebSphere MQ Workflow
 Appendix A. Our hardware and software configuration 505

506 Administering and Implementing WebSphere Business Integration Server V4.3

Appendix B. Configuring LDAP for use
with RBAC

This appendix provides instructions for configuring LDAP for use with role-based
access control in our scenario.

B

© Copyright IBM Corp. 2006. All rights reserved. 507

Configuring an LDAP server as a user registry for RBAC
WebSphere InterChange Server Version 4.3 introduces a new feature called
role-based access control (RBAC) that allows one to create multiple users,
define roles and operations and assign those roles to users. RBAC can be
configured to use a repository such as a database to store the user registry; or it
can be configured to work with an existing Lightweight Directory Access Protocol
(LDAP) server. In our scenario, we are using IBM Tivoli Directory Server as the
LDAP server implementation.

In this section, we will explore the process involved in configuring an LDAP
server as a user registry for role-based access control.

The following steps describe how to setup LDAP for RBAC.

1. Install and configure the LDAP server.

For more information about installing the LDAP server see the IBM Redbook
Understanding LDAP - Design and Implementation, SG24-4986

After installing LDAP, configure all the generic items properly.

2. Create a realm called realm1 in the LDAP server, we'll use this realm as the
userbase in WebSphere InterChange Server. In addition, we created a user
called John Doe to be the realm administrator. Create a user schema which
inherits from inetOrgPerson.

3. Configure RBAC. Start the InterChange Server and connect to the server
using the System Manager. In the System Manager server view, right-click
the server and select Edit Configuration. On the configuration page, select the
Security-RBAC page. (See Figure 11-7 on page 509.)

a. Configure the LDAP URL property; for example, ldap://localhost:389

b. Configure the LDAP user name/password: This username and password
are used to connect to the LDAP server and retrieve/create user
information. This user should already exist and have proper privileges to
access the LDAP server. In our scenario, we are using cn=John Doe to
connect to LDAP server.

c. Configure the user base for InterChange Server. The userbase is used to
retrieve/create users, it should exist in the LDAP server. We created a
user with the following relative distinguished name (RDN™):
cn=DEF,cn=realm1,o=ibm,c=us

d. Configure other optional items.
508 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 11-7 Configuring LDAP for RBAC

4. Save the configuration.

5. Shutdown the server and restart it.

6. Using the System Manager, connect to the Interchange Server using default
user id admin and password null.

7. Create a user. Right-click the server view and select Users and Roles. (See
Figure 11-8 on page 510.) Now add a user DEF as shown in Figure 11-9 on
page 511. Save the page. The new user will be created on LDAP. The user
relative distinguished name (RDN) should be cn=DEF,cn=realm1,o=ibm,c=us
in our scenario.
 Appendix B. Configuring LDAP for use with RBAC 509

Figure 11-8 RBAC: Getting to Users and roles in System Manager
510 Administering and Implementing WebSphere Business Integration Server V4.3

Figure 11-9 RBAC: Add a user

After the user has been created, you can use the Tivoli Directory Server Web
Administration Tool to view the newly created user. (See Figure 11-10 on
page 512.)
 Appendix B. Configuring LDAP for use with RBAC 511

Figure 11-10 Verify user created in Tivoli Directory Server

8. Using system manager, add the new user DEF to the administrative role.

9. Right-click the server view and select Edit Configuration. Click on the
Security-RBAC page of the configuration, assign the new user we created to
Server Start User and Server Start Password. Now enable the RBAC by
checking the Enable RBAC box.

10.Restart the InterChange Server.

11.Open System Manager and connect to the InterChange Server as the new
user DEF.
512 Administering and Implementing WebSphere Business Integration Server V4.3

12.Now you can add new users and assign the various roles. For example if you
create a user called monitor user and assign him the Monitor role, the user
cannot, for example, modify the configuration.

Figure 11-11 shows the error that is generated if a user with only the Monitor
role attempts to modify the configuration.

Figure 11-11 A user with Monitor role cannot modify the configuration

Our configuration of LDAP to provide RBAC support for InterChange Server is
now complete.
 Appendix B. Configuring LDAP for use with RBAC 513

514 Administering and Implementing WebSphere Business Integration Server V4.3

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 516. Note that some of the documents referenced here may be available
in softcopy only.

� Business Integration Management using WebSphere BI Modeler and Monitor:
A Real-World Case Study, SG24-7024

� Migration to WebSphere Business Integration Message Broker V5,
SG24-6995

� Patterns: Serial Process Flows for Intra- and Inter-enterprise, SG24-6305

Other publications
These publications are also relevant as further information sources:

� Getting more memory in AIX for your Java applications, written by Sumit
Chawla in September 2003 and available from IBM developerWorks at:

http://www.ibm.com/developerworks/eserver/articles/aix4java/

� IBM WebSphere InterChange Server System Installation Guide for UNIX
Version 4.3.0, (September 2004). See:

ftp://ftp.software.ibm.com/software/websphere/integration/wicserver/library
/doc/wics43/pdf/installation_unix_30sept04.pdf

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere MQ Family library

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

� WebSphere Business Integration InfoCenter
© Copyright IBM Corp. 2006. All rights reserved. 515

http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/developerworks/eserver/articles/aix4java/
ftp://ftp.software.ibm.com/software/websphere/integration/wicserver/library/doc/wics43/pdf/installation_unix_30sept04.pdf

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

� WebSphere MQ family SupportPacs

http://www.ibm.com/software/integration/support/supportpacs

� WebSphere MQ Workflow Support Pacs

http://www.ibm.com/software/integration/support/supportpacs/product.html#wm
qwf

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
516 Administering and Implementing WebSphere Business Integration Server V4.3

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp
http://www.ibm.com/software/integration/support/supportpacs
http://www.ibm.com/software/integration/support/supportpacs/product.html#wmqwf

Index

A
activities

map to input data structure 216
activity

add data structures 214
asynchronous UPES 245
execution options 213
synchronous UPES 243

adapter
when used 6

adapter agent 464
adapter agent component 24
adapter agents 496
adapter controller component 24
adapter controllers 464
Adapter Framework 70, 96–97, 99–100
adapters 12
administration tool

for InterChange Server 80
for WebSphere BI Message Broker 113

Administration Utility 63
AgentConnections 468
Aggregate node 420
AggregateControl 420
AggregateControl node 390
AggregateReply node 394
AggregateRequest node 392
alert 446
AMQERRxx.LOG 453
application server

start 179
ApplicationPassword 426
ApplicationUserID 426
asynchronous communication 5
audit 87
automotive 19

B
B2B 3, 8
banking 19
bind

port to connector 337, 339
block size 480
© Copyright IBM Corp. 2006. All rights reserved.
bottleneck 465, 467
broker 22, 30, 38, 100, 108, 112, 117, 159, 163,
182, 416

add to domain 113
deployment process 406
start 112

broker archive 23, 182, 419
See message broker archive

broker archive editor 421
broker database 100
broker domain 38, 113
Broker Toolkit

create
message broker archive 402
message flow 386
message flow project 385

deploy message broker archive 405
deployment process 406
perspectives 113
See also ESQL function
write ESQL 394

buffer size 480
bufferpool size 480
BUFFPAGE 480
Buildtime

create data structure 203
create process diagram 210
create program object 208
create UPES 236

Buildtime database 59–60
Buildtime tool 415
business object 19

agent support 318
create using ODA 263
development tool 20
import 274
properties 266
save to file 287
use of foreign key 268

Business Object Designer 24
Business Process Management 3
Business-to-Business

See B2B
 517

C
cache 468, 478
Capabilities

Accelerate 12
Integrate 10–11
Interact 11
Manage 11
mapped to WebSphere BI Server 16
Transform 10

capacity unit 112
catalog database as ODBC data source 110
catalog statistics 479
channel 36, 38, 110
channel initiator 110
chemical and petroleum 19
CICS 17, 23, 27
circular logging 56
client channel 57
client channel definition files 58
cluster 29, 35, 38, 57, 130, 239, 416
collaboration

bind ports 337, 339
create from template 336
development tool 20
import in System Manager 333
set trace level 338

collaboration foundation 12
collaboration pool 465
collaboration queue 468
collaborations 12, 70, 414, 430, 432, 459, 464,
467–468, 472–473
command

attach to DB2 instance 51
catalog database 69
connect to database 69
create database 68
create MQ listener 111
create queue manager 111
crtmqm 77
define channel 78
define queue 78
grant database authority 69
mqsicreatebroker 112
mqsicreateconfigmgr 112
mqsisetcapacity 112
mqsistart 112
start

DB2 50
communication

between adapter and integration broker 23
compaction 491
component tracing 472
components

of a WebSphere BI Adapter 23
of WebSphere BI Message Broker 22
of WebSphere Business Integration Server 4

Compute node 22, 394, 421
configuration

InterChange Server 73
after initial start-up 83
database 76
MQ 74, 76–77

JDBC connector 325
JDBC Object Discovery Agent 263
WebSphere BI Message Broker

database 110
MQ 111

WebSphere MQ Workflow
administration client 169
connector 313, 315
Runtime 50, 52
Web Client feature 128

configuration manager 22, 38, 100, 108, 112, 117
new broker 116
start 112

connector 215–216, 425–426, 430, 472
add supported business objects 318, 326

Port connector 332
agent support 326

Port connector 332
agent support for ASBO 318
associated maps 319, 327
bind to port 337, 339
configuration

for JDBC connector 325
for WebSphere MQ Workflow 313, 315

connector-specific properties
JDBC 325
WebSphere MQ Workflow 316

development tool 20
JDBC connector

configuration 325
connector-specific properties 325
event tables 328
runtime configuration 328

problem determination 348
runtime status of agent 348
standard properties 315, 325, 331
518 Administering and Implementing WebSphere Business Integration Server V4.3

using the Test connector 367
WebSphere MQ Workflow

configuration 315
connector-specific properties 316
runtime configuration 320
start-up script 324, 330
start-up shortcut 324, 330

Connector Configurator 24
control connector 215
control flow 216
control logic 235
ControllerEventSequencing 473
CORBA / IIOP 469
CPU usage 477
CPU utilization 467
create

broker 112
broker domain 113
broker unit test server 161
business object 263
collaboration object 336
configuration manager 112
data structure 203
integration component library 259
map 276
message broker archive 402
message flow 159, 386
message flow project 158, 385
MQ listener 111
process diagram 210
program object 208
queue manager 111
UPES 236
user project in System Manager 342

CRM 12
cron 437
cross-referencing table 478
crtmqm 483
crtmqm command 77
customer order business process 196
CxAStateBusObjs 478
CxCompBusObjs 478
CxCStateBusObjs 478
CxFailedEventKeys 478
CxListBuffer 498
CxPBusObjMessage 478
CxPBusObjState 478
CxReposAttributes 478
CxTransBlobs 478

CxWIPBlobs 478
CxWIPObjects 478

D
data connector 219
data flow 216
data flow engine 23
Data Handlers 70
data handlers 96, 100
data mapping 216
data structure 203, 205, 207–208, 219, 223, 434
database 463

catalog
as ODBC data source 110

catalog remote database 69
connect 69
create 68
event tables 328
grant authority 69

database client 69
database configuration

for InterChange Server 69, 76
for WebSphere BI Message Broker 110
for WebSphere MQ Workflow 50
tuning for InterChange Server 69

database connection pools 470
database manager 462
database manager configuration 50
database requirements

for InterChange Server 36
for WebSphere BI Message Broker 38
for WebSphere MQ Workflow 33
for WebSphere MQ Workflow Buildtime 34

database server 68
datahandlers 99
DB_BLOCK_BUFFERS 480
DB_BLOCK_SIZE and
DB_FILE_MULTIBLOCK_READ_COUNT 480
DB2 25, 49–50, 463, 479

attach to instance 51
catalog database 69
catalog node 69
start 50
stop 50

DB2 Buildtime database 147
DB2 client connection 141
DB2 Connect parameters 55
DB2 isolation level 50
 Index 519

dedicated connection 481
DefaultPrefix 483
define

channel 78, 111
cluster channel 323, 379
local queue 78
transmission queue 111

deploy 412, 427, 430
message broker archive 405

development tools
WebSphere BI Adapters 24
WebSphere BI Message broker 22
WebSphere InterChange Server 19
WebSphere MQ Workflow 18

E
EDI 17, 27
electronics 19
EnableInstanceReuse 468
energy and utilities 19
error log 445
ESQL

populate headers 397
set MQMD 397

ESQL function
CARDINALITY 394
LASTMOVE 398
PROPAGATE 395

Event Isolation 473
event sequencing 473
Event Viewer 446, 453

open on another computer 188
execution group 163, 182
export

from WebSphere MQ Workflow Runtime 152
extended SQL 22

F
fail-over 35
FDL 152, 225, 228, 237, 412, 415–416
federated database 11
financial and human resources 12
financial markets 19
flow control queue size 472
Flow Definition Language (FDL) 18
Flow Manager 21
fmcibie 228–229

G
garbage collection 463, 487–488, 490
garbage collector 487
generic business object 19

H
healthcare 12, 19
heap 463
heap limitations 495
heap size 487, 489–492, 494
HIPAA 19
HotSpot 463, 487–489, 491–492
HP 486

I
ICS project

See user project
import

collaboration in System Manager 333
into WebSphere MQ Workflow Buildtime 152
into WebSphere MQ Workflow Runtime 229
repository file 274

IMS 17, 23, 27
infrastructure planning 39
installation

InterChange Server 70
administration client 172
development client 153
System Monitor 178

Java Runtime and Compiler 70
WebSphere BI Message Broker 101

administration client 184
development 157

WebSphere MQ Workflow
administration client 166
Buildtime 52
Web Client feature 126

instance reuse 468
insurance 12, 19
Integration Capabilities

Accelerate 12
Integrate 11
Interact 11
Manage 11
Model 10
Transform 10

InterChange Server
database configuration 76
520 Administering and Implementing WebSphere Business Integration Server V4.3

register in System Manager 81
Test Server 155

See WebSphere InterChange Server
interface changes 432

J
Java heap fragmentation 495–496
Java heap size 476, 486
Java heap size limitations 495
Java memory use 497
JCA 17
JDBC 17
JDBC Adapter 100
JDBC Object Discovery Agent

configuration 263
configure at runtime 264
shutdown 268
use 263

JMS provider 25
jms.ListenerConcurrency 477
jms.TransportOptimized 477
JVM 486

L
large object processing 497
LDAP 76, 85–86, 90, 151, 168, 415
library management system 412
license info 112
life Sciences 19
linear logging 57
listener 110–111
listener thread 477
ListenerConcurrency 468
local Runtime client 66
Log Viewer 21
LOG_BUFFER 481
LOG_CHECKPOINT_INTERVAL 481
LogBufferPages 484
LogDefaultPath 483
LogFilePages 484
logging

Event Log 117
Event Viewer 112
InterChange Server 74, 83
using the Log Viewer 80
WebSphere MQ logging parameters 79

LogPrimaryFiles 484
LogSecondaryFiles 484

LogWriteIntegrity 485
long-running process 17
low control queue size 471

M
management client 166, 172, 182
map

associated maps for connector 319, 327
calling context 284, 295, 300
compile 280
create 276
custom mapping rule 293
development tool 20
mapping direction 290, 319
set mapping rule 279
test 284
use a submap 282

MAX_CONNECTION_POOLS 471
MAX_CONNECTIONS 471
maximum heap size 490
message broker archive

add resources 404
create 402
deploy 405

message brokering
system design 38
when used 7

message bus 22
message flow 157, 432, 434

build the graphical flow 386
create 159, 386
debug on server 164
develop ESQL 394
outline view 387–388
overview view 387
run on server 164

message flow project
create 158, 385

message queue depth 483
messaging

when used 5
Microsoft Data Access Components (MDAC) 183
monitoring and management

WebSphere BI Adapters 24
WebSphere BI Message Broker 23
WebSphere InterChange Server 21
WebSphere MQ Workflow 18

MQ cluster receiver object 32
 Index 521

MQ configuration
for a UPES 245, 379
for broker 111
for connector 321, 329
for InterChange Server 74, 76–77

MQ requirements
for Broker Toolkit 38
for InterChange Server 36
for Web Client feature 33
for WebSphere BI Message Broker 38
for WebSphere MQ Workflow 33

MQ Trigger Monitor 440
MQConnectionType 168
MQGET 459
MQInput 159
MQInput node 389, 393
MQOPEN 459
MQOutput 159
MQOutput node 391–392, 394, 420
MQSeriesChannel 426
MQSeriesHostName 426
MQSeriesPort 426
MQSeriesQueueManager 426
mqtriggersetup 438
multi-step process 19

N
nursery size 463, 487

O
OADAutoRestartAgent 440
OAthreadMax 469
OAthreadMaxIdle 469
ODBC 63
ODBC data source 110
OPTIMIZER_MODE 481
Oracle 25, 463, 480–481
ORB 30, 35, 72, 174, 469
ORB thread pool 469
order management 12
OutOfMemory exception 492, 498
overview

WebSphere BI Message Broker 21
WebSphere Business Integration Adapter 23
WebSphere InterChange Server 19
WebSphere MQ Workflow 17

P
peak live set 498
PeopleSoft 17, 27
performance 462
persistent messages 57
Persistent Name Server 437
perspective

Broker Toolkit 113
System Manager 81

pharmaceuticals 19
physical memory available 476
poll frequency 475–476, 496
poll quantity 475–476, 496
portlet 17
problem determination 441

connector 348
process

add conditions 215
control flow versus data flow 216
create 210
keep finished 210
mapping between activities 216
translate into template 229

process diagram 210, 242
process model 203, 212, 216, 235, 431
process monitor 235
process templates 12
process-based integration 8

system design 32, 35
processes 481
procurement 12
program object 203

to invoke a collaboration 240
publish/subscribe 21

Q
Quality of service 28
queue manager 32, 36, 56–57, 108, 110–111, 117,
130, 159, 239, 414, 416, 425
queue name 419

R
read stability 50
Redbooks Web site 516

Contact us xiv
reformatting 21
register server 81

Test Server 155
522 Administering and Implementing WebSphere Business Integration Server V4.3

relationship
development tool 20

repos_copy 84
repository database 153
repository queue manager 58
response time 28
retail 12, 19
RMI/IIOP 17, 23
role-based access control 84, 88
routing 21
runmqsc 111
runtime environment

WebSphere BI Adapters 24
WebSphere BI Message Broker 22
WebSphere MQ Workflow 18

S
SAP 17, 20, 27, 196
security 76, 105
security policy 93, 95
server statistics 483
shared pool area size 480
SHARED_POOL_SIZE 481
sink node 212, 223
SOAP 23
Solaris 482, 486, 496
source node 212
start

application server
for System Monitor 179

InterChange Server 80
in design mode 154

Start Listener 78
start-up script

for WebSphere MQ Workflow connector 323
stop

components before deployment 343
system design 29

InterChange Server 35
WebSphere BI Adapters 36
WebSphere MQ Workflow 32

System Group 56, 67
System Manager 19, 21, 37, 73, 80, 85, 152,
174–176, 422, 429, 437, 459, 466, 470, 472, 483

create Integration Component Library 259
create map 276
create user project 342
import collaboration 333

import repository file 274
open perspective 81
register server 81
register Test Server 155

System Monitor 21, 36, 177, 437, 447, 472
SystemError.txt 450
system-level monitoring 462
SystemOut.txt 450

T
table index 479
table space 478
telecommunications 12, 19
test tools

for WebSphere BI Message Broker 161
Integrated Test Environment 20
map testing 284
Visual Test Connector 20

thread 450, 464–465, 469
thread configuration 467
thread pool 464, 466–467
thread stack size 492
threading parameter 491
ThreadPoolLingeringTime 466
three-tier architecture 29
Tivoli Directory Server 436
tracing

in collaborations 338
InterChange Server 84

transaction coordinator 33
transaction state information 470
Transient Name Server 437
transient threads 466
tuning

WebSphere MQ 78

U
unit testing

See test tools
user project

create 342
deploy 343
validate 344

user registry 90

V
validate user project 344
 Index 523

verbosegc trace 488, 490–491
VisiBroker osagent 469

W
Web Client 33, 166
WebSphere Adapter for JDBC 436, 439–440
WebSphere Adapter for WebSphere MQ Workflow
436
WebSphere Application Server 450
WebSphere Application Server Enterprise Edition
24
WebSphere BI Message Broker 100

broker 22
capacity unit 112
configuration manager 22
create broker 112
create by hand 109
create configuration manager 112
create domain 115
create unit test server 161
create via wizard 107
database configuration 110
execution group 23
installation 101

administration client 184
development 156

logging
Event Log 117
Event Viewer 112

MQ configuration 111
set license info 112
when used 7

WebSphere Business Integration 18
WebSphere Business Integration Adapters 20, 96,
463, 475, 482
WebSphere Business Integration Message Broker
8, 24, 107, 436, 446, 457
WebSphere Business Integration Modeler 10
WebSphere Business Integration Monitor 18
WebSphere Business Integration Server

components 4
mapped to integration capabilities 16
planning 39
system design 29

WebSphere Commerce 12
WebSphere InterChange Server 8, 18–19, 24, 68,
97, 436–437, 447, 459, 462–463, 493

configuration 73–74

after initial start-up 83
MQ 74, 76–77

create user project 342
database tuning 69
deploy user project 343
installation 70

administration client 172
development client 153
System Monitor 178

logging 74, 83
overview 19
repos_copy 84
set its name 72
start 80

System Monitor 179
start-up mode 154
system design 35
test tools 20
validate user project 344

WebSphere MQ 8, 450, 459, 463
create listener 111
create queue manager 111
define

channel 78, 111
cluster channel 379
local queue 78
transmission queue 111

logging parameters 79
tuning 78
use of cluster channels 323, 379
when used 5

WebSphere MQ log data 484
WebSphere MQ Workflow 8, 17–18, 32, 49, 120,
198, 412, 441, 454

Buildtime
log on 149

configuration
administration client 169
Runtime 50, 52

create business objects 269
dependent components 65
installation

administration client 166
Buildtime 52
Web Client feature 126

maintain finished processes 210
overview 17
sample XML message 381
start 65
524 Administering and Implementing WebSphere Business Integration Server V4.3

system design 32
using MQ client versus MQ server 129
when used 8

WebSphere MQ Workflow Build Time 18
WebSphere MQ Workflow Buildtime 141
WebSphere MQ Workflow Builtime 63
WebSphere MQ Workflow Runtime 47, 120
WebSphere MQ Workflow Server 436
WebSphere MQ Workflow Web Client 120, 128,
436
WebSphere Portal Server 17
Windows service 65
Windows services

use on remote computer 188
WebSphere BI Message Broker 112
WebSphere InterChange Server 72

Workflow Client 67
workflow server 35
WorkflowSystemGroup 426
WorkflowSystemName 426
 Index 525

526 Administering and Implementing WebSphere Business Integration Server V4.3

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Adm
inistering and Im

plem
enting W

ebSphere
Business Integration Server V4.3

®

SG24-6647-00 ISBN 0738497266

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Administering and Implementing
WebSphere Business Integration
Server V4.3

Implement a
business integration
infrastructure

Develop and deploy
solution components

Manage WebSphere
BI infrastructure

This IBM Redbook describes three major phases in a
WebSphere Business Integration (BI) project.

� We discuss the planning and system design for a
WebSphere BI infrastructure designed to support several
business integration projects. We extend the real-life
scenario written for another IBM Redbook. Following
planning and design, we discuss the implementation of
the run-time engines available in IBM WebSphere
Business Integration Server V4.3.

� The next phase is developing and testing a business
integration solution within our infrastructure. The
integration solution combines three run-time engines of
WebSphere Business Integration Server V4.3. These
engines provide for human interaction, straight-through
processing, and message brokering and aggregation.

� The final phase of our WebSphere BI project involves
deploying the solution into the production environment,
and how to manage this solution. We address issues
such as how to coordinate stopping and starting
components, and troubleshooting run-time problems. We
end by discussing performance tuning in WebSphere
Business Integration Server V4.3.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Implementing a BI solution framework
	Chapter 1. The state of business integration technology
	1.1 IBM WebSphere BI Overview
	1.2 The evolution of business integration technology
	1.3 Integration capabilities

	Chapter 2. Building an implementation plan
	2.1 WebSphere Business Integration Server overview
	2.1.1 WebSphere MQ Workflow: long-running processes
	2.1.2 WebSphere InterChange Server: objects and their interactions
	2.1.3 WebSphere BI Message Broker: routing and reformatting
	2.1.4 WebSphere BI Adapters: connectivity
	2.1.5 Base components
	2.1.6 Bringing it all together

	2.2 Business requirements
	2.2.1 Implementation of use cases as required
	2.2.2 Agility
	2.2.3 Ability to integrate existing services
	2.2.4 Business monitoring

	2.3 Quality of service requirements
	2.3.1 Performance
	2.3.2 Availability

	2.4 System design for our scenario
	2.5 Planning considerations
	2.5.1 WebSphere MQ Workflow
	2.5.2 InterChange Server
	2.5.3 WebSphere Business Integration Message Broker

	2.6 Planning documents

	Chapter 3. Implementing the runtime components
	3.1 WebSphere MQ Workflow installation and configuration
	3.1.1 Install WebSphere MQ Workflow Runtime
	3.1.2 Configure WebSphere MQ Workflow
	3.1.3 Verify WebSphere MQ Workflow server

	3.2 InterChange Server installation and configuration
	3.2.1 Prerequisite tasks
	3.2.2 Installation of WebSphere BI Server components
	3.2.3 Configuration of the InterChange Server
	3.2.4 Verifying the configuration
	3.2.5 Using role-based access control

	3.3 Installing WebSphere Business Integration Adapters
	3.4 WebSphere BI Message Broker installation and configuration
	3.4.1 Prerequisite software
	3.4.2 Installation
	3.4.3 Create the WebSphere BI Message Broker infrastructure

	3.5 Summary

	Chapter 4. Implementing client components
	4.1 Implementing WebSphere MQ Workflow Web Client
	4.1.1 Setting up the application server on Windows
	4.1.2 WebSphere MQ Workflow Web Client installation
	4.1.3 WebSphere MQ Workflow Web Client configuration
	4.1.4 WebSphere MQ Workflow Web Client validation

	4.2 Implementing a development client
	4.2.1 WebSphere MQ Workflow development environment
	4.2.2 WebSphere InterChange Server development environment
	4.2.3 WebSphere BI Message Broker development environment

	4.3 Implementing a management client
	4.3.1 WebSphere MQ Workflow management client
	4.3.2 InterChange Server management client
	4.3.3 WebSphere Message Broker management client

	4.4 Summary

	Part 2 Implementing business integration solution components
	Chapter 5. Application scenario and solution design
	5.1 Business scenario
	5.1.1 Customer order process
	5.1.2 Entry audit process
	5.1.3 Subprocesses

	5.2 What we implemented

	Chapter 6. Implementing a process model in WebSphere MQ Workflow
	6.1 Overview
	6.2 Creating the process model
	6.2.1 Creating data structures
	6.2.2 Creating program objects
	6.2.3 Creating the process diagram
	6.2.4 Creating a data mapping

	6.3 Deploying the process flow in Runtime server
	6.4 Validating the workflow process flow
	6.5 Update activities to integrate automated activities
	6.5.1 Create user-defined program execution servers
	6.5.2 Create program objects for InterChange Server
	6.5.3 Update activities in process diagram

	Chapter 7. Sales order management in InterChange Server
	7.1 Introduction
	7.2 Scenario implementation overview
	7.3 Application database ORDERMGT
	7.4 Preparing Development Environment
	7.5 Create business objects
	7.5.1 DB2 application-specific business object
	7.5.2 WebSphere MQ Workflow application-specific business object
	7.5.3 Generic business object

	7.6 Create maps
	7.6.1 From ASBO MQWF_Order_Form to GBO Order
	7.6.2 From the GBO order to the ASBO JDBC_ORDERS
	7.6.3 From ASBO JDBC_ORDERS to GBO Order
	7.6.4 From GBO Order to ASBO MQWF_Form_OrderDetail

	7.7 Adapter configuration
	7.7.1 Importing the adapters into System Manager
	7.7.2 WebSphere MQ Workflow adapter configuration
	7.7.3 JDBC adapter configuration

	7.8 Collaboration template
	7.9 Collaboration object
	7.10 Create a new user project
	7.11 Deploy user project
	7.12 Runtime validation of infrastructure
	7.13 Runtime validation of integration solution
	7.13.1 Unit testing with the Integrated Test Environment
	7.13.2 Unit testing with the Visual Test Connector
	7.13.3 End-to-end testing using the Web Client

	Chapter 8. Replenishing parts in WebSphere BI Message Broker
	8.1 Overview
	8.2 Implementation steps
	8.3 WebSphere MQ configuration
	8.4 Implementation of the fan-out and fan-in flow
	8.4.1 Building the graphical flow
	8.4.2 Developing ESQL in the Compute nodes

	8.5 Supporting message flow
	8.6 Deployment and testing of the message flow
	8.7 Testing from the Web Client

	Part 3 Managing a business integration solution
	Chapter 9. Handling deployment and change
	9.1 Preparing for production deployment
	9.1.1 Preparing an WebSphere MQ Workflow solution for production
	9.1.2 Preparing a message broker solution for production
	9.1.3 Preparing InterChange Server solutions for production

	9.2 Managing runtime-specific changes
	9.2.1 Changes to WebSphere MQ Workflow process model
	9.2.2 Changes to a message flow
	9.2.3 Changes to a collaboration

	9.3 Managing interface changes
	9.3.1 Changes to the data structure used to invoke the collaboration
	9.3.2 Changes to the data structure used to invoke the message flow

	9.4 Summary

	Chapter 10. Operational aspects of a WebSphere BI server implementation
	10.1 Starting and stopping components
	10.2 Management and problem determination tools
	10.2.1 Sources of information
	10.2.2 Obtaining additional information

	Chapter 11. Tuning a WebSphere BI Server infrastructure
	11.1 Introduction
	11.2 General performance checklist
	11.3 WebSphere InterChange Server
	11.3.1 Configure threads in collaborations and adapter controllers
	11.3.2 Use caches for maps and collaborations (instance reuse)
	11.3.3 Configure threading for CORBA / IIOP
	11.3.4 Configure database connection pools
	11.3.5 Setting flow control queue sizes
	11.3.6 Turn off component tracing
	11.3.7 Turn off event sequencing where applicable

	11.4 WebSphere Business Integration Adapters
	11.4.1 Configure poll frequency and poll quantity
	11.4.2 Multiple WebSphere MQ and JMS listener threads

	11.5 General database performance
	11.5.1 Place database tablespaces on a fast disk subsystem
	11.5.2 Size database cross-referencing tables correctly
	11.5.3 Place logs on separate device from table spaces

	11.6 Database: DB2-specific
	11.6.1 Maintain current indexes on tables
	11.6.2 Update catalog statistics
	11.6.3 Set bufferpool size correctly

	11.7 Database: Oracle-specific
	11.7.1 Set buffer, block, and shared pool area sizes correctly
	11.7.2 Set processes, Open_Cursors, and IO_Slaves
	11.7.3 Use a dedicated connection
	11.7.4 Query optimization

	11.8 WebSphere MQ
	11.8.1 Place MQ logs on fast disk subsystem
	11.8.2 Monitor message queue depth
	11.8.3 Configure WebSphere MQ log files and buffer pages

	11.9 Java
	11.9.1 Set heap size and nursery size for efficient garbage collection
	11.9.2 Set AIX threading parameters
	11.9.3 Use HotSpot server instead of client
	11.9.4 Setting thread stack size if using many threads
	11.9.5 Reduce or increase heap size for out-of-memory errors

	11.10 Large objects
	11.10.1 Factors affecting large object size processing
	11.10.2 Mitigating large object issues

	11.11 Tuning other WebSphere BI runtime components

	Part 4 Appendixes
	Appendix A. Our hardware and software configuration
	Configuration of client machines
	Configuration of runtime servers

	Appendix B. Configuring LDAP for use with RBAC
	Configuring an LDAP server as a user registry for RBAC

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

