
SDR - Spectrum Sensing
by Christina Baaklini, Michael Collins, and Nicole DiLeo

Overview

● FPGA Sequential Circuit Design

● Scanning Receiver Readings

● Implementation of MATLAB Code in C++

FPGA Sequential Circuit Design

● This week, we continued learning VHDL and were able to create
basic sequential circuits and implement them onto the Zedboard.

● We ran into a problem involving binary adder, in which it would not
output correct values until 200ns. However, we fixed this by adding
a short reset cycle at the start of the testbed.

Scanning Receiver Readings

● Modified the wiserd
“timesamplestofile” module to
log receiver carrier frequencies

● Wrote a MATLAB function to
read in number of samples
taken at each carrier frequency

● Adapted MATLAB spectrogram
script to plot frequency
spectrum based on carrier

void TimeSamplesToFile::Proc(std::vector<std::complex<float> >
*recv_buffer) {

 if (all_set_) {
 file_mtx_.lock();

 if (current_carrier_ == radio_parameter_map_->at("uhd_rx_freq")) {

 samps_at_carrier_ += recv_buffer->size();
 }
 else {

 freqs_ << current_carrier_ << ' ';
 freqs_ << samps_at_carrier_ << '\n';
 current_carrier_ = radio_parameter_map_->at("uhd_rx_freq");
 samps_at_carrier_ = 0;

 }

 data_.write((char *) &recv_buffer->front(),

recv_buffer->size() * sizeof(float) * 2);
 file_mtx_.unlock();
 }
}

Implementation of MATLAB Code in C++

function [ffts,moving_avg,peaks]=spectro(m,c_fr,s_fr,k,o,w,avg)
% m = row matrix of IQ samples
% c_fr = carrier frequency
% s_fr = sampling frequency
% k = size of FFTs
% o = overlap between FFTs (between 0 and 1)
% w = row matrix of size k to be used as a window function
% avg = number of ffts to be averaged together
o = 1-o; N = numel(m);
start = @(j) k*o*j+1; % beginning of each FFT
stop = @(j) start(j)+k-1; % end of each FFT
ffts = [];

i = 0;
fprintf('Generating FFTs ... ');
while stop(i) < N

s = m(start(i):stop(i));
s2 = w.*s;
s2f = fft(s2,k);

 s2f_shift = fftshift(s2f);
ffts = [ffts;s2f_shift];
i = i+1;

end
fprintf('Done\n');

void fft_avg::spectro() {
overlap_ = 1-overlap_;
unsigned int N = iq_samples_.size();
int index = 0;

vector<complex<float> > s;
vector<complex<float> > s2;
empty_vector_.resize(fft_size_);

out_ = (fftw_complex*) &(empty_vector_.front());
plan_ = fftw_plan_dft_1d(fft_size_, in_, out_, FFTW_FORWARD,
FFTW_ESTIMATE);

while (stop(index, fft_size_ , overlap_) < N) {
for (int i = start(index, fft_size_ , overlap_);
i <= stop(index, fft_size_, overlap_); i++) {

s.push_back(iq_samples_[i]);
s2.push_back((window_[i])*(s[i]));

}
in_ = (fftw_complex*) &(s2.front());
fftw_execute(plan_);
fft_data_.push_back(empty_vector_);
index++; }

}

Next Week

● Continue learning more advanced topics in
VHDL, for example: Arrays and Physical Types.
Try to utilize the 7-segment LEDs on ZedBoard.

● Continue implementing MATLAB spectrogram
script in C++

○ Plotting FFTs

○ Moving Average Filter

