
SDR - Spectrum Sensing
Christina Baaklini, Michael Collins, Nick Cooper, and Nicole DiLeo

Overview

● Implementation of State Machines

● FFTW C Library

● Gnuplot

Implementation of State Machines

● State machines are often the backbone of FPGA development.

● They are divided into two basic output classes:

○ Mealy takes into account both internal state and inputs

○ Moore only utilizes internal state

● State machine described as ASM is easier to map to implementation in a
hardware description language such as VHDL.

● In order to implement a state machine from the state diagram, VHDL is
used. Typically a register (D FF) is used in conjunction with output logic
(Me vs Mo), and next state arguments.

Case statements

● Case statements are the main
implementation of FSMs

● Example is of a 2-state FSM for
a model elevator controller
(Mealy output logic)

FFTW C Library

● Fastest free implementation of
Fast Fourier Transform

● Resolved issues with memory
allocation

● Used fftw_malloc to allocate
memory appropriately

● Can now transform IQ time
samples into frequency domain

https://github.com/FFTW/fftw3

in_ = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*fft_size_);
out_ = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*fft_size_);

plan_ = fftw_plan_dft_1d(fft_size_,in_,out_,FFTW_FORWARD,FFTW_ESTIMATE);
fft_data_.clear();

while (stop(index, fft_size_ , overlap_) < N) {

 for (unsigned int i = start(index, fft_size_, overlap_);
 i <= stop(index, fft_size_, overlap_); i++) {
 s.at(i-start(index, fft_size_, overlap_)) = iq_samples_.at(i);
 }

 for (unsigned int i = 0; i < fft_size_; i++){
 s2.at(i) = (window_.at(i))*(s.at(i));
 }

 for (unsigned int i = 0; i < fft_size_; i++){
 in_[i][0] = s2[i].real();
 in_[i][1] = s2[i].imag();
 }

 fftw_execute(plan_);
}

https://github.com/FFTW/fftw3
https://github.com/FFTW/fftw3

Gnuplot
● Open-source, cross-platform graphing

utility

● Used in Octave for plotting

● Can be controlled in C++ through
gnuplot-iostream interface

● We plan to use this interface to generate
waterfall plots, power vs. frequency, etc.
in C++ implementation

http://www.gnuplot.info/

https://github.com/dstahlke/gnuplot-iostream

#include "gnuplot-iostream.h"

int main() {
 Gnuplot gp;
 gp << "set terminal x11\n";
 gp << "plot sin(x)\n";
 gp.flush();

 return 0;
}

http://www.gnuplot.info/
http://www.gnuplot.info/
https://github.com/dstahlke/gnuplot-iostream
https://github.com/dstahlke/gnuplot-iostream

Next Week

● Take a look at Spectrum Sensing framework and
begin to incorporate our FSM designs

● Incorporate C++ script with Wiserd receiver
module

● Implement real-time processing and plotting

