
Real-Time Cyber Physical Systems

Application on MobilityFirst

Karthikeyan Ganesan, Wuyang Zhang, Zihong Zheng

Shantanu Ghosh, Avi Cooper

TEAM MEMBERS

WINLAB SUMMER 2015

Karthikeyan Ganesan Wuyang Zhang Zihong Zheng

Shantanu Ghosh Avi Cooper

PRELIMINARY GOAL OF OUR PROJECT

WINLAB SUMMER 2015

MobilityFirst

Virtual Network

Client side:
Run an instance of

camera system;

Transmits video in

standard format;

Simple graphical

interface to display

results

Server side:
Implement server

application for object

recognition;

Return the result

CPS Application based on MF

CURRENT FRAME

WINLAB SUMMER 2015

Application:

Finished debug the Android version MFstack and MFping programs.

Successfully set up the connection between phone and nodes.

Bluetooth transmitting part now works more smoothly and reliably.

Image Recognition:

Optimized the strategy for Descriptor Searching.

Cloud Computing:

Transformed the image recognition code to be compatible with STORM using

Java Native Interface(JNI).

Image Processor Optimization

WINLAB SUMMER 2015

• Used a K-means tree for Descriptor search
• Increased search speed by at least 2 times

• Relatively large amount of time spent building tree

• Still working on GPU implementation of SURF feature detector
and extractor

ANDROID PHONE

WINLAB SUMMER 2015

MFStack is used to

install the MF stack on

phone.

Also a launcher to start

and stop the mf stack

service.

Devices under MF

network is actually

communicating through

the MF stack.

MFPing achieves the

basic ping function for

MF such as the ping for

TCP/IP.

We used it to test the MF

connection after we set

up the access point on

node.

SET UP THE CONNECTION

WINLAB SUMMER 2015

Master node as Server

manages/allocate image

recognition jobs

Android phone

MF

WIFI Access Point on

Master Node

Generate

STORM

Slaves nodes

ORBIT outdoor

nodes

SET UP THE CONNECTION

WINLAB SUMMER 2015

Progress:

Successfully create an access point on SB5 node1-1, finished configure the

MFstack on the machines. Both Android phone and Laptop are now able to

communicate with nodes using MF network.

Solution:

Create an access point on one of the node using hostapd(an application).

Make the Android Phone connect to the AP and hence make the node and

phone both in the same subnet.

Enable the MF direct communication between these two machines (without

set up MF router to simplify the process).

SET UP THE CONNECTION

WINLAB SUMMER 2015

Node1-1

Android Phone

Google Glass

WINLAB SUMMER 2015

Why Google Glass? Glass provides us with access to both a camera that is recording exactly

what the user is seeing, and a way to give information back to the user unobtrusively. What the

user sees and how they sees it is very important.

Server runs image

recognition software

Glass captures video

Android phone handles

networking

Camera

Data
Camera

Data

Results

Results
Bluetooth

MF

Outline of

process:

Why the phone as a go between? Glass is

relatively low on battery and computing.

Transferring networking to a phone will

improve both battery life and networking

speeds.

Bluetooth transmission

WINLAB SUMMER 2015

byte array layout: [counter, counter, byte 1, byte 2, byte 3, byte 4, byte 5, byte 6, byte 7, byte 8, byte 9, byte

10, byte 11, byte 12, byte 13, byte 14, byte 15, byte 16, byte 17, byte 18]

Bluetooth specs: Bluetooth can only send 20 byte packets at a time so my solution was to:

1. Split the byte array of the file (the image from the camera) into 18 byte packets

2. Give each packet a heading of its place among the other packets:

1. each byte has a range of 256. So with 3 counter- header bytes, times the 17

important bytes in the packet, there is a maximum transmission size of 285,212,672

bytes, or 272 MB. (With only 2 header- bytes, though there are 18 body- bytes, the

maximum transmission size will only be 1.168 MB)

2. Update: pictures taken on the Google Glass have been compressed and now only

require 52.734 KB, so the switch was made to 2 headers and 18 body bytes

3. Receive each packet on the server side and place it into a 2D array, ordered by their

headers.

4. Iterate though the array, pulling out only the body- bytes and place them into a single

byte array.

Bluetooth transmission (cont.)

WINLAB SUMMER 2015

Packet corruption: Since the packets can get corrupted in their transmission, due to noise

interference, I have implemented the following checker.

1. Transmit each packet 3 times

2. After all the packets are received, check that at least 2 of the 3 match each other. If none

of them match, the phone asks for the packet again, and checks it the same way.

1. Since the packets are sent at totally different times, the chance that the packets

would be corrupted in the exact same way is practically zero

Findings: For every transmission, about 1 packet from the first send, the one of

critical importance in the previous version without any checker, is corrupted. This is a

very small amount compared to the thousands of packets being sent, but even one lost

packet, or up to 20 lost bytes, can drastically change the color or the placement of large

sections of the picture.

Google Glass- Progress

WINLAB SUMMER 2015

This week’s progress: Last week I got the picture transmission working with transmission time at

about 5 seconds and routinely losing at least 5 packets. It is now at 1 second and losing no

packets. The android Bluetooth APIs have been implemented on the Glass and the phone and

the data transmission of pictures works with 100% accuracy with about 1 second of

transmission time. Separately, the MobilityFirst client code has been implemented in Java.

Next week’s Goals: The continuous camera data collection will be implemented from a project

written by another student in the past for a Google Glass facial recognition application. Also,

the MobiltyFirst client code will be integrated with the existing Bluetooth transmission system to

push the data further along to the server. Lastly, a system to tell the user the results of the

image recognition algorithm needs to be designed.

Next Week Plan

WINLAB SUMMER 2015

Do some experiments to figure out the maximum QPS(query

per second) of our current system.

Continue develop the client program based on google glass

and Android phone.

Base on the load experiments, decide the strategy and implement

the server program with STORM Framework.

Questions?

