

WINLAB | Wireless Information Network Laboratory

Software Defined Radio & Spectrum:Using Drones to Monitor Cellular Network Jamming

Nicholas Lurski¹, Srijoy Dutta², Nithin Tammishetti¹, Shi Wang¹, Noah Paladino³ Advisors: Ivan Seskar¹, Wade Trappe¹

¹Rutgers University, ²University of Maryland, College Park, ³Middlesex County Academy

Abstract

The purpose of this project is to modify a drone to collect spectrum and locate potential cellular jammers. The drone will have the capability to fly around with an antenna operating at 900 MHz, the frequency of cellular networks, and collect spectrum from the area. Pattern variations in the spectrum's graph, along with GPS locations and timestamps, will be anaylzed for network regulation and enforcement.

Background Information

- Software Defined Radio (SDR)
 - Radio via a software implementation rather than hardware
 - Much cheaper and more customizable than hardware radio
- Spectrum Analysis
 - Spectrum is measured in the frequency domain using a signal analyzer.
 - Complex signal are broken down into
 frequency components, making it easier to
 measure signal properties. (FFT)
- Mobile Phone Jammer
 - Instrument used to prevent mobile phones
 from receiving signals from base stations
 - Send various signals at ~900 MHz to interfere with signals of normal cellular communication

Plan/Breakdown	R
<image/> <image/> <image/> <image/> <image/> <caption></caption>	-10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -70 -55 -70 -57 -70 -70 -70 -70 -70 -70 -70 -70 -70 -7
Figure 2: The 3DR Solo Drone	-50 -55 -60 -65 -70 -59 -70 -59 -70 -50 -50 -50 -50 -50 -50 -50 -50 -50 -5
 3DR Solo Drone Intel Edison Board Vert900 Antenna MATLAB/Octave SDR# B210 Universal Software Radio Peripheral (USRP) ORBIT Grid 	 Be a Quic data

Future Goals

able to transmit spectrum data in real time cker, more efficient method for processing of

WINLAB