
Future Work

Neural Network:
● Written in Golang (Go) progamming language
● 3 layer neural network:

○ 784 inputs (28x28 grayscale image, 1 per pixel)
○ 100 hidden nodes
○ 10 outputs (1 per digit)

● Activation function: Rectified Linear Unit (ReLU)
○ Used to be Sigmoid

● Training dataset: 60000 images of handwritten
numbers (MNIST dataset)

● Testing dataset: 10000 images of handwritten numbers
(MNIST datsaset)

Using FPGAs for Machine Learning Acceleration
Milos Seskar, Michael Yakubov

Advisors: Prasanthi Maddala, Richard Martin, Jennifer Shane

WINLAB

Overview Methodology
Machine learning (ML), like most software operations, is typically
executed using the central processing unit (CPU) of a computer.
More recently people have used graphics processing units
(GPUs) as they they can perform many operations
simultaneously, resulting in significantly faster performance.

CPUs and GPUs are designed to be effective and versatile: easy
to use for any number of applications, but with limits in peak
performance for any one task. Alternatively, creating an
Application Specific Integrated Circuit (ASIC) for every unique
task is costly. Luckily, Field Programmable Gate Arrays (FPGA)
are a type of integrated circuit that are designed to be
reprogrammable, allowing for users to optimize their hardware for
specific software applications to achieve higher peak
performance. The goal of this project is to evaluate the
performance of a basic ML application when deployed on an
FPGA versus a traditional CPU or GPU.

References

784 input values
(pixels) per image 100 hidden nodes 10 ouputs

W1 W2

Results
FPGAs work significantly better with integer arithmetic, so
we needed to implement this in our neural network. Part
of this was switching from a sigmoid activation function to
ReLU. Sigmoid always returns a floating point value
between 0 and 1, while ReLU returns either 0 or the input
value, giving the potential of always returning an integer.
Once this was fully implemented in our neural network,
we had a prediction rate of 97.32%.

● Xilinx documentation:
https://www.xilinx.com/support/documentation/sw_manuals/ug
998-vivado-intro-fpga-design-hls.pdf

● Python machine learning model:
https://machinelearningmastery.com/implement-perceptron-alg
orithm-scratch-python/

● Golang Neural Network:
https://sausheong.github.io/posts/how-to-build-a-simple-artifici
al-neural-network-with-go/

● Project Repository: https://github.com/mseskar/mlaccel

● Convert the neural network from floating point to
integer arithmetic

● Continue doing tests on an FPGA, as most of our
tests up to this point were done on a CPU

● Implement this concept with more complex machine
learning models (i.e. recognizing multicolored
images)

● Evaluate how much better FPGA performs on this
model compared to CPU and GPU

https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/
https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/
https://sausheong.github.io/posts/how-to-build-a-simple-artificial-neural-network-with-go/
https://sausheong.github.io/posts/how-to-build-a-simple-artificial-neural-network-with-go/
https://github.com/mseskar/mlaccel

