
Future Work

Neural Network:
● Written in Golang (Go) progamming language
● 3 layer neural network:

○ 784 inputs (28x28 grayscale image, 1 per pixel)
○ 100 hidden nodes
○ 10 outputs (1 per digit)

● Activation function: Rectified Linear Unit (ReLU)
○ Used to be Sigmoid

● Training dataset: 60000 images of handwritten 
numbers (MNIST dataset)

● Testing dataset: 10000 images of handwritten numbers 
(MNIST datsaset)
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Overview Methodology
Machine learning (ML), like most software operations, is typically 
executed using the central processing unit (CPU) of a computer. 
More recently people have used graphics processing units 
(GPUs) as they they can perform many operations 
simultaneously, resulting in significantly faster performance. 

CPUs and GPUs are designed to be effective and versatile: easy 
to use for any number of applications, but with limits in peak 
performance for any one task. Alternatively, creating an 
Application Specific Integrated Circuit (ASIC) for every unique 
task is costly. Luckily, Field Programmable Gate Arrays (FPGA) 
are a type of integrated circuit that are designed to be 
reprogrammable, allowing for users to optimize their hardware for 
specific software applications to achieve higher peak 
performance. The goal of this project is to evaluate the 
performance of a basic ML application when deployed on an 
FPGA versus a traditional CPU or GPU. 
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Results
FPGAs work significantly better with integer arithmetic, so 
we needed to implement this in our neural network. Part 
of this was switching from a sigmoid activation function to 
ReLU. Sigmoid always returns a floating point value 
between 0 and 1, while ReLU returns either 0 or the input 
value, giving the potential of always returning an integer. 
Once this was fully implemented in our neural network, 
we had a prediction rate of 97.32%.

● Xilinx documentation: 
https://www.xilinx.com/support/documentation/sw_manuals/ug
998-vivado-intro-fpga-design-hls.pdf

● Python machine learning model: 
https://machinelearningmastery.com/implement-perceptron-alg
orithm-scratch-python/ 

● Golang Neural Network: 
https://sausheong.github.io/posts/how-to-build-a-simple-artifici
al-neural-network-with-go/

● Project Repository: https://github.com/mseskar/mlaccel  

● Convert the neural network from floating point to 
integer arithmetic

● Continue doing tests on an FPGA, as most of our 
tests up to this point were done on a CPU

● Implement this concept with more complex machine 
learning models (i.e. recognizing multicolored 
images)

● Evaluate how much better FPGA performs on this 
model compared to CPU and GPU
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