Distributed Spectrum Monitoring and Channel Sounding

Khyati Dinesh Patel, Mingkun Sun

Introduction

About our Project:

 Use a collection of software defined radios (SDRs) to detect spectrum occupancy and perform channel usage coordination among number of radio systems

The goals for our projects are:

- Using nodes in COSMO/ORBIT testbed to transmit reference signals
- Collect data from the transmission process with the portable SDRs
- Use both traditional and AI/ML analysis for channel characterization (including occupancy)

What is SDR?

 Collection of hardware and software technologies where some or all of the radio's operating functions are implemented through modifiable software or firmware operating on programmable processing technologies

Why Spectrum Monitoring?

- Interference can significantly degrade the quality of services
- Facilitate the identification and removal of illegal or unlicensed interference signals
- Monitoring frequencies provides the information needed to optimize spectrum for maximum utilization.

USRP and UHD

Universal Software Radio Peripheral (USRP): Software-defined RF architecture used to design, prototype, and deploy wireless systems with custom signal processing

USRP Hardware Driver (UHD): Is a software API (Application Program Interface) that supports application development on all USRP SDR products

Experiment 1: Working with USRP 2

- Transmit and receive a single frequency over the air to demonstrate the use of Universal software Radio peripheral Hardware Drivers (UHD)
- Consists of two nodes (node1-1 & node1-2) and each node has a USRP2 connection via Ethernet

Results:

- Generated a SINE wave
- Plotted a frequency spectrum in the terminal

```
Setting TX Rate: 5.000000 Msps...
[INFO] [B200] Asking for clock rate 40.000000 MHz...
[INFO] [B200] Actually got clock rate 40.000000 MHz.
Actual TX Rate: 5.000000 Msps...
Setting TX Freq: 1800.000000 MHz ...
Setting TX LO Offset: 0.000000 MHz ...
Actual TX Freg: 1800.000000 MHz...
Setting TX Gain: 10.000000 dB...
Actual TX Gain: 10.000000 dB...
Setting device timestamp to 0 ...
Checking TX: LO: locked ...
Press Ctrl + C to stop streaming...
Done!
```


Experiment 2: Using 2 transmitter and 2 receiver

- Used grid to perform the experiment
- We used USRP with 2 TX/RX and 2 RX2 antennas such as X310 and B210

Experiment 3: Spectrum sensing with USRP2 and wiserd (OEDL and OML)

- We used USRP2 to send sine wave from transmitter to receiver
- Loaded multiantennatutorial.ndz image into the nodes
- Plotted a spectrum of sine wave on the receiver end

Results:

Experiment 4: Simple radio example with GNURADIO benchmark scripts

- We used USRP2 to show a simple transfer of packets between 2 nodes
- Loaded multiantennatutorial.ndz image into the nodes
- Utilized GNU Radio benchmarks scripts to transfer packets over a radio link between two nodes
- This experiment had a single transmitter and receiver

Results:

```
root@node5-16: ~/gnuradio/g × root@node20-20: ~/gnuradic ×
root@node20-20:~/gnuradio/gr-digital/examples/narrowband# ./benchmark_rx.py -f
2.41G -m bpsk --rx-gain 10 -r .250M
linux; GNU C++ version 4.8.2; Boost_105400; UHD_003.008.002-86-g566dbc2b
Using Volk machine: sse4_2_64_orc
-- Opening a USRP2/N-Series device...
-- Current recv frame size: 1472 bytes
-- Current send frame size: 1472 bytes
ok = False
                           n_rcvd
                                           n_right =
                       82
                           n_rcvd =
                                           n_right =
     True
             pktno =
ok =
     True
            pktno =
                       83
                           n_rcvd =
                                           n_riaht =
      True
             pktno =
                       84
                           n_rcvd =
                                           n_right =
                                                         4
      True
             pktno =
                       85
                           n_rcvd =
                                           n_right =
      True
                           n_rcvd =
                                           n right =
                                           n_right
      True
             pktno =
                       87
                           n_rcvd =
      True
             pktno =
                       88
                           n_rcvd =
                                           n_right =
                                                         7
ok =
     True
             pktno =
                       89
                           n_rcvd =
                                           n_right =
                                           n_right =
ok =
      True
             pktno =
                       90
                           n_rcvd =
                                       10
                                                         9
                           n_rcvd =
                                           n_right
                                                        10
      True
                                       11
      True
             pktno =
                       92
                           n_rcvd =
                                       12
                                           n_right =
                       93
                                                        12
     True
            pktno =
                           n_rcvd =
                                       13
                                           n_right
     True
             pktno =
                       94
                           n_rcvd =
                                       14
                                           n_right
ok = False
             pktno =
                       95
                           n_rcvd =
                                       15
                                           n_right =
                                                        13
      True
            pktno =
                           n_rcvd =
                                       16
                                           n_right
                                                        14
                                                        15
      True
             pktno =
                       97
                           n_rcvd =
                                       17
                                           n_right
     True
                       98
                           n_rcvd =
                                           n_right =
                                                        16
                                       18
      True
            pktno =
                       99
                           n_rcvd =
                                       19
                                           n_right
                                                        17
                      100
                                       20
                                                        18
      True
                           n_rcvd =
                                           n_right
                      101
                           n_rcvd =
                                           n_right =
                                                        19
      True
      True
             pktno =
                      102
                           n_rcvd =
                                           n_right =
                                                        20
      True
                      103
                           n_rcvd
                                           n_right
      True
                      104
                           n_rcvd =
                                       24
                                           n_right =
                                                        22
             pktno =
                                                        23
      True
                      105
                           n_rcvd =
                                       25
                                           n_right =
                      106
                                       26
                                           n_right
                                                        24
      True
                           n_rcvd
      True
             pktno =
                      107
                           n_rcvd =
                                           n_right =
                                                        25
      True
                      108
                           n_rcvd =
                                           n_right =
                                                        26
                                                        27
                      109
                           n_rcvd
                                       29
                                           n_right
                      110
                           n_rcvd =
                                       30
                                           n_right =
                                                        28
      True
     True
             pktno =
                      111
                           n_rcvd =
                                           n_right =
                                                        29
ok = True
            pktno =
                      112
                           n_rcvd =
                                       32 n_right =
                                                        30
```

Experiment 5: Working with USRP X310

- Used two USRP X310s on ORBIT Sandbox 2 to transmit and receive a single frequency over the air
- This experiment demonstrates the use of the USRP Hardware
 Drivers (UHD) and GNU Radio with the USRP X310
- Used GNU companion to plot the spectrum of the received signal

Results:

Data Collection: For spectrum sensing using USPR2 and WISERD (OEDL and OML)

- Used WISERD to record this spectrum data
- Wiserd recorded the spectrum data to file for 2000ms

Sample Data:

GNU nano 2	.2.6			File: s	pectrum							
otocol: 5												
main: spec	trum											
art-time:		3										
nder-id:												
p-name: sp	ectrum											
nema: 0 _e	xperiment	_metadat	a subject:	string key:string value:	string							
nema: 1 _c	lient_ins	trumenta	tion measu:	rements_injected:uint32	measurer	ents_dro	opped:ui	.nt32 bytes_allo	cated:uint	64 bytes_freed:ui	nt64 bytes_in_use:ui	int64 by
nema: 2 sp	ectrum_da	ta sampl	ing:int32	cfreq_MHz:double gain_dE	:int32 F	FTLength	n:int32	FFTNum:string F	FTBins:[do	uble]		
ntent: tex	t											
319220	2		F000000	70000000 000000	20	256		256 0 0040525	E03E10H031	0.000005400313600	83 0.008667024783796	11 0 0
319220	1	1 1	1	700000000.000000 0 137606 121468	16138	23102		236 0.0049323	1921104631	0.00900340212690	03 0.00000/024/03/90	JII 0.0
319384	2	2		700000000.000000	20	25102		256 0 0027297	16169552611	0 00761/160225/105	54 0.008134672418236	72 0 0
19572	2	3		700000000.000000	20	256					322 0.00625793496146	
19716	2	4		700000000.000000	20	256					801 0.00545420497655	
19867	2	5		700000000.000000	20	256					858 0.00350753217935	
20115	2	6		700000000.000000	20	256					545 0.00591878080746	
20363	2	7		700000000.000000	20	256					555 0.00730879977345	
20665	2	8		700000000.000000	20	256					284 0.00563437957316	
20820	2	9		700000000.000000	20	256					55 0.007887424901127	
21163	2	10	5000000	700000000.000000	20	256					79 0.007398616522556	
21320	2	11	5000000	700000000.000000	20	256		256 0.0059962	1329456568	0.00445243809372	187 0.00620639836415	648 0.
21616	2	12	5000000	700000000.000000	20	256		256 0.0068090	7955393195	0.01009986177086	83 0.005259679164737	46 0.0
21865	2	13	5000000	700000000.000000	20	256		256 0.0063451	2305259705	0.00575974956154	823 0.00561255542561	412 0.
22114	2	14	5000000	700000000.000000	20	256		256 0.0096419	7982102633	0.00511818518862	128 0.00625225249677	7896 0.
22414	2	15	5000000	700000000.000000	20	256		256 0.0081475	1721918583	0.00760817620903	254 0.01075855642557	714 0.0
22660	2	16	5000000	700000000.000000	20	256		256 0.0076418	2442799211	0.00687508145347	238 0.00825630500912	2666 0.
22912	2	17	5000000	700000000.000000	20	256		256 0.0043963	5710790753	0.00831474084407	091 0.00603756401687	786 0.0
23210	2	18		700000000.000000	20	256					747 0.00684852013364	
23410	2	19	5000000	700000000.000000	20	256		256 0.0058030	3743481636	0.00885100848972	797 0.00467794807627	7797 0.
23709	2	20		700000000.000000	20	256					65 0.006020837463438	
23866	2	21		700000000.000000	20	256					845 0.00412353780126	
24208	2	22		700000000.000000	20	256					876 0.00513049308216	
324410	2	23		700000000.000000	20	256					125 0.00466649606823	
324664	2	24	5000000	700000000.000000	20	256	1:		3209724426	0.00608327891677	618 0.00716480519622	2564 0.
Get Help		0.0	WriteOut	^R Read Fil		Read 7823	Y Prev		^K Cut	T	^C Cur Pos ^T To Spell	
							Prev		K (CIII)	IPYT		

Data Collection: Using Spectrum sensing with USRP2 and wiserd

- Again in this experiment we used WISERD to collect the data
- It created a data file in the root
- Used OCTAVE plot received data file
- .bin file that WISERD created and we use this file to plot received data file

Sample Data:

Future Work

- With the collected data, use AI and ML approaches to build intelligent networks, in order to adapt their spectral behaviour
- Based on the behavior of different wireless user, use algorithm to assign limit spectrum capacity in a more efficient way

Questions

Thank you