RUTGERS

WINLAB | Wireless Information
Network Laboratory

4 Overview

Self-driving cars typically use a myriad of sensors and cameras to
achieve their goal. This project explores the sole use of front-facing
cameras and their viability for autonomous driving.

Using a custom-built miniature car, we trained a self-driving neural
network by driving throughout the smart city intersection to simulate
how it would react to its environment.

Goal:
Assemble and document the creation and training of a 3D printed
self-driving car that reacts to the city environment, using a

Convolutional Neural Network (CNN) model.

Methodology

e Combine 3D printed chassis with
off-the-shelf electronics

e Develop a codebase of nodes
and topics that run on the
Robot Operating System (ROS)

e Train neural network on 3
driving data using a server with
hardware acceleration

e Evaluate trained model by
connecting output of neural
network to driving control in
simulation and physical car

=
/
Z=

-

~

~

System Architecture

Self-Driving Vehicular Project 2024

RASCAL: Robotic Autonomous Scale Car for Adaptive Learning

g Data Pipeline A

Data Processing o Raw driving data is recorded into a “session”,

which contains a video and csv file
The csv file labels each frame of the video
with the car’s position and controls

Raw Image, Position, PY
Control Data

v Data Processing Session Tar File
Bag
i bag2alldata.py | - Labels.csy
* FFmpeg Position, Control, and .
ROS 5 Images — video | | Video Frame association |— VideoOutput
bag file ‘ .mp4
Replaying and Editing Session Data Loader Cleaned
_ Tar File , Session Data
e Compressed tar files are Break data into
offloaded to a server Labels segments Labels
e Thereplayer allows us to it Read and edit |- S5V
view and edit the data :) data :
Usi hi L Video | Video
e Using this, we manually Output * Output
remove bad data so that mp4 Replayer mp4
the model does not learn View Replay
from it Add/Edit Labels ||lq—p O
Cut Sections
Human

Skewing and Augmentation

e |mage skewing is used to generate alternate views from the car in
different positions and orientations (data augmentation)

e This allows for a more varied dataset, allowing the neural network
to generalize for a wider range of scenarios

Simulated Shift Simulated Rotation

Original

— Overview
ot Real Life Testing Our software is split into three
= ArUco main sections to effectively record,
Planner Localization :
; train, and test our models.
Pure Manual | |[Automatic
Pursuit Driving Driving
I I A
| | I
|
- Neural Network |
Data Pipeline Spline
\ 4 —*Replayer=—» Train —* Model _vProcessing
Data R Session L] Data
Processing| |Tar Files| |Loader I
Skew/ : :
" " Aug » Simulator —»Evaluation

ROS Nodes and Topics

e Software runs on the car’s computer, a Jetson Nano, in the ROS
environment for base functionality and to collect driving data

lioy (=) —’Qoy_adapteD— "| frascal/control @|v

Cmain_node —/— £ —’| /rascal/pose qlé

p /// ?|/rascal/pose/set @ Y, /
v / /

Crascal_displaVD‘— 7 -’I/web dlsplay/pomt54 Ii/JLcheb dlsplay>

bag_recorder>

m l_interface)

// 7| /web_display/image @P

/ /CrealsenseZ camera>

V/
(aruco_detection -
\ & calibration

4 Lo N

Camera Calibration

Localization

Motivation: As RASCAL drives, slipping
and sensor imprecision leads to internal
position inaccuracies.

Pose Estlmatlon

Solution: Detect ArUco markers at fixed
locations within the city and use them to
ground the car’s position to the world.

Fisheye Correction _ Raw
A fisheye camera allows G2 24 & ==
for wider field of view. |

Calibration is needed to
flatten the raw image. =

Aaron Cruz"®, Arya Shetty"®, Brandon Cheng"®, Tommy Chu"®, Erik Nielken">, Siddharth Malhotra"

4 Neural Network

Network Architecture

e 3 convolution layers followed
by 3 fully connected layers

e Utilizes Leaky RelLU Activation
function, Max Pooling, and
Dropout between layers

e Outputs 4 angles to future
path points and speed

=
v
’
v
’
"_‘
1
1
1
1

40x11x 28

20x5x32

128

160x45x 3

80 x 22 x 24 256

Network Training

e Uniform batch sampling prevents
dataset bias for driving straight

e Hyperparameter optimization trains

Default batch vs Uniform batch

multiple models and picks the most —
optimal one —— vaidation] | |
e After training, the modelis runinthe [—— taining |/~
simulator to evaluate its performance Model loss |
graph i K___
‘ Modified Sessions (Video, Labels) R

Train - Optimal Trained Simulator/Evaluation
trainModel.py CNN Model Load Experiment
y y Simulate driving
PyTorch Hyperparameter Spline Processing with skewing
model Optimization with)
optimization Dragonfly Aggregate Points Record "Crashes”
4 Calculate Curve A

Output Processing

e o achieve a smooth path, we aggregate the output lookahead
points of many images and fit a spline

e A Grad-CAM heatmap is overlaid onto the input image to
understand what influences the model’'s decisions

\ Grad-CAM Heatmap

Spline Fit on Aggregated Points /

-
Results

Conclusion
After many iterations of our

model and hardware, we were
able to precisely drive through
the smart city, while obstacles
were present, without collisions.

Future Work Future RASCAL Design

e Document process and assemble multiple RASCAL vehicles

e Integrate YOLO (You Only Look Once) object detection to control
vehicle braking to react to traffic lights, road signs, and pedestrians

e Develop a state machine to declare intent while driving

—— = /camera/color/image_raw @% e —(usb_cam>

_

\o Utilize global position and ArUco integration for decision making

YOLO detection

/

B

