RUTGERS

WINLAB | Wireless Information
Network Laboratory

4 Overview

Self-driving cars typically use a myriad of sensors and cameras to
achieve their goal. This project explores the sole use of front-facing
cameras and their viability for autonomous driving.

Using a custom-built miniature car, we trained a self-driving neural
network by driving throughout the smart city intersection to simulate
how it would react to its environment.

Goal:
Assemble and document the creation and training of a 3D printed
self-driving car that reacts to the city environment, using a

Convolutional Neural Network (CNN) model.

Methodology

e Combine 3D printed chassis with
off-the-shelf electronics

e Develop a codebase of nodes
and topics that run on the
Robot Operating System (ROS)

e Train neural network on 3
driving data using a server with
hardware acceleration

e Evaluate trained model by
connecting output of neural
network to driving control in
simulation and physical car
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System Architecture

Self-Driving Vehicular Project 2024

RASCAL: Robotic Autonomous Scale Car for Adaptive Learning
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Data Processing o Raw driving data is recorded into a “session”,

which contains a video and csv file
The csv file labels each frame of the video
with the car’s position and controls
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Skewing and Augmentation

e |mage skewing is used to generate alternate views from the car in
different positions and orientations (data augmentation)

e This allows for a more varied dataset, allowing the neural network
to generalize for a wider range of scenarios
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ROS Nodes and Topics

e Software runs on the car’s computer, a Jetson Nano, in the ROS
environment for base functionality and to collect driving data
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Camera Calibration

Localization

Motivation: As RASCAL drives, slipping
and sensor imprecision leads to internal
position inaccuracies.

Pose Estlmatlon

Solution: Detect ArUco markers at fixed
locations within the city and use them to
ground the car’s position to the world.

Fisheye Correction _ Raw
A fisheye camera allows G2 24 & ==
for wider field of view. |

Calibration is needed to
flatten the raw image. =
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4 Neural Network

Network Architecture

e 3 convolution layers followed
by 3 fully connected layers

e Utilizes Leaky RelLU Activation
function, Max Pooling, and
Dropout between layers

e Outputs 4 angles to future
path points and speed
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Network Training

e Uniform batch sampling prevents
dataset bias for driving straight

e Hyperparameter optimization trains

Default batch vs Uniform batch
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Output Processing

e o achieve a smooth path, we aggregate the output lookahead
points of many images and fit a spline

e A Grad-CAM heatmap is overlaid onto the input image to
understand what influences the model’'s decisions
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Results

Conclusion
After many iterations of our

model and hardware, we were
able to precisely drive through
the smart city, while obstacles
were present, without collisions.

Future Work Future RASCAL Design

e Document process and assemble multiple RASCAL vehicles

e Integrate YOLO (You Only Look Once) object detection to control
vehicle braking to react to traffic lights, road signs, and pedestrians

e Develop a state machine to declare intent while driving
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\o Utilize global position and ArUco integration for decision making

YOLO detection
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