
Neural NetworkOverview

Results
Camera Calibration

System Architecture

Data Pipeline

Self-Driving Vehicular Project 2024

WINLAB

RASCAL: Robotic Autonomous Scale Car for Adaptive Learning
Aaron CruzUG, Arya ShettyUG, Brandon ChengUG, Tommy ChuUG, Erik NießenHS, Siddharth MalhotraHS

Data Processing

Replaying and Editing

Skewing and Augmentation

● Raw driving data is recorded into a “session”,
which contains a video and csv file

● The csv file labels each frame of the video
with the car’s position and controls

Localization
Motivation: As RASCAL drives, slipping
and sensor imprecision leads to internal
position inaccuracies.

Solution: Detect ArUco markers at fixed
locations within the city and use them to
ground the car’s position to the world.

● Compressed tar files are
offloaded to a server

● The replayer allows us to
view and edit the data

● Using this, we manually
remove bad data so that
the model does not learn
from it

● Image skewing is used to generate alternate views from the car in
different positions and orientations (data augmentation)

● This allows for a more varied dataset, allowing the neural network
to generalize for a wider range of scenarios

Original Simulated Shift Simulated Rotation

Fisheye Correction
A fisheye camera allows
for wider field of view.

Calibration is needed to
flatten the raw image.

Self-driving cars typically use a myriad of sensors and cameras to
achieve their goal. This project explores the sole use of front-facing
cameras and their viability for autonomous driving.

Using a custom-built miniature car, we trained a self-driving neural
network by driving throughout the smart city intersection to simulate
how it would react to its environment.

Goal:
Assemble and document the creation and training of a 3D printed
self-driving car that reacts to the city environment, using a
Convolutional Neural Network (CNN) model.

Pose Estimation

Network Architecture

Output Processing

Spline Fit on Aggregated Points

Raw Flattened

● 3 convolution layers followed
by 3 fully connected layers

● Utilizes Leaky ReLU Activation
function, Max Pooling, and
Dropout between layers

● Outputs 4 angles to future
path points and speed

● To achieve a smooth path, we aggregate the output lookahead
points of many images and fit a spline

● A Grad-CAM heatmap is overlaid onto the input image to
understand what influences the model’s decisions

Grad-CAM Heatmap

main_node

joy_adapter

aruco_detection
& calibration

bag_recorder

rascal_display
web_display

ml_interface

realsense2_camera

usb_cam

/web_display/image

/rascal/pose

/camera/color/image_raw

/rascal/control

/web_display/points

/rascal/pose/set

/joy

Conclusion
After many iterations of our
model and hardware, we were
able to precisely drive through
the smart city, while obstacles
were present, without collisions.

Future Work
● Document process and assemble multiple RASCAL vehicles
● Integrate YOLO (You Only Look Once) object detection to control

vehicle braking to react to traffic lights, road signs, and pedestrians
● Develop a state machine to declare intent while driving
● Utilize global position and ArUco integration for decision making

ROS Nodes and Topics

Normalized Image

256

128

5

80 x 22 x 24

20 x 5 x 32
40 x 11 x 28

160 x 45 x 3

Model loss
graph

Default batch vs Uniform batch

● Uniform batch sampling prevents
dataset bias for driving straight

● Hyperparameter optimization trains
multiple models and picks the most
optimal one

● After training, the model is run in the
simulator to evaluate its performance

Methodology
● Combine 3D printed chassis with

off-the-shelf electronics
● Develop a codebase of nodes
 and topics that run on the
 Robot Operating System (ROS)
● Train neural network on
 driving data using a server with

hardware acceleration
● Evaluate trained model by

connecting output of neural
network to driving control in
simulation and physical car

Our software is split into three
main sections to effectively record,
train, and test our models.

● Software runs on the car’s computer, a Jetson Nano, in the ROS
environment for base functionality and to collect driving data

Overview

Train

Modified Sessions (Video, Labels)

trainModel.py

PyTorch
model

optimization

Hyperparameter
Optimization with

Dragonfly

Optimal Trained
CNN Model

Spline Processing
Aggregate Points

Calculate Curve

Simulator/Evaluation
Load Experiment

Simulate driving
with skewing

Record “Crashes”

Real Life Testing

Data Pipeline
Neural Network

Train Model

Pure
Pursuit

Manual
Driving

Automatic
Driving

Data
Processing

Data
Loader

Simulator

Replayer

Skew/
Aug Evaluation

Session
Tar Files

Spline
Processing

Path
Planner

ArUco
Localization

Network Training

Data Loader

Replayer

Session
Tar File

Labels
.csv

Video
Output
.mp4

Break data into
segments

Cleaned
Session Data

View Replay

Add/Edit Labels

Cut Sections

Read and edit
data

Human

Labels
.csv

Video
Output
.mp4

Data Processing
Bag

Recorder

Raw Image, Position,
Control Data

ROS
.bag file

bag2alldata.py

Session Tar File

Labels.csv

VideoOutput
.mp4

FFmpeg
images → video

Position, Control, and
Video Frame association

YOLO detectionFuture RASCAL Design

