

# 5G Edge Cloud Application

Ji Wu, Damon Lin, Vineal Sunkara, Steven Nguyen, Matt Arigo

#### **Meet the Team**



From left to right: Vineal Sunkara, Ji Wu, Matt Arigo, Steven Nguyen, Damon Lin

#### **Humans cause majority of accidents**

#### **Driver-, Vehicle-, and Environment-Related**

- S. Singh, 2015
- Drivers
- Vehicles
- Environment
- Unknown Critical Reasons



Singh, Santokh. Critical reasons for crashes investigated in the national motor vehicle crash causation survey. No. DOT HS 812 115. 2015.

#### **Humans cause majority of accidents**

#### **Driver-Related Critical Reasons**

- S. Singh, 2015
- Recognition Error
- Decision Error
- Performance Error
- Non-Performance Error
- Other



Singh, Santokh. Critical reasons for crashes investigated in the national motor vehicle crash causation survey. No. DOT HS 812 115. 2015.

#### Why connect vehicles together?





Blind corner

Obscured sensor (fog ↔ cameras)

Icy roads (road conditions)

#### Self-driving cars will improve safety

 Alkis et. al. designed a control algorithm for self driving that improves road safety significantly

|                           | Percent of Self-Driving Cars on Roads |        |             |        |
|---------------------------|---------------------------------------|--------|-------------|--------|
|                           | 25%                                   | 50%    | <b>7</b> 5% | 100%   |
| Reduction of<br>Conflicts | 12-47%                                | 50-80% | 82-92%      | 90-94% |

Alkis Papadoulis, Mohammed Quddus, Marianna Imprialou, Evaluating the safety impact of connected and autonomous vehicles on motorways, Accident Analysis & Prevention, Volume 124, 2019, Pages 12-22, ISSN 0001-4575, https://doi.org/10.1016/j.aap.2018.12.019

#### What is 5G Edge Computing?

- 5G is the next generation of cellular communication
- Edge computing moves cloud computers close to the 5G base station
  - Cloud computing is done in data centers that can be far from vehicles





#### **Project Goals**

- Experimentally test safety parameters
  - Minimum latency
  - Reliability guarantees
  - Scalability
- Load test profile network performance
  - High density of cars







#### What do we have to show?

- Two scenarios with functional edge algorithm.
- Built Dockerfile to help with deployment of broker, subscribers, and publishers.
- Fully documented aforementioned components to guide and support future students and researchers





## Case 1: Following Vehicle



## Case 2: Head-on Collision



#### **Bonus Work: Real Time Data**

- OBD-II emulators can simulate vehicle diagnostics in real time
- Sent live data from the emulator to the broker
- Subscriber received data







## **Measuring Time**

MS\_difference = slave's receipt time – master's sending time 90 minutes = 11:30 - 10:00



AVG OFFSET: -1536785.364151001ns AVG DELAY: 1353586.4353179932ns

MIN OFFSET: -17216563.22479248ns MIN DELAY: -3390312.1948242188ns

MAX OFFSET: 14008402.824401855ns MAX DELAY: 22832870.483398438ns

Done!

pi@raspberrypi:~/IEEE1588-PTP/master \$

#### **Future**

- Integrating a machine learning algorithm with our kinematical model.
  - Lane changes, weather condition, road work
- Scale up current system to handle more vehicles and external factors.
  - Could utilize large datasets or traffic simulations



# THANK YOU!

# Questions?

Special thanks to Ivan Seskar, Jenny Shane, Anthony Magnan, and Verizon