

Signal Avoidance Using 5G

Wesley Chen
Advisor: Professor Predrag

Overview

- Expand the bandwidth of 5G
- Faster + more channels
- Legacy usage of spectrum
- Goals: develop framework

Devices

- Signal Generator (bottom)
- Oscilloscope (top)

what is a signal?

what is signal?

what is a signal?

Frequency Domain

- Signals represented as its constituent frequencies + phases
- Equivalent representation

Conversion from Time to Frequency Domain

The Real Plane

A 3 Dimensional Plane

$I\left(t\right) +Q\left(t\right) i$

The Imaginary Plane

Modulation

- real and imaginary parts times high frequency sine/cos
- imaginary signals don't exist in real world

$$I\left(t
ight) + Q\left(t
ight)i$$
 $I\left(t
ight) \sin\left(wt
ight) + Q\left(t
ight) \cos\left(wt
ight)$

Modulation

BPSK

- Binary Phase Shift Keying
- 1 bit symbol
- Other methods: QPSK, QAM, etc.

TIME

FREQUENCY

OFDM

- Orthogonal Frequency Division Multiplexing
- Each carrier (frequency) contains data

Synchronization

$$S(t) = I(t)\sin(wt) + Q(t)\cos(wt)$$

$$S\left(t
ight)\cdot\sin\left(wt
ight)
ightarrow low \, pass \, filter \,
ightarrow \, I\left(t
ight)$$

Synchronization: initial IQ plot

Barker Codes - Pseudo Random Bits

Synchronization: correlation with Barker Codes

Synchronization: cleaned up IQ plot

[0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1] hiii

Goal Refresher

- How do signal interact?

hiii

Error Rates

Future

- Projects can be built on top of this framework to test signal avoidance techniques
- ie adding a buffer between the two signals

THANKS SO MUCH