== !OpenAirInterface LTE == [[Include(Documentation/Short/Prereq)]] This tutorial also assumes basic familiarity with [http://en.wikipedia.org/wiki/LTE_%28telecommunication%29 LTE standard]. It uses [http://www.openairinterface.org/ OpenAirInterface] open source software implementation of LTE basestation (eNodeB or eNB) and modem (user equipment or UE) developed at [http://www.eurecom.fr/en Eurecom]. The tutorial given here is based on the [https://twiki.eurecom.fr/twiki/bin/view/OpenAirInterface/OpenAirLXRT OAI_real-time_LTEsoftmodem] tutorial. The image used for this experiment is oai-trunk-full.ndz. Image uses Ubunutu 14.04 and has low-latency 3.17 kernel install and UHD drivers needed for B210/X310 USRPs (UHD 3.8.2)) as well as the !OpenAirInteface source code installed in /root/trunk (svn tag 668). In this tutorial we will use nodes with b310 and have the basestation on node9-1 and modem on node6-20. === Prepare the nodes === 1. Load the image with the !OpenAirInterface code on the nodes that have USRP B210 attached. After imaging the nodes are '''turned off automatically'''. [[CollapsibleStart(omf load -t inventory:topo:B210 -i oai-rel_0.1-full.ndz)]] [[Include(Documentation/Short/LoadImage)]][[CollapsibleEnd]] 1. Turn ON the nodes that successfully imaged (give them some time and check their status with '''omf stat''' before proceeding). [[CollapsibleStart(omf tell -a on -t system:topo:imaged)]][[Include(Documentation/Short/TellOn)]][[CollapsibleEnd]] === Execute the experiment === Primary objective is to establish the LTE connection between the UE and eNB. In order to that we need to prepare configuration files on two nodes: node9-1 and node6-20. 1. In oai.conf file, make sure to have correct IP address configuration for parameters "ENB_IPV4_ADDRESS_FOR_S1_MME" and "ENB_IPV4_ADDRESS_FOR_S1U" to match node numbers. For example, for nodeX-Y, these IP address parameters become as "10.10.X.Y/16". So for our basestation node the relevant sections in the oai.conf file in /root directory on the nodes we should look like (we don't want MME support and have to adjust the ip addresses to match what we have on the control interface of the node): {{{ ////////// MME parameters: mme_ip_address = ( { ipv4 = "10.10.0.100"; ipv6 = "10:10:0::100"; active = "no"; preference = "ipv4"; } ); NETWORK_INTERFACES : { ENB_INTERFACE_NAME_FOR_S1_MME = "eth1"; ENB_IPV4_ADDRESS_FOR_S1_MME = "10.10.9.1/24"; ENB_INTERFACE_NAME_FOR_S1U = "eth1"; ENB_IPV4_ADDRESS_FOR_S1U = "10.10.9.1/24"; ENB_PORT_FOR_S1U = 2152; # Spec 2152 }; }}} 1. Execute commands as || || On the eNB node (node9-1) || On the UE node (node6-20) || || w/o MME || lte-softmodem -Ooai.conf -V || lte-softmodem -U -V -Ooai.conf || || w MME || lte-softmodem-nomme -Ooai.conf || lte-softmodem-nomme -U -Ooai.conf || || Add "-d" flag if you have enabled X11 forwarding and want to see the signal tracer (requires relatively high bandwidth). || [[Image(Scope.png, width=300)]] || [[CollapsibleStart(The output on both consoles should look something like this:)]] {{{ [RRC][I][eNB 0] Init (UE State = RRC_IDLE)... [RRC][I][eNB 0] Checking release [RRC][I][eNB 0] Rel8 RRC [RRC][I][eNB 0] Configuration SIB2/3 [MAC][I][rrc_mac_config_req] [CONFIG][eNB 0] Configuring MAC/PHY [MAC][I][rrc_mac_config_req] [CONFIG]SIB2/3 Contents (partial) [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.n_SB = 1 [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.hoppingMode = 0 [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.pusch_HoppingOffset = 0 [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.enable64QAM = 0 [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.groupHoppingEnabled = 1 [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.groupAssignmentPUSCH = 0 [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.sequenceHoppingEnabled = 0 [MAC][I][rrc_mac_config_req] [CONFIG]pusch_config_common.cyclicShift = 1 [RRC][I][eNB 0] OPENAIR RRC IN.... [SCTP][I][sctp_handle_new_association_req] Setsockopt SOL_SOCKET socket bound to : eth1 [SCTP][I][sctp_handle_new_association_req] Converted ipv4 address 10.10.0.100 to network type [SCTP][I][sctp_handle_new_association_req] connectx assoc_id 1 in progress..., used 1 addresses [SCTP][I][sctp_handle_new_association_req] Inserted new descriptor for sd 56 in list, nb elements 1, assoc_id 1 [SCTP][I][sctp_eNB_flush_sockets] Found data for descriptor 56 [SCTP][I][sctp_eNB_read_from_socket] Received notification for sd 56, type 32769 [SCTP][I][sctp_eNB_read_from_socket] Client association changed: 0 [SCTP][I][sctp_get_peeraddresses] ---------------------- [SCTP][I][sctp_get_peeraddresses] Peer addresses: [SCTP][I][sctp_get_peeraddresses] - [10.10.0.100] [SCTP][I][sctp_get_peeraddresses] ---------------------- [SCTP][I][sctp_get_sockinfo] ---------------------- [SCTP][I][sctp_get_sockinfo] SCTP Status: [SCTP][I][sctp_get_sockinfo] assoc id .....: 1 [SCTP][I][sctp_get_sockinfo] state ........: 3 [SCTP][I][sctp_get_sockinfo] instrms ......: 8 [SCTP][I][sctp_get_sockinfo] outstrms .....: 64 [SCTP][I][sctp_get_sockinfo] fragmentation : 1452 [SCTP][I][sctp_get_sockinfo] pending data .: 0 [SCTP][I][sctp_get_sockinfo] unack data ...: 0 [SCTP][I][sctp_get_sockinfo] rwnd .........: 106496 [SCTP][I][sctp_get_sockinfo] peer info : [SCTP][I][sctp_get_sockinfo] state ....: 2 [SCTP][I][sctp_get_sockinfo] cwnd .....: 4380 [SCTP][I][sctp_get_sockinfo] srtt .....: 0 [SCTP][I][sctp_get_sockinfo] rto ......: 3000 [SCTP][I][sctp_get_sockinfo] mtu ......: 1500 [SCTP][I][sctp_get_sockinfo] ---------------------- [SCTP][I][sctp_eNB_read_from_socket] Comm up notified for sd 56, assigned assoc_id 1 [S1AP][I][s1ap_eNB_generate_s1_setup_request] 3584 -> 00e000 [SCTP][I][sctp_send_data] Successfully sent 53 bytes on stream 0 for assoc_id 1 [SCTP][I][sctp_eNB_flush_sockets] Found data for descriptor 56 [SCTP][I][sctp_eNB_read_from_socket] Received notification for sd 56, type 32777 [SCTP][I][sctp_eNB_flush_sockets] Found data for descriptor 56 [SCTP][I][sctp_eNB_read_from_socket] [1][56] Msg of length 27 received from port 36412, on stream 0, PPID 18 [S1AP][I][s1ap_decode_s1ap_s1setupresponseies] Decoding message S1ap_S1SetupResponseIEs (/root/trunk/targets/RT/USER/objs/openair-cn/S1AP/s1ap_decoder.c:3544) [ENB_APP][I][eNB_app_task] [eNB 0] Received S1AP_REGISTER_ENB_CNF: associated MME 1 Waiting for eNB application to be ready [HW][I][SCHED] eNB TX thread 0 started on CPU 5 [HW][I][SCHED][eNB] eNB RX thread 0 started on CPU 0 [HW][I][SCHED] eNB TX thread 1 started on CPU 0 [HW][I][SCHED][eNB] eNB RX thread 1 started on CPU 5 [HW][I][SCHED] eNB TX thread 2 started on CPU 2 [HW][I][SCHED][eNB] eNB RX thread 2 started on CPU 0 [HW][I][SCHED] eNB TX thread 3 started on CPU 5 [HW][I][SCHED][eNB] eNB RX thread 3 started on CPU 5 [HW][I][SCHED] eNB TX thread 4 started on CPU 4 [HW][I][SCHED][eNB] eNB RX thread 4 started on CPU 1 [HW][I][SCHED] eNB TX thread 5 started on CPU 4 [HW][I][SCHED][eNB] eNB RX thread 5 started on CPU 4 [HW][I][SCHED] eNB TX thread 6 started on CPU 0 [HW][I][SCHED][eNB] eNB RX thread 6 started on CPU 1 [HW][I][SCHED] eNB TX thread 7 started on CPU 1 [HW][I][SCHED][eNB] eNB RX thread 7 started on CPU 0 [HW][I][SCHED] eNB TX thread 8 started on CPU 1 [HW][I][SCHED][eNB] eNB RX thread 8 started on CPU 0 [HW][I][SCHED] eNB TX thread 9 started on CPU 0 [HW][I][SCHED][eNB] eNB RX thread 9 started on CPU 1 Creating main eNB_thread [SCHED][eNB] Started eNB main thread on CPU 4 eNB_thread: mlockall in ... eNB_thread: mlockall out ... waiting for sync (eNB_thread) TYPE TO TERMINATE Entering ITTI signals handler }}} [[CollapsibleEnd]] === The command line parameters of lte-softmodem === 1. -O file: eNB configuration file (this is the preferred way to pass basic parameters and there are several examples in $OPENAIR_TARGETS/PROJECTS/GENERIC-LTE_EPC/CONF/ 1. -g LEVEL: set the level of debug for the log generation (-g7 is quite high and useful to trace bugs in the procedures/protocols, -g9 even dumps packets at all levels of the protocol stack) 1. -d: enables xforms signal tracer 1. -U: start as UE (default: eNB) 1. -C freq: set carrier frequency to f0 for all chains (extension to independent frequencies trivial) 1. -V: enables the VCD debugging tool (this is a temporal event tracer, which is useful for real-time debugging using GTKWave) 1. -K file: ITTI logfile. ITTI is an intertask tracing utility which helps debugging with an EPC. It can traces all exchanges between RRC<->S1AP, RRC<->PDCP, PDCP<->S1 1. -S: do not exit for the missing slots, instead increment the counter. 1. --debug-ue-prach: only send prach but do not connect 1. --no-L2-connect: only runs rx, does not send prach