wiki:Other/Summer/2015/eBio

Version 7 (modified by jfarooqui, 9 years ago) ( diff )

Body Sensor Networks

Table of Contents

  1. 2015 Winlab Summer Internship
    1. Projects
    1. Indoor Localization
    2. Introduction
      1. Motivation
      2. What is ORBIT Lab?
      3. Overall Approach
      4. Resources
      5. Procedure
      6. Plan of Action
      7. Weekly Presentations
      8. Team
    1. SDR in ORBIT: Spectrum Sensing
      1. Introduction
      2. Team
      3. Objectives
      4. Weekly Progress
      5. Experiments
    1. LTE Unlicensed (LTE-U)
      1. Introduction
      2. Objectives
      3. Theory
      4. Analyzing Tools
      5. Experiment 1: Transmit and Receive LTE Signal
      6. Experiment 2: The Waterfall Plot
      7. Experiment 3: eNB and UE GUI
      8. Experiment 4: Varying Bandwidths
      9. Experiment 5: Working with TDD or FDD
      10. Experiment 6: TDD with Varying Bandwidths
      11. Experiment 7: TDD Waterfall Plot
      12. Poster
      13. Members
      14. Materials
      15. Resources
    1. Distributed Simulation of Power Grid
      1. Introduction
      2. Objectives
      3. People
      4. Resources
    1. Context-Aware IoT Application on MobilityFirst
      1. Introduction
      2. Objectives
      3. System Architecture
      4. Network Diagram
      5. Experiment Tools
      6. Results
      7. Future Work
      8. Team member
    1. Real-Time Cyber Physical Systems Application on MobilityFirst
      1. Github Repo
      2. Introduction
      3. Preliminary Goal
      4. Outline of the Project
      5. Tasks
      6. Image Processing
      7. Weekly Summary
      8. Team
      9. Presentation Slides
    1. GNRS Assited Inter Domain Routing
      1. Introduction
    1. GNRS Management
      1. Introduction
      2. Work Milestones
    1. Effective Password Cracking Using GPU
      1. Introduction
      2. Objectives
      3. GPU
      4. Experiment
      5. Tools and Resources
    1. Body Sensor Networks
      1. Introduction
      2. Project Overview
      3. Tools/ Resources
    1. Unity Traffic Simulation
      1. Introduction
      2. Objectives
      3. People
    1. Mobile Security
      1. Introduction
      2. Motivation
    2. Resources
  2. Dynamic Video Encoding
    1. Introduction
    2. Goals
    3. Background Information
      1. Anatomy of a Video File
      2. What is a CODEC?
      3. H.264 Compression Algorithm
      4. Scalable Video Coding
      5. Network Emulator Test Results
      6. DASH Multi-Bitrate Encoding
      7. DASH Content Generation
      8. Bitrate Profiles
      9. Video Encoding Algorithms
      10. GPAC
    4. Presentations
    5. People

Introduction

Biological data is increasingly easy to collect with the development of simpler and cheaper biosensors. This type of data has important implications for the future of healthcare, health monitoring, and physiologically integrated technology. The goal of this project is to develop an integrated platform for the analysis of various types of biological data, which can be used to classify and analyze new data, as well as employ biological data for practical applications ranging from diagnosis to physiologically responsive devices, and more.

Project Overview

In order to accurately classify and analyze biological data, a number of functions are needed. In particular, known characteristic patterns visible in data such as EEG (electroencephalography) or EKG (electrocardiography) must be recognized by the system in order to make reasonable decisions.

The recognition of such patterns requires statistical manipulation of the data in order to identify important features.

The current focus of this project is to research appropriate transformations that can be applied to data in order to extract key features. These features can then be analyzed by an algorithm trained on datasets exhibiting characteristic patterns to classify novel data.

Tools/ Resources

Weka

The R Project for Statistical Computing

Arduino

OpenBCI

Libelium e-Health Sensor Platform

Attachments (4)

Download all attachments as: .zip

Note: See TracWiki for help on using the wiki.